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Abstract UML statecharts are used for describing dynamic aspects of system behav-
ior. The work presented here extends a general Petri net-based methodology to support
formal modeling of UML statecharts. The approach focuses on the specific task of
generating explicit transition models associated with the hierarchical structure of stat-
echart. We introduce a state-transition notation to serve as an intermediate model for
conversion of UML statecharts, and in particular, the complexity of composite states, to
other target specifications. By defining a process for deriving, from UML statecharts,
a state-transition notation that can serve as an intermediate state machine model, we
seek to deepen understanding of modeling practices and help bridge the gap between
model development and model analysis. This work covers all of the primary issues
associated with the hierarchical structure of composite states, including entry and exit
transitions, transition priorities, history states, and event dispatching. Thus, the results
provide an important step forward toward the goal of modeling increasingly complex
semantics of UML statecharts.
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1 Introduction

The Object Management Group (OMG) adopted a new paradigm for software develop-
ment called Model Driven Architecture (MDA) (Poole, 2001) to recognize the fact that
models are important artifacts of software development and they serve as a basis for
systems as they evolve from requirements through implementation. In MDA, models
are defined in the Unified Modeling Language (UML), which is a graphical language
for visualizing, specifying, constructing, and documenting a software-intensive sys-
tem (Booch et al., 1999). MDA raises the importance of addressing many primary
issues in the current standard of UML. One of the issues, the semantics of UML, is
the subject of active discussion and much research activity (Rumpe, 1998). UML is a
semi-formal language, since some parts of it are specified formally, while other parts,
for instance dynamic semantics, are defined informally (OMG, 2003). The lack of
formal dynamic semantics for this language limits its capability for analyzing defined
specifications. The need for a formal semantics for UML is motivated in the literature
(Bruel et al., 2000; France et al., 1999), and the pUML (precise UML) group has been
created to achieve this goal (The Precise UML Group, www.cs.york.ac.uk/puml/). A
number of projects discuss formalizing UML by mapping the UML notation to an
alternative notation to give the UML notation a precise semantics and achieve UML
verification. This paper is concerned with one core component of UML—statechart
diagrams (OMG, 2003).

Statechart diagrams are used for describing dynamic aspects of system behavior
in the framework of UML. One line of research aims to give a formal semantics
to the statecharts in UML (von der Beek, 2001; Baresi and Pezzè, 2001; Compton
et al., 2000; Gogolla and Parisi-Presicce, 1998; Kuske, 2001; Latella et al., 1999;
Lilius and Paltor, 1999; Reggio, 2002). Another related set of work has been carried
out in the area of modeling to support validation and analysis of UML statecharts
(Bondavalli et al., 2001; Gábor and István, 2000; Gnesi et al., 2000; McUmber and
Cheng, 1999; Pettit IV and Gomaa, 2000; Paltor and Lilius, 1999). The work in this
paper relates most closely to the second line of research. Our earlier work, (Saldhana
et al., 2001; Hu and Shatz, 2004), provided a general approach for mapping UML
statechart models to colored Petri nets (CPNs) (Kristensen et al., 1998) for the purpose
of allowing the use of existing net analysis techniques. We will give an overview of
this approach in Section 2. The new work presented here extends the general approach
by focusing on the specific task of making explicit the semantics of composite states,
including handling the interrelated features of composite states: entry transitions, exit
transitions, transition priority and history states, and event dispatching. This work
defines an important step forward toward the goal of modeling increasingly complex
semantics of UML statecharts.

1.1 Statecharts and colored Petri nets

We now provide a quick introduction to statecharts. In UML, statechart diagrams
describe the dynamic behavior of the system. UML statecharts are an object-based
variant of classical (Harel) statecharts (Harel, 1987). Note that we use the simple form
“statecharts” to refer to the UML statecharts in the rest of this paper. We use the
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UML standard defined in OMG (2003) supplemented with the description presented
in Booch et al. (1999).

Statecharts extend finite state machines with composite states to facilitate describing
highly complex behaviors. This extension includes hierarchical structure of states and
concurrency. The hierarchical structure of states is implemented with a special type of
state, composite state. The concurrency feature is handled by one type of composite
state, a concurrent composite state. Overall, a state of a statechart can be one of the
following:� A simple state, which has no substructure.� A sequential composite state, containing sequential substates. If the sequential com-

posite state is active, exactly one of its substates is also active.� A concurrent composite state, containing concurrent substates. If the concurrent
composite state is active, one nested state from each one of the concurrent substates
is also active.

The execution semantics of a state machine (OMG, 2003) are described in terms
of a hypothetical machine whose key components are:� An event queue that holds incoming event instances until they are dispatched.� An event dispatcher mechanism that selects and de-queues event instances from the

event queue for processing.� An event processor that processes dispatched event instances.

Petri nets are a mathematically precise model, and so both the structure and the
behavior of Petri net models can be described using mathematical concepts. We assume
that the reader has some familiarity with basic Petri net modeling (Murata, 1989), but
we can start with a general reminder of Petri net concepts. By mathematical definition,
a Petri net is a bipartite, directed graph consisting of a set of nodes and a set of arcs,
supplemented with a distribution of tokens in places. A bipartite graph is a graph with
a set of two types of nodes and no arc connecting two nodes of the same type. For
(ordinary) Petri nets, we use the following three-tuple definition:

PN = (T, P, A),

where T = {t1, t2, . . . , tn}, a set of nodes called transitions,

P = {p1, p2, . . . , pm}, a set of nodes called places,

A ⊆ (T × P) ∪ (P × T ), a set of directed arcs.

Note that an arc connects a transition to a place or a place to a transition. The distribution
of tokens among places at certain time defines the current state of the modeled system.
Transitions are enabled to fire when certain conditions are satisfied, resulting in a
change of token distribution for places. With its formal representation and well-defined
syntax and semantics, Petri nets can be “executed” to perform model analysis and
verification.

Colored Petri nets (CPNs) are one type of Petri net. In colored Petri nets, tokens
are differentiated by colors, which are data types. Places are typed by colorsets, which
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specify which type of tokens can be deposited into a certain place. Arcs are associ-
ated with inscriptions, which are expressions defined with data values, variables, and
functions. Arc inscriptions are used to specify the enabling condition of the associated
transition as well as the tokens that are to be generated by the transition.

1.2 Scope of work

UML statecharts have a large number of complex and interrelated features. This paper
does not attempt to cover all of these features, but focuses on concepts that are uniquely
associated with composite states.

To help define the scope of our work, let’s consider three categories of statecharts.
Category I are the most basic statecharts, which consist of simple states, simple tran-
sitions, signal events, actions that generate events, and initial states. Category I state-
charts are the subject of our previous work (Saldhana et al., 2001; Hu and Shatz, 2004),
which will be described in Section 2. Category II statecharts include also the important
feature of composite states, which have broad implications. For example, Category II
statecharts incorporate entry transitions, exit transitions, completion transitions, final
states, and history states. Modeling the features of Category II statecharts is the subject
of this paper. Category III includes other statechart features, such as guards, deferred
events, activities, non-signal events, and actions that involve variables. These features
have not yet been fully evaluated, but with our established framework, we believe
it will be fairly natural to include such features into our approach in the future. We
provide some thoughts about this in Section 10.

The rest of this paper is organized as follows. Section 2 presents an overview of
our earlier work on formal modeling and analysis of basic statecharts using colored
Petri nets, while the remaining sections address various issues central to the modeling
of composite states. Section 3 introduces an intermediate state-transition notation
and a transformation process for modeling the semantics of composite states. The
fundamental steps for modeling entry and exit transitions are presented. In Section 4,
an optimization for the translation of exit transitions is described. In Sections 5 and
6, the modeling approach is extended to include history states and completion-event
semantics, respectively. Section 7 discusses some implications associated with our
approach for modeling UML statecharts, and Section 8 addresses the modeling of event
dispatching. Section 9 discusses related work. Finally, we provide some concluding
remarks and discuss future work in Section 10.

2 Modeling and analysis of statecharts using Petri nets: Overview

2.1 The net models

In an earlier paper (Saldhana et al., 2001), we proposed a methodology to map UML
models to Petri net models, in particular colored Petri nets (CPNs). In our method-
ology, statechart diagrams are converted to Object Net Models (ONMs), which are
basically colored net models for each system object defined by a statechart diagram.
The collection of ONMs defines a system-level model. The process for connecting
individual object net models to create the system-level model is outside the scope
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of this paper, but is discussed in Saldhana et al. (2001). The ONMs and system-
level models are abstract net models. Using an abstract net model delays binding our
transformation approach to a specific CPN notation. Thus, our transformation ap-
proach can be implemented by any standard CPN analyzer to support analysis and
simulation of the resulting CPN. Furthermore, the abstract net model allows the var-
ious issues involved in the transformation to be dealt with separately. In the first
stage of the transformation, UML diagrams are converted to an abstract CPN model.
This stage limits concerns to control flow and structural connections of net elements.
In the second stage, the abstract net model is enriched with details related to tool-
specific notations, such as defining color types, arc inscriptions, and guards for net
transitions.

We now review the structure of Object Net Models (ONMs), as shown in Fig. 1. An
ONM consists of two components: (1) an Event Dispatching and Processing (EDP)
model and (2) an interface to other objects. The EDP model represents an abstract
colored Petri net that is derived from the statechart of an object and describes the
object’s internal behavior, as defined by the state changes captured in the objects’
statechart diagram. The interface defines two interface places—IP and OP—for ex-
changing tokens with other objects, and a token routing structure. Since an event of
statecharts is modeled by a token in the CPN model, we use event-tokens to refer to
the tokens derived from events. The IP place represents the input place of the object,
which holds the event-tokens that will be used by the object. The OP place represents
the output place of the object, which holds the event-tokens that will be routed to other
objects. The ER place represents the event router place, which holds the event-tokens
that are generated by the object. When the object generates an event-token, the token
can have a type of either external or internal. If it is external, it will be routed to place
OP via transition T1. Otherwise, it will be routed to place IP via transition T 2. As
shown in Fig. 1, place IP is connected to the EDP Model, indicating that IP holds the
event-tokens that will be consumed by the object. Thus, arcs will connect the IP place
to various transitions within the EDP model. Likewise, place ER is connected “from”
the EDP model because ER holds the event-tokens that are generated by the object. So,
for each transition of the EDP model, if this transition generates a new event-token,
there will be an output arc targeting place ER. To be more precise, while it is true
that the IP, OP, and ER places hold event-tokens, it should be understood that these
event-tokens are elements of another “high-level” token that is defined as a FIFO list.
Thus, when a new event-token is generated it is actually appended to the end of the list
maintained by the high-level token. Likewise, when an event-token is to be routed, it
is first removed from the front of the list. In the case of a sequence of events associated
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with a single UML transition, the sequence is preserved by appending (in order)
the event-tokens to the end of the list. Further details on the event-token list are post-
poned until Section 8, dealing with event dispatching.

For the sake of illustration, we now show a very simple example of a Power Tube
object taken from the microwave oven example (Saldhana et al., 2001). Figure 2
shows the statechart for the Power Tube object. Initially, the Power Tube is in the state
Deenergized. When an event powerOn occurs (generated by the oven object, which is
not shown), the Power Tube object moves to state Energized, and a new event lightOn
is generated. When the event powerOff occurs (also generated by the oven object),
the Power Tube object moves back to state Deenergized, and a new event lightOff is
generated. Figure 3 shows the basic structure of the Object Net Model for the Power
Tube object.

To show that the approach advocated earlier can be realized by some existing tool,
we choose the Design/CPN (Design/CPN, www.daimi.au.dk/designCPN/) tool as an
underlying engine to support analysis and simulation of UML diagrams. In earlier
work (Hu and Shatz, 2004), we refined the framework presented in Saldhana et al.
(2001) and presented an approach for generating a system-level target net model by
enriching the abstract net model with the syntax supported by Design/CPN. In the
target model, each Object Net Model is represented by a net module that defines
the object behavior described initially by a UML statechart. The generated target net
model can be directly imported into the Design/CPN tool for model simulation and
analysis.1

1 Petri nets in general, and the Design/CPN tool in particular, can support a range of analysis techniques
(including model-checking), but our current work focuses on simulation.
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2.2 Model analysis based on simulation

In general, colored Petri Net models support various model analysis techniques such
as simulation and state space analysis. We use simulation to help a model designer
to reason about the behavior of the system model. We have previously defined two
formats of simulation results (Hu and Shatz, 2004). One is a textual notation, i.e.,
simulation traces. The other is a graphical notation, Message Sequence Charts. The
simulation reports have a text format and contain information regarding the UML
transitions that occurred during the simulation. The Message Sequence Charts have
an intuitive graphical appearance and are used to visualize the interaction among
objects. Further details on the use and control of simulation traces are outside the
scope of this paper.

We have developed a technique for supporting flexible user-driven automatic anal-
ysis of simulation traces. Simulations often keep log/trace files of events. Such trace
files can be analyzed to check whether a run of a system model reveals faults in the sys-
tem. To simulate UML statechart models, a few commercial statechart simulators are
available, such as Rhapsody (Gery et al., 2002). We have found that these simulators
provide little support for analyzing simulation traces to verify system behavioral prop-
erties. We have developed an approach for supporting flexible user-driven automatic
analysis of simulation traces by providing an interface for property specification. The
property specification is based on a pattern system (Dwyer et al., 1999; Dwyer et al.,
patterns.projects.cis.ksu.edu/). This approach has been implemented in a prototype
tool called simulation query tool (SQT). We provide an interface that allows a user
to construct queries regarding system properties. The queries will then be checked
over simulation traces. The result for a query can be “True” or “False.” In the current
version of the tool, the properties that can be checked concern the occurrence and
orders of events during a simulation run. As an initial investigation, three patterns of
the pattern system have been implemented in the prototype tool.

Another technique concerns providing user-controlled views of system simulation
through Message Sequence Charts (Hu and Shatz, 2004). A complex distributed system
may consist of many objects that communicate with each other through message
passing. As a means to control the complexity of systems analysis, designers view
systems at different levels of abstraction. To aid this process, we want a designer to be
able to reason about the behavior of a subset of the objects or the occurrences of some
particular events. Accordingly, an MSC can be defined to capture the behavior of a
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subset of the objects and/or the occurrences of some selected events. Depending on
what objects and events are selected, the MSC can then provide different views for the
behavior of the system. Filters are defined to tailor the views for the system behavior.
Two types of filters are defined and developed: object filters and event filters. These
two types of filters can be used together to control the views of system behavior. Our
prototype tool provides interfaces to allow the user to choose different views of the
system behavior using these filters.

2.3 Tool support

The architecture of our UML-CPN approach is depicted in Fig. 4. The UML-CPN
approach integrates four types of application software that are represented by four
rectangles. Among the four applications, two are existing tools that are widely used
in industry (Rational Rose) or academia (Design/CPN), and the other two are custom
tools specifically developed for our approach. The role of each application plays in
our approach is described as follows. The Rational Rose tool is used to design a UML
statechart model. The conversion tool converts the UML model into a CPN model. The
Design/CPN tool serves as the simulation and analysis engine for the generated net
model. The simulation query tool supports property verification based on simulation
traces.

For the work discussed in this paper, the most important component of the toolset is
the conversion tool, whose architecture is shown in Fig. 5. The current conversion tool
does not support composite states. To handle composite states, the ONM generator
must be extended to handle the many interrelated features of composite states. A key
step toward this goal is to define state-transition models that make explicit the complex
semantics associated with composite states, and the remainder of this paper is devoted
to discussing this issue.

3 A transformation process for composite states

3.1 Preliminaries

In Saldhana et al. (2001), we presented an approach for “flattening” the hierarchical
structure of very simple statecharts before converting the statecharts to net models. The
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technique described applied to only the most elementary form of composite states, and
did not consider the key complexities associated with composite state semantics. To
fully realize the potential of the UML-CPN transformation approach, it is necessary to
investigate these issues and define a translation that can handle composite states. Let
us consider an example adapted from Booch et al. (1999). Figure 6 shows a statechart
that models the maintenance behavior of an ATM machine.

The statechart contains a concurrent composite state Maintenance that is decom-
posed into two concurrent substates, Testing and Commanding. Each of these con-
current substates is further decomposed into sequential substates. When the control
passes from Idle to the Maintenance state, the control then forks to two concurrent
flows—the object will be in the Testing state and the Commanding state. Furthermore,
while in the Testing state, the object will be in the Testing devices or the Self diagnosis
state; while in the Commanding state, the object will be in the Waiting or the Command
state. When the Cancel event occurs, control will pass from the Maintenance to the
Idle state no matter which substates the object is in. In this case, the actual source
states for the transition labeled Cancel are not explicitly specified in the statechart.
Moreover, these source states cannot be determined statically because they depend on
which substates are currently active. This example gives a flavor for the complexity
that we encounter when dealing with composite states.

The hierarchical structure of statecharts complicates the transformation of UML
statecharts to other modeling languages because the semantics associated with com-
posite states are often not explicitly observed in statecharts. The “implied” semantics
involve the following issues: (1) transitions to and from composite states; (2) transition
priority associated with the hierarchical structure of states; (3) history states; and (4)
the event dispatcher mechanism. The first three issues concern the control flow of the
state machine when an event is dispatched. The last issue concerns how an event can
be dispatched and thus be available for driving the control flow.

Again, to retain flexibility in terms of using existing net-based tools, we define
the translation to be from UML notation to an appropriate abstract net-type notation.
The basic idea is to introduce new state transitions to make explicit the semantics
of complex transitions associated with composite states. The new state transitions,
which have a Petri net-like appearance, are derived from composite states and used as
an Intermediate State Machine model, denoted as ISM. An ISM is a finite state ma-
chine extended with concurrency. The main idea of our approach is that control-states
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are introduced to control the flow of the state machines so that the source/target states
of exit/entry transitions are explicitly represented in the ISMs. The translation to an
intermediate notation allows simplifying the complex firing rules offered by UML
statecharts, through explicitly mentioning the states involved in each type of complex
transition in the ISM. The intermediate model allows a decomposition of the prob-
lem by first solving hierarchical, history and composition related problems in UML
statecharts before running a more straightforward translation to a state/event based
formalism, here CPN. We focus on translating concurrent composite states and treat
sequential composite states as special cases of concurrent composite states, i.e., a
sequential composite state is a concurrent state that contains only one region.

By replacing the complex transitions with the ISM, a statechart is transformed
to an expanded state machine. Then the expanded state machine can be converted
into a CPN through direct mappings, i.e., state machine states are mapped onto Petri
net places, and state machine transitions are mapped onto Petri net transitions. This
resulting CPN forms part of the EDP model of the Object Net Model (ONM) shown
in Fig. 1.

To give the reader a feel for how an ISM model is used to make explicit the semantics
associated with complex transitions, we return to the example shown in Fig. 6. One
requirement for correctly translating a complex transition is to ensure that the source
states are deactivated and the target states are activated when the transition fires. To
do so, we must directly mention the source and target states in the ISM model. For
example, consider transition T 1, which is an entry transition. When T 1 fires, the Idle
state should be deactivated, and composite state Maintenance should become active.
Moreover, states Testing-devices and Waiting should also become active since they
are the default states (starting states) of the composite state. The ISM model for T 1
is shown in Fig. 7. We can see that the source state for T 1 is Idle and the target states
are the composite state Maintenance itself and its two default states.

In our notation for an ISM model, a transition is labeled with a transition name and
event name, separated by a colon. Both name and event are optional. For example,
Fig. 7 shows a transition called init that has a triggering event Maintain.

3.2 Composite states: Definitions and translation strategy

For the sake of establishing common terminology, we start with some definitions for
the different types of UML states and transitions, and some definitions that relate
closely to our scheme for composite state translation. For illustration, consider the
statechart shown in Fig. 8. We use this somewhat contrived example as a “running”
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example since it illustrates in one example each of the key features to be considered
throughout the paper.

Figure 8 shows a statechart containing a concurrent composite state with two parallel
state machines S1 and S2. An initial state is represented as a filled black circle. There
is a transition that originates from an initial state and targets some state of the state
machine or substate. This target state is called a default state, which is the default
starting state for the state machine or substate. For example, state I 1 is the default
state of the state machine; states A and C are the default states of composite state X .
A final state indicates that the execution of the state machine or the enclosing state
has been completed. A final state is represented by a filled black circle surrounded by
an unfilled circle, as seen in Fig. 8.

A simple transition is a transition that has only one source state and one target state
and these states are simple states. A complex transition is a transition that enters to,
or exits from, a composite state. Transitions that are nested within a composite state
are called nested transitions. In Fig. 8, transitions T 5, T 6, T 9, and T 10 are simple
transitions (also nested transitions), while transitions T1, T 2, T 3, T 4, T 7, and T 8 are
complex transitions. A boundary transition is a complex transition that leads to and/or
emanates from the boundary of a composite state. For example, T1, T 2, and T 7 are
boundary transitions. A cross-boundary transition is a complex transition that targets,
or originates from, the nested state(s) of a composite state. For instance, T 3, T 4, and
T 8 are cross-boundary transitions.

Complex transitions can also be categorized as entry transitions or exit transitions.
An entry transition is a transition that leads directly to a composite state. When an
entry transition fires, the composite state is activated. For example, T 7 and T 8 in
Fig. 8 are entry transitions. If T 7 or T 8 fires, state X is entered. Graphically, there
are two types of entry transitions, those that reach a composite state boundary, such
as T 7, and those that reach the nested state(s) of a composite state, such as T 8. An
exit transition is a transition that emanates from a composite state. As a result of firing
an exit transition, a composite state is exited. In Fig. 8, T1, T 2, T 3, and T 4 are exit
transitions. Graphically, there are two types of exit transitions, those that originate
from a composite state boundary, such as T1 and T 2, and those that originate from the
nested state(s) of a composite state, such as T 3 and T 4. For example, T 3 originates
from a nested state C , however, when T 3 fires, the entire composite state X is exited.

Springer



434 Autom Software Eng (2006) 13:423–467

This graphical notation denotes that T 3 is enabled no matter what nested state of
substate S1 is active, given that state C is active and event e4 occurs.

As indicated before, translation of entry and exit transitions of composite states
are the main focus of this paper. A key concept associated with composite states is:
configuration. When a composite state is active, a set of nested states of the composite
state are also active. We call the set of active states a configuration of the composite
state. Besides the composite state itself, a configuration of a sequential composite state
also contains one nested state, while a configuration of a concurrent composite state
contains more than one nested state, one from each orthogonal region of the composite
state. For illustration, consider Fig. 8. The set {X , B, C} defines one configuration
of state X . In UML, the regions that compose a concurrent composite state are also
considered as composite states; thus regions are considered states. However, for the
sake of simplicity, we do not include regions directly in state configurations.

When considering an exit transition, the source state is a composite state, which can
have different configurations depending upon which nested states can become active.
For example, in Fig. 8, composite state Xcan have the following nine configurations:
{X , A, C}, {X, A, D}, {X, A, S2 Fin}, {X, B, C}, {X , B, D}, {X, B, S2 Fin}, {X,
S1 Fin, C}, {X, S1 Fin, D}, and {X, S1 Fin, S2 Fin}, where S1 Fin and S2 Fin de-
note the final states of the regions S1 and S2, respectively. For brevity, we use {X,
A|B|S1 Fin, C|D|S2 Fin} to represent the nine configurations. We use “A|B|S1 Fin”
to denote state A or state B or state S1 Fin. Some or all of the configurations can
identify source states of the exit transitions. For transition T 3, {X , A|B|S1 Fin, C} are
configurations that define source states. We call such configurations source configu-
rations of the exit transition. Similarly, the target states of an entry transition include a
composite state and some nested states of the composite state. A target configuration
of an entry transition is a configuration that can potentially define the target states of
the entry transition. For example, in Fig. 8, the target configuration for transition T 7
is {X, A, C}. However, in contrast to an exit transition, an entry transition has only
one target configuration.

The goal for translating an entry and an exit transition is to generate an intermediate
model that consists of three key components: (1) source and target configurations of
the transition, (2) a control flow model that starts from the source configuration and
ends at the target configuration, and (3) a trigger for driving the control flow. In this
way, the semantics of the entry and exit transitions become explicitly presented in the
intermediate models.

In order to define source and target configurations, we follow the UML standard
(OMG, 2003). Entry and exit transitions have many variations in UML—some are
boundary transitions, while others are cross-boundary transitions; and some are com-
pletion transitions, while others are triggered transitions (having an explicit trig-
gering event). Since different variations usually imply different configurations, we
define our transformation approach for each type of entry/exit transition. To define
the control flow for an entry or exit transition, we distinguish whether or not the
transition is a completion transition. To handle a completion transition, we must deal
with the completion-event semantics of the completion transition, i.e., a completion
event must be generated to trigger the completion transition. For convenience and
separation of concerns, in the following several sections we will treat completion tran-
sitions as if they have an implicit trigger, which we will call a completion trigger.
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According to UML semantics, this implicit trigger is actually a completion event
that must be explicitly generated. Generation of completion events is discussed in
Section 6.

We first illustrate the transformation via examples. Then we provide basic semantic
rules to summarize the semantics that we capture in our transformation process and
to provide a basis for automating the transformation.

3.3 Modeling entry transition semantics

In this section, we show how to translate entry transitions. As the UML standard
(OMG, 2003) describes, when an entry transition of a concurrent composite state
fires, the composite state is entered; each one of its regions is also entered, either by
default or explicitly. If a region is entered by default, its default state is entered. If a
region is entered explicitly, the nested state specified explicitly by the entry transition
is entered.

We first consider cases where the source configuration of an entry transition is a
simple state.2 To model a UML entry transition, a fork transition is defined to make
explicit the control flow for the entry transition. A fork transition has one source state
and multiple target states. We call this special fork transition an init transition. An
init transition uses an explicit trigger to model the triggering-condition for an entry
transition. The source state of the init transition is the same as that of the UML entry
transition. The target states of the fork transition include a simple state representing
the composite state and some control-states, one for each concurrent region. Control-
states, which have no direct counterpart in UML statecharts, are introduced as the
technical vehicle for driving the control flow for entering concurrent regions. Note that
a control-state is a simple state. Furthermore, for each region, a transition is defined
for entering some nested state within the region. The source state of the transition is
the control-state associated with the region. Thus, an entry transition is translated to a
set of transitions that constitutes a tree structure, with the init transition serving as the
root.

For illustration, we translate the entry transitions in Fig. 8, transitions T 7 and T 8.
T 7 is a boundary entry transition while T 8 targets a nested state B. T 7 and T 8 are
represented as follows:

T 7 = I 1 −→ X, T 8 = I 2 −→ X (B)

where we use X (B) to denote the nested substate (state B) of composite state X .
Since T 7 is a boundary entry transition, when T 7 fires, state X is entered; and re-

gions S1 and S2 are also entered, by default. Figure 9 depicts the model for transition
T 7. As mentioned, the model has a tree structure where an init transition and two
control-states, D En S1 and D En S2, are introduced. Since T 7 is a completion tran-
sition, event cI1 represents the (implicit) completion trigger for transition T 7. In our
intermediate model, a control-state is represented as an oval. State D En S1 (Default
Entry State S1) represents the fact that region S1 will be entered by default. This is

2 Modeling of entry transitions whose source states are also composite states is discussed in Section 3.5.
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t2t1

D_En_S2X D_En_S1

init: cI1

I1

CA

Fig. 9 Translation of entry
transition T 7 in Fig. 8

modeled by transition t1. Similarly, state D En S2 represents the fact that region S2
will be entered by default. This is modeled by transition t2. As a result, states A and
C are entered.

Figure 10 depicts the model for transition T 8, which is a cross-boundary entry tran-
sition. Compared to translation of T 7, the only difference is that region S1 is entered
explicitly instead of by default. As shown in Fig. 10, the control-state E En S1 B
(Explicit Entry State S1 due to State B) represents the fact that region S1 will be
entered explicitly due to state B. Since T 8 is a completion transition, event cI2 rep-
resents the completion trigger for transition T 8. It is easy to observe that the models
of Figs. 9 and 10 can be simplified by removal of the control-states, allowing a direct
activation of the target states. For example, Fig. 9 can be simplified/reduced so that
the init transition has three output states: X , A, and C . A generalized reduction rule
for such cases is presented at the end of this section.

As a result, when transition init in Fig. 9 fires the control-states will force the model
to reach a state configuration in which states X , A, and C are active. This defines the
target configuration {X , A, C} for transition T 7. When transition init in Fig. 10 fires
the following states are entered: X , B, and C , which define the target configuration
{X , B, C} for transition T 8.

t2t1

D_En_S2X E_En_S1_B

init: cI2

I2

CB

Fig. 10 Translation of entry
transition T 8 in Fig. 8
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Semantic Rule 3.1: Default entry. Given a concurrent composite state X with a set of
regions R: ∀ri ∈ R, ri has a default state Ii and if ri is entered by default, Ii is entered.
If Ii is a concurrent composite state with a set of regions RI , then ∀r j ∈ RI , r j is
entered by default.

Semantic Rule 3.2: 1-level explicit entry. Given a concurrent composite state X with a
set of regions R: ∀ri ∈ R, if ri is entered explicitly due to some state A that is directly
(1-level) nested within ri , then state A is entered. If A is a concurrent composite state
with a set of regions RA, then ∀r j ∈ RA, r j is entered by default.

Semantic Rule 3.2′: Multilevel explicit entry (p-level explicit entry, p > 1) Given a
concurrent composite state X with a set of regions R: ∀ri ∈ R, if ri is entered explicitly
due to some state A that is p-level nested within region ri , then ∃ concurrent composite
state S with a set of regions RS , such that S is directly nested within ri , and ∃rA ∈ RS

such that rA contains state A, and (1) state S is entered; (2) rA is entered via (p-1)-level
explicit entry; and (3) ∀r j ∈ RS , such that r j �= rA, r j is entered by default.

Semantic Rule 3.3: Boundary entry transition. Given a concurrent composite state
X with a set of regions R and an entry transition t such that t is a boundary entry
transition: If t fires, state X is entered and ∀ ri ∈ R, ri is entered by default (Rule 3.1).

Semantic Rule 3.4: Cross-boundary entry transition.3 Given a concurrent composite
state X with a set of regions R and an entry transition t that targets nested state A
belonging to region ri ∈ R: If t fires, then (1) state X is entered; (2) if state A is
directly nested with region ri , region ri is entered via 1-level explicit entry (Rule 3.2);
otherwise, region ri is entered via multilevel explicit entry (Rule 3.2′); and (3) ∀r j ∈ R
such that r j �= ri , r j is entered by default (Rule 3.1).

We briefly discuss a more complex case that involves multilevel composite states. A
composite state that contains yet other composite states is called a multilevel composite
state. To translate entry transitions of multilevel composite states, we need to apply
Rules 3.1–3.2 multiple times until the innermost states are entered. In other words, if
the nested state being entered, call it S, is a concurrent composite state, S is entered
and also each orthogonal region of S is entered by default. As a contrived example,
consider what would happen if state A in Fig. 8 were a concurrent composite state,
such as that shown in Fig. 11, rather than a simple state. Now, when we translate entry
transition T 7 in Fig. 8 (Rule 3.3), we would obtain the structure shown in Fig. 12.
Note that the transition t11 represents the entry to the composite state A, and the model
shows how to reach the target configuration of T 7, {X, A, A1, A3, C}.

As mentioned earlier, sometimes ISM models can be simplified by removing re-
dundant transitions and associated control-states if certain conditions are satisfied. For
illustration, consider the control-states in Fig. 12. Only transition t11 targets control-
state D En R1; only transition t12 originates from D En R1; and state D En R1 is the
only source state of transition t12. Thus, control-state D En R1 can be eliminated, and

3 For simplicity, we deal with entry transitions that point to one nested state. However, the approach can be
conveniently extended to cases that an entry transition is a fork transition and thus targets multiple nested
states.
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A4

A3

A2

A1

R2R1

A
Fig. 11 Concurrent composite
state A

I1

init: cI1

X

A

A1

D_En_R1 D_En_R2

D_En_S1

D_En_S2

Ct11

A3

t12 t13

t2

Fig. 12 Translation for entry
transition T7 with state A being a
concurrent composite state

transitions t11 and t12 can be merged. Likewise, control-states D En R2, D En S1,
and D En S2 can also be eliminated. The simplified resulting model is shown in Fig.
13.

Translation Rule 3.5: Control-state reduction rule. Given a control-state S such that
(1) There is exactly one transition t1 targeting S; (2) There is exactly one transition t2
originating from S and t2 is not a triggered transition; and (3) S is the only source state
of t2: S can be eliminated, and transitions t1 and t2 can be merged into one transition.

3.4 Modeling exit transition semantics

In this section, we show how to translate exit transitions for each of the basic cases:
boundary exit transitions, and cross-boundary exit transitions, both with and without

init: cI1

X A A3A1 C

I1Fig. 13 Reduction applied to
Fig. 12
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triggers. As the UML standard (OMG, 2003) describes, when exiting from a concurrent
state, each of its regions is exited, i.e., the currently active nested state of each region is
exited. Thus, in general, each exit transition corresponds to a set of state transitions in
our model. These state transitions differ in terms of their source states, which depend
on source configurations.

To make the semantics of exiting a composite state explicit, we explicitly define the
source configurations. There are four different cases: (1) A boundary exit transition
with an explicit trigger; (2) A boundary exit transition that does not have an explicit
trigger; and (3) A cross-boundary exit transition with an explicit trigger; and (4) A
cross-boundary exit transition without an explicit trigger.

First, we consider a boundary exit transition with an explicit trigger. Such transition
is enabled if the composite state is active and the triggering event is generated, no
matter which substates of the composite state are active. So the source configurations
of the exit transition involve the combinations of the nested states of the concurrent
regions. The model for this exit transition actually represents a set of state transitions.
Each of the state transitions has the same target state and triggering event, while the
source states for each transition are defined by one of the aforementioned source
configurations.

A boundary exit transition that does not have an explicit trigger is enabled when the
control flow for each orthogonal region of the composite state reaches the final state.
Thus, the source configuration of this type of exit transition consists of the composite
state itself and the final state of each orthogonal region of the composite state.

A cross-boundary exit transition with or without an explicit trigger can be treated
similarly as the case of a boundary exit transition with a trigger. The difference is
that for a cross-boundary exit transition the source configurations involve the com-
binations of the nested states of a subset of the concurrent regions. In addition, a
cross-boundary exit transition that does not have an explicit trigger is enabled when
the control flow is ready to leave the nested state that is the direct source of the exit
transition.

For illustration, we translate the exit transitions, T1, T 2, T 3 and T4, in Fig. 8. These
transitions are the typical cases of interest. These four transitions are represented as
follows:

T 1 = X −→ E T 2 = X
e1−→ F

T 3 = X (C) −→ H T 4 = {X (A), X (D)} e3−→ G

Consider transition T1, which is a boundary exit transition that does not have an
explicit trigger (a completion transition). As mentioned earlier, we assumed that a
completion transition has a completion trigger; here, we denote this trigger as cX. The
source configuration for T1 is {X , S1 Fin, S2 Fin}, where S1 Fin and S2 Fin denote
the final states of regions S1 and S2, respectively. So, T1 is translated to T 1′ shown
in Fig. 14(a). The graphical notation for model T 1′ is shown in Fig. 14(b). As in the
case for entry transitions, a net transition, called init, is defined to recognize when an
exit transition is to be enabled. For example, in Fig. 14(b), the init transition is enabled
when (1) composite state X itself and final states S1 Fin and S2 Fin are active; and
(2) completion trigger cX occurs.
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cX
ET1' = {X, S1_Fin, S2_Fin} 

init: cX

S2_FinS1_Fin

E

X

(a) (b)

Fig. 14 Translation for exit transition T1 in Fig. 8

Now consider transition T 2, which is a boundary exit transition with trigger e1.
The source configurations of T 2 involve the combinations of the nested states of
regions S1 and S2. This defines nine source configurations, denoted as {X, A|B|S1 Fin,
C|D|S2 Fin}. Thus, the model for transition T 2 consists of nine transitions. So, T 2
is translated to T 2′, as shown in Fig. 15(a). For illustration, we show the graphical
notation for four of the nine state transitions of T 2′ in Fig. 15(b).

Transition T 3 is a cross-boundary exit transition that does not have an explicit
trigger. T 3 is enabled if the control flow is ready to leave state C and any nested state
of region S1 is active. Since T 3 is also a completion transition, a completion trigger
cC is defined. The source configuration for T 3 is {X , A|B|S1 Fin, C}. The transition
T4 is also a cross-boundary exit transition with trigger e3. T4 is enabled if states A
and D are active and event e3 is generated. The source configuration of T4 is {X , A,
D}. Thus, transitions T 3 and T4 are translated into T 3′ and T 4′, respectively. T 3′ and
T 4′ are shown as follows. The graphical notations for T 3′ and T 4′ will be similar to
that of T 2′.

T 3′ = {X, A |B| S1 Fin, C} cC−→ H T 4′ = {X, A, D} e3−→ G

The transformation approach for exit transitions is defined in the following semantic
rules. The translation of T1 is an example that relates to Rule 3.6. Similarly, Rule 3.7
is for transitions like T 2, and Rule 3.8 is for transitions like T 3.

Semantic Rule 3.6: Boundary exit transition without trigger. Given a concurrent com-
posite state X with a set of regions R, where |R| = n, and an exit transition t such
that t is a boundary exit transition and t is a completion transition: ∀ri ∈ R, ∃ state fi ,
such that fi is the final state of ri , andthe source configurations of transition t are a
set of configurations SC = {{X, f1, f2, . . . , fn}}.

Semantic Rule 3.7: Boundary exit transition with trigger. Given a concurrent compos-
ite state X with a set of regions R, where |R| = n, and an exit transition t such that
t is a boundary exit transition and t has a triggering event: ∀ri ∈ R, ∃Si , such that
Si is the set of the nested states of region ri , and the source configurations of transi-
tion t are a set of configurations SC = {{X, ei1, ei2, . . . , ein}|ei j is the jth element of
pi ∈ S1 × S2 × · · · × Sn, i = 1 · · · (|S1| · |S2| · . . . · |Sn|), j = 1 . . . n}.
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Semantic Rule 3.8: Cross-boundary exit transition.4 Given a concurrent compos-
ite state X with a set of regions R, where |R| = n, and an exit transition t that
originates from nested state A belong to region ri : ∀r j ∈ R, ∃Sj , such that Sj is
the set of the nested states of region r j , and the source configurations of transi-
tion t are a set of configurations SC = {{X, A, ei1, ei2, . . . , ei(n−1)}|eik is the kth
element of pi ∈ S1 × S2 × · · · × Si−1 × Si+1 × · · · × Sn, i = 1 · · · (|S1| · |S2| · . . . ·
|Si−1| · |Si+1| · . . . · |Sn|), k = 1 . . . (n − 1)}.

Note that the number of state transitions resulting from translating an exit transition
can be very large due to the various combinations of nested states that can be used as
source states of the resulting state transitions. To address this issue, we will present
an optimization technique for translation of exit transitions in Section 4. Once the
optimization technique is presented, we will consider exit transitions whose source
states are multi-level composite states.

3.5 Modeling a transition with dual-role semantics

As an extended case, we consider transitions whose source and target states are both
composite states. To model such a transition we divide the original transition into two
transitions, call them T1 and T 2, by adding a control-state. Transition T1 is an exit
transition that originates from the source state of the original transition and targets the
control-state; and transition T 2 is an entry transition that originates from the control-
state and targets the target state of the original transition. Note that transition T1 has the
same enabling condition as the original transition, while transition T 2 is a triggerless
transition. Because the control-state is a simple state, transitions T1 and T 2 can be
modeled using the approaches previously described.

It is noteworthy that a control-state is not a state in the original specification and thus
the control flow should not “stop” in this intermediate state. Our model guarantees
this by ensuring that the firings of transitions T1 and T 2 are included in one run-
to-completion step. (Further details on the run-to-completion step are discussed in
Section 8.) Therefore, once the enabling condition for the original transition is satisfied
and triggers transition T1 (since transition T1 has the same enabling condition as the
original transition), both T1 and T 2 will fire. Thus, it is not possible for the net model
to “stop” in the intermediate state.

4 A translation optimization for exit transitions

In the case of translating exit transitions, if a concurrent composite state has more than
two regions or each region has a large number of nested states, the number of state
transitions obtained from translating the exit transition of this composite state can be
very large. For illustration, assume a concurrent composite state has m orthogonal
substates and each substate has n nested states. In general, a triggered transition that
originates from the boundary of the concurrent composite state would be translated into

4 For simplicity, we present Rule 3.8 for dealing with exit transitions that originate from one nested state.
However, the approach can be extended to cases where an exit transition is a join transition and thus
originates from more than one nested state.
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nm transitions. More specifically, consider state X in Fig. 8. This state has 2 orthogonal
regions S1 and S2. Each region has 3 nested states, including the final states. The
resulting transition list for exit transition T 2 contains 9 state transitions described
previously in Section 3.4. In this section, for the sake of optimizing the translation
approach, we present a method for decreasing the number of the state transitions
obtained from the translation of the exit transitions associated with composite states.

The key idea of the optimization approach is that the initiation of firing an exit
transition is separate from the deactivation of its source states. More specifically, the
firing of an exit transition is divided into three steps. The first step, call it initiation, is to
recognize when an exit transition is to be enabled. For example, in Fig. 8, transition T 2
is enabled when state X is active and event e1 has occurred. Likewise, exit transition
T4 is enabled when states Aand D are active and event e3 has occurred. The second
step, call it deactivation, is to deactivate the source states. For example, in Fig. 8, when
transition T 2 fires, the following states are deactivated: state X , and one of the nested
states in each concurrent region. A deactivation module is defined to deactivate the
source states for exit transitions associated with a composite state. The third step, call
it activation, is to activate the target state. For example, in Fig. 8, when transition T 2
fires, state F is activated.

In the initiation step, if the direct source state(s) is active and the triggering event
is present, a control-state “Quit” becomes active, which drives the deactivation of the
source states. The “Quit” state activates other “Quit” states, as many as one for each
orthogonal region. The activeness of these “Quit” states leads to the deactivation of
the currently active substates. After the substates are deactivated, the composite state
is deactivated. After the source states are deactivated, the target state is activated. Note
that the direct source state(s) of a transition means the source state(s) that is explicitly
specified in the statechart diagram, unless the transition is a completion transition. In
this case, the direct source states are the final states of the regions. For example, in
Fig. 8, the direct source state of T 3 is state C , while the direct source states of T1 are
S1 Fin and S2 Fin. This approach for modeling exit transitions is motivated by the
technique outlined in Dong et al. (2003), where an “abort” token is injected into a
CPN model to abort a state within a composite state.

Let us illustrate via the same example as above, transition T 2 in Fig. 8. Assume
that state X is active and event e1 occurs. Transition T 2 is enabled and fires. The
three steps of firing transition T 2 are depicted in Fig. 16. More specifically, Fig. 16(a)
illustrates Step 1 (initiation) and Step 3 (activation), and the starting and ending points
of Step 2. The details of Step 2 (deactivation) are shown in Fig. 16(b).

In Step 1, if state X is active and event e1 occurs, transition init is enabled. Note that
the enabling condition of transition init in Fig. 16(a) is the same as that of T 2 in Fig. 8.
When init fires, states X Quit and X wait become active. The activeness of state X Quit
leads to the beginning of the second step, the step of deactivation. Note that, implicitly,
some substates of regions S1 and S2 are active when the enabling condition of T 2
is evaluated. However, Fig. 16(a) does not show which substates are active when the
enabling condition is evaluated. This means that the specific substates that are active
are not significant in terms of enabling transition T 2. This fact simplifies the step of
initiation. Moreover, it allows the UML statechart to serve explicitly as the direct basis
for translation in Step 1. The state X wait is defined as a “place holder.” Because the
deactivation module is designed to be shared by all exit transitions associated with the
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composite state, a place holder is defined to remember which specific exit transition
should complete when the deactivation is done. Note that the arc connecting state X to
transition init is a bi-directional arc. The arrow pointing to state X represents that state
X is still active after Step 1. Only in Step 2 is it deactivated. There are two reasons
for this design. First, the deactivation module can have a generic form and be reused
by all the exit transitions of the composite state. The second reason is to separate the
issue of evaluating the enabling condition from that of deactivating the source states.

Step 2, simplified as a dashed line in Fig. 16(a), is illustrated in Fig. 16(b). States
with the same name should be treated as the same state, such as X Quit in Figs.
16(a) and (b), and X Exit in Fig. 16(a) and (b). When X Quit is active, transition t1 is
enabled. When t1 fires, control-states S1 Quit and S2 Quit become active. Transitions
t2 – t7 model the deactivation of the substates. When S1 Quit becomes active, one and
only one of the three transitions originating from S1 Quit is enabled; when one of the
transitions (t2, t3, or t4) fires, the currently active substate of region S1 is deactivated.
Likewise, the currently active substate of region S2 is deactivated via the firing of
one of the transitions originating from S2 Quit. When transition t8 fires, state X is
deactivated, resulting in state X Exit becoming activated. This is the end of Step 2
and the beginning of Step 3. Now, the control flow goes back to the model shown in
Fig. 16(a). Since states X Exit and X wait are active, transition done is enabled. When
done fires, state F is activated, which means the target state of transition T 2 has been
entered. This concludes the three steps of exit transition T 2.

Figure 17 shows the translation of the other three exit transitions in Fig. 8. Since
all the exit transitions share the same deactivation module, the details of this module
are not shown in Fig. 17. Interested readers can refer to Fig. 16(b) for the details. The
module presented in Fig. 16(b) does not require using each combination of nested states
as source states for the resulting transitions. Thus, the number of resulting transitions
is decreased. Actually, the number of transitions in the deactivation module is linear
to the number of nested states.

We presented an approach to decrease the number of transitions obtained from
translating an exit transition. The reason is that it is well understood that expanding a

S2_FinS1_Fin

done

X_Exit

module

deactivation

module

deactivation
module

deactivation

T4'T3'T1'

init : e4

X_wait2

H

X_Quit

X_Exit

C

done

init : cX

X_wait1 X_Quit

E

X_Quit

DA

X_Exit

init : e3

X_wait3

G

done

Fig. 17 Translation of exit transitions T1, T3, and T4 in Fig. 8
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deactivation of state A

A_wait

S1_Exit

A_Exit

A_Quit

A

S1_QuitFig. 18 Deactivation of
composite state A

hierarchical model usually causes a state explosion problem. This occurs when the orig-
inal model contains concurrent constructs and/or has multiple levels of nested structure.
The optimization approach provides a generic form for translation of exit transitions.
Besides unifying the form of the resulting model, the generic form supports the transla-
tion of exit transitions of composite states that have a multilevel hierarchical structure.

In case of multilevel composite states, a nested state itself can be a composite state.
Thus, in order to deactivate a multilevel composite state, multiple deactivation modules
are used, one for each composite state associated with the multilevel composite state.
As a contrived example, let’s consider what would happen if state A in Fig. 8 were a
concurrent composite state. In this case, state X becomes a multilevel composite state.
Assume that state A is active when transition T 2 fires. In Fig. 16(b), where state A is
a simple state, transition t2 deactivates state A. But, since state A is now a composite
state, a deactivation module is needed to deactivate state A. For simplicity, we do not
present this deactivation module, which has the same form as shown in Fig. 16(b).
Figure 18 shows that control-state S1 Quit drives the deactivation of composite state
A. Accordingly, the modification needed for the original model shown in Fig. 16(b)
is to replace transition t2 with the sub net in the dashed-rectangle in Fig. 18.

As a conclusion to the translation of exit transitions, we summarize the above
optimization approach in the following translation rule.

Translation Rule 4.1: Basic structure for exit transitions. Given a concurrent composite
state X with a set of regions R and an exit transition t : The model for transition t consists
of an initial transition for recognizing that transition t is enabled, a deactivation module
for deactivating the source states, and an activation transition for activating the target
state.

5 History states and revisiting entry and exit transitions

In UML, a history state allows a composite state that contains sequential substates to
remember the most recently active substate prior to exiting from the composite state
(Booch et al., 1999). Two kinds of history states are defined in UML, shallowHistory
and deepHistory. A shallowHistory, represented as a small circle containing the symbol
H, remembers only the history of the immediate nested state machine. A deepHistory,
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represented as a small circle containing the symbol H∗, remembers down to the in-
nermost nested state at any depth. If the composite state has only one level of nesting,
shallow and deep history states are semantically equivalent. Note that we follow the
statement given in Booch et al. (1999): A nested concurrent composite state does
not have a history state; however, the orthogonal regions that compose a concurrent
composite state may have one.

A history state relates directly to entry transitions and exit transitions of a composite
state. The modeling of the history state in a region requires some form of memory to
know which substate of that region was active immediately before some exit transition
fires. To model history states we introduce the idea of a shadow state for each nested
state of the region. If some nested state is active when an exit transition fires, the
associated shadow state is activated. Consequently, the translation of exit transitions
needs to be modified to remember the history via shadow states, which will then be used
to guide the history entries into the composite state. Suppose that an entry transition
targets a history state of an orthogonal region. When the entry transition fires, the
most recently active substate of the region is entered, unless the most recently active
substate is the final state or the region is being entered for the first time. In the latter
two cases, the default history state is entered. The default history state is the substate
that is the target of the transition originating from the history state.

Here, we deal with composite states that have only one level of nesting, so only
shallow history states are involved. However, the approach can be extended to handle
deep history states in the context of modeling multilevel composite states. As men-
tioned in Section 3.3, when an entry transition of a concurrent composite state fires,
there are two ways of entering the orthogonal regions of the composite state: default
entry and explicit entry. Now, history states introduce a new way of entering orthog-
onal regions: history entry. To model that a region is entered via history entry, the
nested state whose shadow state is currently active becomes activated.

We illustrate our approach via an example. Figure 19 is the same as Fig. 8 except
that region S1 has a history state and a new transition T 11, which originates from
state I 3 and targets the history state. State A is the default history state. Accordingly,
the deactivation module (shown in Fig. 16(b)) is modified to remember the history of
region S1; see Fig. 20. Consider transition T4 in Fig. 19. Assume that T4 is enabled,
which means that states A and D are active. When T4 fires the three steps of modeling
exit transitions are carried out. Figure 20 depicts the deactivation module of composite
state X . When state S1 Quit becomes active, transition t2 is enabled. When transition
t2 fires state A is deactivated. At the same time, the shadow state A′ is activated. Thus,
the shadow state remembers the history of region S1.

A final state does not have a shadow state of its own. If the currently active state
of a region is the final state, the shadow state of the default history state (in this case,
state A is the default history state) is activated. Assume that, in Fig. 20, the final state
of region S1, S Fin, is active when the composite state is exited. Thus, transition t4 is
enabled when state S1 Quit becomes active. When transition t4 fires, shadow state A′

is activated.
We can now proceed to model transition T11 in Fig. 19. This transition is an entry

transition that targets a history state. Since transition T11 targets the history state of S1,
history entry is used for entering S1 and default entry is used for entering S2. The model
for transition T11 is shown in Fig. 21. Note that the model is a 2-level model. Event
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Fig. 19 A concurrent composite
state with history state

cI3 represents the (implicit) completion trigger for T11, since T11 is a completion
transition. When transition init fires, composite state X is activated; some substate of
region S1 is entered via history entry; and the default state of region S2, i.e. state C ,
is entered via default entry (Note that the Control-state Reduction Rule (Rule 3.5) has
been used to remove redundant control-states). When control-state H En S1 (History
Entry State S1) is active, either transition H En A or H En B is enabled depending on
what shadow state, A′ or B ′, is active. When the enabled transition fires, the nested
state associated with the currently active shadow state is entered. As a result of firing
T11, state I 3 is deactivated; composite state X and two of its nested states are activated.
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Fig. 20 Deactivation module of composite state X
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Fig. 21 Translation of entry
transition T11 in Fig. 21

One important issue is that we must clear the old history by deactivating the shadow
states before the new history can be recorded. We define a reusable module for clearing
the history. Note that after history entry, the shadow states are still active. As shown
in Fig. 21, the arcs connected to the shadow states are bi-directional arcs. The reason
is to allow the “clearing-history” module to have a generic form so it can be reused.
The action of clearing shadow states can be performed in the process of firing exit
transitions. More specifically, the shadow states are deactivated before the source
states of exit transitions are deactivated so that the currently active nested states can
be remembered by the shadow states when the nested states are deactivated. In light of
this, the second step of modeling exit transitions is divided into two sub steps, Step 2.1
and 2.2. Step 2.2 is the same as the second step defined previously in Section 4, while
Step 2.1 is a new step added to deactivate shadow states. The idea is that a control-state,
X DSS (In state X, Deactivating Shadow States), is added to drive the deactivation
of shadow states. State X DSS activates other control-states, as many as one for each
orthogonal region that has a history state. The activeness of these control-states leads
to the deactivation of the currently active shadow states.

Let us illustrate the idea via our running example. Consider transition T 2 of the
statechart in Fig. 19. As shown in Fig. 22(a), the model for transition T 2 has a re-
fined step 2 that takes into consideration the deactivation of the shadow states. When
transition init fires, state X DSS becomes active and Step 2.1 starts. The details of
Step 2.1, which deactivates the shadow states, are shown in Fig. 22(b); this presents
a “clearing-history” module. In general, such a module will include one transition
associated with each shadow state, for the purpose of deactivating that shadow state.
In our example, the firing of transition t1 activates control-state S1 DSS. Then one of
the two transitions t2 or t3 is enabled depending on which shadow state, A′ or B ′, is
active. When the enabled transition fires, the currently active shadow state in region S1
is deactivated, and control-state S1 DSS E (In Region S1, Deactivating Shadow State
End) becomes active. The firing of transition t4 concludes the step of deactivation of
shadow states and starts Step 2.2 with the activation of control-state X Quit.

Another issue for consideration is the initialization of shadow states. More specif-
ically, upon initial entry to the state machine, which shadow states are active?
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Fig. 22 Translation of exit transition T2 in Fig. 21. (a) Steps of firing T2 (b) Clearing history module (Step
2.1)

Regions that have a history state require the specification of a default history state,
as we defined previously. Thus, shadow states associated with the default history
states should be active at the initialization of the state machine. The simplest approach
to ensure this property is to include in the target Petri net’s initial marking those
place nodes that correspond to the shadow states associated with the default history
states.

We now present the semantic rule for dealing with history states. In addition, the
semantic rule for cross-boundary entry transitions (Rule 3.4) is refined to Rule 3.4′

in order to include the case of history entry. In light of the need for clearing-history
modules in dealing with history states, we present a slightly revised version of the
translation rule, Rule 4.1, presented previously.

Semantic Rule 5.1: History entry. Given a concurrent composite state X with a set of
regions R and some region ri ∈ R has a shallow history state: If ri is entered through
history entry, then ∃S′, a shadow state belonging to region ri , such that S′ is active,
and S is entered, where S is the state associated with the shadow state S′.

Semantic Rule 3.4′: Cross-boundary entry transitions. Given a concurrent composite
state X with a set of regions R and an entry transition t that targets nested state A
belonging to region ri ∈ R: If t fires, then (1) state X is entered; (2) region ri is entered
explicitly (Rule 3.2 or Rule 3.2′) if state A is not a history state, or through history
entry (Rule 5.1) if state A is a history state; and (3) ∀r j ∈ R such that r j �= ri , r j is
entered by default (Rule 3.1).

Translation Rule 4.1′: Extended structure for exit transitions. Given a concurrent com-
posite state X with a set of regions R and an exit transition t : The model for transition
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Fig. 23 Translation of exit transitions T1, T 3 and T4 in Fig. 19

t consists of an initial transition for recognizing that transition t is enabled, a clearing-
history module (if history states are present) for deactivating the shadow states, a
deactivation module for deactivating the source states, and an activation transition for
activating the target state.

To illustrate Rule 4.1′, we apply this rule to exit transitions T1, T 3, and T4, obtaining
the models shown in Fig. 23. Note that each exit transition model consists of two unique
transitions, init and done, and two shared modules, module 1 and module 2. Transition
init represents the initialization transition that initiates the exit transition, module 1
represents the clearing-history module, module 2 represents the deactivation module,
and transition done represents the activation transition that activates the target state.
Module 1 is detailed in Fig. 22(b), and module 2 is detailed in Fig. 20.
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Configuration

Control flow

Target

Configuration

done

init: event init: event

Direct Source
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(a)  (b) 

Fig. 24 Abstract architecture
for entry and exit transition
models
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6 Completion-event semantics

Entry and exit transitions can be completion transitions. We call such transitions
completion-entry transitions and completion-exit transitions. These transitions have
associated with them both entry/exit semantics and completion-event semantics. In
Sections 3.3 and 4, we discussed how to model entry and exit semantics. Recall that
the key components of the generated models are the source configuration (for entry
transition models), the direct source states (for optimized exit transition models),
an init transition for recognizing the enabling condition of the entry/exit transition;
and a control flow that leads to the target configuration. Figures 24(a) and (b) show an
abstract architecture for entry and exit transition models, respectively. We now discuss
how to model completion-event semantics by modifying the control flows for entry
and exit transitions.

We first briefly review completion-event semantics as defined in UML (OMG,
2003). When all tasks (transitions, entry actions and activities) within the source state
are complete, a completion event instance is generated.5 In particular, if the source
state is a composite state, a completion event instance is generated when the control
flow for each orthogonal region of the composite state reaches the final state. The
completion event then becomes the implicit trigger for the completion transition.

To model completion-event semantics the model must make explicit the implicit
semantics associated with a completion transition. In other words, we must handle
both features—the generation and recognition of the completion event. In previous
sections, we simply represented completion events by assuming implicit triggers,
which we modeled explicitly as completion triggers. The completion trigger is rec-
ognized by the init transitions, shown in Figs. 24(a) and (b). Thus, since a comple-
tion trigger models a completion event, the completion event recognition problem is
handled.

We now show how to model the generation of completion events. For a completion-
entry transition, the architecture shown in Fig. 24(a) needs to be refined. The new archi-
tecture is shown in Fig. 25(a). In the new architecture, a new transition, CE creation,
is introduced to explicitly generate the completion event. Details on how the comple-
tion event is modeled and stored in the event queue are described in Section 8, which
discusses the issue of event dispatching.

For a completion-exit transition, we refine the model of Fig. 24(b) into Fig. 25(b).
Again, transition CE creation is introduced to generate the completion event. Note
that the source configuration is preserved after transition CE creation fires by the
arrow pointing to the direct source state(s). This is to be consistent with the optimized
approach for translation of exit transitions, for which the source configuration needs to
be preserved even after the firing of the init transition. Control-state lock is introduced
to ensure that exactly one completion event is generated per firing of the exit transition.
Initially, control-state lock is active.

For illustration, we now re-consider the translation of two completion transitions
in our running example of Fig. 8. T 7 is a completion-entry transition while T1 is a

5 For convenience, we assume here that source states of completion transitions do not specify any internal
transitions, entry actions, or activities.
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Fig. 25 Abstract architecture for completion-entry and eompletion-exit transition models

completion-exit transition. We discussed how to partially translate these two transitions
in Sections 3.3 and 4, respectively, ignoring the completion-event semantics. Since
both transitions are completion transitions, a completion event instance needs to be
generated for each transition. Based on the modeling technique just defined, the net
model for transition T 7 is modified (and reduced by Rule 3.5) and shown in Fig. 26.
Similarly, the refined model for completion-exit transition T1 (previously shown in
Fig. 16(a)) is shown in Fig. 27.

We note that a UML completion transition that is a simple transition can be modeled
in a way that is similar to a completion-entry transition. For the simple transition, the
target state, which becomes active after recognition of the completion event, is a single
simple state.

According to UML semantics, completion events themselves are events that must
be dispatched. They play an important role in the process of event dispatching and
help define the run-to-completion step, which is described in Section 8.

CA

init: cI1

X

cI1

CE_creation

I1Fig. 26 Modified net model for
transition T7
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Fig. 27 Modified net model for
transition T1

7 Some modeling implications

7.1 Mapping analysis results back to UML notation

In order to map analysis results at the net level back to UML notation, one issue that
must be addressed is establishing correspondence between the UML transition and the
behavior of the associated ISM model—in other words, how to recognize the UML
transition in the obtained model so that the information about the UML transition can
be recorded in simulation traces when the corresponding net transitions fire. More
specifically, there are two key issues. We will first discuss these two issues in terms of
exit transitions.

First, what information should be recorded during model execution? To allow the
net behavior to be interpreted in terms of components of the UML transition, we
should record the source composite-state; which will be the composite state being
exited; triggering event; and target state. The second key issue is when the information
should be recorded. In other words, what transitions in the net structure need to be
made “visible” in terms of contributing information during model analysis or simula-
tion? The source state and the triggering event can be obtained from the initialization
transition, init. For example, in Fig. 16(a), the transition init targets the control-state
X wait, which indicates that the source composite-state for the corresponding UML
transition (T 2) is composite state X . Similarly, the trigger for transition init is event e1,
which indicates that the triggering event for UML transition T 2 is also event e1. The
target state can be identified from the final transition of the net structure, the so-called
done transition. For example, in Fig. 16(a), the target state for transition done is state
F , which is also the target state of the UML transition. Thus, the critical transitions
in the net structure are the init and done transitions since these two transitions are
associated with the information regarding the UML transition. The firings of these
two transitions symbolize the behavior defined for the UML exit transition. The other
transitions associated with the net structure, although they do fire in some order, can
be made “invisible” (so-called “silent transitions”) for the purpose of mapping our
model’s behavior back to the UML notation.

Entry transitions can be treated similarly. The source state and triggering event of
an entry transition can be easily identified from the init transition in the net model for
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the entry transition. In cases that do not involve history states, the target configuration
can also be identified directly from the init transition. Recall that the model for an
entry transition that targets a history state is a 2-level model. The init transition is
followed by a set of 2nd-level transitions. In the case of such an entry transition,
the init transition indicates the source state, the triggering event, the composite state
being entered, any target states that are entered by default, and the history state. The
2nd-level transitions indicate which particular nested state is entered via history entry.

As a small example, consider our running example in Fig. 8. Assume that the object
leaves state I 1 and enters composite state X by entry transition T 7, and subsequently
event e1 occurs, causing the object to leave composite state X and enter state F by
exit transition T 2. Based on our modeling approach and the mapping ideas described
above, the trace information that would be collected is the following:

1. Transition T 7 fires. Source state: I 1; Trigger: no trigger; Target Configuration:
X, A, C /* Due to the init transition for entry Transition T 7; see Fig. 9 (and the
control-state reduction rule) */

2. Transition T 2 begins. Composite state being exited: X ; Trigger: e1 /* Due to
the init transition for exit transition T 2; See Fig. 16(a)*/

3. Transition T 2 ends. Target State: F /* Due to the done transition for exit tran-
sition T 2; see Fig. 16(a) */

Note that many of the intermediate net-level transitions are not visible by the above
mapping. Note also that transition T 2 consists of two separate stages. Here, we focus
on the idea of mapping the meaning of these two stages in terms of how the firings
of the net model transitions can be mapped back to the meaning of the UML model.
As an optimization, these two stages can be combined as one atomic step by using
a technique similar to that described in the following section. For lack of space, the
details on this matter are not presented in this paper.

7.2 Atomicity of UML transitions

Note that the behavior of an exit transition does not automatically correspond to the
firing of a single transition in the net model. We assume that the semantics of our
net model allow the net transitions (visible or invisible) that form the net structure to
interleave with net transitions corresponding to other concurrent UML transitions.6 But
since none of these invisible transitions is externally observable, such an interleaving
does not impact the desired semantic behavior. Yet, there are some cases where such
interleaving must be prevented, such as when there are data-oriented actions associated
with UML transitions. For instance, in the case of concurrent composite states, nested
transitions that belong to different regions may be concurrently enabled and the firings
of these transitions are allowed to interleave with each other. However, when actions
such as read, write, or computation are associated with such transitions, the actions
should not overlap, or be performed in parallel; our model must ensure a mutual
exclusion semantics for such actions.

6 An exit transition can be concurrent with other transitions when the exit transition is enclosed in a region
of a concurrent composite state.
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Fig. 28 An example for using control-state lock to ensure atomicity of UML transitions

To model the atomicity of concurrent UML transitions, we use a standard net model-
ing technique based on introducing a control-state lock for each concurrent composite
state. Control-state lock is connected to a set of net structures, each modeling one of
the nested transitions.7 Figure 28 illustrates the basic idea. Figure 28(a) shows a con-
current composite state that has two concurrent transitions t1 and t2. Both transitions
have associated actions, action1 and action2, respectively. Figure 28(b) shows how
control-state lock is used to ensure the atomicity of firing the net models for transi-
tions t1 and t2. Since the modeling of specific actions (in particular, reads and writes
of variables) is outside the scope of this paper, we simply use a dashed-box to denote
an abstract model for such actions. We call these generic models action-models. Note
that while any one net structure is active, control-state lock is inactive. Thus no other
net structures can be enabled. Therefore the execution of any action-model is atomic.
Control-state lock should be set as active at the initialization of the state machine.

Taking this a step further, we can realize that a system model can contain several
statecharts, so a UML transition may interleave also with transitions of other state-
charts. If these transitions are associated with actions that process common data (a
global variable), the firing of these transitions should be atomic. This case can be
modeled using the same basic approach as described above.

7.3 Transition conflicts and priorities

We now discuss another issue, which relates to exit transitions—transition conflicts and
transition priorities. Consider Fig. 29. Note that since transitions T1 and T 2 have the
same triggering event e, they can be enabled simultaneously, for example, when states

7 As an optimization, the connections (arcs) associated with the lock place need not be generated for a
nested transition that does not involve (data-oriented) actions.
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A and C are active and event e occurs. In general, two transitions can be in conflict if
they have the same triggering event and at least one source state in common.

It is sometimes possible to resolve conflicts with the help of the priority of transitions
defined by the UML standard. UML semantics (OMG, 2003) define firing priorities for
situations where there are conflicting transitions. These priorities of conflicting transi-
tions are based on their relative positions in the state hierarchy. By definition, a transi-
tion originating from a substate has higher priority than a conflicting transition origi-
nating from any of the substate’s containing states. More specifically, if t1 is a transition
whose source state is s1, and t2 has source state s2, then: (1) If s1 is a direct, or transi-
tively nested, substate of s2, then t1 has higher priority than t2; and (2) If s1 and s2 are
not in the same state configuration, then there is no priority difference between t1 and
t2. For example, in the case of the example, transition T 2 has higher priority than T1.

The key issue of handling transition priority is to decide which transition can fire.
Since firings of transitions are initiated by triggering events and transitions in conflict
are triggered by the same event, the issue becomes which transition can consume the
triggering event, i.e., which transition can “see” the triggering event first. In Petri nets,
we can model the event dispatcher mechanism in such a way that an event will be
dispatched to the transitions with higher priority first. If the event is not consumed by
the transitions with higher priority, it will be dispatched to those with lower priority. In
Section 8, we will show how the event dispatcher mechanism is modeled. Gábor and
István implemented this idea with Stochastic Reward Nets (SRN) in Gábor and István
(2000). One apparent advantage associated with this approach is that we need not be
concerned about the issue of transition priority when we derive ISMs from composite
states. Therefore, it simplifies this part of the transformation.

Sometimes, conflicts cannot be resolved by priorities of transitions. Suppose that
in Fig. 8 transition T 3 is triggered by event e2. Then T 6 and T 3 would be in conflict
given that state C is active. But transitions T 6 and T 3 have no priority over each other
since they have the same direct source state, (in this case, the state C). In this situation,
we ignore the conflict and the selection of which transition to fire can be modeled as
a non-deterministic choice.

8 Event dispatching

In previous sections, we use a state-transition notation to make explicit the control
flow of a state machine when an event is dispatched. Now, we discuss another aspect
of UML state machine semantics, how to model event dispatching. Events must be
made available to drive the control flow of the state machine. To explain the details on
modeling the event dispatcher mechanism, we now view the target models in terms of
colored Petri net models.

According to UML state machine semantics (OMG, 2003), events are dispatched
and processed by the state machine one at a time. More specifically, the semantics on
event dispatching and processing are based on the following key features.

1. A state machine has an event queue, which holds incoming event instances until
they are dispatched.
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Fig. 29 An example statechart involving transition conflicts

2. The semantics of event processing are based on the run-to-completion process-
ing, which means that an event can only be dequeued and dispatched if the
processing of the previous current event is fully complete. Furthermore, if a
dispatched event does not trigger any transition, then the event is “discarded.”

3. In the presence of concurrent composite states, it is possible to fire multiple
transitions as a result of the same event—as many as one transition in each
concurrent state in the current state configuration.

4. A completion transition is triggered implicitly by a completion event, which is
generated when all transitions and entry actions and activities in the currently
active state are completed. The completion event is dispatched before any other
queued events.

5. In situations where there are conflicting transitions, the selection of which transi-
tions will fire is based in part on a priority. By definition, a transition originating
from a substate S has higher priority than a conflicting transition originating
from any states that contain state S. For composite states that have only one
level of nesting, the issue is that boundary exit transitions should have lower
priority than nested transitions and cross-boundary exit transitions. For simplic-
ity of presentation, this is the case that we consider in this section.

Based on the semantics for event dispatching, we design an abstract net model for
handling event-dispatching issues. To begin, we present in Fig. 30 a net model sketch
that addresses the following three issues: (1) how an event-token in the event queue is
selected and dispatched; (2) how the dispatched event-token, also called the current
event-token, is made available to net transitions that may or may not be associated
with composite states; and (3) how an event-token for a completion event is generated
and deposited into the event queue.

To address the first issue, an event-token in the event queue should be allowed to
be dispatched only if the previous current event-token is fully processed. To model
this, we introduce a place, Step in Fig. 30, to control the dispatching, i.e., to initiate
a run-to-completion step. The actual dispatching involves the selection of an event-
token in the event queue. Since it is common to assume a FIFO property on the event
queue, we must be specific on the way that event-tokens are held in the IP place. In
our model, the event queue is modeled by a colored token held within the IP place,
rather than by the IP place itself. This special token is called the event-queue-token.
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Fig. 30 An event-dispatching model (incomplete)

As we know, the “color” of a token is a kind of data type. We use a list as the data type
for the event-queue-token, and event-tokens are elements of this list. Thus, when an
event-token needs to be dispatched, the first event-token in the list must be selected.
The t dispatch transition removes the event-queue-token from place IP, extracts the
“first” event-token from the list, and deposits the extracted event-token into place
DE. Furthermore, t dispatch must redeposit the updated event-queue-token back into
place IP. For simplicity we do not show the token colors and enabling conditions for
transitions in our net model sketch.

To handle the second issue—making the dispatched event-token available to net
transitions—place DE connects to two classes of net transitions: (1) Those transitions
that model UML simple transitions that are not contained within a composite state,
which we refer to as ordinary transitions; and the init transitions associated with mod-
els of UML entry transitions; and (2) Those transitions that model nested transitions
associated with composite states. An event-token can be allowed to directly trigger
a transition of the first class since no active composite state is involved. Yet, for the
second class, a composite state is active. So, based on feature 3, the current event-token
needs to be allowed to trigger multiple transitions, at most one for each concurrent
region. To model this case, we replicate the current event-token so that each region has
a copy of this event-token. As shown in Fig. 30, when composite state CS1 is active,
the current event-token is replicated via the firing of transition t replicate 1. Places
IP11. . . IP1k are defined to hold the copies of the current event-token for each region.

As discussed in Section 6, modeling of completion-event semantics involves genera-
tion of completion events. Recall (from Section 6) that in our net model a completion-
event-token is generated by a “CE creation” transition. To preserve the semantics
implied by feature 4, a CE creation transition should have priority over the t dispatch
transition. Due to space considerations, we do not discuss further this net-level mod-
eling detail. A generated completion-event-token is put in the front of the event queue
list, unlike other generated event-tokens that by default go to the end of the event queue
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list. Therefore, in the next run-to-completion step, the completion-event-token will be
dispatched first, which will then trigger the associated completion transition model.

Now consider the issue of transition conflicts and priority. As mentioned in Section
7.3, there are two cases for transition conflicts: (1) transitions in conflict have the
same priority; and (2) transitions in conflict have different priorities. Case one can be
modeled as a non-deterministic choice. The idea is making an event-token available
to multiple transitions. Although more than one transition (that are in conflict) can
be enabled, only one of the enabled transitions is able to fire. The choice is non-
deterministic. A special case of this kind is the conflict between a cross-boundary
exit transition and either a nested transition or another cross-boundary exit transition.
In particular, a cross-boundary exit transition associated with one region can be in
conflict with some transitions associated with another region. If such conflict exists,
only one of these transitions should fire. To model this behavior in our ISM model, all
the copies of the event-token are used to enable each init transition defined in the ISM
models for cross-boundary exit transitions. Note that cross-boundary exit transitions
belong to the second class of transitions as discussed earlier since cross-boundary exit
transitions are associated with active composite states.

The second case of transition conflict is specific to situations that involve composite
states. For such situations, we should ensure that nested transitions and cross-boundary
exit transitions have higher priority than boundary exit transitions. We can model this
behavior by making the current event-token available first to nested transitions and
cross-boundary exit transitions. If such transitions do not consume the current event-
token, the token will then be available to boundary exit transitions. To explain this
further, we extend the event dispatching model of Fig. 30.

Without loss of generality, we illustrate the key ideas for handling event dispatching,
in particular the issue of transitions in conflict having different priorities, via the case
of a statechart that contains one composite state with two concurrent regions, S1 and
S2. Figure 31 illustrates the basic structure of the new event dispatching model for a
system that includes such a case.

In Fig. 31, places IP1 and IP2 are connected to the net models for nested transitions
and cross-boundary exit transitions as mentioned earlier, while place Continue is used
to make an event-token available to boundary exit transitions or to initiate the next

- nested transitions

- cross-boundary exit transitions

t_dispatch

DE

Step

Net models for:

t_replicate

CS

IP1

IP2

IP

Continue

t_step

t_continue

C2

C1

t2

t1

- boundary exit transitions

Net models for:Net models for:

- ordinary transitions

- entry transitions

Fig. 31 The event dispatching model (with priority/conflict handling)
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run-to-completion step. If the event-token in place IP1 is consumed by the firing of a
net transition corresponding to a nested or cross-boundary exit transition associated
with region S1 (call it transition t), a token with label “consumed” will be deposited
into place C1 (by the firing of transition t). This indicates the completion of the current
step for region S1. Otherwise, if the event-token does not trigger any such transition,
the current event-token will be deposited into place C1 by the firing of transition
t1. Similarly, place C2 will hold either a consumed-token or the current event-token
depending on whether or not the current event-token triggers a transition associated
with region S2. Note that transition t1 is enabled when the event-token cannot enable
any nested transition model for region S1 or any cross-boundary exit transition model.
Transition t2 is enabled similarly. The specific arc-inscription labels for these enabling
conditions are not shown here to simplify the figure. Assume that both places C1 and
C2 hold a current event-token. When transition t continue fires the current event-token
will be deposited into place Continue. Thus the event-token is available to enable any
boundary exit transition models associated with the composite state. Otherwise, if at
least one of the two places C1 or C2 holds a consumed-token, a consumed-token will
be deposited into place Continue by the firing of transition t continue. In this case,
the event-token is not available to enable any boundary exit transition models. Finally,
transition t step is defined to initiate the next run-to-completion step. When transition
t step fires, place Step is marked and a new run-to-completion step can start.

To summarize, each run-to-completion step is completed when the current event-
token (in place DE) is “fully processed,” meaning that one of the following conditions
is satisfied: (1) The current event-token triggers an ordinary transition or an entry tran-
sition; (2) The current event-token triggers any nested transition or a cross-boundary
exit transition—place Continue holds a consumed-token that triggers transition t step;
(3) The current event-token triggers a boundary exit transition; or (4) The current event-
token cannot trigger any transitions of the state machine—in effect, the event-token is
“discarded”.8 When the current event-token is fully processed, place Step will again
hold a token, resulting in a new event-token being dispatched.

Now we can present a semi-complete model for the running example of Fig. 8, by
instantiating the template model of Fig. 31. The resulting model is shown in Fig. 32.
To maintain readability of the figure, the net structures for some transitions (T4, T 6,
T 8, and T 10) are not shown—they are similar to those that are shown. Also, some
places are replicated for clarity.9 The top of the figure shows the event dispatching
model. This model connects to the net model of the state machine as follows. Place DE
is connected to the net transition (T7 init) that models the entry transition, transition
T 7. As a labeling convention, we prefix net transition names with the corresponding
UML transition name. Place IP1 is connected to two net models for the two nested
transitions of region S1, T 5 and T 9. Both places IP1 and IP2 are connected to the net

8 When the composite state is active, an event-token is discarded by transition t step when the event-token
cannot trigger any transitions. When the composite state is not active and an event-token cannot trigger any
transitions, the event-token is also discarded by some transition, but this case is beyond the scope of this
paper.
9 A replicated place is named by attaching “*” to the original name. For example, a place named as IP*
represents a copy of place IP.
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model for the cross-boundary exit transition T4. Place Continue is connected to the
net models for the two exit boundary transitions, T1 and T 2. Note that in Fig. 32 there
exist CE creation transitions for completion events cI1, cB, and cX. The arc inscription
“cI1 + eqt” denotes that the completion-event-token cI1 is appended to the front of
the event-queue-token. The other completion-event-tokens are handled similarly. The
details of the deactivation module shown in Fig. 32 were presented earlier in Fig.
16(b). Moreover, in the cases that the current event-token triggers an entry transition
or a boundary exit transition, Fig. 32 shows how place Step is marked to indicate that a
run-to-completion step is finished. The other case that defines a run-to-completion step
is that the token in place Continue cannot enable any boundary exit transition model.
As discussed previously, this case is taken care of by transition t step. Note that the
enabling condition for t step specifies that the token in place Continue cannot enable
any boundary transition model because (1) the current token is a consumed-token (as
discussed previously), or (2) the token is an event-token but it is neither cX nor e1.

9 Related work

Applying Petri net modeling to UML statecharts is a currently active research area.
Other works in this area include the work of Dong et al. (2003) and Merseguer (2000).
In Dong et al. (2003), they convert UML state machines into a type of Petri net called
Hierarchical Predicate Transition Net (HPrTN) and realize implied mechanisms in
UML state machines. In Merseguer (2000), a formalization for a subset of UML
statecharts is proposed in terms of another type of Petri net call Generalized Stochastic
Petri Net (GSPN). These works are motivated by concerns very similar to our own but
have different strengths. In Dong et al. (2003), an approach is presented to define a
complete formal semantics of UML state machines based on HPrTNs. In Merseguer
(2000), a formal translation from UML state machines to Petri nets is presented for the
purpose of studying performance of software systems. However, our primary focus is
to develop a process to build a state-transition model that facilitates the translation from
UML statecharts to colored Petri nets. One advantage of our approach is its design
strategy of separation of concerns. Thus, each involved issue can be addressed more
thoroughly. In Dong et al. (2003), they define the priority levels for different types of
transitions but they do not actually show how to implement transition priority in the
net model. In Merseguer (2000), cross-boundary transitions—transitions that target to,
or originate from, the nested states of composite states—are not discussed. Moreover,
history states are only briefly addressed. In our work, we discuss an approach for
implementing transition priority in the target model. In addition, we present approaches
of modeling cross-boundary transitions and history states.

There exists previous related research that focuses on formally defining the seman-
tics associated with composite states. In Lilius and Paltor (1999), Lilius and Paltor
presented a formalization of UML state machine semantics. This formalization has
been used as the basis for developing the vUML tool, a tool for model checking UML
models (Paltor and Lilius, 1999). In that work, it is suggested that the hierarchical
structure must be “flattened” before using it in a model checker. We agree with this
opinion in the sense that in our framework the hierarchical structure must be expanded
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before generating CPN models. An issue for consideration relates to their method to
interpret the semantics of transitions to and from composite states. They interpreted the
semantics using a textual notation for states, which makes the hierarchical relationship
of states explicit. However, in their interpretation, they did not expand the transitions
completely. Instead, they used state variables to allow an expression for one transi-
tion to represent multiple transitions. This technique is not sufficient for our purpose
since we aim to generate Petri net models where each transition needs to have specific
source and target states. To address this issue, we discuss an expansion method. We
recognize that this type of expansion is prone to the so-called state explosion problem
since the number of resulting transitions increases dramatically with the increasing of
the number of orthogonal regions and the number of nested states within an orthogo-
nal region. To cope with this problem, we propose optimization methods to decrease
the number of resulting transitions. In our presentation for state hierarchy, we have
adapted Lilius and Paltor’s notation, but state variables are not used.

In Lano et al. (2000), Lano et al. provided a systematic formal interpretation (ex-
tended first-order set theory) for most elements of the UML notation. In terms of
statecharts, some reductive transformations are used to eliminate sequential compos-
ite states, concurrent composite states, and entry and exit actions. With their approach,
a concurrent state is expanded to a state machine for which states are tuples. A tu-
ple consists of basic states, each from a different orthogonal region. This approach
presents explicit semantics for transitions to and from composite states as well as a
method for translating entry and exit actions associated with composite states. How-
ever, this approach does not address issues regarding transition priority and history
states, which interfere with hierarchy and complicate the task of transforming UML
statecharts to formal notations. In Binder (2000), an approach is proposed to expand
the statecharts’ implicit state machine to generate a complete test suite. The orthogonal
regions of a concurrent composite state are translated into a single product machine. In
contrast with Lano et al. (2000) and Binder (2000), our approach preserves the feature
of concurrency in statecharts. Moreover, the state explosion problem associated with
expanding concurrent states is not addressed in either Lano et al. (2000) or Binder
(2000). We described an approach for decreasing the number of resulting transitions
to help mitigate the state explosion problem, as presented in Section 4.

Some other works that involve expanding statecharts are as follows. Latella et al.
proposed to use Extended Hierarchical Automata (EHA) as an intermediate model
for model checking UML statecharts (Latella et al., 1999). Source restriction and
target determination are used to help specify the source/target states of transitions
from/to composite states in EHA. The main focus of that work is to define a for-
mal model for UML state machines in the form of extended hierarchical automata.
However, the translation of UML statecharts to the intermediate model is only briefly
outlined. In contrast, our work presents a systematic process for building an Intermedi-
ate State Machine model, which makes explicit a subset of UML statechart semantics.
In Gogolla and Parisi-Presicce (1998), Gogolla and Parisi-Presicce proposed to trans-
form UML state diagrams into graphs by making explicit the intended semantics
of the diagram. Their purpose is similar to that of our work; however, their discus-
sion focused on the sequential composite states. In contrast, our work focuses on the
complex issues involved in concurrent composite states.
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10 Conclusions and future work

Previously, we defined a general Petri-net based methodology for statechart formaliza-
tion and analysis. A key advantage of the approach is that it can exploit existing Petri
net theory and tools to support automated analysis of UML specifications. To extend
the approach to handle composite states, this paper addresses the problem of explicitly
modeling the semantics of the complex transitions associated with composite states.
More specifically, we define a process for deriving a state-transition model that cov-
ers all of the primary issues associated with the hierarchical structure of composite
states. This model serves as an intermediate, platform independent model that can be
mapped to a particular colored Petri net notation (CPN). In this sense, the technique
conforms to the Model Driven Architecture methodology. In other words, the inter-
mediate model delays binding our transformation approach to a specific CPN notation
so that our transformation approach can be implemented on top of a standard CPN
analyzer to support model analysis and simulation.

We discussed in detail the specific tasks necessary for composite state handling:
entry and exit transitions, transition conflict and priority, and history states. Moreover,
we presented a translation optimization for exit transitions to reduce the size of the
obtained model. Since our model has a generic form, it naturally supports the automa-
tion for the translation process. Furthermore, we presented an abstract net model for
handling the semantics associated with the event dispatcher mechanism of UML state
machines.

One direction of future work is to extend our current tool support. Currently we have
a prototype tool that supports automatic translation of basic UML statecharts, which
do not contain composite states, into colored Petri nets. Naturally, the next direction is
to integrate the ability to handle composite states into the tool. More specifically, two
issues are involved. First, we will automate the transformation process for converting
UML composite states into our intermediate state-transition model. Furthermore, we
plan to define and automate a mapping from the intermediate state-transition model
to a “platform specific” CPN model, such as Design/CPN. This will allow us to do
further experimentation on automated analysis and simulation of UML diagrams.

Recall that we mentioned in Section 1.2 that some statecharts features are not
handled in our current framework. Another direction for future research is to extend
our framework to handle these features, such as guard conditions, deferred events,
actions that involve variables, and activities. For instance, to handle guards, we should
be able to take advantage of colored Petri net modeling, which also includes the concept
of guards on transitions. So, statechart guards can be mapped into colored Petri net
guards. These guards define conditions that are automatically checked in order to
allow associated transitions to fire. Since guards in statecharts are typically defined
using variables, we will also need to investigate methods for tracking the values of
variables through the attributes of colored tokens. A Petri net transition or a set of
net transitions can be used to model actions and activities. In our approach, an event
queue is modeled by a list that was discussed in Section 8. Thus, this should be able to
support the modeling of deferred events. In particular, since a list preserves the order
of its elements, the events stored in a list can be examined one by one to check if any
of them are deferred events.
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