
Autom Software Eng (2007) 14:37–57

DOI 10.1007/s10515-006-0004-y

On the effect of test-suite reduction on automatically
generated model-based tests

Mats P. E. Heimdahl · Devaraj George

Published online: 9 February 2007
C© Springer Science + Business Media, LLC 2007

Abstract Model checking techniques can be successfully employed as a test-case
generation technique to generate tests from formal models. The number of tests-cases
produced, however, is typically large for complex coverage criteria such as MC/DC.
Test-suite reduction can provide us with a smaller set of test-cases that preserve
the original coverage—often a dramatically smaller set. Nevertheless, one potential
drawback with test-suite reduction is that this might affect the quality of the test-suite
in terms of fault finding. Previous empirical studies provide conflicting evidence on
this issue. To further investigate the problem and determine its effect when testing
implementations derived from formal models of software we performed an experiment
using a large case example of a Flight Guidance System, generated reduced test-suites
for a variety of structural coverage criteria while preserving coverage, and recorded
their fault finding effectiveness. Our results indicate that the size of the specification
based test-suites can be dramatically reduced and that the fault detection of the reduced
test-suites is adversely affected. In this report we describe our experiment, analyze
the results, and discuss the implications for testing based on formal specifications.

Keywords Specification-based testing . Test reduction . Fault finding . Model
checkers . Automated test generation

1 Introduction

In model-based development, the development effort is centered around a formal
description of the proposed software system. The main idea behind model-based

This work has been partially supported by NASA grant NAG-1-224 and NASA contract NCC-01001. We
also want to thank the McKnight Foundation for their generous support over the years.

M. P. E. Heimdahl (�) · D. George
Department of Computer Science and Engineering, University of Minnesota, 200 Union Street S.E.,
4-192, Minneapolis, MN 55455, USA

Springer

38 Autom Software Eng (2007) 14:37–57

development is that through manual inspections, formal verification, and simulation
and testing we demonstrate to ourselves (and to any regulatory agencies) that the
software specification possesses desired properties. The implementation is then auto-
matically generated from this specification and, in theory, little or no additional testing
of the implementation is required.

With the use of formal models comes the ability to automatically generate spec-
ification based tests from the models. This capability may be used to generate large
numbers of tests to use as conformance tests to provide assurance that the generated
code is correct with respect to the specification from which it was generated. This type
of conformance testing will most likely be required since it is unlikely that regulatory
agencies will fully trust a complex code generation tool in the foreseeable future. For
example, we may generate test-suites that provide MC/DC coverage (Chilenski and
Miller, 1994a; RTCA, 1992) of the formal model, execute the tests on the generated
code, and show that the specification and code behave equivalently for this test-suite.

The cost of generating, executing, storing, and maintaining these test-suites can be
reduced through test-suite reduction techniques. Test-suite reduction aims to remove
(or not generate at all) test-cases from a test-suite in such a way that “redundant”
test-cases are eliminated. For example, a reduced test-suite TR may provide the same
structural coverage as a test-suite T with significantly fewer test-cases. Previous studies
conducted on C code have shown that test-suite reduction techniques significantly
reduce the number of test-cases in a test-suite while maintaining the structural coverage
of the original suite (Wong et al., 1997, 1998; Rothermel et al., 1998; Jones and
Harrold, 2003). The effect on the fault finding capability of the reduced test-suites
is, however, unclear and the studies show conflicting evidence. Wong et al. (1997,
1998) found no significant effect in fault finding ability between the full suites and
the reduced suites. On the other hand, Rothermel et al. (1998) and Jones and Harrold
(2003) showed that the reduced test-suites can be dramatically worse with respect to
fault finding.

To investigate the effect of test-suite reduction in the domain of automatically
generated conformance test-suites, we conducted an experiment where we compared
the test-suite size and fault finding capability of reduced test-suites generated to six
different test-adequacy criteria suggested in the literature. As a case study we used
a production sized model of a Flight Guidance System (FGS) provided by Rockwell
Collins Inc. as a basis for test-case generation. As target implementation for our
testing effort we used mutated models where we seeded “representative” faults; faults
we deemed likely to be introduced when implementing a system from the formal
model. The results presented in this reports constitute an expanded description of
our findings presented in a paper at the Automated Software Engineering conference
(Heimdahl and Devaraj, 2004).

Our results show that one can dramatically reduce our automatically generated
conformance test-suites while maintaining desired coverage of the model. We also
found that the fault finding of these reduced test-suites was adversely affected, and
that the reduction is quite significant in the domain of specification based testing.
Although further studies are needed, the results indicate that test-suite reduction may
not be an effective means of reducing testing time—the reduction in the number of
faults found may be unacceptable.

Springer

Autom Software Eng (2007) 14:37–57 39

In the remainder of the paper we review relevant literature, describe our experi-
mental set up, results obtained, and draw conclusions from the results.

2 Background

To put our current work in context it is necessary to provide information regarding
related studies as well as the domain in which we performed our work. We will briefly
discuss the approach to testing made possible when working with formal models and
automatic test case generators. We will then cover the most closely related test-suite
reduction experiments and contrast them with the study presented in this report.

2.1 Model-based development

As mentioned in the introduction, in the embedded systems community, there is a trend
towards model-based (or specification based) development. In model-based develop-
ment, the development effort is centered around a formal description of the proposed
software system. For validation and verification purposes, this formal specification
can then be subjected to various types of analysis, for example, completeness and
consistency analysis (Heimdahl and Leveson, 1996; Heitmeyer et al., 1996) model
checking (Grumberg and Long, 1994; Chan et al., 1998; Choi and Heimdahl, 2002;
Heitmeyer et al., 1998; Clarke et al., 1999), theorem proving (Archer et al., 1998),
Bensalem et al.(1999), and test case generation (Callahan et al., 1996; Gargantini and
Heitmeyer, 1999; Engels et al., 1997; Blackburn et al., 1997; Offutt et al., 1999; Jasper
et al., 1994; Rayadurgam and Heimdahl, 2001a). Through manual inspections, formal
verification, and simulation and testing we demonstrate that the software specification
possesses desired properties. The implementation is then—ideally—automatically
generated from this specification. Naturally, manual design and coding of the imple-
mentation is also widely practiced. There are several commercial and research tools
that provide these capabilities. Commercial tools are, for example, Simulink from the
Mathworks (http://www.mathworks.com, SCADE Suite from Esterel Technologies
(Technologies, 2004) and Statemate from i-Logix (Harel et al., 1990). Examples of
research tools are SCR (Heitmeyer et al., 1995), RSML−e (Thompson and Heimdahl,
1999), and Ptolemy (Lee, 2003).

The capabilities of model-based development allow us to follow a process outlined
in Fig. 1. The testing effort has in this process been largely moved from unit testing
of the code to functional testing of the formal model. In addition, there is a need to
perform conformance testing to assure that the derived (either automatically generated
or manually coded) implementation is behaviorally equivalent to the specification—a
task that lends itself to automatic test-case generation from the formal specification.
Test-suites generated for conformance testing are the focus of our study.

2.2 Test-cases and model checkers

Model checkers build a finite state transition system and exhaustively explore the
reachable state space searching for violations of the properties under investigation
(Clarke et al., 1999). Should a property violation be detected, the model checker will

Springer

40 Autom Software Eng (2007) 14:37–57

Concept
Formation

Requirements

Implementation

Subsystem
integration

System
integration

Production

Inspections

Integration
Testing

System
Testing

Formal
Specification

Properties

Inspections
Formal Analysis

Specification Testing

Fig. 1 Specification centered development process

produce a counter-example illustrating how this violation can take place. In short, a
counter-example is a sequence of inputs that will take the finite state model from its
initial state to a state where the violation occurs.

A model checker can be used to find test cases by formulating a test criterion as
a verification condition for the model checker. For example, we may want to test a
transition (guarded with condition C) between states A and B in the formal model. We
can formulate a condition describing a test case testing this transition—the sequence
of inputs must take the model to state A; in state A, C must be true, and the next
state must be B. This is a property expressible in the logics used in common model
checkers, for example, LTL (Pnueli, 1986). We can now challenge the model checker
to find a way of getting to such a state by negating the property (saying that we assert
that there is no such input sequence) and start verification. We call such a property a
trap property (Gargantini and Heitmeyer, 1999). The model checker will now search
for a counterexample demonstrating that this trap property is, in fact, satisfiable; such
a counterexample constitutes a test case that will exercise the transition of interest.
By repeating this process for each transition in the formal model, we use the model
checker to automatically derive test sequences that will give us transition coverage of
the model. This general approach can be used to generate tests for a wide variety of
structural coverage criteria, such as all state variables have taken on every value, and
all decisions in the model have evaluated to both true and false, etc.

Several research groups are actively pursuing model checking techniques as a
means for test-case generation. In our previous work in the Critical Systems Research
Group at the University of Minnesota we provided a formalism suitable for struc-
tural test-case generation using model checkers (Rayadurgam and Heimdahl, 2001a)
and illustrated how this approach can be applied to a formal specification language
(Rayadurgam and Heimdahl, 2001b). We also presented a framework for specification
centered testing in Heimdahl et al. (2001). This is the framework we have used in
several experiments (Heimdahl et al., 2003; Heimdahl and Devaraj, 2004), including
the one described in this report.

Springer

Autom Software Eng (2007) 14:37–57 41

Gargantini and Heitmeyer (1999) describe a method for generating test sequences
from requirements specified in the SCR notation. To derive a test sequence, a trap
property is defined which violates some known property of the specification. In their
work, they define trap properties that exercise each case in the event and condition
tables available in SCR.

Ammann and Black (1999) and Ammann et al. (1998), combine mutation analysis
with model-checking based test case generation. They define a specification based
coverage metric for test suites using the ratio of the number of mutants killed by
the test suite to the total number of mutants. Their test generation approach uses a
model-checker to generate mutation adequate test suites. The mutants are produced
by systematically applying mutation operators to both the properties specifications
and the operational specification, producing respectively, both positive test cases
which a correct implementation should pass, and negative test cases which a correct
implementation should fail.

Hong et al. (2002) formulate a theoretical framework for using temporal logic
to specify data-flow test coverage criteria. They also discuss various techniques for
reducing the size of the test set generated by the model checker (Hong et al., 2003).

2.3 Previous test-reduction experiments

Several studies have investigated the effect of test-set reduction on the size and fault
finding capability of a test-set. In an early study, Wong et al. address the question of
the effect on fault detection of reducing the size of a test set while holding coverage
constant (Wong et al., 1997, 1998). Their experiments were carried out over a set of
commonly used UNIX utilities implemented in C. These programs were manually
seeded with faults, producing variant programs each of which contained a single fault.
They randomly generated a large collection of test sets that achieved block and all-uses
data flow coverage for each subject program. For each test set they created a minimal
subset that preserved the coverage of the original set. They then compared the fault
finding capability of the reduced test-set to that of the original set. Their data shows
that test minimization keeping coverage constant results in little or no reduction in its
fault detection effectiveness. This observation leads to the conclusion that test cases
that do not contribute to additional coverage are likely to be ineffective in detecting
additional faults (of the fault types injected).

To confirm or refute the results in the Wong study, Rothermel et al. performed
a similar experiment using seven sets of C programs with manually seeded faults
(Rothermel et al., 1998). For their experiment they used edge-coverage (Frankl and
Weiss, 1991) adequate test suites containing redundant tests and compared the fault
finding of the reduced sets to the full test sets. In this experiment, they found that (1)
the fault-finding capability was significantly compromised when the test-sets were
reduced and (2) there was little correlation between test-set size and fault finding
capability. The results of the Rothermel study were also observed by Jones and
Harrold in a similar experiment (Jones and Harrold, 2003).

These radically different results are difficult to reconcile and the relationship be-
tween coverage criteria, test-suite size, and fault finding capability clearly needs more
study.

Springer

42 Autom Software Eng (2007) 14:37–57

In the experiment discussed in this paper we attempt to shed some additional light
on this issue. Our work is different in some respects, however. First, we are not study-
ing testing of traditional programs, we are interested in test-case generation from
formal models and conformance testing of implementations derived from formal
specifications. In particular, formal specifications expressed in synchronous data-
flow languages commonly used in model-based development, for example, Simulink
Mathworks Inc., http://www.mathworks.com, SCADE (Technologies, 2004), and
Statecharts (Harel et al., 1990).

Second, we are addressing a wide spectrum of coverage criteria ranging from the
very weak, for example, transition coverage, to the very strong, for example MC/DC.
The previous experiments addressed either rather weak criteria such as block-coverage
(Wong et al., 1998) or used test-suites that did not fully provide the desired strong
coverage (Jones and Harrold, 2003). This issue will be further addressed in the
discussion of our results.

These differences make a direct comparison of our results with related work diffi-
cult, but our findings seem to reinforce the observations in the Rothermel et al., and
Jones and Harrold studies; although test-suite reduction can dramatically reduce the
size of a test-suite without affecting coverage, test-suite reduction has a detrimental
effect on the test-suite’s fault finding capability.

2.4 Case example: The FGS

In a related project we have worked with Rockwell Collins Inc. on research challenges
in model-based development and verification of large models in the avionics domain.
In the course of that project, Rockwell Collins Inc. has developed several large formal
models. To provide realistic results for the experiment described in this report, we
used one of these models—a close to production model of a Flight Guidance System
(FGS).1 Engineers at Rockwell Collins Inc. were the primary developers of the model
using the RSML−e notation and the Nimbus tool (a description follows in Section
2.5).

A Flight Guidance System (FGS) is a component of the overall Flight Control
System (FCS) in a commercial aircraft. The FGS was developed using the RSML−e

language. It compares the measured state of an aircraft (position, speed, and altitude)
to the desired state and generates pitch and roll guidance commands to minimize the
difference between the measured and desired state. The FGS can be broken down
to mode logic, which determines which lateral and vertical modes of operation are
active and armed at any given time, and the flight control laws that accept information
about the aircraft’s current and desired state and compute the pitch and roll guidance
commands. In this case study we have used the mode logic.

Figure 2 illustrates a graphical view of the FGS state variables in the Nimbus
environment. The definitions of when and how the state variables change value are
described in the RSML−e tabular notation (briefly discussed in Section 2.5). The
primary modes of interest in the FGS are the horizontal and vertical modes. The
horizontal modes control the behavior of the aircraft about the longitudinal, or roll,

1 We thank Dr. Steve Miller, Dr. Alan Tribble, and Dr. Mike Whalen of Rockwell Collins Inc. for the
information on flight control systems and for letting us use the models they developed.

Springer

Autom Software Eng (2007) 14:37–57 43

Fig. 2 Flight guidance system

axis, while the vertical modes control the behavior of the aircraft about the vertical,
or pitch, axis. In addition, there are a number of auxiliary modes, such as half-bank
mode, that control other aspects of the aircraft’s behavior.

The FGS mode-logic model we have used in the experiment is production sized,
but does not represent any actual Rockwell Collins product. The model consists of
2564 lines of code in RSML−e and consists of 142 state variables. When automatically
translated to the input language for the model checker NuSMV (NuS, 2005) it consists
of 2902 lines of code and required 849 BDD variables for encoding (the BDD variables
are Boolean variables and several may be needed to encode each enumerated variables
in the model). The FGS is ideally suited for test case generation using model checkers

Springer

44 Autom Software Eng (2007) 14:37–57

RSML-e Simulator

Translator

Test Case
Generator

Proof Strategy

PVS Input
Language

Property
Specification

NuSMV Input
Language

Trap Properties

PVS

NuSMV

Verification
Result

User

Fig. 3 Verification framework

since it is discrete—the mode logic consists entirely of enumerated and Boolean
variables.

2.5 Nimbus and RSML−e

Figure 3 shows an overview of the Nimbus tools framework we have used as a basis
for our test-case generation engine. The user builds a behavioral model of the system
in the fully formal and executable specification language RSML−e (see below). After
evaluating the functionality and behavioral correctness of the specification using the
Nimbus simulator, users can translate the specifications to the PVS (Owre et al.,
1993) or NuSMV input languages for verification (or test-case generation as is the
case in this report). The set of LTL trap properties required to use NuSMV to generate
test sequences are obtained by traversing the abstract syntax tree in Nimbus and then
outputting sets of properties whose counterexamples will provide the correct coverage.

To generate test cases in Nimbus, the user would invoke the following steps. First,
the model is automatically translated to the input language of NuSMV and the tools
automatically generate the set of trap properties of interest to achieve desired coverage.
Second, the trap properties are automatically merged with the NuSMV model and
the NuSMV model checker is invoked to collect the counterexamples. Third, the
counterexamples are processed to extract test sequences in a generic intermediate
test representation. The intermediate test representation contains (1) the input in each
step, (2) the expected state changes (to state variables internal to the RSML−e model),
and (3) the expected outputs (if any). Finally, the intermediate test representation is
translated to the input format for whatever testing tool is used to test the system under
test.

Springer

Autom Software Eng (2007) 14:37–57 45

STATE_VARIABLE ROLL : Base_State
PARENT : Modes.On
INITIAL_VALUE : UNDEFINED
CLASSIFICATION : State

TRANSITION UNDEFINED TO Cleared IF NOT Select_ROLL()
TRANSITION UNDEFINED TO Selected IF Select_ROLL()
TRANSITION Cleared TO Selected IF Select_ROLL()
TRANSITION Selected TO Cleared IF Deselect_ROLL()

END STATE_VARIABLE

MACRO Select_ROLL() :
TABLE

Is_No_Nonbasic_Lateral_Mode_Active() : T;
;T:nO=sedoM

END TABLE
END MACRO

MACRO Deselect_ROLL() :
TABLE

When_Nonbasic_Lateral_Mode_Activated() : T *;
;T*:)ffO=sedoM(nehW

END TABLE
END MACRO

Fig. 4 A small portion of the FGS specification in RSML−e

The Nimbus tools discussed above all operate on the RSML−e notation—RSML−e

is based on the Statecharts (Harel, 1987) like language Requirements State Machine
Language (RSML) (Leveson et al., 1994). RSML−e is a fully formal and synchronous
data-flow language without any internal broadcast events (the absence of events is
indicated by the−e).

An RSML−e specification consists of a collection of input variables, state variables,
input/output interfaces, functions, macros, and constants. Input variables are used
to record the values observed in the environment. State variables are organized in
a hierarchical fashion and are used to model various states of the control model.
Interfaces act as communication gateways to the external environment. Functions
and macros encapsulate computations providing increased readability and ease of
use.

Figure 4 shows a specification fragment of an RSML−e specification of the Flight
Guidance System.2 The figure shows the definition of a state variable, ROLL. ROLL
is the default lateral mode in the FGS mode logic.

The conditions under which the state variable changes value are defined in the
TRANSITION clauses in the definition. The condition tables are encoded in the

2 We use here the ASCII version of RSML−e since it is much more compact than the typeset version.

Springer

46 Autom Software Eng (2007) 14:37–57

macros, Select ROLL and Deselect ROLL. The tables are adopted from the
original RSML notation—each column of truth values represents a conjunction of the
propositions in the leftmost column (F represents the negation of the proposition and
a ‘ ∗ ’ represents a “don’t care” condition). If a table contains several columns, we
take the disjunction of the columns; thus, the table is a way of expressing conditions
in a disjunctive normal form.

3 The experiment

To investigate the relationship between test reduction and fault finding capability in
the domain of model-based tests, we designed our experiment to test two hypotheses:

Hypothesis 1. Test reduction of a naı̈vely generated specification based test-set can
produce significant savings in terms of test-set size.

Hypothesis 2. Test reduction will adversely affect the fault finding capability of the
resulting test set.

We formulated our hypotheses based on two informal observations. First, in a
previous study we got an indication that one could achieve equivalent transition and
state coverage with approximately 10% of the full test-set generated (Heimdahl et al.,
2003), we believe this generalizes to other criteria as well. (A discussion of the various
specification coverage criteria will follow in Section section:criteria below.) Second,
intuitively, more tests-cases ought to reveal more faults. Only an extraordinarily good
test adequacy criterion would provide a fault finding capability that is immune to
variations in test-suite size, and we speculate that none of the known coverage criteria
posses this property.

3.1 Experimental setup

In our experiment the aim was to determine how well a test-suite generated to provide
a certain structural or condition based coverage of a specification model reveals faults
in the implementation of that model as compared to a reduced test-suite providing the
same coverage of the original model. To provide realistic results, we conducted the
experiment using the close to production model of the Flight Guidance System (FGS)
discussed in Section 2.4.

We conducted the experiment through the five the steps outlined below. Each step
is elaborated in detail in the sections following this short overview.

1. We used the original FGS specification to generate test-suites to various coverage
criteria of interest, for example, transition coverage or MC/DC. Note here that we
did this naı̈vely in that we generated a test-case for each construct we needed to
cover. Thus, the test-suites were straight forward to generate and easily traceable
back to the constructs of the model they were intended to cover, but the tests in
each test-suite were also highly redundant in terms of the coverage they provided.

Springer

Autom Software Eng (2007) 14:37–57 47

2. To provide targets for our conformance testing experiment, we used fault seeded
models to emulate the actual implementation. We generated 100 faulty models of
the FGS by randomly seeding one fault per faulty specification. The fault classes
we seeded were derived based on the change history of the model and faults likely
to be inserted when developing an implementation based on the specification; they
are discussed further in Section 3.2. By manually inspecting the resultant mutant
models, we found that 28 of them were semantically identical to the original FGS
model. Therefore, our study uses the remaining 72 mutants that contain real faults
as targets of the testing effort.

3. We ran the full (non-reduced) test suite on the 72 faulty implementations and
recorded the number of faults revealed.

4. We generated and ran five reduced test suites for each full test-suite, ensuring that
the desired coverage criterion was maintained. As discussed below, since the test
reduction algorithm picks test-cases at random from the complete test-suite we
generated several reduced sets for each full test-suite to avoid skewing our results
because we were lucky (or unlucky) in the selection of tests for a reduced test-
suite. We arbitrarily chose to generate five reduced test-suites to provide higher
confidence in our results while at the same time keep the effort conducting the
experiments manageable.

5. Given the results of the previous steps, we compared the relative fault finding
capability of the full test-suites versus the reduced test-suites.

In the remainder of this paper we provide a detailed description of activities involved
in the experiment and discuss our findings.

3.2 Fault injection and detection

To provide targets for our testing effort we needed a collection of fault implemen-
tations. Since the structure of an RSML−e model is basically a collection of nicely
formatted nested if-statements where each condition guards the assignment of a state
variable, an implementation of the model will have a very similar structure to the model
from which it was developed. Consequently, the fault classes applicable in the imple-
mentation domain are similar to the ones in the model domain. In addition, we have
extensive support to execute, manipulate, and measure test coverage over RSML−e

models. Therefore, we decided to use a collection of fault seeded RSML−e models to
emulate the implementations rather than implementing the models in, for example, C,
and seed faults in the resultant implementations (we would simply seed faults from
the same fault classes in an implementation in C rather than an “implementation” in
RSML−e).

To create the faulty specifications, we first reviewed the revision history of the FGS
model to understand what types of faults were commonly made when developing
models. We also studied how the models would be implemented in source code to
determine which faults seemed likely to be inserted in a manual implementation. Note
here that our focus has been on faults inserted during manual coding, not the types
of faults that might be inserted by a code-generator. Nevertheless, given the limited
types of faults possible when deriving an implementing from a model expressed in
a language such as RSML−e, we believe that the faults injected by a code-generator

Springer

48 Autom Software Eng (2007) 14:37–57

MACRO When_LGA_Activated() :
TABLE
Select_LGA() : T;
PREV_STEP(..LGA) = Selected : F;
Is_This_Side_Active : *; /* Was T */
END TABLE

END MACRO

Fig. 5 An example fault seeded into the FGS model

would come from the same fault classes—the main difference from manual coding
would be that a code-generator would presumably inject the faults systematically
rather than spuriously as injected by a programmer.

The faults that we identified as as commonly inserted during the FGS develop-
ment effort as well as likely faults to be injected during implementation fell into the
following four categories:

Variable Replacement (VR): A variable reference was replaced with a reference to
another variable of the same type.

Condition Insertion (CI): A condition that was previously considered a “don’t care”
(∗) in one of the tables was changed to T (the condition is required to be true).

Condition Removal (CR): A condition that was previously required to be true (T) or
false (F) in a table was changed to “don’t care” (∗).

Condition Negation (CN): A condition that was previously required to be true (T) in
a table was changed to false (F), or vice versa.

As an example, Fig. 5 shows a missing condition fault contained in macro
When LGA Activated, the fault was created by changing the table from requiring
that the Boolean variable Is This Side Active was true (T) to a “don’t care”
(∗).

Since we focused on likely faults, we have omitted some possible fault classes,
for example, missing state variables and misdirected or missing transitions. In our
experience, such severe faults were uncommon and so obvious they would be quickly
eliminated and, thus, would not linger until testing commenced.

We used our fault seeder to generate 100 faulty models to use as test targets (25 for
each fault class). By manually inspecting the resulted faulty models, we found that 28
of them were semantically identical to the original FGS model. Therefore, our study
uses the remaining 72 mutants that contain faults detectable through testing.

During our testing experiment, we used a quite sensitive oracle to determine if a
test-case revealed a fault. Given the input sequence of a test-case, we compared both
the generated output as well as the internal state of the model to determine if a fault
was present. In general, the internal state information of the system under test may not
be available to the oracle. Thus, our oracle was able to detect faults that may not have
manifested themselves as erroneous outputs, but only as a corrupt system state. We
chose this approach since we expect this to be the type of oracle used when performing
conformance testing of auto-generated code; we have long advocated that the auto-
generated code should conform to coding standards that make this type of traceability
between specification and implementation feasible (Whalen and Heimdahl, 1999).

Springer

Autom Software Eng (2007) 14:37–57 49

3.3 Specification based test criteria

Adequacy criteria are used by testers to decide when to stop testing by helping them
determine if the software has been adequately tested. In this paper, these criteria
are defined on a synchronous data-flow specification language. We are using the
specification language RSML−e (Thompson et al., 1999) in our study, but the criteria
are applicable without modification to a broad class of languages. As mentioned in
the background section, an RSML−e model consists of state variables and a next
state relation for these state variables (this can be viewed as state machines with
transitions between the states). The next state relation defines under which conditions
the state variables change value (the state machines change state), and are given in
terms of Boolean expressions involving variables and arithmetic, relational, or boolean
operators.

We use � to represent a test-suite and � for the formal model. In the following
definitions, a test-case is to be understood as a sequence of values for the input
variables in the model � and the expected outputs and state changes caused by these
inputs. The sequence of inputs will guide � from its initial state to the structural
element, for example, a transition, the test-case was designed to cover. A test-suite is
simply a set of such test cases. In this paper we use the following six specification
coverage criteria. Note that for the condition based coverage criteria, a condition is
defined as a Boolean expression that contains no Boolean operators and a decision is
Boolean expression consisting of conditions and zero or more Boolean operators. This
definition of conditions and decisions follow the standard DO-178B (RTCA, 1992)
governing civilian airborne software systems deployed in in the United States.

Variable Domain Coverage: (Often referred to as state-coverage.) Requires that the
test set � has test-cases that force each control variable defined in the model � to
take on all possible values in its domain at least once.

Transition Coverage: Analogous to the notion of branch coverage in code and
requires that the test set � has test-cases that exercise every transition definition
in � at least once. Note here that transition definition is the definition of a state
transition at the level of the surface syntax of the modeling language, not the notion
of a transition in the representation of the global state space.

Decision Coverage: Each decision occurring in � evaluates to true at some point in
some test-case and evaluates to false at some point in some other test case. Note
that if the decision is, for example, in a function, there is no requirement that the
function is actually invoked—this criterion only requires that the decision would
have evaluated to true/false if it was evaluated during the execution of the test-case.
We chose to include this criterion since the published versions of decision coverage
could be interpreted this way by a careless analyst. When instrumenting a model
(or program) to measure test coverage the evaluation of the constructs of interest (in
this case a decision) is implicit; when generating test-cases using model-checking
techniques, the fact that the construct of interest must be evaluated must be explicit.
In fact, we made this exact mistake ourselves in a previous study (Heimdahl et al.,
2004).

Decision Coverage with Single Uses: Analogous to decision coverage, but the de-
cision must actually be evaluated. For example, for a condition in a function, the

Springer

50 Autom Software Eng (2007) 14:37–57

condition must evaluate to true/false while the function is invoked from some point
in the model.

Modified Condition and Decision Coverage (MC/DC): MC/DC was developed to
meet the need for extensive testing of complex boolean expressions in safety-
critical applications (Chilenski and Miller, 1994b). MC/DC requires us to show the
following:

– Every condition within the decision has taken on all possible outcomes at least
once, and

– Every condition has been shown to independently affect the outcome of the
decision

Note again that invocation of the decision is not required because of the same
reason discussed for decision coverage.

MC/DC with Single Uses: Analogous to modified condition and decision coverage,
but the decision must actually be evaluated.

A more formal treatment of these coverage criteria can be found in Rayadurgam
(2003), Rayadurgam and Heimdahl (2001a), Hayhurst et al. (2001), and FAA (2002).

3.4 Test set generation and reduction

We generated full test-suites using the approach discussed in Section 2.2. We used the
Nimbus to translate to the input language of the model-checker NuSMV (NuS, 2005)
and also to generate the trap properties corresponding to the test coverage criteria
discussed above. The model and the trap properties are then given to the NuSMV tool
to create the full test-suites.

A single test-case usually satisfies more than one test obligation. For instance, a
test-case used to cover a certain state of interest may also cover other states during
its execution. This then provides for a way to reduce the size of the final test-suite
by choosing a subset of test-cases that preserves the coverage obtained by the full
test-suite.

Finding a minimal test-suite that satisfies the test requirements is in general an NP
problem (Garey and Johnson, 1979), but often greedy heuristics suffice to generate
significantly reduced test-suites. The method we use begins with an empty set of test
cases and initializes the coverage to zero (Fig. 6). The greedy algorithm then randomly
picks a test-case from the full test-suite, runs the test, and determines if the test-case
improved the overall coverage (for whatever criterion in which we are interested). Any
test-case that improves the coverage is added to the reduced set. This continues until
we have exhausted all the test-cases in the full test-suite—we now have a, hopefully,
much smaller suite that has the same coverage as the full test-suite.

The test case minimization approach we employ is a post processing technique to
eliminate redundant test-cases. This means that we first generate the entire test-suite
that satisfies a particular test criterion and then perform minimizations on it. If the
goal was to get small test-suites it would be better to perform this filtering as the
test-cases are generated. Nevertheless, since we also need the full test-suite for our
experiment we choose this post processing approach.

Springer

Autom Software Eng (2007) 14:37–57 51

Algorithm 3.1: TEST-REDUCE(Σ,Γ,η)

INPUTS :
Model Σ, test suite Γ,and test criterion η

OUTPUT :
Reduced test set Ω

Ω ← ∅; ReducedTest set
AC ← 0; Actual Coverage
PC ← 0; Previous Coverage
shuffle(Γ);
repeat
choose a test case f from Γ ;
run f against the model Σ ;
Measure actual coverage AC ;
if AC = PC
then Ω ← Ω ∪ {f};

PC ← AC;
until Γ is exhausted
return (Ω);

Fig. 6 Algorithm for test-suite
reduction

Note that we randomly select test-cases from the full set to create a reduced test-
suite. We then generate five separate reduced test-suites for each full test-suite. We
choose to generate five separate reduced sets to reduce problems related to skewing
the results by accidentally picking a “very good” (or bad) set of test-cases. The results
for all test runs are included in this report.

4 Experimental results and analysis

As a baseline for our experiments, we ran the full test-suites to determine their fault
finding capability. To get a basic idea of their fault finding capability, we also created
a collection of randomly generated tests to us as a comparison. We expended the
same amount of time automatically generating and running the random tests as we
did running the tests providing transition coverage. Thus, the randomly generated
tests serve as a simple baseline for the other test suites; one would expect the tests
carefully crafted to provide a certain coverage to perform better than the randomly
generated test-set. The results are summarized in Table 1. The table shows the number
of test-cases in each test-suite and their fault finding capability (total fault finding
capability as well as broken down per fault-class).

Table 1 Full test set generation for various criteria along with their fault detection capability

Test criteria Size VR CN CI CR Total

Random 100 21 25 5 15 66 (92%)
Variable domain 115 14 15 2 4 32 (44%)
Transition 313 20 24 5 15 64 (89%)
Decision 435 23 24 5 15 67 (93%)
Decision usage 478 23 24 7 15 69 (96%)
MC/DC 537 22 25 7 16 70 (97%)
MC/DC usage 334 23 25 8 16 72 (100%)

Springer

52 Autom Software Eng (2007) 14:37–57

Table 2 Reduced test set sizes for various test reduction runs

Criteria Full r.1 r.2 r.3 r.4 r.5 Avg. Red.

Var. domain 115 19 22 18 21 21 20.2 82%
Transition 313 35 43 29 38 43 37.6 88%
Decision 435 45 44 44 45 42 44.0 90%
Decision usage 478 37 43 47 43 38 41.6 91%
MC/DC 537 34 33 29 34 32 32.4 94%
MC/DC usage 334 30 30 33 32 33 31.6 91%

r.1–r.5 indicate the size of the five reduced test-suites. Avg. denotes the average reduction of
the five

As can be seen, the randomly generated test perform surprisingly well compared
to the test-suites providing structural coverage. Note here that the randomly gener-
ated tests were of the length 100 input steps whereas the tests generated to a specific
coverage were typically very short (1–3 steps). Nevertheless, the comparison is still
relevant since we were not interested in comparing the number of test-cases but rather
the effort involved in generating the tests; given equivalent effort in test-generation
and test-execution, random testing performed very well. We have discussed the rea-
sons behind the poor performance of Variable Domain and Transition Coverage in a
previous study (Heimdahl et al., 2004) and a discussion of this topic is outside the
scope of this paper.

From the results in Table 1 one can also observe that the more rigorous the test
criteria, the better the fault finding capability. For instance, for this particular case-
example MC/DC with usage detects all faults yielding a behaviorally different model.

4.1 Test-suite reduction

As mentioned earlier, we generated five different reduced test-suites for each coverage
criterion to control the possibility that we by chance got a very “good” or very “poor”
reduced test-suite. The results of the reduction algorithm can be seen in Table 2.

The results support our first hypothesis that test reduction results in significant
savings in terms of test-suite size. In all cases there was at least an 80% average
reduction in the size of the test-suite. This reduction reinforces the findings in Wong
et al. (1997, 1998), Rothermel et al. (1998), Jones and Harrold (2003) and is to be
expected since our test-case generation method produces one test-case per construct of
interest (variable value, transition, decision value, or MC/DC value). This generation
approach is desirable since it makes traceability of the test-cases to their test-objective
straightforward (one-to-one mapping). On the other hand, as is evident from Table 2,
it leads to a significant number of overlapping (with respect to coverage) test-cases
that may or may not add to the fault-finding ability of the test-suite; this is the topic
of the next section.

4.2 Effect on fault detection effectiveness

The fault finding capability of the full as well as reduced test-suites is summarized
in Table 3. The results are in agreement with our second hypothesis that test-suite

Springer

Autom Software Eng (2007) 14:37–57 53

Table 3 Fault finding capability of the reduced test-sets

Criteria Full set r.1 r.2 r.3 r.4 r.5 Avg Red

Var. domain 32 28 29 25 28 25 27.0 15.6%
Transition 64 58 58 58 59 57 58.0 9.38%
Decision 67 62 61 62 62 61 61.6 8.06%
Dec. usage 69 62 63 63 62 63 62.6 9.28%
MC/DC 70 64 63 63 63 63 63.2 9.71%
MC/DC usage 72 67 66 67 67 67 66.8 7.22%

r.1–r.5 indicate the number of faults found with each of the five reduced test-suites. Avg. denotes the average
number of faults found with the five reduced test-suites.

reduction will adversely impact the fault finding ability of test-suites that are derived
from synchronous data-flow models.

As shown in Table 3, the number of faults detected by the reduced test-suites
is significantly less for all coverage criteria that were examined in our experiment;
in all cases there was at least a 7% reduction in the fault detection effectiveness.
One may argue that a 7% reduction is rather small, but for our domain of interest,
automated code generation in critical systems, any reduction in fault finding ability is
unacceptable.

From our results we can also observe that the most rigorous coverage criteria,
MC/DC with Usage, seems to be the least sensitive to the effect of test-suite reduction.
We speculate that this is because it is simply harder to come up with a test-suite that
provides this high level of coverage without finding faults—MC/DC with Usage is
simply a “better” coverage criterion than the other ones we used in our experiment. We
hypothesize that MC/DC with Usage is better than the other criteria in two respects.
First, it seems to find more faults than any other criteria. Second, it seems to be less
sensitive to the effect of test-suite reduction. Thus, MC/DC with Usage is the closest to
the ideal coverage criterion in this domain we have seen to date; a test-suite generated
to the ideal criterion would detect all faults in the system under test and any test-suite,
large or small, providing this coverage would reveal the same faults.

Our results are markedly different than the results reported in previous studies
(Wong et al., 1998; Jones and Harrold, 2003; Rothermel et al., 1998); one of the
studies reports no reduction in fault finding and two studies report a dramatic and
highly varied reduction in the fault finding capability of the reduced test-suites. In
our study we observe a modest, but notable, reduction in the fault-finding capability.
In our experiment, however, that reduction in fault-finding seems to be reasonably
predictable; each of the five reduced test-suites we randomly generated for each
coverage criterion have approximately the same fault-finding capability. This stands
in stark contrast to the results in the Rothermel et al., and Jones and Harrold studies
where the reduction in fault finding varied between 0% and 100% (Jones and Harrold,
2003; Rothermel et al., 1998).

We do not have a ready explanation for this phenomenon, but we speculate that it
may be related to three factors; (1) the coverage criteria used in the experiment, (2) the
actual coverage provided by the test-suites, and (3) the classes of faults considered. The
Rothermel et al. study (1998) used edge-coverage of the control flow graph (roughly
equivalent to the transition coverage in our domain) and most of our criteria are more

Springer

54 Autom Software Eng (2007) 14:37–57

rigorous than edge-coverage. Since there seems to be a correlation between the rigor
of the coverage criterion and the variability in fault-finding of the reduced test-suites,
this may be part of the explanation for our results. The Jones and Harrold study (Jones
and Harrold, 2003) used MC/DC as the coverage criterion in their experiment, but
the test-suites they used did not provide complete MC/DC coverage. Their reduced
test-suites provided the same coverage of the code as the full suite, but the full suite did
not provide coverage up to 100% of achievable coverage of the criterion of interest. In
our case, we provided full coverage of every criterion. The fact that we worked from
complete test-suites may have made our test-suites less susceptible to the variations
if fault finding observed in their study. Finally, since we are working with languages
with limited expressiveness (no iteration and dynamic memory for example), the fault
classes under consideration most likely affect the results. Needless to say, further
study is clearly needed to understand these issues better.

To summarize the findings, reduction of test-suite size has an unacceptable effect
on the suite’s fault finding capability. Should there be an urgent need to reduce the
test-suite size because of resource limitations (in terms of, for example, time), we
speculate that test-case prioritization (Jones and Harrold, 2003) would be a better
approach than test-suite reduction (or minimization). In test-case prioritization, we
would not eliminate any test-cases from our test-suite; we would instead attempt
to sort the test-cases based on expected fault finding potential and execute the ones
deemed to be most likely to reveal faults first. We would terminate the testing when our
resources are depleted. Naturally, more work is needed to determine how to prioritize
test cases and also empirically evaluate if the test-case prioritization approach in fact
performs better than reduced or minimized test-suites.

4.3 Threats to validity

There are four obvious threats to the external validity that prevents us from generalizing
our observations. First, and most seriously, we are using only one instance of a formal
model in our experiment. Although the FGS is an ideal example—it was developed
by an external industry group, it is large, it represents a real system, and is of real
world importance—it is still only one instance. The characteristics of the FGS model,
for example, it is entirely modelled using Boolean and enumerated variables, most
certainly affects our results and makes it impossible to generalize the results to systems
that, for example, contain numeric variables and constraints.

Second, we are using fault seeded models to emulate an implementation in con-
formance testing. As mentioned earlier, given the structure and semantics of the
modelling language RSML−e, we assert that any reasonable implementation derived
from such a model would be susceptible to the same types of faults as the model.
Nevertheless, the fact that we are not using hand generated code in the experiment
might bias the results and is, therefore, a concern.

Third, we are using seeded faults in our experiment. Although we took great
care in selecting fault classes that represented actual faults we observed during the
development of the FGS model as well as faults we deem highly likely to be introduced
during implementation, fault seeding always leads to a threat to external validity—we
simply do not know if our faults represent what we would see in practice.

Springer

Autom Software Eng (2007) 14:37–57 55

Finally, we only considered a single fault per model. Using a single fault per spec-
ification makes it easier to control the experiment. Nevertheless, we cannot account
for the more complex fault patterns that may occur in practice and the effect multiple
faults may have on our ability to reveal them; for example, fault masking may affect
the effectiveness of test suites.

Although there are several threats to the external validity of our experiment, believe
the results generalize to a large class of models in the critical systems domain and our
results raise serious doubts about the use of any test-suite reduction techniques in this
domain. Note here that test-case generation techniques that are optimized—optimized
in the sense that they only generate tests needed to provide the desired coverage—
would be subject to the same potential drawbacks as the test-set reduction technique
we evaluated in this paper.

5 Summary and conclusion

We have described an experiment in which we investigated the effect of test-suite
reduction in the domain of automatically generated conformance test-suites. As a
system-under-test, we used a model of a production sized Flight Guidance System
seeded with “representative” faults. Our results confirm our two hypotheses; one can
dramatically reduce the size of the automatically generated conformance test-suites
while maintaining desired coverage, and the fault finding of the reduced test-suites was
significantly adversely affected. Although we cannot broadly generalize our results
and further studies are needed, the experiment indicates that test-suite reduction of test-
suites providing structural coverage may not be an effective means of reducing testing
effort—the cost is terms of lost fault finding capability is simply too high; especially
in the critical systems domain in which we are mainly interested. On a related note,
the results cast doubts on the effectiveness of structural coverage criteria in general.
Small (or minimal) test-suites that provide structural coverage criteria do not seem
to be effective; we must understand better the reasons behind this problem and either
discover ways to somehow augment the test-suites to enhance their effectiveness or
define structural coverage criteria that are not sensitive to test-suite size. Our results
indicate that more rigorous criteria, such as MC/DC, provide a better fault finding
capability both for the full-test suites as well as the reduced test suites as compared
to less rigorous criteria, such as variable domain and transition coverage. This hints
that MC/DC is more robust to the detrimental effect of test-suite size. Nevertheless,
the characteristics of coverage criteria in both the specification and implementation
domain have not been well investigated and more work in this area is clearly needed.

Based on our results, we are skeptical towards any test-suite reduction techniques
that aim solely to maintain structural coverage, because, in our opinion, there is an
unacceptable loss in terms of test-suite quality. Thus, we advocate research into test-
case prioritization techniques and experimental studies to determine if such techniques
can more reliably lessen the burden of the testing effort by running a subset of an
ordered test-suite, as opposed to a reduced test-suite, without little if any loss in fault
finding capability.

Springer

56 Autom Software Eng (2007) 14:37–57

References

NuS: The NuSMV Toolset. Available at http://nusmv.irst.itc.it/ (2005)
Ammann, P.E., Black, P.E.: A specification-based coverage metric to evaluate test sets. In: Proceedings of

the Fourth IEEE International Symposium on High-Assurance Systems Engineering. IEEE Computer
Society (1999)

Ammann, P.E., Black, P.E., Majurski, W.: Using model checking to generate tests from specifications.
In: Proceedings of the Second IEEE International Conference on Formal Engineering Methods
(ICFEM’98), pp. 46–54. IEEE Computer Society (1998)

Archer, M., Heitmeyer, C., Simsm S.: TAME: A PVS interface to simplify proofs for automata models.
In: User Interfaces for Theorem Provers (1998)

Bensalem, S., Caspi, P., Parent-Vigouroux, C., Dumas, C.: A methodology for proving control systems
with Lustre and PVS. In: Proceedings of the Seventh Working Conference on Dependable Computing
for Critical Applications (DCCA 7), pp. 89–107. IEEE Computer Society, San Jose, CA (1999)

Blackburn, M.R., Busser, R.D., Fontaine, J.S.: Automatic generation of test vectors for SCR-style specifica-
tions. In: Proceedings of the 12th Annual Conference on Computer Assurance, COMPASS’97 (1997)

Callahan, J., Schneider, F., Easterbrook, S.: Specification-based testing using model checking. In:
Proceedings of the SPIN Workshop (1996)

Chan, W., Anderson, R., Beame, P., Burns, S., Modugno, F., Notkin, D., Reese, J.: Model checking large
software specifications. IEEE Trans. Softw. Eng. 24(7), 498–520 (1998)

Chilenski, J., Miller, S.: Applicability of modified condition/decision coverage to software testing. Softw.
Eng. J. 9, 193–200 (1994a)

Chilenski, J.J., Miller, S.P.: Applicability of modified condition/decision coverage to software testing.
Softw. Eng. J. 193–200 (1994b)

Choi, Y., Heimdahl, M.: Model checking RSML−e requirements. In: Proceedings of the 7th IEEE/IEICE
International Symposium on High Assurance Systems Engineering, pp. 109–118. Tokyo, Japan (2002)

Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
Engels, A., Feijs, L.M.G., Mauw, S.: Test generation for intelligent networks using model checking. In:

Proceedings of TACAS’97, LNCS 1217, pp. 384–398. Springer (1997)
Esterel Technologies: SCADE suite product description. http://www.esterel-

technologies.com/v2/scadeSuiteForSafetyCriticalSoftwareDevelopment/index.html (2004)
FAA, C.A.S.T.: What is a “decision” in application of modified condition/decision coverage and decision

coverage (DC)? Technical Report position paper (2002)
Frankl, P., Weiss, S.N.: An experimental comparison of the effectiveness of the all-uses and all-edges

adequacy criteria. In: Proceedings of the symposium on Testing, analysis, and verification (1991)
Garey, M., Johnson, D.: Computers and Intractability. Freeman, New York (1979)
Gargantini, A., Heitmeyer, C.: Using model checking to generate tests from requirements specifications.

Softw. Eng. Notes 24(6), 146–162 (1999)
Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans. Program. Lang. Syst.

16(3), 843–871 (1994)
Harel, D.: Statecharts: A visual formalism for complex systems. Sci. Comput. Program. 8(3), 231–274

(1987)
Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R., Shtull-Trauring, A., Trakhtenbrot,

M. STATEMATE: A working environment for the development of complex reactive systems. IEEE
Trans. Softw. Eng. 16(4), 403–414 (1990)

Hayhurst, K., Veerhusen, D., Rierson, L.: A practical tutorial on modified condition/decision coverage.
Technical Report TM-2001-210876, NASA (2001)

Heimdahl, M.P., Devaraj, G.: Test-suite reduction for model based tests: Effects on test quality and
implications for testing. In: Proceedings of the 19th IEEE International Conference on Automated
Software Engineering (ASE). Linz, Austria (2004)

Heimdahl, M.P., Devaraj, G., Weber, R.J.: Specification test coverage adequacy criteria = specification
test generation inadequacy criteria? In: Proceedings of the Eighth IEEE International Symposium on
High Assurance Systems Engineering (HASE). Tampa, Florida (2004)

Heimdahl, M.P., Rayadurgam, S., Visser, W.: Specification centered testing. In: Second International
Workshop on Analysis, Testing and Verification (2001)

Heimdahl, M.P., Rayadurgam, S., Visser, W., Devaraj, G., Gao, J.: Auto-generating test sequences using
model checkers: A case study’. In: 3rd International Worshop on Formal Approaches to Testing of
Software (FATES 2003) (2003)

Springer

Autom Software Eng (2007) 14:37–57 57

Heimdahl, M.P.E., Leveson, N.G.: Completeness and consistency in hierarchical state-base requirements.
IEEE Trans. Softw. Eng. 22(6), 363–377 (1996)

Heitmeyer, C., Bull, A., Gasarch, C., Labaw, B.: SCR∗: A toolset for specifying and analyzing requirements.
In: Proceedings of the Tenth Annual Conference on Computer Assurance, COMPASS 95 (1995)

Heitmeyer, C., Jeffords, R., Labaw, B.: Automated consistency checking of requirements specifications.
ACM Trans. Softw. Eng. Methodol. 5(3), 231–261 (1996)

Heitmeyer, C., Jr, J.K., Labaw, B., Archer, M., Bharadwaj, R.: Using abstraction and model checking to
detect safety violations in requirements specifications. IEEE Trans. Softw. Eng. 24(11), 927–948 (1998)

Hong, H.S., Cha, S.D., Lee, I., Sokolsky, O., Ural, H.: Data flow testing as model checking. In: Proceedings
of the International Conference on Software Engineering. Portland, Oregon (2003)

Hong, H.S., Lee, I., Sokolsky, O., Ural, H.: A temporal logic based theory of test coverage and generation.
In: Proceedings of the International Conference on Tools and Algorithms for Construction and
Analysis of Systems (TACAS’02). Grenoble, France (2002)

Jasper, R., Brennan, M., Williamson, K., Currier, B., Zimmerman, D.: Test data generation and feasible
path analysis. In: Proceedings of International Symposium on Software Testing and Analysis (1994),
pp. 95–107.

Jones, J.A., Harrold, M.J.: Test-suite reduction and prioritization for modified condition/decision coverage.
IEEE Trans. Softw. Eng. 29(3), 195–209 (2003)

Lee, E.A.: Overview of the Ptolemy Project. Technical Report Technical Memorandum UCB/ERL M03/25,
University of California, Berkeley, CA, 94720, USA (2003)

Leveson, N., Heimdahl, M., Hildreth, H., Reese, J.: Requirements specification for process-control
systems. IEEE Trans. Softw. Eng. 20(9), 684–706 (1994)

Mathworks Inc.: Mathworks Inc. Simulink Product Web Site. via the world-wide-web:
http://www.mathworks.com.

Offutt, A.J., Xiong, Y., Liu, S.: Criteria for generating specification-based tests. In: Proceedings of the Fifth
IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’99) (1999)

Owre, S., Shankar, N., Rushby, J.: The PVS specification language. Computer Science Laboratory; SRI
International, Menlo Park, CA 94025, beta relese edition (1993)

Pnueli, A.: Applications of temporal logic to specification and verification of reactive systems: A survey
of current trends. Lecture Notes in Computer Science Number 224, pp. 510–584 (1986)

Rayadurgam, S.: Automatic test-case generation from formal models of software. Ph.D. thesis, University
of Minnesota (2003)

Rayadurgam, S., Heimdahl, M.P.: Coverage based test-case generation using model checkers. In:
Proceedings of the 8th Annual IEEE International Conference and Workshop on the Engineering of
Computer Based Systems (ECBS 2001), pp. 83–91. IEEE Computer Society (2001a)

Rayadurgam, S., Heimdahl, M.P.: Test-sequence generation from formal requirement models. In:
Proceedings of the 6th IEEE International Symposium on the High Assurance Systems Engineering
(HASE 2001). Boca Raton, Florida (2001b)

Rothermel, G., Harrold, M., Ostrin, J., Hong, C.: An empirical study of the effects of minimization on the
fault detection capabilities of test suites. In: Proceedings of the International Conference on Software
Maintenance, pp. 34–43 (1998)

RTCA: Software Considerations In Airborne Systems and Equipment Certification. RTCA (1992)
Thompson, J.M., Heimdahl, M.P.: An integrated development environment prototyping safety critical

systems. In: Tenth IEEE International Workshop on Rapid System Prototyping (RSP) 99, (1999), pp.
172–177.

Thompson, J.M., Heimdahl, M.P., Miller, S.P.: Specification based prototyping for embedded systems. In:
Seventh ACM SIGSOFT Symposium on the Foundations on Software Engineering, pp. 163–179 (1999)

Whalen, M.W., Heimdahl, M.P.: On the requirements of high-integrity code generation. In: 4th IEEE Inter-
national Symposium on High Assurance Systems Engineering, Vol. LNCS yyy, (1999), pp. 217–226.

Wong, W., Horgan, J., Mathur, A., Pasquini, A.: Test set size minimization and fault detection effectiveness:
a case study in a space application. In: Proceedings of the 21st Annual International Computer
Software and Applications Conference, (1997), pp. 522–528.

Wong, W., Horgan, J., London, S., Mathur, A.: Effect of test set minimization on fault detection
effectiveness. Softw. Pract. Exp. 28(4), 347–369 (1998)

Springer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

