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Abstract. Model checking is an automated technique that can be used to determine whether a system satisfies
certain required properties. The typical approach to verifying properties of software components is to check
them for all possible environments. In reality, however, a component is only required to satisfy properties in
specific environments. Unless these environments are formally characterized and used during verification (assume-
guarantee paradigm), the results returned by verification can be overly pessimistic. This work introduces an
approach that brings a new dimension to model checking of software components. When checking a component
against a property, our modified model checking algorithms return one of the following three results: the component
satisfies a property for any environment; the component violates the property for any environment; or finally, our
algorithms generate an assumption that characterizes exactly those environments in which the component satisfies
its required property. Our approach has been implemented in the LTSA tool and has been applied to the analysis
of two NASA applications.
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1. Introduction

Our work is motivated by an ongoing project at NASA Ames Research Center on the
verification of autonomous software. Autonomous software involves complex concurrent
behaviors for reacting to external stimuli without human intervention. Extensive verification
is a pre-requisite for the deployment of missions that involve autonomy.

Model checking is an automated verification technique that can be used to determine
whether a concurrent system satisfies certain properties by exhaustively exploring all its
possible executions. Software model checking is typically applied to components of a larger
system for several reasons. For example: a software component may be embedded as is the
case for autonomous software; one would typically ignore the details of the operating
system in which a component operates; a system may be partially specified; finally, given
the fact that the state explosion problem (Clarke et al., 1999) is particularly acute in software
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systems, one realistically needs to “divide and conquer”, that is, to break up the verification
task into smaller tasks.

In order to model check a component in isolation one needs to incorporate a model
of the environment interacting with the component. By default, this is the “most general
environment”, an environment that can invoke, in any order, any action of the interface
between the two, or that may refuse any service that the component requires. We believe that
the above approach to component checking is overly pessimistic; the underlying assumption
is that the environment is free to behave as it pleases, and that the component will satisfy
the required property for any environment. A similar observation is made by de Alfaro and
Henzinger in the context of interface compatibility checking (de Alfaro and Henzinger,
2001a, b).

In the world of model checking, this problem has given rise to the assume-guarantee style
of reasoning (Jones, 1983; Pnueli, 1984), where the model of the environment is restricted by
assumptions provided by the developer. Assume-guarantee reasoning first checks whether
a component guarantees a property, when it is part of a system that satisfies an assumption.
Intuitively, the assumption characterizes all contexts in which the component is expected to
operate correctly. To complete the proof, it must also be shown that the remaining compo-
nents in the system, i.e., the environment, satisfy the assumption. This style of reasoning is
typically performed in an interactive fashion. Developers first check a component with the
most general environment. If a counterexample is returned that is unrealistic for the system
under analysis, they make several attempts at defining an assumption that is strong enough
to eliminate false violations, but that also reflects appropriately the remaining system.

In this paper we propose and describe a novel framework for model checking of compo-
nents that provides more useful user feedback than the usual counter-example generation
for property violations. When model checking a component against a property, our algo-
rithms return one of the following three results: (i) the component satisfies the property for
any environment; (ii) the component violates the property for any environment; or finally,
(iii) an automatically generated assumption that characterizes exactly those environments
in which the component satisfies the property.

Let us illustrate this with a small example. A multi-threaded component uses a mutex to
coordinate accesses to a shared variable, which may also be accessed by the environment.
The requirement is that race violations should not occur in the system. If some thread
within the component performs unprotected accesses to the variable, the requirement may
be violated irrespective of the environment. Our approach reports this fact, together with
a counterexample illustrating it. Now assume that all accesses to the variable within the
component are protected by the mutex. Model checking under the most general environment
would return a violation. Our algorithms would return an assumption, reflecting the fact
that all accesses to the shared variable by the environment must similarly be protected by
the lock.

In fact, our approach generates the weakest environment assumption that enables the
property to hold. Therefore, in selecting an appropriate environment for a component,
one can safely reject any environment that does not satisfy the assumption generated.
Assumption generation may also be seen as a way of providing extra automated support for
assume-guarantee reasoning. Finally, for systems like the ones we study, the environment
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is often unpredictable. Some assumptions are typically made about it, but loss of mission
must be avoided even if the environment falls outside these assumptions. For such cases,
assumptions can be used as runtime monitors of the actual environment (Havelund and Rosu,
2001). Monitors can generate appropriate warnings when the environment falls outside
expected behavior and trigger special system behavior, if necessary.

We have implemented our approach in the Labeled Transition Systems Analyzer (LTSA)
tool (Magee et al., 1999; Magee and Kramer, 1999), which provides good support for
incremental system design and verification. It implements such features as component
abstraction and minimization that make the integration of our approach straightforward.

The problem of assumption generation can be associated with such problems as submod-
ule construction, controller synthesis and model matching. To our knowledge, such work
has not been directly applied to model checking before; the relation of our approach with
these domains is further discussed in Section 6. The remainder of the paper is organized as
follows. Section 2 briefly discusses the LTSA tool and the underlying theory that is used
by our approach. It is followed by the presentation of our approach in Section 3. Section 4
describes our experience with analyzing the Executive modules of two autonomous systems
developed at NASA Ames. We discuss the applicability of our approach in practice and
extensions that we are considering in Section 5. Finally, Section 6 presents related work,
and Section 7 concludes the paper.

2. Background

In this section, we describe the LTSA framework in which our approach has been introduced.
We provide formal definitions for those aspects of the tool that we have used and/or modified.

2.1. The LTSA tool

The LTSA (Magee et al., 1999; Magee and Kramer, 1999) is an automated tool that supports
Compositional Reachability Analysis (CRA) of a software system based on its architecture.
In general, the software architecture of a concurrent system has a hierarchical structure
(Magee et al., 1994). CRA incrementally computes and abstracts the behavior of composite
components based on the behavior of their immediate children in the hierarchy. Abstraction
consists of hiding the actions that do not belong to the interface of a component, and
minimizing with respect to observational equivalence (Giannakopoulou et al., 1999).

The input language “FSP” of the tool is a process-algebra style notation with Labeled
Transition Systems (LTS) semantics. A property is also expressed as an LTS, but with
extended semantics, and is treated as an ordinary component during composition. Properties
are combined with the components to which they refer. They do not interfere with system
behavior, unless they are violated. In the presence of violations, the properties introduced
may reduce the state space of the (sub)systems analyzed.

As in our approach, the LTSA framework treats components as open systems that may
only satisfy some requirements in specific contexts. By composing components with their
properties, it postpones analysis until the system is closed, meaning that all contextual
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behavior that is applicable has been provided. We extend this framework by performing
useful analysis at the component level.

The LTSA tool also features graphical display of LTSs, interactive simulation and graph-
ical animation of behavior models (Magee et al., 2000), all helpful aids in both design and
verification of system models.

2.2. Program model

We use labeled transition systems (LTSs) to model the behavior of communicating com-
ponents in a concurrent system. Let Act be the universal set of observable actions, and
Actτ = Act ∪ {τ }, where τ denotes a local action unobservable to a component’s envi-
ronment. A labeled transition system T is a quadruple 〈S, αT, R, s0〉, where S is a set of
states, αT ⊆ Act is a set of actions called the alphabet of T , R ⊆ S × αT ∪ {τ } × S is a
transition relation and s0 ∈ S is the initial state. We use π to denote a special error state,
which models the fact that a safety violation has occurred in the associated system, and then
use � to denote the LTS 〈{π},Act, ∅, π〉.

For example, figure 1 illustrates LTSs for a Writer component and a Mutex. In all illustra-
tions of LTSs in this paper, state 0 is the initial state. The Writer acquires the mutex (action
W.acquire), enters and subsequently exits a critical section (W.enterCS, W.exitCS) used to
model the fact that the Writer updates some shared variable, and then releases the mutex
W.release. The Mutex component can be acquired and released by the Writer (W.acquire,
W.release) or its environment (E.acquire, E.release), but only a single component can hold
it at any one time.

We call an LTS well formed if the error state π has no outgoing transitions: by construc-
tion, we only consider well formed LTSs in this work. An LTS T = 〈S, αT, R, s0〉 is non-
deterministic if ∃(s, a, s ′), (s, a, s ′′) ∈ R such that s ′ 
= s ′′ (otherwise T is
deterministic).

A trace σ of an LTS T is a sequence of observable actions that T can perform starting
at its initial state. For example, <W.acquire> and <W.acquire, W.enterCS, W.exitCS> are

Figure 1. LTSs for a Mutex and a Writer.
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both traces of the Writer component of figure 1. The set of traces of T is denoted as T r (T ).
For A ⊆ Act , we use σ �A to denote the trace obtained by removing from σ all occurrences
of actions a 
∈ A. We denote as errT r (T ) the set of traces that may lead to state π, which
we call error traces of T .

2.2.1. Operators. In the following, we provide semantics for the operators defined on LTSs
that are used in our work. Although we provide transitional semantics in a typical process
algebra style, our aim here is not to define an algebra.

Let T = 〈S, αT, R, s0〉 and T ′ = 〈S′, αT ′, R′, s ′
0〉. We say that T transits into T ′ with

action a, denoted T
a→ T ′, iff (s0, a, s ′

0) ∈ R and: either αT = αT ′ and R = R′ for s ′
0 
= π ,

or, in the special case where s ′
0 = π , T ′ = �.

The interface operator ↑ is used to make unobservable those actions in the LTS of a
component that are not part of its interface. Formally, given an LTS T and a set of observable
actions A ⊆ Act , T ↑ A is defined as follows. For T = �, T ↑ A = �. For T 
= �,
T ↑ A is an LTS with the same set of states and initial state as T . The alphabet of T ↑ A
is αT ∩ A, and its transition relation is described by the following rules:

T
a−→ T ′, a ∈ A

T ↑ A a−→ T ′ ↑ A
T

a→ T ′, a 
∈ A
T ↑ A τ→ T ′ ↑ A

Parallel composition “||” is a commutative and associative operator that combines the
behavior of two components by synchronization of the actions common to their alphabets
and interleaving of the remaining actions. For example, in computing the parallel compo-
sition of components Writer and Mutex of figure 1, actions W.acquire and W.release will
each be synchronized.

Formally, let T1 = 〈S1, αT1, R1, s1
0〉 and T2 = 〈S2, αT2, R2, s2

0〉 be two LTSs. If either
T1 = � or T2 = �, then T1||T2 = �. Otherwise, T1||T2 is an LTS T = 〈S, αT, R, s0〉,
where S = S1 × S2, s0 = (s1

0 , s2
0 ), αT = αT1 ∪ αT2, and R is defined as follows,

where a is an observable action or τ (the symmetric rules are implied since the operator is
commutative):

T1
a→ T ′

1, a 
∈ αT2

T1 || T2
a→ T ′

1 || T2

T1
a→ T ′

1, T2
a→ T ′

2, a 
= τ

T1 || T2
a→ T ′

1 || T ′
2

2.2.2. Properties. A safety property is specified as a deterministic LTS that contains no τ

transitions, and no π state. The set of traces T r (P) of property P defines the set of acceptable
behaviors over αP . An LTS T satisfies P , denoted as T |= P iff T r (T ↑ αP) ⊆ T r (P).

The LTSA automatically derives from a property P an error LTS denoted Perr , which
traps possible violations with the π state. Formally, the error LTS of a property P =
〈S, αP, R, s0〉 is Perr = 〈S ∪ {π}, αPerr , R′, s0〉, where αPerr = αP and R′ = R ∪
{(s, a, π ) | a ∈ αP and ¬∃s ′ ∈ S : (s, a, s ′) ∈ R}. Note that the error automaton is
complete, i.e., each state (other than the error state) has outgoing transitions for every
action in the alphabet.
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Figure 2. Mutual exclusion property.

For example, figure 2 illustrates a mutual exclusion property for a system consisting of
the LTSs of figure 1. The property comprises states 0, 1, 2 and the transitions denoted by
solid arrows. It expresses the fact that the component and its environment should never
be in their critical sections at the same time. In other words, the intervals defined by their
mutual enterCS and exitCS actions should never overlap. The dashed arrows illustrate the
transitions to the error state that are added to the property to obtain its error LTS.

Let T be an LTS that has no error traces. To detect violations of property P by component
T , the LTSA computes T ||Perr . It has been proven in Cheung and Kramer (1999) that T
violates P iff the π state is reachable in T ||Perr , or equivalently, iff errT r (T ||Perr ) 
= ∅.
The error state has special treatment during minimization, so that a violation does not
disappear as a result of abstraction. In fact, an error state within a component can only
disappear with composition, i.e., if a component with which it interacts blocks the erroneous
behavior.

3. Assumption generation

In this section we describe in detail our extensions to traditional model checking, and their
implementation in LTSA. We also provide a formal proof of correctness.

3.1. General method

The traditional approach to verifying a property of an open system (i.e., a software compo-
nent that interacts with an environment, represented by other components) is to check it for
all the possible environments. The result of verification is either true, if the property holds
for all the possible environments, or false, if there exists some environment that can lead the
component to falsify the property. We believe that this approach is overly pessimistic and
only appropriate for the analysis of closed systems, where no further interaction with the
environment is expected. When analyzing open systems, an optimistic view, which assumes
a helpful environment, is more appropriate. Usually, software components are required to
satisfy properties in specific environments, so it is natural to accept a component if there
are some environments in which the component does not violate the property.



AUTOMATICALLY GENERATED ASSUMPTIONS 303

Figure 3. Model checking with assumption generation.

In our approach, the result of component verification is also true, if the property holds
for all environments. However, the result is false only if the property is falsified in all
environments. If there exist some environments in which the component satisfies the prop-
erty, the result of verification is not false, as in the traditional approach, but rather true
in environments that satisfy a specific assumption. This assumption, i.e. a property LTS,
is automatically generated and characterizes exactly those environments. Intuitively, this
environment assumption encodes all possible “winning strategies” of the environment in
a game between the system, which attempts to get to the error state, and the environment,
which attempts to prevent this. Figure 3 illustrates our approach together with the steps we
follow to build the assumptions (that are described below).

Step 1 (Composition and minimization). Given an open system and a property LTS that
may relate the behavior of the system with the behavior of the environment, our first step
is to compute all the violating traces of the system for unrestricted environments, and turn
into τ all actions in these traces over which the environment has no control, i.e., the internal
actions of the system. We perform this step by building the composition of the system with
the error LTS of the property, and subsequently hiding the internal actions of the system. The
resulting LTS can be minimized with respect to any equivalence that preserves (error) traces.
In our implementation, we use minimization with respect to observational equivalence as
defined in the presence of error states by Cheung and Kramer in Cheung and Kramer (1999),
and as supported by the LTSA tool. For example, figure 4 depicts the result of composing
the components depicted in figure 1 with the mutual exclusion property of figure 2, after
minimization. The internal actions of the system, i.e. the “W” labeled transitions, were
abstracted to τ .

If the error state is not reachable in this composition, the property is true in any en-
vironment, and this is reported to the user. Otherwise, we determine whether there exist
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Figure 4. Composite LTS.

Figure 5. The result after backward error propagation.

environments that can help the system avoid the error in all circumstances; this is achieved
through the following steps.

Step 2 (Backward error propagation). This step first performs backward propagation of
the error state over τ transitions, thus pruning the states where the environment cannot
prevent the error state from being entered via one or more τ steps. Since we are inter-
ested only in the error traces, we also eliminate the states that are not backward reachable
from the error state. If, as a result of this transformation, the initial state becomes an er-
ror state, it means that no environment can prevent the system from possibly reaching
the error state, so the property is false (for all environments) and this is reported to the
user.

Consider again the composite system in figure 4. The thicker line marks the only τ

transition that remains in the system after minimization. As a result of backward propagation,
we identify state 1 with the error state; the result is shown in figure 5. The intuition here is
that, if the component is in a state from which it can violate the property by some number
of internal moves, then no environment can prevent the violation from occurring.

Step 3 (Property extraction). This step builds the property LTS that is our assumption.
It performs this in two stages; first it builds the error LTS for the assumption, from which
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it extracts the corresponding property LTS. Note that the LTS resulting from Step 2 might
not be an error LTS, although it contains an error state. Recall from the background section
that the error LTS is deterministic and complete.

In order to get an error LTS we make the LTS obtained from Step 2 deterministic by
applying to it τ elimination and the subset construction (Aho et al., 2000), but by taking
special care of the π state as follows. During subset construction, the states of the deter-
ministic LTS that is being generated are sets of states in the original non-deterministic LTS.
In our context, if any one of the states in the set is π , the entire set becomes π . Intuitively, a
trace that non-deterministically may or may not lead to an error has to be considered as an
error trace. Such non-determinism reflects the fact that, by performing a particular sequence
of actions, the environment cannot guarantee that the component will avoid error states.

For example, consider again the composite system in figure 4. There are two outgoing
transitions from the initial state 0 that are labeled by the same environment action E.enterCS:
one leads to the error state, while the other one leads to state 1. This means that if the
environment performs action E.enterCS, it can not prevent the system from getting to the
error, so we would like to identify state 1 with π . In our example in figure 4, this was
achieved during Step 2, but this may not be the case in general.

What remains to be performed at this stage is to make the resulting LTS complete.
Completion is performed by adding a new “sink” state to the LTS, and adding a transition to
this state for each missing transition in the “incomplete” LTS. The missing transitions in the
incomplete LTS represent behavior of the environment that is never exercised by the open
system under analysis. As a result, no assumptions need to be made about these behaviors.
The sink state reflects exactly this fact, since it poses no implementation restrictions to the
environment.

Once we have the error LTS, we obtain the assumption by deleting the error state and
the transitions that lead to it. Figure 6 depicts the assumption generated for our example.
Since the result from Step 2 is already deterministic, we get the assumption by completing
it with the sink state, denoted by θ , and deleting the π state. The assumption expresses
the fact that the environment should only access its critical section protected by the mutex.
Moreover, as imposed by the mutex, E.acquire and E.release actions of the environment can
only alternate, and therefore any different behavior is inconsequential. Notice for example
that from state 0, action E.release leads to state θ .

Figure 6. Generated assumption (after deletion of π state).
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3.2. Implementation in the LTSA

As mentioned, the LTSA provides a framework that facilitates the introduction of the exten-
sions we have presented. For example, we took advantage of its support for composition,
abstraction, minimization and determinization. The extra features that our approach required
are:

– Special treatment of the error state, π , during determinization. The special semantics of
this state were not previously taken into account.

– Backwards reachability and error propagation as required by Step 2. We believe that error
propagation should be performed during CRA for increased efficiency, irrespective of
our approach.

– Completion with the sink state, θ , and property extraction from the error LTS.

3.3. Correctness of approach

Let T denote an open system with alphabet αT and let E denote another system representing
an arbitrary environment for T , whose alphabet is αE . Let P denote a property LTS with
alphabet αP ⊆ αT ∪ αE (a property may refer to actions in both T and E).

Let C = αT ∩ αE be the set of common actions between T and E , and let I = αT − C
denote the internal actions of the system.

Our approach generates the property LTS A with alphabet αA = C ∪ (αP − I), rep-
resenting the weakest assumption characterizing all the environments that, composed with
the system, satisfy the property, i.e., E |= A if and only if E ||T |= P .

The following proposition says that the error traces of Aerr are obtained from the traces
in T ||Perr that may lead to an error state, from which we remove the actions not present in
αA.

Proposition 3.1. errT r (Aerr ) = {σ ∈ αA∗ | ∃σ ′ ∈ errT r (T || Perr ) ∧ σ = σ ′�αA}.

The following theorem makes precise the claim that A is the weakest assumption about
the environment E of T that ensures property P .

Theorem 3.2. ∀E, E |= A if and only if E || T |= P.

Proof:

– ∀E such that E |= A, we have to show that E ||T |= P . The proof is by contradiction.
Assume E ||T 
|= P . Then, there is a trace σ in E ||T ||Perr that leads to the error state
(i.e., σ ∈ errT r (E ||T ||Perr )). We use σ to build a trace σ ′ ∈ T r (E) such that σ ′�αA ∈
errT r (Aerr ), thus contradicting E |= A.

Since σ is an error trace in E || T || Perr , it follows that σ �αE ∈ T r (E) and σ � (αT ∪
αP) ∈ errT r (T || Perr ). From Proposition 3.3, it follows that (σ � (αT ∪ αP)) �αA ∈
errT r (Aerr ).
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Since αA ⊆ αE and αA ⊆ αT ∪ αP , we also have that (σ �αE) �αA = (σ � (αT ∪
αP)) �αA. Let σ ′ = σ �αE . We then have that σ ′ �αA = (σ � (αT ∪αP)) �αA ∈ errT r
(Aerr ), and thus we have a contradiction.

– ∀E such that E || T |= P , we have to show that E |= A. Again, we prove this by
contradiction.

Assume E 
|= A. Then, there is a trace σ ∈ T r (E) such that σ �αA ∈ errT r (Aerr ).
From Proposition 3.3, it follows that there is a trace σ ′ ∈ errT r (T || Perr ) such that
σ �αA = σ ′ �αA. We use σ and σ ′ to build a trace σ ′′ in E || T || Perr such that σ ′′ �αP ∈
errT r (Perr ), thus reaching the contradiction of E || T |= P .

Since σ is a trace of E , σ ′ is a trace of T || Perr , σ �αA = σ ′ �αA and C ⊆ αA it
follows that σ and σ ′ may differ only on non-common actions. It follows that there exists
a trace σ ′′ in E || T || Perr such that σ ′′ �αE = σ and σ ′′ � (αT ∪αP) = σ ′. (we build σ ′′

by “composing” σ and σ ′ using the same rules as for parallel composition of systems).
Since σ ′ ∈ errT r (T || Perr ), it follows that σ ′ �αP ∈ errT r (Perr ). We also have

σ ′′ �αP = σ ′ �αP , since σ may introduce in σ ′′ only actions that are not present in αA
or αP . It follows that σ ′′ �αP ∈ errT r (Perr ), and thus we have a contradiction.

3.4. Potential deadlock removal

The construction we have presented so far will build the weakest assumption A about the
environment for component T to achieve a given property P . The weakest assumption
characterizes all environments in the context of which the behavior of the component will
be restricted as necessary for P to always hold. However, it is possible that in order to ensure
P , the assumption A leaves to T no alternative than to stop interacting with the environment
indefinitely. We call such situations introduced by the assumption potential deadlocks, or
deadlocks, for simplicity.

Consider for example the component and property illustrated in figure 7. The given
property P requires that the component either performs a b followed by as, or just as; the
component, however, expects to perform a b after the first a. The weakest environment
assumption, as per the above construction, is depicted in figure 8. Under this environment
assumption, the given component would deadlock if an initial a transition is undertaken
since a b transition is not feasible. Although such behaviour is correct according to the

Figure 7. A potential deadlock.



308 GIANNAKOPOULOU, PĂSĂREANU AND BARRINGER

Figure 8. The weakest environment assumption.

semantics of the property, it may be undesirable. In this section, we present a modification
to our construction that avoids this particular type of deadlocks, if they are undesirable.

To make our presentation more precise, we first introduce a few definitions. Given an
LTS T = 〈S, αT, R, s0〉 representing the behaviour of a component or parallel composition
of components, we say that:

– a state s ∈ S is reachable from state s ′ iff either s is s ′ or there is some (s ′′, a, s) ∈ T
and s ′′ is reachable from s ′; a state s ∈ S is reachable iff s is reachable from s0.

– a state s ∈ S is a terminal state iff s is reachable and s has no outgoing transitions,
i.e. there is no (s, a, s ′) ∈ R for any a and s ′.

– T is non-terminating iff it contains no terminal states.
– T is potentially finite iff T has at least one terminal state.

For an LTS T representing a reactive process (meant to continuously interact with its
environment) we then say that:

– T has a deadlock iff T is potentially finite.
– T is free of deadlock iff T is non-terminating.

However, the above definition of deadlock is too strong; whilst it is good for an LTS
representing a single component, it does not characterize deadlock in a sub-component of
some composition. For example, suppose the property LTS of figure 7 is modified by adding
a new transition, labeled by an action not in the alphabet of the component - say c - from
state 1 back to state 1. This results in the weakest environment assumption of figure 9 which
has a c loop on state 1. Under the above definitions, this modified LTS does not introduce
a deadlock. However, an environment that first performed an a and then continued with
cs would result in the component getting deadlocked at state 1 since no b would ever be
forthcoming.

To handle such cases, we modify the above definitions for deadlock to be relative to a
given (component) alphabet, say αC ⊆ αT . The principal change is:

– a state s ∈ S is terminal wrt αC iff s is reachable and no path from s is labelled at any
point by an interface action from αC .
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Figure 9. The weakest assumption for the modified property.

Now given a component T , which is free of deadlock under the above definitions, and
a desired property, the following modification to our construction will yield a weakest as-
sumption that does not introduce deadlock. Step 2 becomes an iterative process during
which (1) deadlock states are identified as errors and (2) backward error propagation is
applied, until these steps have no effect on the resulting graph. In this context, deadlock
states are states that are terminal if we ignore all their outgoing transitions that lead di-
rectly to the error state. These transitions are ignored because they will be removed by
our construction of the weakest assumption. Note that, since determinization as applied
by Step 3 of our algorithm changes the structure of an LTS, further deadlocks may be
identified. Therefore, right after determinization and before completion, Step 3 also ap-
plies the iterative deadlock removal process described above. Note that the deadlock re-
moval process of Step 2 cannot be skipped, because determinization does not preserve
deadlocks.

4. Applications

In the context of our project on the verification of autonomous systems, we applied our
approach as presented in Section 3 to components of two such applications, the executive
subsystems of the K9 Mars Rover and of the Remote Agent.

For the K9 Mars Rover our framework was used to illustrate to the developers the way
in which some required properties decompose across components of the system. For the
Remote Agent, our approach detected the violation of a property in an assume-guarantee
style. The Remote Agent case study also demonstrates a situation where the generated
assumption may cause the component to deadlock. This potential deadlock could be removed
by applying the modified construction presented in Section 3.4.

4.1. K9 Mars Rover executive

Our first application is the planetary rover controller K9, and in particular its executive
subsystem, developed at NASA Ames Research Center. The executive receives flexible
plans from a planner, which it executes according to the plan language semantics. A plan
is a hierarchical structure of actions that the Rover must perform. Traditionally, plans are
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Figure 10. The executive of the K9 Mars Rover.

deterministic sequences of actions. However, increased Rover autonomy requires added
flexibility. The plan language therefore allows for branching based on state or temporal
conditions that need to be checked, and also for flexibility with respect to the starting time
of an action. The plan language allows the association of each action with a number of state
or temporal pre-, maintenance, and post-conditions, which must hold before, during, and
on completion of the action execution, respectively.

Description
The executive has been implemented as a multi-threaded system (see figure 10), made up
of a main coordinating component named Executive, components for monitoring the state
conditions ExecCondChecker, and temporal conditions ExecTimerChecker—each further
decomposed into two threads—and finally an ActionExecution thread that is responsible
for issuing the commands to the Rover. Synchronization between these threads is per-
formed through mutexes and condition variables. The developers provided some design
documents to us, which described the synchronization between these components in an
ad-hoc flowchart-style language. They looked very much like LTSs, which allowed us to
translate them in a straightforward and systematic, albeit manual, way into FSP for the
LTSA.

Model checking
We first checked the occurrence of race conditions for the case of a variable (condi-
tionSetChanged) of the ExecCondChecker shared with the Executive. We checked the
property on the ExecCondChecker (that consists of threads Internal and DbMonitor) to-
gether with the mutexes it uses, since mutexes constitute the synchronization mechanism
in this system. The ExecCondChecker with mutexes and the property had 426 states
but minimized to 18 states. The propagation of the error state then produced an LTS
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of just 10 states, and the final assumption generated had 12 states (one being the sink
state). We were surprised to see that our approach did not generate the expected assump-
tion, i.e. that accesses to the shared variable by the environment must be protected by
the appropriate mutex, as in the example of Section 3. In fact, the assumption obtained
was weaker. It reflected the knowledge that, once the environment holds the mutex, the
values that the environment reads reflect changes that only the environment may have
made. For example, assume that, while holding the mutex, the environment assigns value
x to the variable. Then reading any value x ′ 
= x would lead the environment to the
sink state, because this behavior will never actually be exercised in the context of the
ExecCondChecker.

The second property that we checked in this fashion was one that the developers thought
might be violated by the code, but could actually not produce an execution that would
demonstrate this fact. For a specific variable (savedWakeUpStruct) of the ExecCondChecker
shared with the Executive, the property stated the following: if the Executive reads the value
of the variable, then the ExecCondChecker should not read this value until the Executive
clears it first. Again, we used the ExecCondChecker together with mutexes and the property
to generate an assumption on the behavior of the Executive. The result had 524 states,
minimized to 9 states, reduced to 7 states with error propagation, and to 6 states with
determinization as applied by Step 3 of our construction (see Section 3). The resulting
assumption had 7 states (including the sink state). It stated that the environment of the
component should read the variable after acquiring a mutex, and should hold on to that
mutex until it clears the variable. Note that, again, there were transitions to the sink state,
expressing the fact that some behavior of the environment is never exercised. For example,
the assumption made clear that the ExecCondChecker only updates the variable with values
larger than the one it currently holds.

The assumption generated was satisfied by the design level Executive. Our result gave
confidence to the developers about the correctness of their design and implementation.
They also found it very useful to be able to understand how the property decomposes across
modules of the system.

4.2. Remote agent executive

NASA’s Remote Agent (RA) is an autonomous spacecraft control architecture that was one
of 12 technologies tested on the DEEP-SPACE 1 spacecraft launched in October 1998. It
demonstrated for the first time in NASA’s history the complete control of a spacecraft by
artificial intelligence based software. Similarly to the K9 Rover, the architecture of the RA
includes a planner and a plan execution module (executive).

The RA executive (RAX) was developed collaboratively by NASA Ames and the Jet
Propulsion Laboratory (JPL) (Pell et al., 1997). In a very successful application of model
checking to the RAX before flight, the Software Engineering group at NASA Ames dis-
covered three subtle but critical errors in the system, that had not been uncovered through
testing (Havelund et al., 2001). This section describes how our assumption generation
approach has been subsequently used to detect one of these known errors in an assume-
guarantee style. We used an FSP model of the RAX developed for a previous experiment; the
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Figure 11. The Executive of the remote agent.

FSP model was translated from the Promela model (Holzmann, 1991) used in the original
experiment.

RAX description
The RAX is designed to support execution of software-controlled tasks on board the
spacecraft (see figure 11). A task may be, for example, to run and survey the camera.
A task typically requires that some properties hold throughout its execution, where a
property is a pair representing a specific value for a specific equipment sensor. For ex-
ample, the camera-surveying task may require the camera to be turned on throughout task
execution.

Notice that tasks are similar to actions and properties are similar to conditions in the Rover
example. However, in the RAX, tasks may run concurrently, unless they are conflicting,
i.e., they require different values for the same sensor. When tasks are started, they subscribe
for the properties upon which they depend. Among the subscribing tasks for a particular
property, a single one, named the owner, is responsible for achieving the property. The
remaining tasks go to sleep; a task is then awoken when any one of its subscribed properties
is achieved. When all properties on which a task depends are achieved, the task starts
performing its main action, otherwise it may go back to sleep. However, a property may be
unexpectedly broken due to some fault, in which case executing tasks that depend on the
specific property must be interrupted.

To prevent conflicting tasks from executing simultaneously, the RAX provides a locking
mechanism, implemented as a Property Lock Table. The table records property locks in terms
of (1) the sensor that they refer to, (2) the desired sensor value, (3) whether the desired
value has been achieved—recorded in the achieved bit, and (4) which (non-conflicting)
tasks currently hold the particular lock (see figure 11). A database is also used to record the
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actual values of the spacecraft sensors. To ensure that properties are maintained during task
execution, a Daemon periodically checks for inconsistencies between the lock table and the
database. If some achieved value in the lock table disagrees with the corresponding value
in the database, the Daemon interrupts all tasks currently holding the particular lock.

Model checking
We applied our framework to check the requirement that: whenever there exist inconsis-
tencies in the system that affect task execution, affected tasks will be interrupted. For this
property, we decomposed the system into two parts, the Daemon on the one side, and the
tasks, lock table, and database on the other. We used an instance of the system with two
tasks that both require some sensor with id 1 to have value 1.

We then generated an assumption for the Daemon to satisfy the requirement, and used
the rest of the system to discharge this assumption. The Daemon together with the property
consisted of 38 states minimized to 12 states, and the assumption generated consisted of 11
states (one being the sink state). The assumption expressed the fact that, throughout the exe-
cution of the main function of a task, the achieved bit for its required properties must be set.

When trying to discharge the assumption on the rest of the system, the following coun-
terexample was obtained (2142 states explored out of 14059), which illustrates a violation
of the required property in the system:

task.1.lock.1.acquire.1 (Task 1 acquires lock for sensor 1, value 1)
task.1.db.1.read.0 (Task 1 reads in DB value 0 for sensor 1)
task.1.lock.1.owner is.1 (Task 1 is owner of lock for sensor 1)
task.1.db.1.write.1 (Task 1 achieves property)
task.2.lock.1.acquire.1 (Task 2 acquires lock for sensor 1, value 1)
task.2.db.1.read.1 (Task 2 finds that sensor 1 has value 1)
task.2.lock.1.owner is.1 (Task 2 is not the owner)
task.2.start operation.1 (Task 2 starts its main operation)
db.1.external write.0 (fault sets sensor 1 to value 0)
daemon.1.read.0.1.0 (Daemon checks values for sensor 1;

in DB: 0; in lock table: 1; achieved bit:0)

This counterexample reflects a problem in the system caused by the fact that a task
achieves a property and sets the achieved bit in the lock table in a non-atomic fashion. As a
result, a different task may in the meantime be scheduled, find that the value of the sensor is
as expected, and start its operation. At this point, if the Daemon detects an inconsistency, the
achieved bit will not be set, and therefore tasks will not get interrupted. The same problem
was detected in Havelund et al. (2001) and was fixed by the developers of the RAX by
introducing a critical section around the code that achieves a property and sets the achieved
bit.

The largest state space involved in the application of our approach was explored when
discharging the assumption, and consisted of 2142 states (out of 14059 states), at which
stage a violation was detected and a counterexample was produced. Performing verification
of the RAX directly (i.e., by composing all the RAX components with the property) and
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obtaining a similar counterexample would require exploring 6240 states out of 37760. This
shows the potential benefits of our approach as compared to monolithic, non-compositional,
model checking. In this case study, the assumption produced referred to a component that
was small as compared to the rest of the system. We expect that when assumptions are
computed for larger components (with small interfaces) the benefits of our approach will
be more pronounced.

4.3. Component deadlocks

As mentioned earlier, the RAX case study exhibited that, although the assumptions that we
generate always prevent a component from reaching error states, they might also prevent
the component from participating in the system behavior. In Section 3.4, we discussed
modifications to our construction algorithm to remove such component deadlocks. Figure 12
depicts a portion of the assumption generated for the Daemon in the RAX case study. In this
assumption, state 8 is reached from the initial state when Task 1 starts its main operation
and the Daemon finds that the values of the sensor in the database and the lock table
disagree while the achieved bit is 0 (i.e., daemon.1.read[0][1][0]). Although state 8
appears to allow the Daemon to keep interacting with its environment, one can observe
that all such interactions lead to the sink state. As discussed in Section 3, transitions to the
sink state reflect legal environment behavior that is never exercised in the context of the
component under analysis. Note also that the self-loop transitions on state 8 are labeled
with actions that were introduced by the property, and that do not belong to the Daemon
interface. Therefore, state 8 reflects a component deadlock situation where the Daemon will
be inactive in the system. Precisely such a deadlock would be removed by our modified
procedure.

Figure 12. Assumption (excerpts) produced for RAX.
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5. Discussion

The complexity bottleneck of our approach is the determinization step, which, in the worst
case, is exponential in the number of the states of the given LTS. There are several reasons
that lead us to believe that this may not be the case often in practice. In our experiments
such as the Rover study reported in Section 4, non-determinism almost disappears by prop-
agation of the error state. Moreover, in the subset construction of Step 3 of our construction,
composite states including the error state also become error states and all outgoing transi-
tions (and subsequent behaviors) are pruned. As we only study modules of a larger system,
we expect that the state space of these modules will be relatively small. This will be the
case in particular when they interact through limited interfaces with their environment,
which will allow the minimization step to considerably reduce their behavior. Note also
that, if we extend our results to other frameworks, the assumption may not be required
to be deterministic. Admittedly, however, deterministic assumptions tend to be clearer to
understand.

From our extensive experience with compositional reachability analysis (CRA) tech-
niques, we are only too aware of the potential intermediate state explosion associated with
them (Graf et al., 1996). This problem describes the fact that, in lack of a context, a com-
ponent may exhibit an excessively large state-space. However, this does not occur in the
general case for well-designed software architectures. Moreover, several approaches have
been proposed in the literature (Graf et al., 1996; Cheung and Kramer, 1996; Krimm and
Mounier, 1997) for addressing the problem.

The assumptions produced by our approach are weakest, that is, they restrict the environ-
ment no more and no less than is necessary for a component to satisfy a given property. The
possibility to generate these assumptions automatically has direct application to assume-
guarantee proofs. More specifically, it removes the burden of specifying assumptions man-
ually thus automating this type of reasoning. However, our algorithm does not compute
partial results, meaning no assumption is obtained if the computation runs out of memory,
which may happen if the state-space of the component is too large. We address this problem
in Cobleigh et al. (2003), where we present a novel framework for performing assume-
guarantee reasoning in an incremental and fully automatic fashion. To check a component
against a property, assumptions are generated that the environment needs to satisfy for the
property to hold. These assumptions are then discharged on the rest of the system. Assump-
tions are computed by a learning algorithm. They are initially approximate, but become
gradually more precise by means of counterexamples obtained by model checking the com-
ponent and its environment, alternately. This iterative process may at any stage conclude
that the property is either true or false in the system. Moreover, even if it runs out of memory
before reaching conclusive results, intermediate assumptions may be used to give some in-
dication to the developer of the requirements that the component places on its environment.

Our approach extends the LTSA tool in several useful ways. First of all, it achieves fur-
ther reduction of component behavior by applying propagation of the error states, a com-
putationally inexpensive but efficient step. Moreover, our approach generates the weakest
environment assumptions. As such, these assumptions may be used for runtime monitoring,
or for component retrieval, capabilities that were not formerly provided by the tool.
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As far as component retrieval is concerned, we would like to stress the following observa-
tion from our experiments (Section 4). The sink state that our assumptions contain, reflects
the fact that some services that a component provides will never be used in the context of a
system. Our assumptions allow free implementations for these services, and simply ensure
that the used services comply with the requirements.

The ability to generate assumptions also opens up a number of other interesting research
directions: we mention a few to give some flavor.

– Our work has been performed with a limited but important set of properties (safety)
expressed within a specific framework that facilitates the development of our algorithms.
However, we believe our approach has application in other frameworks. In particular, we
are investigating the extension of our approach for the case of fairness and/or liveness
properties, which requires a more expressive formalism.

– When the behavior of the environment, or part thereof, is provided, we wish to find
effective ways of discharging assumptions on the environment. One way would be to
use the assumption as a property, and model check in the same fashion components in
the environment. This process can be seen as a way of decomposing, automatically, a
property across components of a system. Indeed, an assumption reflects those aspects of
the property that have not been satisfied by the component and that remain to be satisfied
by its environment. Property decomposition is an extremely difficult problem, and our
approach may be seen as a helpful step in its facilitation. Of course, such decomposition
will not be effective in all cases. It is easy to imagine that there will be cases where
assumptions may gradually grow in size during this process, a problem referred to in the
literature as “property explosion”.

– Our approach to assumption generation can straightforwardly be used for submodule
construction, where the submodule is placed as an interacting component in parallel with
the given one. Generalization to other forms of composition is a natural step, such as
sequential composition, for example.

– Assumptions may be further analyzed. For example, if the generated assumption expects
the environment to hold on to a specific lock for ever, this may indicate something
inherently wrong with the behavior of the component under analysis.

6. Related work

For over three decades now, there has been research effort focused on finding tractable
approaches to the formal specification, design and development of complex systems. Sig-
nificant early progress occurred with techniques and tools for sequential, non-interacting
or transformational systems. However, the quest for obtaining effective methods and tools
for the formal support of compositional and/or modular development and reasoning for
reactive systems still remains, in our view, a major challenge. As there is insufficient space
to do justice to the work that has been undertaken, we refer the interested reader to the
proceedings of de Roever et al.(1997)—its introductory chapter in particular (de Roever,
1997)—and the recent book (de Roever et al., 2001).
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In more recent years with the development and take-up of OO-design technology, formal
techniques for support of component-based design is also gaining prominence, see for
example (de Alfaro and Henzinger, 2001a, b), for which modular-based reasoning is key.
The work of Inverardi and colleagues, (Inverardi et al., 2000), has also been aimed at
providing support for the modular checking of certain properties, such as deadlock freedom,
but is somewhat limited in the checks performed for compatibility between components.

In order to make progress in any of these areas, some form of assumption (either implicit
or explicit) about the interaction with, or interference from, the environment has to be made.
Even though we have sound and complete reasoning systems for such rely-guarantee (or
assumption-commitment) style of reasoning, see for example (Jones, 1983; Stølen, 1991)
and most recently (Xu et al., 1997), it is always a mental challenge to obtain the most
appropriate assumption (if there is such). It is even more of a challenge to find automated
techniques to support this reasoning style—the thread modular reasoning underlying the
Calvin tool (Flanagan et al., 2002) and the assume-guarantee software verification frame-
work presented in Păsăreanu et al. (1999) are examples in this direction. In the framework
of temporal logic, the work on Alternating time Temporal Logic ATL (and transition sys-
tems) (Alur et al., 1997) was proposed for the specification and verification of open sys-
tems together with automated support via symbolic model checking procedures, albeit of
rather high complexity; the Mocha toolkit (Alur et al., 1998) provides support for mod-
ular verification of components with requirement specification based on the ATL. It goes
without saying that if tool support is lacking, take-up of these techniques will be rather
low.

The underlying approach to automated assumption generation that we’ve adopted and
implemented in LTSA has similarity to a number of other problems that have been considered
by a number of researchers over the past two decades. Closest to our our work in the
software engineering and concurrency theory are the “sub-module construction problem”,
“scheduler synthesis” and “interface equation solving” problems. In the discrete event
community, it appears as the “supervisory control” problem, in control theory there is the
“model matching” problem and in the logic synthesis world there is the “interacting FSM
synthesis”. Of course, the particular frameworks in which these problems are considered
makes all the difference to their solution(s) and as such it would be quite inappropriate to
claim they are solving the same problem. However, in very general terms, each can be seen
as an instance of the following problem: given a component, C , and a desired behaviour, B,
find a context for C , X , such that X (C) ≡ B, for some appropriate notion of equivalence.

Merlin and Bochmann (1983) were probably the first to address the above as submodule
construction in the world of communication protocol specification and synthesis. In a setting
of labelled transition systems, given a module specification M0 and a submodule specifi-
cation M1, they outlined and exemplified a manual approach to construct an interacting
submodule M2 such that M1 and M2 together achieve the desired specification of M0. Their
construction has much in common with ours although some significant aspects of the con-
struction were left unspecified. The later work of (Sidhu and Aristizabal, 1988; Haghverdi
and Ural, 1999) has revisited the Merlin-Bochmann approach and provided new, detailed,
algorithms for the sub-module construction and implemented an automated tool. One
recognized limitation of the Merlin-Bochmann is that the notion of correctness, namely
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just trace equivalence, does not capture a number of behavioural properties, e.g. potential
deadlock.

The work of Shields (1989), over a decade later, introduces the “Interface Equation” in
the setting of the process algebra, CCS (Milner, 1989), under observational equivalence. In
order to solve (C | X )\L = B for the process X , he restricts to cases where B is deterministic,
with some minor restrictions on the sorts of C and B, and provides necessary and sufficient
conditions for a solution to exist and then in such situations presents an explicit construction.
Parrow (1989) also addressed the interface equation and presented a procedure for solving
the equations via successive transformation of the CCS equations to simpler ones, generating
a solution along the way; his approach is based upon a tableau method. Parrow’s method
attempts to find a most general solution, but even if this solution exists, it is not necessarily
appropriate for implementation. Continuing in the process algebra framework, Larsen and
Xinxin (1990) consider the more general problem of solving a system of equations Ci (X ) �
Pi , for 0 < i ≤ n, where the Ci are arbitrary contexts, Pi are arbitrary processes and X
is the process to be found—the equivalence is taken as bisimulation. They considered the
problem in the context of disjunctive modal transition systems, (Larsen and Thomsen, 1988)
and implemented an automated tool that would solve the equations (in the finite state case)
when a solution exists.

As stated above, there is a further body of work in supervisory control synthesis, discrete
event systems, and logic synthesis areas, see for example (Aziz et al., 1995; di Benedetto
and Sangiovanni-Vincentelli, 2001; Tronci, 1998; Khatri et al., 1996; Balemi et al., 1993).
However, we should stress that whilst these approaches are in general set in a FSM/DFA
context, the principal goal is quite different in comparison with ours.

7. Conclusions

We presented an approach to model checking components as open, rather than closed
systems. Our approach reports whether there is something inherently wrong with the com-
ponent behavior, or whether satisfying a requirement is simply a matter of providing the
right environment. Moreover, it characterizes exactly all helpful environments.

The possibility of generating assumptions provides increased flexibility in model check-
ing, and opens up a number of interesting research topics. It allows, for example, the
discharge of assumptions at run-time for unpredictable environments, the retrieval of com-
ponents focused on only relevant aspects of their behavior, or the decomposition of properties
across components. It remains to further investigate how useful our approach is in practice.
Open research issues include optimizations and extensions for fairness/liveness properties
and other frameworks. However, our early experiments with real case studies provide strong
evidence in favor of this line of research.
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