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Abstract
We present a method for enabling Reinforcement Learning of motor control policies for complex skills such as dexterous
manipulation. We posit that a key difficulty for training such policies is the difficulty of exploring the problem state space, as
the accessible and useful regions of this space form a complex structure alongmanifolds of the original high-dimensional state
space. This work presents a method to enable and support exploration with Sampling-based Planning. We use a generally
applicable non-holonomic Rapidly-exploring Random Trees algorithm and present multiple methods to use the resulting
structure to bootstrap model-free Reinforcement Learning. Our method is effective at learning various challenging dexterous
motor control skills of higher difficulty than previously shown. In particular, we achieve dexterous in-hand manipulation of
complex objects while simultaneously securing the object without the use of passive support surfaces. These policies also
transfer effectively to real robots. A number of example videos can also be found on the project website: sbrl.cs.columbia.edu

Keywords Exploration · Reinforcement learning · Dexterous manipulation · In-hand manipulation

1 Introduction

Reinforcement Learning (RL) of robot sensorimotor control
policies has seen great advances in recent years, demon-
strated for a wide range of motor tasks such as dexterous
manipulation. This has translated into higher levels of dex-
terity than previously possible, typically demonstrated by the
ability to reorient a grasped object in-hand using complex fin-
ger movements (Akkaya et al., 2019; Chen et al., 2021; Qi et
al., 2022).

However, training a sensorimotor policy is still a difficult
process, particularly for hard-exploration problems where
the underlying state space exhibits complex structure, such
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as "narrow passages" between parts of the space that are
accessible or useful. Manipulation is indeed such a problem:
even when starting with the object secured between the dig-
its, a random action can easily lead to a drop, and thus to an
irrecoverable state. Finger-gaiting (Ma et al., 2011) further
implies transitions between different subsets of fingers used
to hold the object, all while maintaining stability. This leads
to difficulty in exploration during training, since random per-
turbations in the policy action space are unlikely to discover
narrow passages in state space. Current studies address this
difficulty through a variety of means: using simple, convex
objects and non-convex objects of significantly reduced size
to reduce the difficulty of the task, reliance on support sur-
faces to reduce the chances of a drop, object pose tracking
through extrinsic sensing, etc.

The difficulty of exploring problems with labyrinthine
state space structures is far from new in robotics. In fact, the
large and highly effective family of Sampling-Based Plan-
ning (SBP) algorithms was developed to address this exact
problem. By expanding a known structure towards targets
randomly sampled in the state space of the problem, SBP
methods can explore even very high-dimensional state spaces
in ways that are probabilistically complete, or guaranteed
to converge to optimal trajectories. However, SBP algo-
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Fig. 1 Our method illustrated with an abstract state-space consisting of
narrow stable regions (beige) between large unstable regions (black).
The proposed two-stage approach uses sampling-based planning to

explore the challenging state-space and leverages the informationwithin
best paths by using state data as reset distribution and action data for
imitation pre-training for efficient reinforcement learning

rithms are traditionally designed to find trajectories rather
than policies. For problemswith computationally demanding
dynamics, SBP cannot be used online for previously unseen
start states or to quickly correct when unexpected perturba-
tions are encountered along the way.

Broadly, this work draws on the strength of both RL and
SBP methods in order to train motor control policies for in-
hand manipulation with finger gaiting.We aim to manipulate
more difficult objects, including concave shapes,while secur-
ing them at all times without relying on support surfaces.
Furthermore, we aim to achieve large reorientation of the
grasped object with purely intrinsic (tactile and propriocep-
tive) sensing. To achieve that we use a non-holonomic RRT
algorithm with added constraints to find approximate trajec-
tories that explore the useful parts of the problem state space.
Then, we use these trajectories towards training complete RL
policies based on the full dynamics of the problem. In par-
ticular, we use state data sampled from the tree to construct
exploratory reset distribution and use action data from tree
paths to obtain awarm-start policy through imitation learning
and illustrate this in Fig. 1.

This extended version of our study contains a number of
additions compared to the previous conference proceedings
version (Khandate et al., 2023). We introduce Imitation Pre-
training, a method for leveraging actions sampled from the
RRT tree in order to further bootstrap learning and show that

it further improves training efficiency. We extend our appli-
cations to the more difficult in-hand manipulation task of
reorientation to a desired pose, which can be either a canon-
ical pose known at training time (for example, as needed by
downstream steps in an assembly process) or arbitrary and
specified as a goal at run-time. Finally, we provide a number
of additional insights obtained from an extensive ablation of
our approach.

Overall, the main contributions of this work include:

• To the best of our knowledge, we are the first to show that
reset distributions generated via SBPwith kinematic con-
straints can enable more efficient training of RL control
policies for dexterous in-hand manipulation.

• We show that SBP can explore useful parts of the manip-
ulation state space, allowing RL to later fill in the gaps
between approximate trajectories by learning appropri-
ate actions under more realistic dynamic constraints. A
warm-start policy obtained by imitating the actions from
sampling-based trajectories provides an additional boost
in training speed.

• The exploration boost from SBP allows us to train poli-
cies for dexterous skills not previously shown, such as
in-handmanipulation of concave shapes,with only intrin-
sic sensing and no support surfaces. We demonstrate
these skills both in simulation and on real hardware.
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2 Related work

2.1 Exploration in RL

Exploration methods for general RL operate under the strict
assumption that the learning agent cannot teleport between
states, mimicking the constraints of the real world. Under
such constraints, proposed exploration methods include
using intrinsic rewards (Pathak et al., 2017; Haarnoja et al.,
2018) or improving action consistency via temporally corre-
lated noise in policy actions (Amin et al., 2021) or parameter
space noise (Plappert et al., 2017).

Fortunately, in cases where the policies are primarily
trained in simulation, this requirement can be relaxed, andwe
can use our knowledge of the relevant state space to design
effective exploration strategies. A number of these methods
improve exploration by injecting useful states into the reset
distribution during training. Nair et al. (2017) use states from
human demonstrations in a block stacking task, while Ecof-
fet et al. (2019, 2021) use states previously visited by the
learning agent itself for problems such as Atari games and
robot motion planning. Tavakoli et al. (2018) evaluate vari-
ous schemes for maintaining and resetting from the buffer of
visited states. However, these schemes were evaluated only
on benchmark continuous control tasks (Duan et al., 2016).
From a theoretical perspective, Agarwal et al. (2020) show
that a favorable reset state distribution provides a means to
circumvent worst-case exploration issues using sample com-
plexity analysis of policy gradients.

2.2 Combining SBP and RL

Finding feasible trajectories through a complex state space
is a well-studied motion planning problem. Of particular
interest to us are sampling-based methods such as Rapidly-
exploring Random Trees (RRT) (LaValle, 1998; Karaman &
Frazzoli, 2010; Webb & Berg, 2013) and Probabilistic Road
Maps (PRM) (Kavraki et al., 1996, 1998). These families
of methods have proven highly effective and are still being
expanded. Stable Sparse-RRT (SST) and its optimal variant
SST* (Li et al., 2021) are examples of recent sampling-
based methods for high-dimensional motion planning with
physics. However, the goal of these methods is finding (kin-
odynamic) trajectories between known start and goal states
rather than closed-loop control policies which can handle
deviations from the expected states.

Several approaches have tried to combine the exploratory
ability of SBPwith RL, leveraging planning for global explo-
ration while learning a local control policy via RL (Chiang et
al., 2019; Francis et al., 2020; Schramm& Boularias, 2022).
These methods were primarily developed for and tested on
navigation tasks,where nearby state space samples are gener-
ally easy to connect by an RL agent acting as a local planner.

The LeaPER algorithm (Pinto et al., 2018) also uses plans
obtained by RRT as reset state distribution and learns poli-
cies for simple non-prehensile manipulation. However, the
state space for the prehensile in-hand manipulation tasks we
show here is highly constrained, with small useful regions
and non-holonomic transitions. Other approaches use trajec-
tories planned by SBP as expert demonstrations. Morere et
al. (2020) recommend using a policy trained with SBP as
expert demonstrations as an initial policy. Alternatively, Jur-
genson and Tamar (2019) and Ha et al. (2020) use planned
trajectories in the replay buffer of an off-policy RL agent for
multi-armmotion planning. First, thesemethods requires that
planned trajectories also include the actions used to achieve
transitions, which SBP does not always provide. Next, it is
unclear how off-policy RL can be combined with the exten-
sive physics parallelism that has been vital in the recent
success of on-policymethods for learningmanipulation (All-
shire et al., 2021; Makoviychuk et al., 2021; Chen et al.,
2021).

2.3 Dexterous manipulation

Turning specifically to the problem of dexterous manipula-
tion, a number of methods have been used to advance the
state of the art, including planning, learning, and leveraging
mechanical properties of the manipulator. Leveroni and Sal-
isbury (1996) build a map of valid grasps and use search
methods to generate gaits for planar reorientation, while
(Han & Trinkle, 1998) consider finger-gaiting of a sphere
and identify the non-holonomic nature of the problem. Some
methods have also considered RRT for finger-gaiting in-hand
manipulation (Yashima et al., 2003; Xu et al., 2007), but
limited to simulation for a spherical object. More recently,
Morgan et al. demonstrate robust finger-gaiting for object
reorientation using actor-critic reinforcement learning (Mor-
gan et al., 2021) and multi-modal motion planning (Morgan
et al., 2022), both in conjunction with a compliant, highly
underactuated hand designed explicitly for this task. Bhatt et
al. (2022) also demonstrate robust finger-gaiting and finger-
pivoting manipulation with a soft compliant hand, but these
skills were hand-designed and executed in an open-loop fash-
ion rather than autonomously learned.

Model-free RL has also led to significant progress in dex-
terous manipulation, starting with OpenAI’s demonstration
of finger-gaiting and finger-pivoting Akkaya et al. (2019)
trained in simulation and translated to real hardware. How-
ever, this approach uses extensive extrinsic sensing infeasible
outside a lab setting, and relies on support surfaces such as
the palm underneath the object. Khandate et al. (2022) show
dexterous finger-gaiting and finger-pivoting skills using only
precision fingertip grasps to enable both palm-up and palm-
down operation, but only on a range of simple convex shapes
and in a simulated environment.
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Recently (Makoviychuk et al., 2021) showed that GPU
physics could be used to accelerate learning skills similar to
OpenAI’s. Allshire et al. (2021) used extensive domain ran-
domization and sim-to-real transfer to re-orient a cube but
used a table top as an external support surface. Chen et al.
(2021), Chen et al. (2022), and Handa et al. (2022) demon-
strated in-hand re-orientation for a wide range of objects
under palm-up and palm-down orientations of the hand with
extrinsic sensing providing dense object feedback.

Sievers et al. (2022), Pitz et al. (2023) and Röstel et al.
(2023) demonstrated in-hand cube reorientation to desired
pose with purely tactile feedback. Qi et al. (2022) and Yin
et al. (2023) used rapid motor adaptation to achieve effec-
tive sim-to-real transfer of tactile only in-hand manipulation
skills for continuous reorientation of small cylindrical and
cube-like objects. Yuan et al. (2023) and Qi et al. (2023)
use both visual and tactile sensing. We learn tactile in-hand
manipulation skills critically, in our case, the exploration
ability of SBP allows learning of policies for more difficult
tasks, such as in-hand manipulation of non-convex and large
shapes, with only intrinsic sensing. We also achieve success-
ful and robust sim-to-real transfer without extensive domain
randomization or domain adaptation by closing the sim-to-
real gap via tactile feedback.

3 Problem description

We focus on the problem of achieving dexterous in-hand
manipulationwhile simultaneously securing themanipulated
object in a precision grasp. Keeping the object stable in the
grasp during manipulation is needed in cases where a sup-
port surface is not available or the skill must be performed
under different directions for gravity (i.e. palm up or palm
down). However, it also creates a difficult class of manip-
ulation problems, combining movement of both the fingers
and the object with a constant requirement of maintaining
stability.

Formally, our goal is to obtain a policy for issuing finger
motor commands to achieve a desired object transformation.
The state of our system at time t is denoted by xt = (qt , pt ),
where q ∈ Rd is a vector containing the positions of the
hand’s d degrees of freedom (joints), and p ∈ R6 con-
tains the position and orientation of the object with respect to
the hand. An action (or command) is denoted by the vector
a ∈ Rd comprising new setpoints for the position controllers
running at every joint.

For parts of our approach, we assume that a model of the
forward dynamics of our environment (i.e. a physics simu-
lator) is available for planning or training. We denote this
model by xt+1 = F(xt , at ). We will show however that
our results transfer to real robots using standard sim-to-real
methods.

Algorithm 1 General-purpose non-holonomic RRT (G-
RRT)
Input: Tree containing root node, G; N ← 1
1: while N < Nmax do
2: xsample ← random point in state space
3: xnode ← node closest to xsample currently in G
4: dmin ← ∞; xnew ← NULL
5: while k < Kmax do
6: a ← N (0, α I) random action
7: xa ← F(xnode, a)
8: if Stable(xa) and dist(xsample, xa) < dmin then
9: dmin ← dist(xsample, xa)
10: xnew ← xa
11: end if
12: k ← k + 1
13: end while
14: if xnew is not NULL then
15: Add xnew to G with xnode as parent
16: N ← N + 1
17: end if
18: end while

return G

As discussed above, we also require that the hand main-
tains a stable precision grasp of the manipulated object at all
times. Overall, this means that our problem is characterized
by a high-dimensional state space, but only small parts of
this state space are accessible to us: those where the hand is
holding the object in a stable precision grasp. Furthermore,
the transition function of our problem is non-holonomic: the
subset of fingers that are tasked with holding the object at
a specific moment, as well as the object itself, must move
in a concerted fashion. Conceptually, the hand-object sys-
tem must evolve on the complex union of high-dimensional
manifolds that form our accessible states. Still, the problem
state space must be effectively explored if we are to achieve
dexterous manipulation with large object reorientation and
finger gaiting.

4 Sampling-based state space exploration

To effectively explore our high-dimensional state space
characterized by non-holonomic transitions, we turn to the
well-known Rapidly-exploring Random Trees (RRT) algo-
rithm. We leverage our knowledge of the manipulation
domain to induce tree growth along the desired manifolds
in state space. In particular, we expect two conditions to be
met for any state: (1) the hand is in contact with the object
only via fingertips, (2) the distribution of these contacts must
be such that a stable grasp is possible.

Assuming system dynamics F() are available and fast to
evaluate, we use here the general non-holonomic version of
the RRT algorithm, which is able to determine an action that
moves the agent towards a desired sample in state space via
random sampling. We use the same version of this algorithm
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as described, for example, by King et al. (2016), which we
recapitulate here in Algorithm 1 and refer to as G-RRT.

The essence of this algorithm is the while loop in line 5:
it is able to grow the tree in a desired direction by sampling
a number Kmax of random actions, then using the transition
function F() of our problem to evaluate which of these pro-
duces a new node that is as close as possible to a sampled
target.

Our only addition to the general-purpose algorithm is the
stability check in line 8: a newnode gets added to the tree only
if it passes a stability check. This check consists of advancing
the simulation for an additional 2 s with no change in the
action; if, at the end of this interval, the object has not been
dropped (i.e. the height of the object is above a threshold)
then the new node is deemed stable and added to the tree.
Assuming a typical simulation step of 2ms, this implies 1000
additional calls to F() for each sample.

Overall, the great advantage of this algorithm lies in its
simplicity and generality. The only manipulation-specific
component is the aforementioned stability check. However,
its performance can be dependent on Kmax (i.e. number of
action samples at each iteration), and each of these samples
requires a call to the transition function. This problem can be
alleviated by the advent of highly efficient andmassively par-
allel physics engines implementing the transition function,
which is an important research direction complementary to
our study.

We note that in previous work (Khandate et al., 2023)
we used an additional condition on the state: the hand must
maintain at least three fingers in contact with the object.1

Empirically, we noticed that the three contact constraint had
minimal impact on the results of G-RRT. Thus, we discon-
tinued the contact constraint in this work.

In the samepriorwork,we also introduced amanipulation-
specific version of the non-holonomicRRTalgorithmdubbed
M-RRT, which does not require the use of the transition func-
tion for stability checks. Instead, M-RRT uses manipulation
kinematics alone to explore manifolds defined by the contact
constraints. This version also required that the hand must
maintain at least three fingers in contact with the object.
While the M-RRT version has the potential to obtain sig-
nificant speedups by foregoing dynamic simulation, G-RRT
is appealing in its generality and simplicity. As both versions
are able to effectively explore the state space, we focus this
study on the G-RRT version of our algorithm and plan addi-
tional comparisons between these two versions for future
work.

1 Three contacts are the fewest that can achieve stable grasps without
relying on torsional friction, which is highly sensitive to the material
properties of the objects in contact.

Algorithm 2 R×R (+ IPT)
Input: Randomly initialized actor πθ and critic Vψ , learning rates

η1, ν1, η2, ν2
# Execute Sampling-based Planning

1: Tree, G ← G-RRT() � Alg 1
# Extract top trajectories

2: Let xroot be the root state and xgoal be the desired goal state towards
achieving the manipulation task of interest.

3: D ← {}, P ← 1
4: while P < Pmax do
5: Sample goal xgoal � fixed or randomized
6: xnode ← node closest to xgoal now in G
7: τ = {xnode}
8: while xnode �= xroot do
9: delete xnode from G
10: Let x parent be parent of xnode
11: τ ← x parent ∪ τ � nodes in reverse
12: xnode ← x parent
13: end while
14: D ← D ∪ τ , P ← P + 1
15: end while

# Imitation Pre-training � Optional
Get warm-start policy and critic

16: πθ , Vψ ← IPT(D, πθ , Vψ , η1, ν1) � from Alg 3
# Reinforcement Learning

17: πθ , Vψ ← RL(D, πθ , Vψ , η2, ν2)
18: for N iterations do
19: Initialize/clear rollout buffer R
20: for E episodes do
21: Collect rollout τ with πθ from initial state x0 where x0 ∼ D

the buffer of best states from sampling-based planning.
22: R ← R ∪ τ

23: end for
Update πθ w.r.t policy loss Lπ on R with RL algorithm of choice

24: θ ← θ − η2∇θLπ (θ)

Update critic Vψ

25: LV = E
ot∼R

[
(Vψ(ot ) − V targ

t )2
]

26: ψ ← ψ − ν2∇ψ LV
27: end for

5 Reinforcement learning

While the exploration method we have discussed so far is
capable of exploring the complex state space of in-hand
manipulation and identifying approximate transitions that
follow the complex manifold structure of this space, it does
not provide directly usable policies. The state transitions
themselves provide no mechanism to act in states that are
not part of the tree, or to act under slightly different transi-
tion functions.

To generate closed-loop policies able to handle variability
in the encountered states, we turn to RL algorithms. Criti-
cally, we rely on the trees generated by our sampling-based
algorithms to ensure effective exploration of the state space
during policy training.

123



   17 Page 6 of 19 Autonomous Robots            (2024) 48:17 

5.1 Sampling-based reset distribution

One mechanism we use to transition information from the
sampling-based tree to the policy training method is via the
reset distribution: we select relevant paths from the planned
tree and then use the nodes therein as reset states for policy
training.

We note that the sampling-based trees as described here
are task-agnostic. Their effectiveness lies in achieving good
coverage of the state space (usually within pre-specified lim-
its along each dimension). Once a specific task is prescribed
(e.g. via a reward function), we must select states from paths
through the tree that are relevant to the task. After selecting
said states, we use a uniform distribution over these states
as a reset distribution for RL. We describe this concretely
in Algorithm 2. In particular, lines 2– 15 show the heuristic
approach we use to select paths through the tree to compose
the set of reset states. Lines 18–27 show reinforcement learn-
ing from using these reset states for exploration.We note that
other selection mechanisms are also possible; a promising
and more general direction for future studies is to select tree
branches that accumulate the highest reward.

This approach has a theoretical grounding in related work
showing that derived reset distributions can be used to aid
exploration. Let ρ denote the initial state distribution of the
MDP to be solved with policy-gradient RL. Recent results
(Agarwal et al., 2020) show that it is beneficial to compute
policy gradients for policyπ under a different initial distribu-
tion μ if it enables sufficient exploration. If dπ

ρ denotes the
stationary state distribution induced by policy π under the
initial state distribution ρ, then dπ∗

ρ is the stationary distribu-
tion of the optimal policy π∗ with initial state distribution ρ.
Improved exploration can be achieved if μ sufficiently cov-
ers dπ∗

ρ . Here, we obtain such a favorable distributionμ from
plans derived via sampling-based planning.

As this approach is compatible with online RL wherein
policy rollouts are collected from a new set of states
every episode, both off-policy and on-policy RL are equally
feasible. However, we use on-policy learning due to its com-
patibility with GPU physics simulators and relative training
stability.

5.2 Imitation pre-training

Relying on sampling-based trajectories exclusively for the
reset state distribution disregards potentially valuable infor-
mation concerning actions and the connectivity between
states within exploration trees. Imitation learning, which
maps states to actions via supervised learning, can be effec-
tive in using such action information embedded within the
exploration trees. However, this is not straightforward to
execute. The sampling-based trajectories cannot be treated
as authentic demonstrations. Instead, they are quasi-static

Algorithm 3 Imitation Pre-training (IPT)
Input: Sampling-based trajectories (state-only) as demonstration D,

randomly initialized policy π and value network V with parameters
θ, ψ , learning rates η and ν

# Assemble buffer with actions D′
1: for all consecutive state pairs xk , xk+1 do
2: Compute ok observation vector at xk
3: Get ak with Eq. (1)
4: D′ ← D ∪ (ok , ak)
5: end for

# BC with MSE loss D′
6: for E1 epochs do

7: Lπ = E
o,a∼D′

[
(a − πθ (o))2

]

8: θ ← θ − η∇θ Lπ (θ)

9: end for
# Value pre-training

10: for E2 epochs do
11: Collect rollouts with πθ and store in R
12: LV = E

ot∼R

[
(Vψ(ot ) − V targ

t )2
]

13: ψ ← ψ − ν∇ψ LV
14: end for

return πθ , Vψ

demonstrations composed of a sequence of stable states as a
consequence of the stability constraint (Algorithm 1, line 8)
we enforce during sampling-based planning. Due to this sta-
bility check, the actions are a distorted version of the desired
actions under full dynamics. Thus, imitation learning, for
instance, with Behavioral Cloning (BC), is unlikely to yield
a successful policy due to the approximate nature of demon-
strations and inherent challenges arising from distribution
shift. Nonetheless, the resulting policies can be used as a
warm-start policy for reinforcement learning.

Here we provide a description of this approach. First,
we observe that the difference in joint angles between node
transitions is a reliable approximation of the desired action,
particularly its direction. Augmented by a scaling hyper-
parameter, these differences can serve as action labels. For
illustration, let qk and qk+1 be joint angles at successive
states. The action labels ak can be obtained by simply scaling
the difference with a scaling factor β, i.e ak = β(qk+1−qk).
In cases where obtaining such action labels is more complex,
an inverse dynamicsmodel can be of assistance. Equation (1)
restates this generally

ak = g(xk, xk+1) (1)

where g is the inverse function to compute action labels
between two successive states of a demonstration.

We then utilize these demonstrations via learning an imita-
tion policy to bootstrap reinforcement learning. To retain the
benefits from any generalization properties achieved via imi-
tation learning, we pre-train the critic network on rollouts of
the imitation policy to avoid washing it out with a randomly
initialized critic (Hansen et al., 2022). This method aligns
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Fig. 2 The object shapes for
which we learn finger-gaiting.
From left to right: the easy,
medium and hard categories

with contemporary approaches for integrating reinforcement
learning with imitation learning which go beyond simply
augmenting the online replay buffer with demonstrations Hu
et al. (2023). Our main approach, supplemented with imita-
tion pre-training, is depicted in Algorithm 3. Lines 16 and
18 show imitation pre-training with sampling-based demon-
strations and warm-starting reinforcement learning.

6 Experimental setup and tasks

6.1 Hardware

Weuse the robot hand shown in Fig. 1, consisting of five iden-
tical fingers. Eachfinger comprises a roll joint and twoflexion
joints for a total of 15 fully actuated position-controlled
joints. For the real hardware setup, each joint is powered
by a Dynamixel XM430-210T servo motor. The distal link
of each finger consists of an optics-based tactile fingertip as
introduced by Piacenza et al. (2020).

We test our methods on the object shapes illustrated in
Fig. 2. We split this into categories: “easy” objects (sphere,
cube, cylinder), “moderate” objects (cuboids with elongated
aspect ratios), and “hard” objects (either concave L- or U-
shapes) and train object-specific policies for each of these
objects with the proposed methods and also the baseline
methods to be discussed later. We note that in-hand manip-
ulation of the objects in the “hard” category has not been
previously demonstrated in the literature.

6.2 Exploration trees

The extensive sampling of possible actions, which is themain
computational expense of G-RRT (line 5) lends itself well to
parallelization. In practice, we use the IsaacGym Makoviy-
chuk et al. (2021) simulator to parallelize this algorithm at
both these levels (16 parallel evaluations of the main loop,
and 1024 parallel evaluations of the action sampling loop).
In general, given the advent of increasingly more powerful
parallel architectures for physics simulation, we expect that
more general methods that are easier to parallelize might win

out in the long termovermore problem-specific solutions that
are more sample efficient at the individual thread level.

6.3 Reinforcement learning

We train our policies using Asymmetric Actor Critic PPO
Pinto et al. (2017); Schulman et al. (2017) where we sepa-
rate actor and critic training for improved performance. All
training is done in the IsaacGym simulator and the critic
uses object pose p, object velocity ṗ, and net contact force
on each fingertip t1 . . . tm as feedback in addition to the feed-
back already provided to the policy network.

For Imitation Pre-training, we compute action labels from
state transitions using β = 2 in Eq. (1). We train the critic
with rollouts of the imitation policy for 2M steps to mitigate
forgetting issues inherent in a randomly initialized critic net-
work.

6.4 Tasks

Weevaluate ourmethod on a variety of challenging dexterous
in-hand manipulation tasks.

6.4.1 Finger-gaiting

First, we focus on the task of achieving large in-hand object
rotation about a desired axis. We, as others before Qi et al.
(2022), believe this to be representative of this general class
of problems, since it requires extensive finger gaiting and
object reorientation.

We chose to focus on the case where the only sensing
available is hand-centric, either tactile or proprioceptive.
Achieving dexterity with only proprioceptive sensing, as bio-
logical organisms are clearly capable of, can lead to skills that
are robust to occlusion and lighting and can operate in very
constrained settings. With this directional goal in mind, the
observation available to our policy consists of tactile and pro-
prioceptive data collected by the hand, and no global object
pose information. Formally, the observation vector is

ot = [qt , qst , ct ] (2)
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where qt , q
s
t ∈ Rd are the current positions and setpoints of

the joints, and ct ∈ [0, 1]m is the vector representing binary
(contact / no-contact) touch feedback for each of m fingers
of the hand.

In this task, where our goal is finger-gaiting for z-axis
object rotation, we plan trees where object rotation around
the x- and y-axes was restricted to 0.2 radians. Thenwe select
2 × 104 nodes from the paths that exhibit the most rotation
around the z-axis to construct our reset distribution and for
imitation pre-training. On average, each such path comprises
20–30 nodes. We recall that all tree nodes are subjected to
an explicit stability check under full system dynamics before
being added to the tree; we can thus use each of them as is.

Similar to our previous work Khandate et al. (2022), we
use a reward function that rewards object angular velocity
about the z-axis. In addition, we include penalties for the
object’s translational velocity and its deviation from the ini-
tial position Qi et al. (2022).

6.4.2 Arbitrary reorientation

While finger-gaiting to achieve maximum rotation is a good
proof-of-concept task with several applications, we now
consider the canonically studied and versatile in-handmanip-
ulation skill of reorientation to a desired pose. We continue
with the requirement to achieve in-hand manipulation with
only stable fingertip grasps as it enables reorientation in arbi-
trary orientations of the hand.

We take on the challenging task of orienting an object
from a randomly assigned initial pose to a desired arbitrary
orientation, a frequently studied task in dexterous in-hand
manipulation Chen et al. (2021), Yuan et al. (2023). In addi-
tion to proprioceptive and tactile data collected by the hand,
we include current and desired object orientations as inputs
to the policy resulting in the following observation vector,

ot = [qt , qst , ct ,φt ,φg] (3)

where φt ,φg ∈ R4 are the current and desired object orien-
tation respectively. Our reward function is a modification of
the one proposed in Chen et al. (2021) as we found the orig-
inal reward function fails in our setup. Equation 4 describes
the reward function we use for this task,

rt = c · max(min(�t − �t−1, ε),−ε)

+csuccess · 1[success] (4)

where �t is angular distance between current and desired
object orientation, ε > 0 is a threshold coefficient, and c <

0 is a scaling coefficient. A large positive reward, denoted
csuccess, is added if the agent successfully completes the task.
Task completion is achieved through successful reorientation

plus satisfaction of heuristics adapted from previous work
Chen et al. (2022). The criteria are described here:

1. Reorientation criterion: �t < θthresh
2. Joint angular velocity criterion: ‖q̇ t‖2 < q̇thresh
3. Object linear velocity criterion: ‖ẋt‖2 < ẋthresh
4. Object angular velocity criterion: ‖ωt‖2 < ωthresh

Unlike the previous task where a subset of the tree needs
to be extracted to aid exploration, here the full tree i.e all
nodes of the tree can be used towards assembling the buffer
of exploratory reset states. To ensure complete exploration
of the state space we use G-RRT trees generated without any
constraints on object orientation.

6.4.3 Go-to-root

While ourmethod improves on sample efficiency for learning
policies for arbitrary reorientation, obtaining such policies
remains computationally expensive due to the requirement
of a few tens of billion simulation training steps. Learning
such policies can be overkill; often, in practice, it is sufficient
to reorient the object to a fixed canonical pose starting from
an arbitrary initial pose. In a packaging line, for example,
items arrive at arbitrary orientations. The essential in-hand
manipulation task is to reorient objects to a canonical pose
before inserting them in the packaging container.

However, learning to reorient the object to a fixed desired
orientation starting from an arbitrary initial pose is still dif-
ficult as it suffers the same exploration challenges seen in
previous tasks. Fortunately, our method of using exploration
trees is naturally well suited for this problem. The robot state
with the desired canonical orientation can itself be used as
the root node while generating the exploration tree. Thus, we
refer to this as the “Go-to-root” task.

In this task, we aim to learn a policy to reorient the
grasped object to reach a desired canonical / root orientation.
The inputs to the policy network are similar to the arbitrary
reorientation task, consisting of proprioceptive, tactile, and
current object pose feedback but excluding the desired goal
orientation as it is fixed, resulting in the observation vector in
Eq. (5). The reward function and success criteria are identical
to the arbitrary reorientation task except with fixed canonical
orientation φg as the goal.

ot = [qt , qst , ct ,φt ] (5)

For imitation pre-training, we extract plans by backtrack-
ing from randomly selected nodes with large displacement
from the root. In each task, this amounts about about 3K
unique observation-action pairs for finger-gaiting and about
15k unique observation-action pairs for go-to-root task.
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6.5 Algorithms and baselines

In our experiments, we compare the following approaches:

6.5.1 Ours, R×R

In this variant, we use the method presented in this paper,
relying on exploratory reset states obtained by growing the
tree via G-RRT. In all cases, we use a tree comprising 105

nodes as informed the ablation study in Fig 14.

6.5.2 Ours, R×R + IPT

In this variant of our method, we use Imitation Pre-training
with labels obtained from the grown G-RRT tree, alongside
using exploratory reset distribution extracted from the same
tree.

6.5.3 Stable Grasp Sampler (SGS)

This baseline represents an alternative to the method pre-
sented in this paper: we use a reset distribution consisting
of stable grasps generated by sampling random joint angles
and object orientations. This approach has been effective
in demonstrating precision in-hand manipulation with only
intrinsic sensing Khandate et al. (2022); Qi et al. (2022) for
simple shapes.

6.5.4 Explored Restarts (ER)

This method selects states explored by the policy itself dur-
ing random exploration to use as reset states Tavakoli et al.
(2018). It is highly general, with no manipulation-specific
component, and requires no additional step on top of RL
training. We implement the "uniform restart" scheme as it
was shown to have superior performance on high dimen-
sional continuous control tasks. However, we have found it
to be insufficient for the complex state space of our problem:
it fails to learn a viable policy even for simple objects.

6.5.5 Fixed Initialization (FI)

For completeness, we also tried resetting from a single fixed
state.

6.5.6 Fixed Initialization (FI + IPT)

Towards understanding the effect of pre-training, we also
tried FI baseline but with a warm start policy obtained from
Imitation Pre-training using the G-RRT tree.

6.5.7 Gravity Curriculum (GC)

Additionally, we evaluated Fixed Initialization with gravity
curriculum, linearly annealed from 0m

s2
to −9.81m

s2
over the

course of 50M timesteps.

7 Results

7.1 Evaluation in simulation

7.1.1 Finger-gaiting

Our training results aggregated over 3 seeds are summarized
in Figs. 3 and 5. We find that our methods (R×R, R×R +
IPT) convergewithin 50M timesteps across all objects for the
Finger-gaiting task, consistently outperforming baselines.

On the easy object set, we find that all the methods except
the ER baseline learn to gait. However, policies that use a
random grasp reset distribution (SGS) and sampling-based
reset distribution (R×R) achieve higher performance with
robust gaits. We also observe that warm starting with Imita-
tion Pre-training (R×R + IPT) results in faster convergence.
Unlike our previous studies, we find that FI also learns finger-
gaiting. We attribute this to the improved implementation of
our asymmetric actor-critic PPO and increased training steps
made possible with the help of GPU physics.

However, as we move to more difficult objects in the
medium and hard categories, the performance gap between
our methods and baselines broadens. For medium difficulty
objects, we find that R×R, R×R + IPT, and SGS again all
learn to gait, but the policies learned via our methods, R×R
and R×R + IPT, are more effective with higher returns.
Again, we observe that warm starting with Imitation Pre-
training (R×R + IPT) results in faster convergence and also
achieves improved final performance.

Finally, for the hardest object set, a random grasp-based
reset distribution is no longer successful. Only R×R and
R×R + IPT converge to stable and consistent gaits. Once
again, R×R + IPT improves on R×R with respect to rate of
convergence and final performance.

Interestingly, FI + IPT baseline that uses a warm start
policy (obtained from Imitation Pre-training using the G-
RRT tree) performs similarly to FI baseline, failing on all
but easy objects. This suggests that exploratory reset distri-
butions may be necessary to derive benefits from Imitation
Pre-training.

To verify the scalability of the method to train policies for
multiple objects, we successfully train object-agnostic poli-
cies with our R×R approach. To achieve this we simply use
object-specific initial distributions in multi-object training.
We found the training difficulty to be limited to the hardest
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Fig. 3 Training performance of our methods and a number of baselines for the Finger-gaiting task on the object categories shown in Fig. 2

time

Fig. 4 Key frames of the policies for the Finger-gaiting achieved with our method R×R for representative objects in simulation

object in the set. Importantly, in Sec 7.2, we also verify our
policies can be transferred to the real hand.

Next, we present our results in learning policies to reach a
desired object orientation i.e. go-to-root and arbitrary reori-
entation tasks. Additionally, due to the poor performance of
many baselines in the previous task, we continue with the
best-performing ones. In particular, we continue with SGS
and GC baselines. We drop the ER baseline as it uniformly
fails across object classes and also drop the FI baseline as
fixed initialization is incompatible with both tasks by defini-
tion.

7.1.2 Go-to-root

We evaluate R×R and R×R+ IPT on the Go-to-root task and
compare it with SGS and GC baselines. For this task we aug-
ment the Gravity Curriculum baseline to use 20 hand-crafted
grasps as the reset distribution. These grasps are constructed
to appropriately cover the orientation space of the object. We
do this to ensure fair comparison between methods, as learn-

Fig. 5 Training performance of our methods and a number of baselines
for the Finger-gaiting task on hard objects shown in Fig. 2
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Fig. 6 Training performance for the Go-to-root task with our methods and other best-performing baselines

Fig. 7 Training performance for the Arbitrary Reorientation task comparing our methods (R×R, R×R + IPT) with Stable Grasp Sampler (SGS)
baseline
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Fig. 8 Training performance for the Go-to-root task with our methods
and other best-performing baselines for objects in hard category

ing reorientation from a fixed initial orientation to a fixed
target is a significantly easier task.

Our results are summarized in Figs. 6 and 8. As shown
by the curves, go-to-root is a harder task requiring between

100 and 200M steps. However, these results indicate that
our methods consistently outperform baseline methods and
produce effective control policies for the task. Again we find
that R×R + IPT improves on R×R in both convergence and
final performance across all object sets.

7.1.3 Arbitrary reorientation

We evaluate R×R on the Arbitrary Reorientation task. Our
results in Fig. 7 plot the success rate. Note that we con-
sidered the hand in "palm-down" orientation as it tends
to be the desired hand orientation in many applications.
We demonstrate that our method outperforms SGS on all
objects. Interestingly, our method significantly outperforms
SGS baseline even for objects in the easy category, with
increasing performance for objects in the medium and hard
categories. The keyframes of our policy executing this task
are shown in Fig. 9.

Overall, a common thread of all experiments presented
here is that our methods (R×R, R×R + IPT) enable learning
a range of challenging dexterous manipulation tasks, while
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Fig. 9 Key frames of goal-reaching tasks, Go-to-root and Arbitrary Reorientation, in simulation

Table 1 Manipulation performance in real hardware

Median Mean rotation
Revolutions Speed (rad/s)

Cylinder 5 0.42

Cube (s) 4.5 0.44

Cuboid 1.5 0.44

L-shape 1.5 0.24

We report the median number of object rotations achieved before drop-
ping the object in ten consecutive trials, as well as the time needed to
perform these rotations

none of the domain-agnostic methods (ER, FI, GC) are able
to learn in-handmanipulation on objects beyond the easy set.

7.2 Evaluation on real hand

To test the applicability of our method on real hardware, we
attempted to transfer the learned Finger-gaiting policies for a
subset of representative objects: cylinder, cube, cuboid & L-
shape.We chose these objects to span the range from simpler
to more difficult manipulation skills.

We achieve transfer of the reinforcement learning policies
to the real-hardware via domain randomization introduced
via a curriculum. We adapt the policies achieved with nomi-
nal system parameters i.e. the system parameters used during
prior tree generation and reinforcement learning phases with
an additional fine-tuning phase where we introduce domain
randomization of relevant system parameters. A thorough list
of such parameters is detailed next. It is important to note
that while randomizing these parameters, the exploratory
tree generated with nominal parameters still remains valid as
these parameter perturbations onlymildly affected the stabil-
ity of states. Hence, it is sufficient to use states obtained from
this tree generated with with nominal system parameters.

First, we impose velocity and torque limits in the sim-
ulation, mirroring those used on the real motors (0.6 rad/s
and 0.5 N·m, respectively). We found that our hardware
has a significant latency of 0.05s, which we included in the
simulation. In addition, we modified the angular velocity
reward to maintain a desired velocity instead of maximiz-
ing the object’s angular velocity. We also randomize joint
origins (0.1 rad), friction coefficient (1–40), and train with
perturbation forces (1 N). All these changes are introduced
successively via a curriculum.

For observation, we used the current position and setpoint
from the motor controllers with no additional changes. For
tactile data, we found that information from our tactile fin-
gers is most reliable for contact forces above 1 N. We thus
did not use reported contact data below this threshold and
imposed a similar cutoff in simulation. Overall, we believe
that a key advantage of exclusively using proprioceptive data
is a smaller sim-to-real gap compared to extrinsic sensors
such as cameras. We note that an ablation study illustrating
the importance of touch feedback is presented in Sect 8.

For the set of representative objects, we ran the respec-
tive policy ten consecutive times and counted the number
of successful complete object revolutions achieved before a
drop. In other words, five revolutions means the policy suc-
cessfully rotated the object for 1, 800◦ before dropping it.
In addition, we also report the average object rotation speed
observed during the trials.

The results of these trials are summarized in Table 1.
Figures 10 and 11 show the keyframes of the real hand
finger-gaiting we achieved with our policies. Finally, as our
finger-gaiting policies do not rely upon vision feedback, our
policies are robust to changes in lighting conditions. Exam-
ples of our method operating in dynamic lighting conditions
can be found in the accompanying video.
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Fig. 10 Key frames of the Finger-gaiting policies transferred to the real hand

Fig. 11 Key frames of a Finger-gaiting policy transferred to the hand in the “palm-down” orientation

We note that the starting policies used for sim-to-real
transfer were trained with trees generated by a version of G-
RRT that used the constraint that at least three fingersmust be
in contactwith the object. However, as previouslymentioned,
we found that this constraint has minimal effect on the trees
generated via G-RRT. Nevertheless, we expect similar sim-
to-real performance of policies trained using trees generated
after forgoing the three contact constraint. These policies are
identical to the policies used for sim-to-real transfer, as per
visual comparison in simulation. We also note that prelimi-

nary attempts to transfer policies for the cylinder and cube
also show similar performance.

8 Ablations

8.1 Sampling-based exploration

First, we conduct ablation of G-RRT for our object set. We
aim to discover how effectively the tree explores its available
state space given the number of iterations through the main
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Fig. 12 Tree expansion performance for G-RRT. We plot the number
of attempted tree expansions (i.e. iterations through the main loop, on a
log scale) against the maximum object z-axis rotation achieved by any
tree node so far. We plot performance for different values of Kmax , the
number of random actions tested at each iteration

loop (i.e. the number of attempted tree expansions towards a
random sample). As a measure of tree growth, we look at the
maximum object rotation achieved around our target axis.
We note that any rotation beyond approximately π/4 radians
can not be done in-grasp, and requires finger repositioning.
Thus, we compare the maximum achieved object rotation
vs. the number of expansions attempted (on a log scale). The
results are shown in Fig. 12.

As expected, the performance of G-RRT improves with
the number Kmax of actions tested at each iteration. Inter-
estingly, the algorithm performs well even with Kmax = 1;
this is equivalent to a tree node growing in a completely ran-
domdirection, without any bias towards the intended sample.
However, we note that, at each iteration, the node that grows
is the closest to the state-space sample taken at the beginning
of the loop. This encourages growth at the periphery of the
tree and along the real constraint manifolds, and, as shown
here, still leads to effective exploration.

We also found that G-RRT is sensitive to the action-scale
parameter α. Figure 13 compares exploration asmeasured by
angular distance of the farthest node from the root for varying
α. Among the various settings evaluated, anα = 0.15was the
fastest. Interestingly, higher values of action-scale adversely
affects the performance of G-RRT. Furthermore, as we will
discusses later, not only does α affect the rate of exploration
it also impacts the quality of extracted paths.

8.2 Reinforcement learning

We now consider the ablation of training methods. We per-
form these ablations on the Finger-gaiting and Go-to-root
tasks on a non-convex, L-shaped object.

Fig. 13 G-RRT action-scale (α) ablation. α = 0.15 is optimal

Webegin by studying the impact of the size of the tree used
in extracting reset states. Figure 14a summarizes our results
for learning a Finger-gaiting policy using trees of different
sizes grown via G-RRT. Qualitatively, we observe that, as the
tree grows larger, the top 100–400 paths sampled from the
tree contain increasingly more effective gaits, likely closer to
the optimal policy. We see that we need a sufficiently large
treewith at least 104 nodes to enable learning.However, train-
ing is most reliable with 105 nodes. This suggests a strong
correlation between the quality of states used for reset distri-
bution and sample efficiency of learning.

Figure 14b summarizes the tree-size ablation results for
learning theGo-to-root task. For a very small tree,we see near
100% success rate at training time. This is rather unsurprising
as, at these small tree sizes, the nodes are still close to the
root orientation resulting in a trivial reorientation task. As
we expect, validation performance on paths extracted from
the largest tree increases as the size of the tree generating the
initial state distribution increases.

We also reconsider the action-scale parameter. Besides
affecting the rate of exploration it also impacts the quality of
paths.Wecan infer this by the impact on trainingperformance
in Fig. 15.We see a similar trend, as the training performance
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Fig. 14 The final performance of policies for Finger-gaiting (left) and
Go-to-root (right) tasks using trees of increasing sizes. Validation per-
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Fig. 15 Action scale ablation for the Finger-gaiting and Go-to-root
tasks with L

peaks again aroundα = 0.15 for both Finger-gaiting andGo-
to-root.

We also conducted an ablation study of policy feedback.
Particularly, we aimed to compare intrinsically available tac-
tile feedback vs. object pose feedback that would require
external sensing. Figure 16 summarizes these results which
demonstrate the importance of tactile feedback for both
Finger-gaiting and Go-to-root tasks.

In the Finger-gaiting task, we found that touch feedback
is essential in the absence of object pose feedback for all
moderate and hard objects. For these objects, we also saw
that replacing this tactile feedback with object pose feedback
results in slower learning. Similarly, in the Go-to-root task,
leaving out touch feedback from policy input also results in
slower learning.

These results underscore the importanceof touch feedback
for in-hand manipulation skills. Richer tactile feedback such
as contact position, normals, and force magnitude can be
expected to provide even stronger improvements; we hope to
explore this in future work.

9 Discussion and conclusions

The results we have presented show that sampling-based
exploration methods make it possible to achieve difficult
manipulation tasks via RL. In fact, these popular and widely
used classes of algorithms are highly complementary in this
case. RL is effective at learning closed-loop control policies

Fig. 16 Ablation of policy feedback components which highlights the
importance of touch feedback

thatmaintain the local stability needed formanipulation, and,
thanks to training on a large number of examples, are robust
to variations in the encountered states. However, the standard
RL exploration techniques (random perturbations in action
space) are ineffective in the highly constrained state space
with a complex manifold structure of manipulation tasks.
Conversely, SBP methods, which rely on a fundamentally
different approach to exploration, can effectively discover
relevant regions of the state space.

We present multiple methods for conveying exploration
information derived through SBP to RL training algorithms.
In particular, explored states can be used as an effective reset
distribution to enable learning. The transitions between states
used during sample-based exploration are also useful sur-
rogates for actions, and can thus be used in an imitation
pre-training stage to boost learning. Imitation pre-training
serves as an effective strategy to leverage the inherent struc-
ture accessible through sampling-based plans. This approach
becomes particularly valuable in addressing the challenges of
hard motor control tasks within reinforcement learning, not
only by facilitating training but also by providing a favorable
initialization of actor and critic networks. Recent work in this
domain extends the use of the imitation policy beyond mere
initialization by demonstrating further benefits when incor-
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porated throughout the training process. This is a promising
avenue for achieving further performance gains in reinforce-
ment learning scenarios for hard motor control tasks.

We use our approach to demonstrate a number of dexter-
ous manipulation skills: achieving large in-hand reorienta-
tion about a given axis via finger-gaiting and reorientation to
a desired object pose, which is either pre-set or randomized.
Importantly, we demonstrate finger gaiting precision manip-
ulation of both convex and non-convex objects, using only
tactile and proprioceptive sensing. Using only these types
of intrinsic sensors makes manipulation skills insensitive to
occlusion, illumination, or distractors, and reduces the sim-
to-real gap. We take advantage of this by demonstrating our
approach both in simulation and on real hardware. We note
that, while some applications naturally preclude the use of
vision (e.g. extracting an object from a bag), we expect that
in many real-life situations, future robotic manipulators will
achieve the best performance by combining touch, proprio-
ception, and vision.

In future work, we believe that our approach can be scaled
to tackle even more demanding motor control tasks with
numerous degrees of freedom, including both prehensile
and non-prehensile manipulation. Bi-manual manipulation
seems like a natural candidate application, particularly if it
involves coordination with multi-fingered dexterous hands.
We also believe our approach can be applied beyond dex-
terous manipulation, such as in learning challenging agile
locomotion skills with minimal changes. Towards this aim,
we suggest expanding the sampling configuration space to
the complete state of the robot with first order derivatives
and also replacing the stability check with necessary bound-
ary constraints on the state. With these changes in place, we
believe it is a feasible recipe to accelerate learning an end-
to-end policy for learning agile skills such as robot parkour
Zhuang et al. (2023). Finally, sampling-based exploration
techniques could be integrated directly into the policy train-
ing mechanisms, removing the need for two separate stages
during training. We hope to explore all these ideas in the
future.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-024-10170-
8.
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