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Abstract
When robots interact with humans in homes, roads, or factories the human’s behavior often changes in response to the robot.
Non-stationary humans are challenging for robot learners: actions the robot has learned to coordinate with the original human
may fail after the human adapts to the robot. In this paper we introduce an algorithmic formalism that enables robots (i.e., ego
agents) to co-adapt alongside dynamic humans (i.e., other agents) using only the robot’s low-level states, actions, and rewards.
A core challenge is that humans not only react to the robot’s behavior, but the way in which humans react inevitably changes
both over time and between users. To deal with this challenge, our insight is that—instead of building an exact model of the
human–robots can learn and reason over high-level representations of the human’s policy and policy dynamics. Applying this
insight we develop RILI: Robustly Influencing Latent Intent. RILI first embeds low-level robot observations into predictions
of the human’s latent strategy and strategy dynamics. Next, RILI harnesses these predictions to select actions that influence
the adaptive human towards advantageous, high reward behaviors over repeated interactions. We demonstrate that—given
RILI’s measured performance with users sampled from an underlying distribution—we can probabilistically bound RILI’s
expected performance across new humans sampled from the same distribution. Our simulated experiments compare RILI
to state-of-the-art representation and reinforcement learning baselines, and show that RILI better learns to coordinate with
imperfect, noisy, and time-varying agents. Finally, we conduct two user studies where RILI co-adapts alongside actual humans
in a game of tag and a tower-building task. See videos of our user studies here: https://youtu.be/WYGO5amDXbQ
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1 Introduction

Small and mid-sized manufactures (SMMs) make up almost
99% of all American manufacturing companies, and more
than 75% of SMMs have fewer than 20 employees (Small
Business Economic Profile, 2020). But despite their preva-
lence, SMMs are the least likely manufacturers to use robots
(Sanneman et al., 2021). To become successful within small
and mid-sized manufacturers robots must learn new tasks
while coordinating with human co-workers (Perzylo et al.,
2019; Gualtieri et al., 2020; Arents &Greitans, 2022; Math-
eson et al., 2019).

Consider a robot arm that is learning to build towers
with a human partner (see Fig. 1). During each interaction

B Sagar Parekh
sagarp@vt.edu

Dylan P. Losey
losey@vt.edu

1 Mechanical Engineering Department, Virginia Tech,
Blacksburg, USA

the human and robot both add one block to their respec-
tive towers, and the robot is rewarded if its tower matches
the human’s. The robot’s learning would be straightforward
if the human always built the exact same tower regardless
of what the robot did. In practice, however, humans adapt
to the robot’s behavior (Nikolaidis et al., 2017; Goodrich
and Schultz, 2008; Ikemoto et al., 2012). Perhaps a compet-
itive human sees the robot is almost always picking green
blocks, and so the human switches their behavior to now
add orange blocks to the tower. Changes in human behav-
ior present a challenge to robot learners: these shifts alter
the robot’s learning environment, so that robot actions which
originally coordinated with the human (e.g., adding green
blocks) are no longer effective (Hernandez-Leal et al., 2017).
To make matters worse, different humans adapt to the same
robot behavior in different ways.While a competitive human
adapts by picking blocks that the robot does not expect, a col-
laborative human may help the robot by selecting the same
blocks that the robot chooses frequently.
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Fig. 1 Human and robot interact to assemble towers. The robot’s objec-
tive is to build the same tower as the human. As the robot adapts to the
human, the human also adapts to the robot and changes their behavior.
Different users react to the robot in different ways: even the same human
will inevitably change how they respond to the robot over time. Our
approach enables robots to co-adapt alongside non-stationary humans
by learning a high-level representation of the human’s policy (strategy
z) and maintaining multiple models for how the user’s strategy will
change over time (dynamics f p)

This paper explores settings where one ego agent (e.g., a
robot) is learning and interacting with one other agent (e.g., a
human). Specifically, we introduce an algorithmic formalism
that enables the ego agent to seamlessly co-adapt alongside
another agent. Prior research on multi-agent learning and
human-robot interactionmakes restrictive assumptions about
this other agent. For example, existing methods assume that
the other agent always reacts to the ego agent in the same
way (Xie et al., 2020; Wang et al., 2021; Carroll et al., 2019;
Foerster et al., 2018), the other agent communicates its intent
or is trained together with the ego agent (Ndousse et al.,
2021; Woodward et al., 2020; Foerster et al., 2018; Cao et
al., 2018), or the other agent’s adaptation has a pre-defined
structure (Bestick et al., 2016; Li et al., 2021; Nikolaidis et
al., 2017; Sadigh et al., 2016; Bandyopadhyay et al., 2013;
Losey et al., 2020; Lu et al., 2022). By contrast, we recognize
that humans are independent, partially observable agents, and
that the human’s personalized response to the ego agent will
change over repeated interactions.

Humans seamlessly co-adapt to other humans on a daily
basis (e.g., imagine breaking and accelerating to maintain
distance from another car). When humans learn to coordi-
nate with another human they do not build exact models
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Fig. 2 Robot learning to select blocks that match the human. The robot
encounters different humans who react to the robot in different ways:
some users ignore the robot’s behavior (Independent, Top), while oth-
ers adapt to choose blocks away from the robot (Competitive, Middle)
or match the robot’s last choice (Collaborative, Bottom). Co-adaptive
robots must be able to learn alongside each type of human (i.e., each dif-
ferent dynamics). This is particularly challenging when a single human
changes dynamics (e.g., switches from collaborative to competitive)

or when a new user comes along with their own personalized rules
for reacting to the robot. Under our proposed approach the robot learns
latent representations of the other agent’s strategy z and strategy dynam-
ics f p so that it can predict which block the human will choose next and
take actions accordingly. The images above are taken from our second
user study (Sect. 8) where the RILI robot learns to co-adapt with each
user
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of the other agent’s policy (Baker et al., 2011; Rubinstein,
1998; Von et al., 2017). Return to our tower building exam-
ple: humans do not reason over every fine-grained motion of
the other agent. Instead, a human worker might predict the
high-level intent that shapes the other agent’s actions (e.g.,
the human predicts the other agent will add an orange block
next interaction). Accordingly, our insight is that:

Ego agents can co-adapt by maintaining high-level
representations of both the other agent’s policy and the

change in policy between interactions.

We leverage this insight to propose our algorithm RILI,
Robustly Influencing Latent Intent. Under RILI robots learn
to embed their low-level observations into latent strategies
and dynamics. Here a strategy captures how the other agent
will behave during the current interaction (e.g., which block
the humanwill choose), and dynamics express the underlying
rules the other agent is using to change their strategy (e.g., if
the robot adds an orange block now, then the human will also
choose an orange block during the next interaction). By rea-
soning over strategies and dynamics we enable ego agents to
predict which behaviors will coordinate with the other agent.
This prediction is robust to noisy and imperfect humans who
adapt and change their underlying dynamics over repeated
interactions (see Fig. 2).

Developing a high-level representation of the other agent
forms the first half of our proposed approach. Next, RILI
harnesses this robust predictive model to learn to influence
the other agent. Remember that our ultimate goal is robots
that co-adapt alongside humans and successfully complete
multi-agent tasks. We therefore train the ego agent online—
as it interacts with the other agent—to learn a policy that
maximizes its cumulative reward. Because we have equipped
the robot with our predictive model, the robot can anticipate
how the human will react to its choices; put another way, the
robot optimizes for behaviors now that will guide the human
towards advantageous strategies in the future. Returning to
Fig. 1, the robot receives higher rewards for adding blocks
that are easy for the robot to reach. Robots that apply RILI
autonomously learn actions that cause the adaptive human to
reach for those blocks, thereby increasing the robot’s reward
and improving task coordination.

Overall, we make the following contributions.1:
Learning to coordinate In Sect. 4 we introduce our

RILI algorithm for settings where one ego agent repeat-
edly interacts with an adaptive agent, and the ego agent can
only observe its own low-level states, actions, and rewards.
RILI combines representation and reinforcement learning to
embed low-level observations into high-level predictions of
the other agent’s strategy and dynamics, and then reasons

1 Parts of this work have been published at the International Conference
on Intelligent Robots and Systems (Parekh et al., 2022).

over these predictions when selecting robot actions. The
resulting approach learns online while it is working with the
other agent.

Deriving co-adaptation boundsWe assert that RILI can
influence other agents who change their underlying dynam-
ics. For example, perhaps a new human comes along and
starts to interact with the robot, or the existing user becomes
more competitive over time. Let the other agent’s dynamics
be sampled from some distributionP . Given the robot’s mea-
sured reward with N dynamics sampled from P , in Sect. 5
use PAC-Bayes theory to derive a probabilistic lower bound
on the robot’s expected reward across the unknown distribu-
tion of other agents. We then support this theoretical bound
through simulated experiments.

Comparing RILI to baselines To compare our proposed
approach to the state-of-the-art we perform extensive sim-
ulations within the the environments established by prior
work. Our simulations in Sect. 7 reveal that RILI can learn to
co-adapt with an arbitrary number of other agent dynamics,
including other agents who react to every robot behavior,
other agents who only adapt to some robot behaviors, and
other agents who ignore the robot’s behavior altogether. We
also show that the robot can remember old partners even after
training with new partners (e.g., the robot can still coordinate
with previous human users), and that the RILI approachmore
rapidly adapts to unexpected, out-of-distribution dynamics
than the baselines.

Co-adapting with in-person users Finally, in Sect. 8
we put RILI to the test across two experiments with actual
humans. In our first user study participants play a virtual
game of tag with the RILI agent. Each user chooses their
own strategy for avoiding the robot, and RILI learns from
scratch how to coordinate with and catch the human par-
ticipants. Our second study focuses on the tower-building
environment from Fig. 1. Here the robot arm is pre-trained
offline with a pool of simulated agents, and the robot must
adapt online to the actual human user during a total of 30
interactions. The results of both studies suggest that RILI
leads to higher rewards than state-of-the-art baselines.

2 Related work

In our approach robots learn to influence humans that change
and adapt over time. The robot can only observe its own
states, actions, and rewards, and we do not assume any pre-
defined model of the human. Instead, the robot must learn
to embed its low-level observations to a high-level repre-
sentation of the human’s policy and policy dynamics. We
emphasize that training alongside another robot or simulated
human is not sufficient: because each human may respond
to the robot in different ways, we need a robust robot that
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personalizes its behavior to the agent it is currently working
with.

Learning alongside adaptive agents Related work on
multi-agent reinforcement learning (MARL) explores set-
tings where an ego agent trains alongside other learning
agents (Wong et al., 2022). Because the other agents change
their behaviors as they learn, the ego agent’s environment
is non-stationary: robot actions that initially lead to high
reward may suddenly lead to low rewards when the other
agents adapt. To deal with this, some MARL research lever-
ages a centralized learning procedure where each agent has
access to the same models or observations (e.g., agents are
trained using a centralized critic) (Foerster et al., 2018;
Lowe et al., 2017; Christianos et al., 2020). Other research
learns explicit communication protocols to share information
between agents (e.g., agents send messages to one another)
(Cao et al., 2018; Foerster et al., 2016; Singh et al., 2018).
Neither of these methods apply to our human-robot setting
where (a) the agents are decentralized and (b) we do not
assume that the human and robot have a mutually understood
channel for communication.

Modeling humans and other agentsMore relevant here
is prior work from MARL and human-robot interaction that
attempts to model the other agent. Within these methods the
ego agent observes the other agent’s behavior during previous
interactions, and learns a model to predict the other agent’s
future actions. Often these models rely on some underlying
structure. For instance, the robot may assume that it knows
the other agent’s learning rule (Foerster et al., 2018; Lu et al.,
2022), that the other agent acts as a leader, follower, or expert
(Losey et al., 2020; Li et al., 2021; Ndousse et al., 2021), or
that the other agent has a fixed, unchanging policy (Carroll
et al., 2019). Research like (Jeon et al., 2020; Raileanu et al.,
2018; Sadigh et al., 2016) assumes that the human’s behavior
noisily optimizes their reward, and this reward is a function
of known features (e.g., the human’s goal position). Going
one step further, robots can recognize that the other agent
is also learning from them, resulting in recursive reasoning
(Baker et al., 2011;Von et al., 2017) and co-adaptation (Niko-
laidis et al., 2017). In the domain of co-adaptation previous
works have used examples of expert coordination to learn
a low-rank subspace over human strategies [50] or cluster
human actions to learn common reward functions [40]. Sim-
ilar to prior works we will learn a predictive model of the
other agent over repeated interactions. We do not assume
access to the other agent’s learning model, roles, reward,
features, or examples of expert coordination; instead, we
hypothesize that the other agent’s policy is parameterized
by a high-level strategy. By learning this representation—and
predicting how the human’s strategy changes in response to
the robot—we enable the ego agent to account for its non-
stationary environment.

Influencing humans Because the other agent adapts to
the robot’s actions, we can leverage the robot’s behavior
to intentionally influence the other agent. This influential
behavior is not explicitly programmed as part of the robot’s
objective (Jaques et al., 2019; Lu et al., 2022)—under RILI
influence emerges naturally as the robot tries to guide the
human towards advantageous strategies and maximize its
own reward. Previous works have explored how robots can
influence humans during a single interaction. In Sadigh et al.
(2016); Tian et al. (2022); Hu &Fisac (2022); Bestick et al.
(2016); Sagheb et al. (2022) human-robot interaction is for-
mulated as a two-player game: the robot infers the human’s
reward, and then plans while accounting for the human’s
optimal response (e.g., an autonomous car changing lanes to
slow a human driver). Most relevant here are methods like
LILI (Xie et al., 2020) and SILI (Wang et al., 2021) that learn
to influence another agent over repeated interactions. Both
(Xie et al., 2020) andWang et al. (2021) assume that the other
agent maintains a fixed set of rules for reacting to the ego
agent. Return to our motivating example: for a given robot
choice (e.g., adding a green block) LILI and SILI assume that
every human reacts in the exact same way (e.g., choosing a
blue block). Accordingly, while (Xie et al., 2020; Wang et
al., 2021) are effective in robot-robot experiments, we will
demonstrate that these approaches fail to influence actual
humans.

Robust human prediction For our proposed approach
to coordinate with actual humans it must be robust to noisy
and imperfect agents who change their dynamics. Today’s
robots take a step towards robust interaction by maintain-
ing a probabilistic model over the human’s possible actions,
and identifying risk-aware robot behaviors that achieve high
rewards even for unexpected actions (Huang et al., 2022;
Bajcsy et al., 2020; Li et al., 2021; Nishimura et al., 2021).
When a human model is not available (or when humans
deviate from pre-defined models), robots can achieve robust
performance by observing and interacting with a distribution
of real or simulated agents (Strouse et al., 2021; Jaderberg et
al., 2019; Carroll et al., 2019; Woodward et al., 2020). RILI
draws inspiration from both of these approaches: we learn
a posterior distribution over the human’s strategy through
repeated interactions with multiple other agents. To analyse
the robustness of our resulting algorithmwe turn to Probably
Approximately Correct or PAC-Bayes bounds (McAllester,
1999) that have been used for studying generalization in deep
learning (Neyshabur et al., 2017; Chérief-Abdellatif et al.,
2022). PAC-Bayes theory has also been used to optimize
for robust policies in novel environments (Majumdar et al.,
2021, 2018). Here we similarly leverage PAC-Bayes theory
to obtain a probabilistic lower bound on performance across
new and unseen human dynamics.
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3 Problem statement

We consider two-agent settings with an ego agent and some
other agent. We control the ego agent, but the other agent
is fully autonomous; for example, the ego agent could be a
robot while the other agent is a human. Our approach applies
to scenarios where the other agent is collaborative (i.e., a
partner) or competitive (i.e., an opponent). In this paper we
use ego agent or robot to refer to the agent thatwe control, and
other agent or human to refer to the agent we are interacting
with.

The ego agent repeatedly interacts with the other agent.
Recall our motivating example where an industrial robot arm
is building towers with a humanworker: the human and robot
will need to manufacture multiple towers over hours, days,
or weeks of interaction. Each time that the human and robot
interact we assume that the human has some high-level strat-
egy z ∈ Z that they use to make low-level decisions. For
instance, the human may want to build a tower with the
purple block above the orange block. Let i be the current
interaction: during interaction i , the human uses strategy zi

to reach for, pick up, and move the blocks. The human’s
high-level strategy changes between interactions according
to their underlying dynamics. Perhaps the human noticed that
the robot expects the purple block to be below the orange
block, and so during interaction i + 1 the human changes
their high-level strategy zi+1 to also place the orange block
above the purple block.

Importantly, not all other agents follow the same dynam-
ics to update z. Returning to our example, some humans
may change their high-level strategy to build a tower that
matches the robot’s behavior; other humans may ignore the
robot entirely and build the towers that they prefer. Even a
single human’s dynamics will inevitably shift over time—
causing the human to respond to the same robot behavior in
different ways. In this section we therefore formalize two-
agent interactions where the other agent has a high-level
strategy z as well as changing dynamics for updating that
strategy. We emphasize that the ego agent can never directly
observe the high-level strategy z, and the ego agent does not
knowwhat dynamics the human is using to update z between
interactions.

Latent strategyWe start by formulating a single interac-
tion. Every interaction lasts a total of H timesteps; at each
timestep the robot observes its state s ∈ S and takes action
a ∈ A. The robot does not know the latent strategy of the
other agent z ∈ Z . However, this high-level strategy affects
how the other agent behaves, and this in turn may alter what
the robot observes. More specifically, both the ego agent’s
transition function T (s′ | s, a, zi ) and reward function
R(s, zi ) depend on the current latent strategy zi . Consider
the running example of a robot trying to assemble towers that
match the human; the tower that the human chooses to build

determines howmuch reward the robot receives. By combin-
ing these parts we express a single interaction as a Hidden
Parameter Markov Decision Process (HiP-MDP) using the
tuple M = 〈S,A,Z, T , R, H〉 where z ∈ Z is the hidden
parameter. During the i-th interaction the ego agent follows
the state-action trajectory ξ i = {(si

1, ai
1), . . . , (s

i
H , ai

H )}, and
the ego agent observes this trajectory and its rewards r at
every timestep. Let τ i = {(si

1, ai
1, r i

1), . . . , (s
i
H , ai

H , r i
H )}

be the robot’s experience. We emphasize that trajectory ξ i

and experience τ i contain only low-level information on the
states, actions, and rewards of the ego agent.

Latent dynamics Within a single interaction the other
agent maintains a constant latent strategy. But between inter-
actions this strategy changes according to the human’s latent
dynamics:

zi+1 = f p(z
i , τ i ) (1)

Imagine a person building towers with the robot in Fig. 1.
The person updates their choice of z based on some per-
sonalized set of rules: they may choose to build the same
tower every time, cycle through different choices of towers,
or even change the tower they build in response to how the
robot behaves. Each of these cases corresponds to a differ-
ent dynamics function f . We capture these differences using
subscript p, so that the p-th other agent has latent dynamics
f p.
We next recognize that—not only are there many possible

latent dynamics—but these dynamics will inevitably change
over repeated interactions. This could be because the robot
is now interacting with a new agent (i.e., the robot starts
working with a different human) or because the other agent
changes (i.e., the same human modifies how they react to
the robot). In either case, the robot interacts with multiple
dynamics f p, where p ∼ P is sampled from a distribu-
tion over other agents. From the ego agent’s perspective the
dynamics shift randomly: for the firstm interactions the robot
may interact with dynamics f p1 , then the next n interactions
the robot may interact with dynamics f p2 . The ego agent
cannot observe the latent dynamics and does not know when
the latent dynamics change. Similarly, the ego agent does not
know the distributionP fromwhich these different dynamics
are sampled. Equation1 and the listed assumptions describe
scenarios where the robot must learn to interact with differ-
ent humans (which could be competitive, collaborative, or
indifferent), and the robot does not know how these other
agents will behave a priori.

Repeated interaction We have separately discussed the
latent strategy within an interaction and how that latent strat-
egy changes between interactions. Putting these together we
reach our problem formulation. Over n repeated interac-
tions the ego agent encounters a sequence of n HiP-MDPs:
(M1, . . . ,Mn) where the other agent plays strategy zi
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throughout Mi . The other agent uses latent dynamics f p

to update z between interactions, and the ego agent interacts
with a total of N different latent dynamics, where N ≤ n.
To clarify: n indexes the number of interactions and N is the
number of different latent dynamics the ego agent has so far
encountered. In practice, these N dynamics could correspond
to interacting with one agent that changes their dynamics N
times, N different humanswho each have their own approach
for interacting with the robot, or some combination of the
above.

The robot’s total reward is the sum of the rewards across
all interactions, and the robot’s objective is to maximize its
total reward.Maximizing reward often requires that the robot
influence the other agent so that they choose latent strate-
gies with which the robot can seamlessly coordinate. In our
motivating example there are some towers that are easier for
the robot to build (e.g., the robot receives more reward for
specific towers). The robot can therefore increase long-term
reward by guiding the human towards strategies that cor-
respond to these towers. Efficient ego agents will therefore
(i) identify the other agent’s current dynamics f p and (ii)
exploit those dynamics to influence the other agent towards
advantageous latent strategies z.

4 Robustly influencing latent intent (RILI)

In this section we present Robustly Influencing Latent
Intent (RILI), our proposed approach for co-adapting along-
side another agent with changing latent dynamics. RILI
breaks down into two components. First, in Sect. 4.1 the
ego agent learns to predict how the other agent will respond
to the robot’s behaviors. Given the robot’s low-level states,
actions, and rewards during previous interactions, can the
robot anticipate the human’s high-level strategy for the cur-
rent interaction? Making accurate predictions is challenging
because the dynamics the other agent uses to choose its
strategy will inevitably shift over repeated interaction, and
the ego agent cannot observe either dynamics or high-level
strategies. Second, in Sect. 4.2 the ego agent leverages these
predictions to influence the human’s strategy over repeated
interactions. Given that the robot has a model of how the
humanwill react to its actions, which actions should the robot
select to exploit the human’s latent dynamics and maximize
its long-term reward? Overall, RILI combines representation
and reinforcement learning to continually adapt to changing
partners: see the method outline in Fig. 3.

4.1 Robust prediction

Our first challenge is predicting how the human will react to
the robot’s actions, i.e., anticipating the human’s next latent
strategy.Consider our running example: if the robot can accu-

rately predict which block a human will choose next, the
robot can seamlessly coordinate with that human. We know
that the other agent’s next latent strategy zi+1 is selected
according to Eq.1. Here we therefore enable the robot to
learn a model of Eq.1 across all dynamics p that the robot
has encountered so far.

Inferring strategies To start, we recognize that the
human’s next latent strategy zi+1 is a function of their
current strategy zi and the interaction experience τ i . The
ego agent directly observes the states, actions, and rewards
τ i = {(si

1, ai
1, r i

1), . . . , (s
i
H , ai

H , r i
H )}, but the other agent’s

strategy zi is hidden from the robot. Recall that the tran-
sition and reward functions during interaction i depend on
latent strategy zi . As a result, the robot can leverage the
states, actions, and rewards in τ i to reconstruct zi ; e.g., based
on the rewards the robot receives, the robot can determine
which block the human picked up. We introduce the strategy
encoder:

zi = Ez(τ
i ), z ∈ R

d (2)

where Ez maps the i-th interaction to a representation of the
agent’s strategy zi . Because the actual strategies of the other
agent are never observed, we cannot train this encoder using
ground-truth labels.

Instead, we next introduce a strategy decoder. This
decoder attempts to reconstruct the robot’s rewards when
the robot executes trajectory ξ and the other agent has latent
strategy z ∈ R

d :

[r̂ i
1, . . . r̂ i

H ]T = D(ξ i , zi ) (3)

where ξ i = {(si
1, ai

1), . . . , (s
i
H , ai

H )} includes the ego agent’s
states and actions during interaction i , and r̂ are rewards
predicted by the decoder. Pairing the strategy encoder and
decoder, we reach the loss function:

Lz =

∥
∥
∥
∥
∥
∥
∥

⎡

⎢
⎣

r i
1
...

r i
H

⎤

⎥
⎦ − D

(

ξ i , Ez(τ
i )

)

∥
∥
∥
∥
∥
∥
∥

(4)

The lossLz is minimizedwhen the decoder accurately recon-
structs rewards. Intuitively, this means the encoder Ez must
output a latent strategy z that captures enough information
about the other agent such that—given z—the robot can cor-
rectly score its own behavior ξ . For instance, if the reward
function is based on the distance between ξ and the other
agent (e.g., the distance between the robot and human’s
blocks), then z should implicitly represent the other agent’s
position.

Inferring dynamics Let us return to Eq.1. We have a
method for inferring the current strategy; but just knowing z
and τ is not sufficient to accurately predict zi+1. We need
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Fig. 3 Robustly Influencing Latent Intent. (Left) RILI learns online
while interacting with another agent. Given a sequence of past expe-
riences, the robot learns to embed each interaction into a strategy z
and the sequence of strategies into dynamics p. The robot then pre-
dicts how an agent with dynamics p selected their next strategy zk+1

given their current strategy zk and interaction τ k . The encoders and
the predictor are trained using a strategy decoder that reconstructs τ .
We finally condition the robot’s policy on our high-level representation

of the other agent, and leverage model-free, off-policy reinforcement
learning to maximize long-term reward. (Right) At interaction i the
updated models are leveraged to predict the strategy and dynamics of
the other agent for interaction i +1. The robot co-adapts to the human by
taking actions based on the robot’s prediction. Note that the dynamics
encoder and predictor output a mean and standard deviation over the
latent representation

to know the other agent’s dynamics, and these dynamics
will inevitably change over time—either because the robot
encounters a new agent, or because the same agent starts
reacting in a different way. We capture these unique dynam-
ics in Eq.1 using p ∼ P , i.e., dynamics f pi are different from
dynamics f p j . In practice, the ego agent does not knowwhen
the other agent will change their dynamics and shift how they
respond to the robot. Instead of learning separate models for
each p ∼ P , we therefore capture the other agent’s dynamics
through a single model:

zi+1 = φ(p, zi , τ i ), p ∈ R
d (5)

where p ∈ R
d is the robot’s latent representation of the other

agent’s current dynamics (i.e., the other agent’s type), and
φ uses this dynamics representation to predict zi+1. Given z
and τ , different choices of p result in different predictions
of zi+1. Returning to our motivating example: for one latent
dynamics p the robot may predict that the human will pick
up the red block during the next interaction, while for another
p the robot predicts the human will reach the blue block.

To infer the latent dynamics p we look back at the other
agent’s behavior over the last m interactions. Inverting Eq.1,
we can solve for p based on the past sequence of strategies
z and experiences τ . We approximate this using a dynamics
encoder:

p = Ep(h
i ), hi = {zi , zi−1, · · · , zi−m+1} (6)

where h is the history of m strategies and Ep embeds this his-
tory to a representation of the agent’s dynamics p. Note that
this approach i) assumes the other agent’s dynamics remain
constant across h and ii) does not include τ i . . . , τ i−m+1

within h. We leave out τ because z is already an embedding
of τ from Eq.2, and because this functional approximation
works well across our simulations and experiments.

Now that we have developed an encoder to infer p, we
can use φ to predict what latent strategy the current human
will follow during the next interaction. Of course, the robot
cannot observe the actual dynamics the other agent uses to
select their high-level strategies. We therefore leverage the
robot’s low-level observations and our strategy decoder D
to learn the dynamics encoder Ep in Eq.6 and the overall
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dynamics φ in Eq.5. Given τ i . . . , τ i−m+1, we first apply
Ez to recover zi . . . , zi−m+1. We then use this sequence to
predict zi+1, before finally decoding zi+1 to estimate the ego
agent’s rewards during interaction i + 1:

Lφ =

∥
∥
∥
∥
∥
∥
∥

⎡

⎢
⎣

r i+1
1
...

r i+1
H

⎤

⎥
⎦ − D

(

ξ i+1, φ
(

τ i , Ep(h
i ), Ez(τ

i )
))

∥
∥
∥
∥
∥
∥
∥

(7)

In our running example the robot is assembling towers with
a human, and the robot’s reward is the distance between the
block it selected and the block the human selected. To accu-
rately estimate this reward the robotmust correctly anticipate
which block the human will choose; in Eq.7, this means zi+1

must learn to correctly capture the human’s next block.
Representation learning Now that we have introduced

the individual components of our prediction framework, we
will discuss how to train the robot to predict the other agent’s
strategy. Here training involves learning the weights of the
strategy encoder Ez , dynamics encoder Ep, predictor φ, and
strategy decoder D. We structure the dynamics encoder and
the predictor as conditional variational autoencoders. Specif-
ically,Ep outputs themeanμp and standard deviationσp over
the latent space p, while φ outputs the meanμz and standard
deviation σz over the latent strategy space zi+1. Define the
overall mean and standard deviation as μ = (μp, μz) and
σ = (σp, σz). In practice, higher values of σ indicate that
the robot is uncertain about its prediction, while lower values
of σ suggest that the robot is confident about p and zt+1. Our
overall loss function for robust strategy prediction sums the
reconstruction losses Eqs. 4 and 7 with a regularization term
that enforces aN (0, 1) Gaussian prior over the latent space:

L =
∑

T ∈B

(

Lz + Lφ + K L
(

N (μ, σ ) || N (0, 1)
)

︸ ︷︷ ︸

regularizer

)

(8)

Here T = (τ k, . . . , τ k+m) is a sequence of consecutive
interactions and B is the memory buffer that contains past
interactions. We emphasize that our prediction models are
not just trained once; we apply the loss function in Eq.8
throughout each interaction to continually improve the ego
agent’s ability to anticipate the other agent’s response.

4.2 Influential policies

In the first half of our RILI approach we developed a rep-
resentation learning structure that enables robots to predict
the other agent’s next strategy. The second half of our RILI
approach harnesses these predictions to influence the other
agent towards strategies the ego agent can exploit. Robots
that anticipate how humans will react to their behaviors can

choose actions to intentionally shape the human’s response.
We learn to influence others without hand-coded policies or
heuristics: instead, the robot uses reinforcement learning to
identify high reward behaviors, and influence becomes a nat-
ural outcome of this optimization procedure.

Robot policy In our motivating example a robot is trying
to build towers with a human. The robot needs to determine
which block to reach for (i.e., which actions a ∈ A to take).
To collaborate and pick up the same block as the human,
the robot must first anticipate the human’s latent strategy z
during the current interaction i . For instance, if the human’s
zi is reaching for the blue block, then the robot should also
reach for blue; but if instead the human’s zi is reaching for
a red block, then the robot needs to take different actions.
Because different human strategies require different robot
responses, we assert that the robot’s policy should depend on
the predicted z. But the ego agent also needs to understand
what dynamics p the human will follow when reacting to the
robot’s behavior. For instance, if the current human updates
their strategy to pick up whichever block the robot grasped
during the last interaction, then the robot can leverage this
knowledge of p to guide the other agent. Accordingly, we
learn a policy, parameterized by weights w, that is condi-
tioned on the predicted strategy, dynamics, and the robot’s
uncertainty over this prediction:

a ∼ πw( · | s, zi , pi , σ i ) (9)

Note that zi , pi , and σ i are held constant throughout the
i-th interaction, but are updated between interactions using
the models from Sect. 4.1. Including σ enables the ego agent
to take actions that are collaborative with a distribution of
strategies when the robot is unsure about its prediction (i.e.,
picking up the block the human has reached for most often).

Reinforcement learning We train the robot’s policy to
maximize the ego agent’s reward across repeated interaction.
Specifically, the ego agent learns a policy with weights ω in
order to maximize:

max
ω

∞
∑

i=1

[

γ i
Eρi

ω

[
H

∑

t=1

r(st , zi )

]]

(10)

Here γ ∈ [0, 1) is the discount factor, ρi
ω is the distribu-

tion over trajectories ξ i under a policy with weights ω, and
zi is the other agent’s true strategy that transitions accord-
ing to dynamics Eq.1. Ego agents that maximize Eq.10 will
naturally influence the other agent towards advantageous
strategies z. In our recurrent example the human’s strategy is
the block that they choose, and there are some blocks that are
easier for the robot to reach (e.g., blocks closer to the robot).
Since the ego agent receives the most reward during the i-
th interaction if the human and robot reach for the closest
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block, the robot is encouraged to learn a policy that guides
the human towards this z. Importantly, influential behavior
is made possible by the robot’s predictions z and p. Because
the robot anticipates how the other agent will respond to
its actions, it learns to select actions now that influence the
human towards beneficial strategies in future interactions.

5 Lower bounds on RILI performance

In Sect. 4 we introduced RILI, our approach for influenc-
ing humans whose latent dynamics change over time. If
the robot trains with N other agents across many interac-
tions, we would expect the robot to coordinate efficiently
with these N agents. Take our motivating example of a
robot learning to build towers with a human: after practic-
ing with this specific human for many hours, days, or weeks,
the robot should accurately anticipate the human’s blocks
and influence their choices. In practice, however, the robot
will inevitably encounter new dynamics (e.g., new humans)
that respond to the robot’s actions in different or unexpected
ways. Given the robot’s performance with N latent dynam-
ics sampled from an underlying distribution P , how will
the robot perform with other agents sampled from this same
distribution? Here we answer this question by finding Prob-
ably Approximately Correct-Bayesian bounds (PAC-Bayes)
(McAllester, 1999). PAC-Bayes theory has been shown to
provide the tightest known generalization bounds for super-
vised learning problems (Germain et al., 2009; Langford
&Shawe-Taylor, 2002; Seeger, 2002). In Sect. 5.1 we first
overview an existing PAC-Bayes bound for supervised learn-
ing settings. Next, in Sect. 5.2 we develop a correspondence
between the RILI algorithm and these supervised learning
settings, and then leverage this correspondence to extend the
PAC-Bayes bound to ourRILI algorithm. The result is a prob-
abilistic lower bound on the robot’s expected reward across
a distribution P of latent dynamics. This bound depends on
the number of dynamics the ego agent has encountered, the
ego agent’s measured performance with these seen dynam-
ics, and the divergence between the prior and posterior of the
latent space. Later, in Sect. 7 we will put the bound to the
test, and numerically show that the RILI agent’s expected
performance matches the theoretical bound.

5.1 Preliminaries of PAC-Bayes

PAC-Bayes theory is used to derive PAC (Probably Approx-
imately Correct) bounds for learning algorithms (Neyshabur
et al., 2017; McAllester, 1999; Germain et al., 2009; Lang-
ford&Shawe-Taylor, 2002). In this sectionwe present a brief
overview of PAC-Bayes bounds for supervised learning set-
tings; in the next subsection we will extend this bound to our
RILI algorithm.

Supervised learning Consider a robot that is learning to
label inputs x ∈ X . Let y ∈ Y be the space of labels, and
assume the robot maps inputs to predicted labels using a
function parameterized by weights σ . In other words, ŷ =
σ(x), where ŷ is the robot’s predicted label. At the start of
the task the robot has a prior P0(σ ) over the weights. But
as the robot observes new inputs x—and their true labels
y—it refines its belief over σ . Let P(x) be the distribution
over inputs, and let S = {x1, . . . xN } be N samples drawn
from this distribution. Given these N samples and their true
labels {y1, . . . yN } the robot learns a posterior P(σ ) over
the model weights. Ideally, the robot will learn choices of
σ that correctly label the inputs. Define L

(

σ(x), y
)

as the
loss function, where L captures the error between the robot’s
prediction ŷ = σ(x) and the true label y. Without loss of
generality we assume that this loss function is normalized so
that 0 ≤ L

(

σ(x), y
) ≤ 1.

5.2 PAC-Bayes bounds for RILI

Existing theory Within this supervised learning context,
existing work (Maurer, 2004; McAllester, 1999) has derived
a probabilistic upper bound on the robot’s loss. For any δ ∈
(0, 1), with probability at least 1 − δ we have that:

LP (P) ≤ LS(P) +

√
√
√
√KL(P || P0) + log

(
2
√

N
δ

)

2N
(11)

Here KL(P || P0) is the Kullback–Leibler divergence
between the posterior P(σ ) and the prior P0(σ ). The mea-
sured loss LS is the expected loss across the N datapoints
that the robot has already seen, and LP is the expected loss
across the entire distribution—including inputs x ∼ P(x)

that the robot has not interacted with. Formally, these losses
are defined as:

LS(P) = 1

N

N
∑

i=1

E
σ∼P

L
(

σ(xi ), yi
)

(12)

LP (P) = E
x∼P

E
σ∼P

L
(

σ(x), y
)

(13)

We note that Eq.13 is not actually evaluated in practice.
Instead, by empirically calculating the loss LS on the N
inputs we have seen, we leverage Eq.11 to obtain an upper
bound on Eq.13. This enables the robot to confidently
generalize its performance: using the losses the robot has
measured, the robot can bound its expected performance
across the entire distribution of inputs P(x).

Now that we have reviewed a key PAC-Bayes bound for
supervised learning, we will extend the theory to our RILI
algorithm. The purpose of this analysis is to quantify how
RILI generalizes: given the network’s performance with N

123



780 Autonomous Robots (2023) 47:771–796

Table 1 Correspondence
between supervised learning and
our proposed RILI algorithm

Supervised learning RILI

Input data x ∈ X → Dynamics f p ∼ P
Input data distribution P(x) → Dynamics distribution P( fP )

Model weights σ → Latent variable θ = (z, p)

Loss L(σ (x), y) → Cost C(θ, f p)

Encountered inputs S = {x1, . . . , xN } → Encountered dynamics S = { f p1 , . . . , f pN }
The supervised learning variables are defined in Sect. 5.1 and the RILI variables are discussed
in Sect. 5.2. We develop this correspondence so that we can apply PAC-Bayes theory to our
RILI algorithm. This results in Eq.14, a lower bound on expected reward (upper bound on
expected cost) across a distribution of dynamics P based on the measured rewards with N
encountered dynamics

different humans, how will RILI perform with new agents
that have dynamics sampled from the same underlying dis-
tribution P?

To reach our generalization result we will develop a pre-
cise analogy between the supervised setting in Sect. 5.1 and
our proposed approach. Our robot interacts with another
agent that has latent dynamics f p ∼ P , where distribu-
tion P is not known by the robot. These dynamics are
updated over repeated interactions: consider a robot that
has interacted with N different dynamics (e.g., N different
humans) such that S = { f p1 , . . . , f pN }. For each human
the robot records multiple sequences of experiences. Let
T i

k = {τ i
k , . . . , τ

i−m+1
k } be the i-th sequence of interactions

with the k-th other agent, and let Tk = {T 1
k , T 2

k , . . .} contain
all sequences for the k-th agent. Intuitively, these sequences
are batches of low-level data that RILI uses to predict the
other agent’s strategy and select the robot’s actions.

Recall that the representation learning component of RILI
(Sect. 4.1) inputs T i

k = {τ i
k , . . . , τ

i−m+1
k } and uses the strat-

egy encoder, dynamics encoder, and predictor to estimate the
human’s strategy z and dynamics p. To capture both z and p
we introduce a new variable θ = (z, p). More specifically,
our conditional variational autoencoders in Eq.8 output a
Gaussian posterior over the space of θ given input sequence
T , such that P(θ | T ) = N (μ, σ | T ). The robot starts
with a unit Gaussian prior P0 = N (0, 1 | T ) imposed by the
regularization term for these variational autoencoders, and
learns to map different T to different means μ and standard
deviations σ . Next, the reinforcement learning part of RILI
(Sect. 4.2) leverages θ ∼ P(· | T ) to select actions according
to policy π . Here we make two simplifications of Eq.9: first,
for our generalization analysis we leave out σ so that π only
depends on s, z, and p. Second, we assume that π is a deter-
ministic policy so that a = π(s, z, p). We will later show
that the empirical results match our theoretical predictions
even with these design approximations.

We now have a robot that selects actions according to the
latent parameter θ , where P(θ | T ) is the learned posterior
and P0(θ | T ) is the prior. To complete our analogy with the
supervised learning setting wemust introduce a loss function
that depends on θ . Let cost C(θ, f p) = −R be the negative
reward of acting based on θ during a single interaction when
the other agent has dynamics f p. Without loss of generality,
we again normalize this cost so that 0 ≤ C(θ, f p) ≤ 1. At
this point we have a parallel between RILI and the PAC-
Bayes setting: Table 1 reviews the correspondence. We will
therefore apply Eq.11 to reach our generalization result for
RILI robots.

Generalization result Consider a RILI robot trained with
N partners that have dynamics S = { f p1 , . . . , f pN }. The
robot has learned a Gaussian posterior P(θ | T ) that maps
sequences of low-level interactions to robot behavior. Let
the robot’s weights be fixed, so that no new learning occurs.
Given the robot’s average cost CS across the seen agents
S, for any δ ∈ (0, 1) the robot’s average cost CP across the
entire distribution of latent dynamicsP( f p)will be less than:

CP (P) ≤ CS(P) +

√
√
√
√KL(P||P0) + log

(
2
√

N
δ

)

2N
(14)

with probability at least 1 − δ. Here KL(P || P0) is the
Kullback–Leibler divergence between the learned posterior
over the latent strategy and dynamics P(θ | T ) = N (μ, σ |
T ) and the prior P0(θ | T ) = N (0, 1 | T ). We measure the
average cost across the known latent dynamics using:

CS(P) = 1

N

N
∑

k=1

1

|Tk |
∑

T i
k ∈Tk

E

θ∼P(·|T i
k )

C(θ, f pk ) (15)
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Similarly, the average cost across the distribution P of other
agents is:

CP (P) = E
f p∼P

E
T ∼P(·| f p)

E
θ∼P(·|T )

C(θ, f p) (16)

Reading Eqs. (15) and (16) from left to right, we first take the
expectation over the other agent’s latent dynamics and then
consider the sequences of interactions T that are likely for
that specific agent. Finally, we find the expected cost across
the latent parameters θ sampled from the learned posterior
P(θ | T ). Remember that Eq.15 is evaluated using mea-
sured data from our interactions with the N known agents,
while the robot does not evaluate Eq.16 in practice. Overall,
this result enables designers to generalize the performance of
their learned RILI system across populations of users. Given
that the robot is interacting with a population of humans
that have latent dynamics drawn from an underlying distri-
bution P , the robot can leverage its performance with N of
those humans to provide a probabilistic lower bound on the
expected reward across the entire population.

6 Implementing RILI

Our overall formalism is visualized in Fig. 3 and outlined
in Algorithm 1. At its heart RILI is built of multiple neu-
ral networks: the strategy encoder, the dynamics encoder,
a strategy decoder, the predictor, the policy, and the critic.
The specific implementation of these models is largely left
up to the designer. In this section we provide further details
about how we instantiated RILI during our simulations and
user studies: we believe that the listed details should serve as
a starting point for other designers. Code for our proposed
algorithm is available here: https://github.com/VT-Collab/
RILI_co-adaptation

Strategy, dynamics, and predictor The strategy encoder
Ez was a fully-connected networkwith 2 hidden layers of size
64. Recall that Ez maps low-level observations τ into a latent
strategy z ∈ Z: in our experiments we used a 10-dimensional
latent strategy space. The strategy decoderD then takes z and
the state-action trajectory ξ and attempts to reconstruct the
observed rewards. We similarly implemented D as a fully-
connected network with 2 hidden layers of size 64.

The dynamics encoder Ep inputs a sequence of m consec-
utive latent strategies h = {zi , . . . , zi−m+1} and outputs the
latent dynamics p. For our experiments we set m = 4, so
that the robot attempted to infer the other agent’s dynamics
from the last four interactions. We designed Ep as a fully-
connected network with 2 hidden layers and 64 units per
layer. Importantly, Ep outputs a Gaussian mean μp and stan-
dard deviation σp over the 10-dimensional latent dynamics
space. The predictor φ was constructed like the dynamics

encoder. Model φ inputs vectors τ , z, and p and outputs
a Gaussian posterior over the next latent strategy zi+1. We
programmed φ as a fully-connected network with 2 hidden
layers of size 64, and used the reparameterization trick to
sample zi+1 from a normal distribution with mean μz and
standard deviation σz .

Robot policy To perform off-policy model-free rein-
forcement learning we applied the soft actor-critic (SAC)
algorithm (Haarnoja et al., 2018). The actor (i.e., the policy)
and critic were fully-connected networks with 2 hidden lay-
ers of size 256. We used the tanh(·) activation throughout
the architecture, including the policy and critic networks. To
train the representation and reinforcement learning modules
we employed two separate Adam optimizers: for robust pre-
diction the learning rate was 1e−3 and for SAC the learning
rate was 3e−4.

7 Simulations

In this section we perform controlled experiments to com-
pare our proposed algorithm to state-of-the-art baselines. We
leverage three simulated environments established by prior
work: within each environment the ego agent interacts with
one other agent across interactions with H = 10 timesteps,
and the dynamics of this other agent change stochastically
between interactions. The resulting simulations have agents
who respond to the robot at every interaction, agents who
only adapt to some robot behaviors, and agents who stick
to their plan and ignore the robot’s actions entirely. The
ego agent cannot observe the true strategy or dynamics of
their partner and must co-adapt over repeated interactions.
We compare RILI to a reinforcement learning baseline that
does not learn an embedding of the other agent, as well as
approaches that combine representation and reinforcement
learning while assuming that the dynamics of the other agent
are constant.

In our first experiment (Sect. 7.2) the robot learns to influ-
ence and coordinate with an unknown distribution of other
agents across all three environments. Next, in Sect. 7.3 we
test the model’s capacity to remember old partners: i.e., after
learning alongside more than 250 other agent dynamics, can
the robot still coordinate with the original users? In Sect. 7.4
we explore the ego agent’s ability to adapt to unexpected, out-
of-distribution dynamics: i.e., if the robot has interacted with
other agents sampled fromdistributionP , howwill it perform
with new agents not drawn from P? Finally, in Sect. 7.5 we
empirically support our probabilistic lower bound on RILI
performance. We recognize that these simulations alone do
not necessarily capture how each algorithms will perform
with actual humans. We therefore use our controlled simu-
lations to complement the user studies in Sect. 8. We also
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Algorithm 1 RILI: Robustly Influencing Latent Intent
1: Randomly initialize the robust prediction networks Ez, Ep, φ,D
2: Randomly initialize the policy and critic networks
3: Initialize empty replay buffer B
4: Initialize zi ← 0, σ i

z ← 0, pi ← 0
5: for interaction i = 1, 2, . . . do
6: Sample a batch of m + 1 consecutive experiences (T m, τm+1) ∼ B
7: Initialize an empty batch of history hm

8: for τ in T m do
9: Pass τ through Ez and get the corresponding batch of z
10: Update the history batch hm ← hm ∪ z
11: Calculate the loss Lz

12: end for
13: Pass batch of history hm through Ep to get p
14: Pass batches of zm , τm , and pm through φ to get zm+1

15: Calculate the loss Lφ

16: Calculate total loss L given by Equation (8)
17: Calculate the gradient of total loss L
18: Update the autoencoder networks Ez, Ep, φ,D
19: Update the critic and policy networks
20: Collect interaction τ i using policy π(a | s, zi , σ i

z , p)

21: Update the replay buffer B ← τ i

22: Get the recent history T i from B
23: Estimate recent strategies z ← Ez(τ ) for each τ ∈ T i

24: Predict latent dynamics p ← Ep(hi ) where hi = {zi , . . . zi−m+1}
25: Predict latent strategy (zi+1, σ i+1

z ) ← φ(Ez(τ
i ), p, τ i )

26: end for

extend these simulations in the Appendix, where we interact
with increasingly erratic partners and more complex tasks.

Baselines We include four baselines for comparison:

– Oracle. This best-case robot has direct access to the other
agent’s strategy z.

– SAC Haarnoja et al. (2018). This robot uses only rein-
forcement learning, and does not learn a representation
of the other agent. SAC is equivalent to RILI when the
robot’s policy is conditioned on state but not z, p, or σ .

– LILI Xie et al. (2020). This related approach learns a
latent representation of the other agent’s strategy and
then conditions the robot’s policy on z. However, LILI
assumes that all other agents follow the same underlying
dynamics zi+1 = f (zi , τ i ).

– SILIWang et al. (2021). This recent method is an exten-
sion of LILI that explicitly encourages the ego agent to
stabilize the other agent’s latent strategy, i.e., the robot
tries to drive zi+1 = zi . Like LILI, SILI assumes that
all users respond with the same dynamics.

7.1 Simulation environments

The experiments in this section were performed on three
environments with continuous state-actions spaces: Circle,
Driving, and Robot (see Fig. 4). We selected these environ-
ments to remain consistent with the baselines most relevant
to our approach (Wang et al., 2021; Xie et al., 2020). Each
environment consists of an ego agent and another agent: the
other agent’s policy may change between interactions, and
the ego agent does not know either the other agent’s policy
or their dynamics.

We programmed N different latent dynamics for the other
agent in each environment. ForCircle,Driving, andRobotwe
included the dynamics described in Xie et al. (2020); Wang
et al. (2021): these dynamics cause the other agent to react to
either some or all of the ego agent’s behaviors.We then added
new dynamics where the other agent ignores the robot and
follows a stationary policy. Finally, we created a separate
Circle environment where the other agent’s dynamics are
stochastically sampled from a continuous distribution (we
refer to this as Circle-N).

Circle This environment is a pursuit-evasion game (Vidal
et al., 2002) with two-dimensional states and actions. During
each interaction the ego agent (pursuer) attempts to reach the
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Fig. 4 Setup and results from our first experiment (Sect. 7.2). (Top)
Environments where the ego agent interacts alongside one other agent.
In Circle the other agent selects their hidden location, in Driving the
other agent chooses the lane they merge into, and in Robot the other
agent picks their desired block. This other agent changes their policy
between interactions (e.g., in Circle the other agent chooses a new hid-
den location), and the rules that the other agent uses to make these

policy changes also shift stochastically (e.g., in Circle the other agent
may switch from moving clockwise to moving counter-clockwise).
(Bottom) The ego agent’s average reward as a function of interaction
number. Shaded regions show the standard error across three trials.Ora-
cle always knows the other agent’s latent strategy and exhibits best-case
performance

other agent (evader); however, the ego agent cannot observe
the other agent’s position. Between interactions the other
agent changes their location by moving around the circle.
Here the other agent’s latent strategy z could represent their
location and their latent dynamics f p captures how the other
agent updates their position between interactions.

For Sect. 7.2 we programmed the other agent with N = 4
possible dynamics. In Dynamics 1 the other agent moves
counter-clockwise when the ego agent lands outside the cir-
cle, and otherwise moves clockwise (Xie et al., 2020); in
Dynamics 2 the other agent moves clockwise when the ego
agent moves outside the circle, and otherwise it does not
move (Wang et al., 2021). For Dynamics 3 and 4 the other
agent moves counter-clockwise or clockwise regardless of
how the ego agent behaves.

Circle-N This environment is similar to Circle. But
instead of designing four latent dynamics, we sample the
other agent’s dynamics from a continuous distribution P .
More specifically, we sample a step size from −π to π radi-
ans. Between each interaction the other agent moves around
the circle with the current step size. This environment is

especially useful for simulation since we can always sample
different step sizes, leading to a potentially infinite number
of latent dynamics.

Driving In this environment the speeding ego agent is try-
ing to pass a slower driver. The ego agent’s state is its (x, y)

position, the ego agent’s action is its steering angle, and the
reward function encourages the robot to minimize steering
angle while avoiding a collision. The other agent may change
lanes as the ego agent approaches: perhaps a collaborative
agent gets out of the robot’s way, while a competitive agent
merges into the robot’s lane. Here latent strategy z could
represent the lane the other agent merges into and latent
dynamics f p captures how the other agent changes lanes in
response to the robot’s driving.

We programmed N = 5 dynamics for the other agent. In
Dynamics 1 the partner merges into the lane where the ego
agent most recently passed (Xie et al., 2020); in Dynamics
2 and 3 the other agent moves into the lane that the ego
agent occupied earlier in the interaction (Wang et al., 2021).
Finally, in Dynamics 4 and 5 the other agent cycles through
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Fig. 5 Ego agent’s reward across multiple other agents who react to the
robot in different ways (Sect. 7.2). For Circle in Fig. 4 the other agent
had four possible dynamics for updating their latent strategy. Here we
take the learned models after 30, 000 interactions and roll them out
with each of the four dynamics. More negative rewards indicate worse
performance, and an ∗ denotes statistical significance (p < .05)

the lanes either left-to-right or right-to-left regardless of the
ego agent’s actions.

Robot In our final environment the ego agent is a sim-
ulated Franka Emika robot arm, and the other agent picks
one of three goals that it wants the robot to reach. The
ego agent does not know which goal the other agent has
in mind, and must learn to predict the other agent’s choice.
The ego agent’s state is its end-effector position, actions are
end-effector velocities, and the robot’s reward is the nega-
tive distance between its end-effector and the target object.
Here z could represent the other agent’s desired goal and f p

captures how the other agent updates their choice between
interactions. Because of the robot’s initial position and the
location of the goals, the robot receives higher rewards when
the other agent chooses the right-most goal.

We program the other agent with N = 4 dynamics for
choosing targets. InDynamics 1 the other agent changes their
goal tomove away from the robot’s end-effector; inDynamics
2 the other agent keeps the same goal if the robot goes to
the left of that target, and otherwise moves away from the
robot (Wang et al., 2021). Finally, in Dynamics 3 and 4 the
other agent cycles clockwise or counter-clockwise through
the three goals without responding to the robot.

7.2 Coordinating with changing agents

In our first experiment we pair the ego agent with one other
agent whose dynamics change throughout the simulation.
The ego agent starts from scratch: this robot has no prior
experience, and must learn to successfully complete the task
despite the other agent’s shifting strategy and dynamics.
Across Circle, Driving, and Robot environments the other
agent’s dynamics change between interactions with a 1%
probability. We test Oracle, SAC, LILI, SILI, and RILI
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Fig. 6 Results from our first experiment in the Circle-N environment
(Sect. 7.2). (Top) LikeCircle, the ego agent and the other agent are play-
ing a pursuit-evasion game. The other agent moves their hidden location
around the circle between interactions. Here the latent dynamics of the
other agent are sampled from a continuous uniform distribution, where
each step size [−π, π ] is equally likely. For instance, with dynamics
f1 the other agent moves by +π/4 between interactions, while with
f2 the other agent moves −π/2. (Bottom) The ego agent’s reward vs.
interaction number. The shaded region is the standard error across three
trials

three times for the same number of interactions in each envi-
ronment.

Our results are displayed in Fig. 4. These plots show the
ego agent’s reward as a function of interaction number. Recall
that Oracle has direct access to the other agent’s strategy zi

(i.e., in the Circle environment Oracle knows the evader’s
location). As such, we treat Oracle as the gold standard—
in the best case, our learning algorithm should match the
performance of Oracle. At the other end of the spectrum is
SAC: this approach does not learn amodel of the other agent,
and seeks behaviors that work well on average. For example,
in the Circle environment SAC often moves to the center
of the circle (minimizing its expected distance to the evader
when the evader’s location is unknown). Intuitively, SAC
serves as theworst case baseline. Across Circle, Driving, and
Robot we find that RILI converges to the best-case rewards
of Oracle, while LILI and SILI perform similarly to one
another and achieve rewards closer to the worst-case SAC.

For the Circle environment we break these results down
by dynamics: see Fig. 5. Remember that during this exper-
iment the other agent in Circle has N = 4 possible latent
dynamics. After completing the interactions shown in Fig. 4,
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Fig. 7 Example of the ego agent and other agent interacting in Circle
(Simulation 7.2). The other agent is using latent dynamics from Xie et
al. (2020). If the ego agent ends the interaction outside the circle, the
other agent moves counter-clockwise; but if the ego agent ends inside
the circle, the other agent moves clockwise (Dynamics 1). Here the ego
agent has previously interacted multiple different latent dynamics, and
is now learning alongside an agent using Dynamics 1. (Top Row) LILI

ends each interaction inside the circle and fails to influence the other
agent. (MiddleRow)SILI behaves similar toLILI. (BottomRow)RILI
has learned to influence the other agent by switching between outside
and inside of the circle. Because the ego agent has trapped the other
agent close to its start position, RILI is able to reach higher rewards
than the alternatives

we evaluate the learned models over 1, 000 interactions with
Dynamics 1–4. We observe that RILImatches the gold stan-
dard Oracle for each other agent, while repeated-measures
ANOVAs show that LILI and SILI perform significantly
worse than RILI across the board (p < .05). Interestingly,
RILI slightly outperforms Oracle with Dynamics 3–4. One
explanation for this could be the interplay of learning along-
side the four dynamics. InDynamics 3–4 the other agent takes
larger steps than in Dynamics 1–2. It is possible that RILI
learned tomove farther clockwise or counterclockwise to trap
the other agent in Dynamics 1–2, and these larger step sizes
translated over toDynamics 3–4. By contrast,Oracle always
moves directly towards the known other agent; it therefore
learns smaller step sizes in Dynamics 1–2 and must adapt to
larger changes in Dynamics 3–4.

Next we repeat the same experimental procedure in the
Circle-N environment. So far the ego agent has only had
to co-adapt to N = 4 or N = 5 dynamics. But within
Circle-N there is a continuous space of possible dynam-
ics, meaning that each time the ego agent samples from P
it leads to new, previously unseen dynamics. Figure6 dis-
plays how each algorithm performs across three trials. As
before, the other agent’s dynamics change between each of
the 30, 000 interactions with a 1% probability, meaning that
the ego agent interacts with roughly 300 different dynamics.
With this increased number of latent dynamics the differ-
ences between the algorithms becomes more pronounced:

RILI converges toOracle while LILI and SILI perform on
par with SAC. Put another way, LILI and SILI match the
performance of a naive robot that always goes to the center
of the circle. We highlight this naive behavior in Fig. 7 and
compare it to the influential behavior displayed by RILI.
Overall, our results suggest that RILI learns to coordinate
with agents that shift how they respond to the robot.

7.3 Revisiting previously seen dynamics

If RILI rapidly adapts to coordinate with new agent dynam-
ics, one might ask whether we are also forgetting the
dynamics that the robot has already seen. Imagine a person
whoworkswith the robot one day and then comes back to col-
laborate a fewweeks later: we would hope that the robot both
(a) retains the behaviors that led to high rewardswith this spe-
cific human and (b) transfers other effective behaviors that it
has learned frommore recent users.We have some indication
that the RILI agent can remember and coordinate with mul-
tiple dynamics in Fig. 5. But in Fig. 5 the robot is continually
interacting with the same N = 4 dynamics throughout the
learning process, and there are only four different dynamics
to remember.

In our second experimentwe therefore evaluate the robot’s
ability to coordinate with old dynamics after interacting with
a larger number of new, unique agents. First we use the same
procedure as Sect. 7.2 to train RILI, LILI, and SILI with

123



786 Autonomous Robots (2023) 47:771–796

-0.1

1000

R
ew

ar
d

Interactions
2000 3000 4000 50000

-0.2

-0.3

-0.4

-0.5

agent N agent 1 agent 2 agent 3 agent 4 agent 5

LILI SILI RILI

Fig. 8 Results from our second experiment (Sect. 7.3). Using the pro-
cedure from Sect. 7.2 we first train the ego agent with roughly 300 other
agent dynamics drawn from Circle-N. We then roll out the final learned
models with the first five other agents the robot encountered. The robot
interacts with each of these agents for 1000 interactions: vertical lines
indicate when the other agent’s dynamics change. Our results suggest
that RILI is able to remember past dynamics

other agent dynamics drawn from a continuous distribution
in Circle-N. After 30, 000 interactions the robot has encoun-
tered an average of 300 different partners. We then freeze the
networks and return to interact with the first five other agents
(i.e., the first five simulated humans who used the robot). Our
results are shown in Fig. 8. Here the horizontal dashed lines
capture the average rewards for Oracle and SAC, and the
vertical lines indicate when we switch from one dynamics
to another. We find a clear distinction between Oracle and
RILI on one extreme and SAC, LILI, and SILI on the other
extreme. Our results suggest that RILI is able—at least to
some extent—to remember previously seen agents. Because
the robot does not continue learning during Fig. 8, this also
indicates that RILI can predict the strategies and dynamics
of multiple different agents.

7.4 Out-of-distribution dynamics

Our first two experiments suggest that RILI can learn
to coordinate with a set of other agents, provided that the
dynamics of those other agents are all drawn from the
same underlying distribution P . However, it is reasonable
to expect that—at some point during the robot’s lifetime—it
will encounter another agent whose dynamics diverge from
everything the robot has previously encountered. In other
words, our ego agent will run into out-of-distribution other
agents.

In our third experiment we test the ego agent’s ability to
coordinate with another agent whose dynamics are out-of-
distribution. We stick with the Circle-N environment, and
first trained the robot to coordinate with agents whose step
size is sampled from π to −π . We then conducted an online
survey to ask human participants for their suggested dynam-
ics. Participants described how they would respond to the
ego agent’s actions and evade the pursuer: we grouped their
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Fig. 9 Results for the third experiment (Sect. 7.4). Here we focus on
how the ego agent adapts to unexpected other agent dynamics that
are out-of-distribution. We start with an ego agent trained in Circle-
N with other agents that move with constant steps of [−π, π ]. We then
learn alongside four new dynamics that are crowd-sourced (see Table 2).
These new dynamics are different from what the robot has seen before;
for example, the other agent may react by moving to the point on the
circle opposite to where the robot went in the last interaction. We plot
the average reward across all four new dynamics over 1000 interactions.
Compared to the baselines, RILI learns to coordinate with these new
unexpected dynamics and converges back towardsOracle performance

responses into 4 new dynamics. These externally provided,
out-of-distribution dynamics are listed in Table 2. Once col-
lected, we next paired the new other agents with RILI,
LILI, and SILI robots. During this experiment the ego agent
learned alongside the newdynamics for a total of 1, 000 inter-
actions across three separate trials. Our results are displayed
in Fig. 9. Notice that when the new dynamics are introduced
the performance of each algorithm drops—because the other
agent is now responding to the robot’s behavior in an unex-
pected way, the ego agent is not immediately sure how to
coordinate. But over the course of 1, 000 interactions we
again find that the RILI agent converges to the performance
of Oracle, and LILI and SILI return to the SAC baseline.
Overall, the results from this simulation suggest that learning
with RILI not only improves the agent’s performance with
dynamics sampled from a fixed distribution, but also enables
the robot to adapt to new agents who behave in unexpected
ways.

7.5 Empirically testing generalization bounds

In Sect. 5 we extended PAC-Bayes theory to reach a the-
oretical lower bound for RILI performance. Given that the
ego agent has learned alongside N other agents with dynam-
ics sampled from P , we can leverage Eq.14 to bound how
the ego agent will perform with new agents also sampled
from P . In order to reach this result we made two simplifi-
cations within RILI: first we assumed that π did not depend
on σ , and second we assumed that π was deterministic. Here
we test the resulting theory while removing these assump-
tions. Put another way, we use our full RILI algorithm with
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Table 2 Crowd-sourced dynamics for the pursuit-evasion game (Sect. 7.4)

New Dynamics 1 If the ego agents moves closer to the other agent at the end
of the interaction then the other agent moves
counter-clockwise with step π/3

New Dynamics 2 Other agent moves to a random point on the quadrant of the
circle opposite to where the ego agent ended last
interaction

New Dynamics 3 Other agent moves to the point on circle opposite to the ego
agent

New Dynamics 4 If the ego agent ends on the right side of the circle the other
agent goes to θ = π . Otherwise the other agent goes to
θ = 0

Online participants responded to a survey asking how they would move in Circle to avoid the ego agent. We grouped similar
responses and reached four new dynamics for the other agent. We then explored how agents trained in Circle-N adapted to
these new, unexpected other agents (Fig. 9)
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Fig. 10 Empirical support for our theoretical bound on RILI perfor-
mance (Sect. 7.5). In Sect. 5 we applied PAC-Bayes theory to find an
upper bound on cost (i.e., a lower bound on reward). Here we test
the resulting bound in simulation. We first trained RILI alongside
N = {10, 20, 30, 40} dynamics sampled from Circle-N. We then used
Eq.14 to plot the probabilistic worst case performance across the entire
distribution of dynamics given only N samples. To estimate the true cost
we rolled out the learned models with 1, 000 dynamics drawn from dis-
tribution P . Our results show that the actual cost (orange) is below the
theoretical upper bound (i.e., within the shaded region)

a stochastic policy π(a | s, z, p, σ ) and empirically measure
whether the algorithm’s performance lies within the theo-
retical bound. For clarity we remind the reader that Eq. 14
provides an upper bound on expected cost, which is equiv-
alent to a lower bound on expected reward. Here we will
measure cost to be consistent with existing PAC-Bayes the-
ory.

Our fourth experiment takes place in the Circle-N envi-
ronment. This experiment has two components: finding the
theoretical bound and estimating the actual performance. To
obtain the theoretical bound we first train RILI alongside

N = {10, 20, 30, 40} other agents. For each value of N
we perform three runs. We then measure the robot’s cost
using Eq.15 and compute the Kullback–Leibler divergence
between the model posterior P(θ | T ) = N (μ, σ | T )

and the prior P(θ | T ) = N (0, 1 | T ). By plugging these
measured terms into Eq.14 we obtain the theoretical upper
bound on cost after working with 10, 20, 30, or 40 other
agents. Remember that this bound indicates how a robot that
is trained with N agents will generalize across the entire
distribution P . Our second step is to estimate RILI’s actual
performance across the entire distribution. To do this we take
the RILI model trained after working with N agents, freeze
the weights, and roll it out with 1, 000 agents sampled from
P . Our assumption here is that by measuring RILI’s perfor-
mancewith these 1, 000 samples wewill reach an estimate of
the true cost Eq.16.We plot both the theoretical upper bound
and the estimated true cost in Fig. 10. Our results show that
the robot’s actual performance is below the upper bound,
and as RILI interacts with more agents both the theoretical
and empirical costs decrease. This matches our intuition: we
expectRILI to performbetter across a distribution of dynam-
ics as it interacts with more dynamics from that distribution.
Overall, the results from this fourth simulation support the
theoretical bound on RILI performance.

8 User study

Our ultimate goal is a learning algorithm that enables robots
to coordinate with and influence actual humans. We recog-
nize that humans react to robots, and that different humans
adapt to the same robot behaviors in different ways (Niko-
laidis et al., 2017;Goodrich andSchultz, 2008; Ikemoto et al.,
2012). So far our simulations have captured these dynamic
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interactions in controlled environments (Sect. 7). But unlike
simulated agents, real humans are noisy and imprecise: their
latent strategies and dynamics constantly shift, and a single
human may switch between competitive and collaborative
interactions. In this section we accordingly perform two user
studies with in-person participants recruited from the cam-
pus community. In the first study (Sect. 8.1) participants play
a game of tag with a virtual agent. This agent is trained from
scratch: the robot starts the experiment without ever having
played tag before. Over repeated interactions with multiple
humans the virtual robot must learn to anticipate where the
human will hide and then reach for that location. In our sec-
ond study (Sect. 8.2) humans build a tower with a Fetch robot
arm. Offline we train the robot to build towers alongside sim-
ulated users; then during the experiment the robot must learn
to adapt to current participant over only 30 interactions.

Independent variablesWewill compare two robot learn-
ing algorithms: state-of-the-art LILI (Xie et al., 2020) and
our proposed RILI. Both of these approaches attempt to
learn a representation of the other agent and then leverage
that representation within the ego agent’s policy. But while
LILI assumes that all humans react to the robot in the same
way (i.e., follow the same underlying rules), RILI learns
to robustly predict the other agent’s strategy across multi-
ple latent dynamics. We have chosen to use LILI instead of
SILI for two reasons: (a) in our pilot studies with simulated
humans LILI outperformed SILI and (b) SILI is designed to
drive the other agent towards constant strategies, but our user
study environments require constantly changing strategies.

8.1 Learning to play tag from scratch

In ourfirst user studyparticipants interactedwith an ego agent
in a virtual game of tag (see Fig. 11). This game is similar to
the Circle environment from Sect. 7. Between each round the
human chose where around the circle they wanted to hide,
and then the ego agent attempted to predict and reach the
human’s hidden position. Importantly, the ego agent started
from scratch: at the beginning of the experiment the virtual
robot had no experience playing tag and had not interacted
with any simulated users. Participants were not forced to fol-
low any pre-defined rules or patterns of play: we encouraged
users to develop their own methods for avoiding the robot,
and these dynamics changed both over time and between
participants. We measured how LILI and RILI agents were
able to coordinate with the changing human participants.

Experimental setupUsers played agameof tagwith avir-
tual agent by using a clicking interface. The user and virtual
agent were point masses in the continuous two-dimensional
Circle environment outlined in Sect. 7. Participants sawa ren-
deringof the environment on a computer screen: the graphical
interface displayed their position and the ego agent’s final
position at the end of each interaction. Between interactions

users chose where along the circle they wanted to move by
clicking on the screen. Here the user’s latent strategy could be
where they are hiding on the circle, and their latent dynamics
are how they change their hiding location in reaction to the
robot. As an example, in one latent dynamics a user might go
to locations that maximizes their distance from the ego agent.
The ego agent’s state was its (x, y) position, the ego agent’s
actionswere changes in position, and the reward functionwas
the negative Euclidean distance between the ego and the hid-
den user. The robotmaximized its reward by reaching exactly
to the human’s hidden position. In each interaction the ego
agent started at a position halfway between the center and the
top of the circle. The ego agent acted for H = 10 timesteps
to reach the user, and users were shown the ego agent’s final
position at the end of each interaction.We emphasize that this
environment was continuous, i.e., the human might choose
to hide anywhere on the perimeter of the circle.

Dependent measures To evaluate how accurately the ego
agent (pursuer) caught the human (evader) we measured two
things. First, we recorded the distance between the ego agent
and the human at the final timestep of each interaction (Dis-
tance). For reference the radius of the circle was 1 unit, so
a Distance > 1 indicates that the virtual robot was more
than one radius away from the human agent. As a binary
measure of success we also recorded the number of times
the ego agent caught the user (Times Caught). The human
was “caught” if the distance between the ego agent and the
human at the end of the interaction was less than half the
circle’s radius (e.g., Distance < 0.5). The ego agent could
never observe the human’s hidden location, and had to learn
to catch this human based on low-level observations of its
own states, actions, and rewards.

ParticipantsWe recruited 22 participants (4 female, ages
24 ± 4.5 years) from the Virginia Tech community. All
participants provided informed written consent following
university guidelines (IRB #20-755).We conducted awithin-
subject design. Every participant interacted with both LILI
and RILI for the same number of interactions. The order
of the methods was counter-balanced between participants,
and participants were not told which of the two algorithms
learning they were currently interacting with.

Procedure Before starting the experiment we informed
participants about the rules of the game and asked them to
play a few practice rounds. Once the experiment started the
user was instructed to move around the perimeter of the cir-
cle to evade the ego agent. In our initial trials we found that
users always evaded the ego agent by going to the diamet-
rically opposite point. We were concerned that every user
might follow this same latent dynamics. To better ensure
diversity in user behavior we constrained participants to a
step size ≤ π/2. Besides this constraint, however, partici-
pants were free to choose how they wanted to move in every
interaction, i.e., the users could select their own time-varying
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Fig. 11 Results from our first user study in Sect. 8.1. (Left) Participants
visited the lab and played a virtual game of tag. Tag is similar to Cir-
cle from Sect. 7: users moved their cursor around a circle to evade the
robot. Each participant was free to choose their dynamics for avoiding
the robot, and participants could adapt their dynamics between inter-
actions. (Middle) 22 participants evaded LILI and RILI agents for a
total of 15, 000 interactions. We plot the Distance between the robot
and human at the end of each interaction. Note that the radius of the

circle was one unit, so a Distance> 1 indicates the robot ended more
than one radius away from the human. We draw vertical lines every five
users, and the shaded regions show standard deviation. (Right) Num-
ber of times the robot caught the human. Here a human is caught if
the distance between the robot and human is less than 0.5 at the end
of the interaction. RILI caught participants more frequently than LILI
(p < .001)

latent dynamics. As an example, we observed that some users
changed their direction ofmotion frequently to try and throw-
off the pursuer, while others moved in a consistent direction
away from the robot’s last position. We did not reset the
robot’s training between participants—or even inform the
robot that it was now interacting with a new human. Instead,
the robot’s learning simply resumed once the new participant
began to play tag. Overall, we trained eachmethod for a com-
bined total of 15, 000 interactions across all 22 participants.

Hypothesis We hypothesized that:

H1. Agents that learn from scratch using RILI will
more frequently tag adversarial humans than agents
that learn from scratch using LILI.

Results The results of our first user study are summa-
rized in Fig. 11. We plot the Distance from the robot to
the human as a function of interaction number. Remem-
ber the ego agent works with each subsequent user without
resetting its learning process, so that from the robot’s per-
spective the virtual agent plays 15, 000 interactions with
a single other agent. Lower Distance scores indicate that
the ego agent ended the interaction closer to the human,
and as Distance approaches zero the robot more accurately
predicts and reaches the human’s hidden position. We find
that RILI reaches the human more accurately than LILI
throughout the user study. To determine how many times
the robot catches the evading human, we next plot Times
Caught. This binary metric counts up the number of times
the virtual robot ended within a pre-defined distance from
the human, and is summed across all 15, 000 interactions.
Here RILI catches the human 37% more frequently than

Fig. 12 Comparison of influential behavior in our first user study
(Sect. 8.1). We plot the percentage of interactions where users hid in the
upper half of the circle (see Fig. 11). Because the robot started along the
positive y axis, these human locations are closer to the robot’s initial
position and lead to higher robot rewards. Hence, the robot should ide-
ally influence humans tomaximize their frequency of hiding in the upper
semicircle. Humans that are not influenced by the robot (i.e., humans
that play randomly) will move to the upper semicircle in around 50% of
interactions. We find that RILI influenced humans significantly more
frequently than LILI over the last 1, 000 interactions (p < .001)

LILI. Wilcoxon signed-rank tests reveal that the difference
is statistically significant: Z = −12.819, p < .001. Overall,
these results support hypothesis H1 and indicate that RILI
robots learn to coordinate from scratch more effectively than
a state-of-the-art baseline.

Does RILI influence actual humans? The overall objec-
tive of RILI is to co-adapt to dynamic agents. As part of that
objective, in Sect. 4.2 we designed RILI to learn influen-
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tial policies. We here analyze whether RILI actually results
in influential behavior when co-adapting alongside human
users. As a reminder, the robot starts every interaction in
the x-y position (0, r/2), where r is the circle radius, and
the robot’s reward is the negative of its Euclidean distance
from the user’s position. Intuitively, if the evading humans
are in the upper half of the circle the robot can reach them
more quickly. Put another way, the robot can maximize its
long-term rewards by influencing the users to choose hid-
ing locations in the upper half of the circle. We quantify the
robot’s influence using the metric Human in Upper Half,
which counts the percentage of interactions where the user
hid in the upper semicircle. If the ego agent did not influence
users we would expect Human in Upper Half to converge
around 50%. In Fig. 12 we plot the results over the last 4000
interactions of the user study. From this plot we observe that
RILI influenced humans to hide in the upper half more con-
sistently than theLILI baseline.AWilcoxon signed-rank test
revealed that users were influenced significantly more fre-
quently byRILI than byLILI over the last 1000 interactions
(Z = −6.16, p < .001). These results suggest theRILI does
actually result in robot policies that influence humans with
changing latent dynamics.

8.2 Rapidly adapting to build towers

Our first user study suggests that—when a robot encoun-
ters a new interactive task—the robot can leverage RILI to
gradually adapt to the task and the human’s behaviors. But
learning both the task and how to coordinate from scratch is
challenging: we conducted Sect. 8.1 in a virtual environment
so that we could maximize the number of interactions with
humans and collect as many experiences as possible. In more
realistic industrial settings we anticipate that manufacturers
will pre-train the robot using prior knowledge of the task.
Accordingly, we here return to our motivating example from
Fig. 1: a human and Fetch robot arm work together to build
towers. During each interaction the human and robot add one
block to their respective towers, and the robot is rewarded
for building the same tower as the human. Here the block
the user chooses in a given interaction is captured by their
latent strategy, and how they choose their next block is rep-
resented by their latent dynamics. We assume that the robot
knows about the task ahead of time. Instead of starting from
scratch, we pre-train the robot offline by learning to complete
the task with simulated humans. We then put this policy to
the test and start to work with actual participants. Overall,
we study whether training RILI with simulated humans and
then interacting with actual humans leads to rapid, seamless
adaptation.

Experimental setup Our experimental setup is shown in
Figs. 1, 2, and 13. Participants sat across the table from a 7-
DoF Fetch Mobile Manipulator. On the table were two rows

of colored blocks (one row for each agent), and during the i-
th interaction the human and robot each picked up one block
from their row and added it to their tower. To keep the exper-
iments under 1 hour in length and maintain subject interest,
users did not physically assemble the towers. Instead, the user
and robot simply indicated which block they would add to
their tower. The robot’s statewas its end-effector position, the
robot’s action was a change in end-effector position, and the
robot’s reward function was the negative Euclidean distance
between the user’s chosen block and the robot’ end-effector.
Put another way, the robot was motivated to pick up the same
blocks as the participant.We gave the robot a bonus reward if
users picked up the block on their right; because of the con-
figuration of the robot arm, this far right blockwas the easiest
for the robot to grab. Each interaction lasted 10 timesteps, and
at every timestep the robot would move towards the block it
wanted to pick up.

Before the start of the user study we pre-trained LILI and
RILI agents in the tower environment. Instead of interacting
with actual users the robots learned alongside a simulated
human. We designed three different latent dynamics for this
simulated human to leverage: a competitive human that picks
up the block farthest away from the robot’s last choice,
a collaborative human that picks up the same block the
robot chose last time, and an independent human who cycles
through the blocks while ignoring the robot’s behavior.
Similar to Sect. 7.2 the simulated human’s latent dynam-
ics changed with 1% probability between interactions. Both
LILI and RILI learned from 10, 000 interactions with these
simulated humans. From the robot’s perspective the par-
ticipant’s strategy could be the block they select and their
dynamics could correspond to how they change their block
choice between interactions.

Dependent variables When working with actual partici-
pants we recorded the blocks that the human and robot added
to their towers at each interaction. Recall that the robot’s
objective in this study is to build the same tower as the human
(e.g., to pick up the same blocks as the human). We therefore
measured the robot’s performance by counting the number
of Matching Blocks for each participant. To get a sense of the
human and robot policies, we also measured how frequently
each of the blocks were chosen (Block Frequency). During
the experiment the robot never observed which blocks the
human picked, and the robot had to learn to coordinate with
the human based only on its own states, actions, and rewards.

ParticipantsWe recruited 11 participants (11 male, ages
22.8 ± 3 years) from the Virginia Tech community. All
participants provided informed written consent prior to the
experiment consistent with the university guidelines (IRB
#20-755). None of the participants in this user study were
also participants in the Sect. 8.1 experiment. We conducted a
within-subjects study where each participant interacted with
RILI as well asLILI. The order of the methods was counter-
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Fig. 13 Example interactions between the robot and human during our
second user study (Sect. 8.2). In each interaction the human and robot
pick one block to add to their towers; the robot gets higher rewards
for picking the same block as the human. The robot cannot observe
the human’s choices and only measures its own state, actions, and

rewards. This particular user is choosing blocks in order while ignoring
the robot’s behavior. (Top Row) LILI always reaches for the middle
block. (Bottom Row) RILI adapts to the user and matches their block
at each interaction

balanced across the users (i.e., half the participants started
with LILI and the other half started with RILI). Participant
completed 30 interactions with each method for a total of 60
interactions per participant.

Procedure Before starting the study we explained the
setting to users and encouraged them to think about their
interaction strategy. Specifically, the participants were asked
to decide on what behavior they will use for selecting blocks;
users were instructed to maintain this same pattern through-
out the experiment. We explicitly asked participants not to
choose blocks at random. During the experiment the human
and robot took turns adding blocks to their respective tow-
ers. We placed five different colored blocks in front of the
human and the same five different colored blocks in front of
the robot (see Fig. 13). Within each interaction the human
went first and chose their color block; then the robot moved
next to selected their own block. Importantly, the robot was
never informed which block the human picked. At the end of
each interaction the robot observed its rewards and both the
robot and the participant reset their blocks for the next inter-
action. This process was repeated across 30 interactions per
method. Participants were never told how they should choose
the blocks and were free to follow their own personalized
latent dynamics. However, we did instruct the participants to
try and maintain consistent dynamics throughout the experi-
ment (i.e., however participants played with the first method
they should try to replicate with the second method).

Hypothesis We hypothesized that:

H2. Robots that use RILI to pre-train with simulated
humans and then interact with actual humans will

better match the human’s towers than LILI robots
learning under the same conditions.

ResultsOur results from this final user study are displayed
in Figs. 13 and 14. We also include video from this experi-
ment at: https://youtu.be/WYGO5amDXbQ

Before summarizing our results we first want to explain
the robot behaviors observed during the study. In Fig. 13 we
show a sequence of interactions fromParticipant 4withLILI
and RILI. This specific participant appeared to choose their
blocks in sequential order, and ignored the robot’s behav-
ior: in the top row we observe that LILI continually picks
the middle block (orange) while on the bottom row RILI
has identified the participant’s dynamics and matches their
choices (red, purple, then orange). This is supported by the
plot for Participant 4 in Fig. 14, which shows RILI matches
this user’s blocks almost twice as often asLILI. Interestingly,
LILI seemed to prefer the middle block across all partic-
ipants. Looking at Fig. 14, we notice that the LILI robot
selected the middle block 86.7% of the time, and reached
for the remaining blocks during only 13.3% of interactions.
LILI’s convergence on the middle block is at odds with the
human’s actual behavior—looking again at Fig. 14, when
working with LILI the humans selected the middle block
only 33.6% of the time and the remaining blocks 66.4% of
the time.

So why did LILI incorrectly reach for the middle block
so frequently? Remember that the robot’s reward function
depends on the distance between the robot’s end-effector
and the human’s preferred block. By reaching for the mid-
dle block LILI played it safe: going for the middle of the
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Fig. 14 Results from our second user study in Sect. 8.2. Here the human
and robot are selecting blocks to build towers, and the robot’s objective
is to match the human’s tower. (Left) Frequency the human and robot
selected each block. While LILI added the middle block to its tower
86.7% of the time, humans only chose this block in 33.6% of interac-
tions. If the robot is uncertain about the human going for the middle
block is a safe play since it minimizes the average distance across all

possible human choices. By contrast, we observe that RILI chooses
each block at a frequency that roughly matches the actual participants.
(Middle) Overall performance of the robot across all 11 participants.
RILI matched the human more often than LILI (p < .001). (Right)
Breakdown of the robot’s performance across each individual partici-
pant

table maximizes the robot’s expected reward if—from the
robot’s perspective—the human chooses their next block uni-
formly at random. Put another way, the middle block makes
sense when the robot is uncertain about the human’s strat-
egy. By contrast, in Figs. 13 and 14 we observe that RILI
reaches for each available block. Here the likelihood of RILI
selecting a given block approximately matches the distri-
bution across users: for instance, RILI picked the middle
block 24% of interactions while participants working with
RILI picked middle in 22% of interactions. Similarly, RILI
reached for the far right or left block in 39% of interactions
while participants chose these extremes 41% of the time.
RILI’s willingness to select other blocks besides the middle
indicates that the robot is confident in its prediction of the
human’s actions—reaching for blocks on the far right or left
only pays off if the robot is guessing correctly.

With this intuition in mind we now return to our empirical
results in Fig. 14.Wefirst plot the number ofMatching Blocks
across all 11 participants. Applying a Wilcoxon signed-rank
test, we discover that RILImatched the human’s choice sig-
nificantly more frequently than LILI (Z = -3.93, p < .001).
We next break down these results across the users: for 10
of the 11 participants working with RILI resulted in more
Matching Blocks than working withLILI. The only anomaly
was Participant 2, who did better with LILI than with RILI.
Thiswas likely becauseParticipant 2 accidentally useddiffer-
ent strategies when interacting with the two methods. When
working with LILI this specific user cycled through the
blocks (i.e., the participant used latent dynamics that the robot
had seen during pre-training). In contrast, when interacting
with RILI the participant used previously unseen dynamics
(starting at the ends and moving in). Due to this disparity in

the participant’s dynamicsRILI had fewer Matching Blocks
thanLILI for this specific case. Interestingly, we noticed that
LILI performed best with users that collaborated with the
robot. Participants 7 and 8 helped their robotic partner by
choosing the same block that the robot picked during the last
interaction. Since LILI almost always selected the middle
block, these collaborative users converged to also pick the
middle block with LILI. But while playing collaboratively
did lead to the highest number of matching blocks for LILI,
we still found that RILI resulted in even better coordination
with these same users.

Overall, the results from our final user study support
hypothesisH2. By first pre-training the robot with simulated
users, RILI was able to rapidly adapt to actual humans over
30 interactions. Our comparisons to a state-of-the-art base-
line (LILI) suggest that the differences were due to RILI’s
ability to anticipate the human’s behavior despite the fact that
participants followed personalized rules for interaction.

9 Conclusion

In this paper we proposed RILI, an algorithmic framework
that enables robots to co-adapt alongside non-stationary
humans. Learning alongside humans is challenging because
(a) humans adapt to robot behaviors, (b) different humans
adapt to the same robot behaviors in different ways, and (c)
even a single human will inevitably change how they adapt
to the robot over time. Put another way, actions the robot has
learned to coordinate with one user may fail when that user
changes or a new human comes along.
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To address these challenges we hypothesized that robots
should learn and reason over high-level representations of
the human. Specifically, we enabled the robot to learn a
latent representation of the other agent’s policy (i.e., their
strategy) as well as a latent representation of how the policy
changes (i.e., their dynamics). Our resulting RILI algorithm
learns online over repeated interactions using only the robot’s
low-level states, actions, and rewards. We divided RILI into
two parts: robust prediction, which learns to anticipate the
strategy and dynamics of the current human, and influential
policies, which harnesses these predictions to intentionally
drive the human towards advantageous, co-adaptive behav-
iors. Given RILI’s measured rewards across N humans, we
derived probabilistic bounds on RILI’s performance with
new, previously unseen users.

To compare RILI to the state-of-the-art we conducted
extensive simulations and two user studies. In simulations
we comparedRILI to representation and reinforcement learn-
ing alternatives: our results suggest that RILI is better able
to co-adapt alongside agents that constantly change their
behavior. We also found that RILI can remember previ-
ously seen agents, and rapidly adapt to new agents with
unexpected, out-of-distribution dynamics. For our in-person
user studies we considered two opposite settings. First, the
robot learned to play tag from scratch across 15, 000 interac-
tions with adversarial participants. Next, we pre-trained the
robot to build towers alongside simulated humans, and then
rapidly adapted to independent, competitive, and collabora-
tive humans across 30 interactions.

Limitations RILI is a first step towards robots that co-
adapt alongside non-stationary humans without pre-defined
human models or direct observations of the human’s behav-
ior. Our simulations and first user study suggest that—when
starting completely from scratch—RILI will require many
human interactions to reach desired performance. This may
limit our approach in settings where interactions consume
excessive time, materials, or human effort. Our ultimate goal
is to co-adapt to the current human as quickly as possible:
towards this end, we suggest pre-training the robot alongside
simulated agents. These simulated agents could emerge from
methods such as self-play (Carroll et al., 2019), population
play (Jaderberg et al., 2019), or fictitious co-play (Strouse et
al., 2021). Our second user study indicates that—by training
alongside simulated humans—the robot can rapidly coordi-
nate with actual humans over few interactions (e.g., < 20
minutes in our study). We recognize that — like other learn-
ing approaches—our method’s downstream performance is
also sensitive to the data available at training time (i.e., the
simulated humans used for pre-training). In practice the robot
may adapt quickly to humans that display latent dynamics
similar to the simulated humans seen during pre-training,
but the robot may react more slowly to humans that dis-
play completely new and unexpected behaviors. However,

our simulation results in Sect. 7.5 as well as the user study
of learning to play tag from scratch (Sect. 8.1) suggest that
RILI will gradually co-adapt to novel humans.
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A Appendix

In this appendixwe extend the simulation results fromSect. 7
and Fig. 4. In Sect. A.1 we vary the rate at which the other
partner changes their latent dynamics in the Circle environ-
ment (i.e., how frequently the other agent switches their
response to the ego agent). Next, in Sect. A.2 we scale up
the Robot environment to include more complex tasks that
involve multiple subtasks and an increased number of goals.

Coordinating with rapidly changing agents

Recall our simulations from Sect. 7. Here the robot learns
to coordinate with another agent over repeated interactions,
and over time this other agent’s behavior can shift as they
adapt to the robot. In our experiments we simulated the other
agent’s adaptation as a probabilistic change in their latent
dynamics. More specifically, the other agent’s latent dynam-
ics could change between interactions with a 1% probability.
We showed that our method RILI can co-adapt alongside
other agents in this setup (see results in Sect. 7.2). However,
actual humans are much more erratic in their behavior. Can
RILI still learn to coordinate if the other agent changes their
latent dynamics more rapidly? Here we investigate different
rates of adaptation in the Circle environment where the robot
attempts to reach an evasive other agent. All aspects of the
environment are the same as discussed in Sect. 7.1 except
the probability with which the latent dynamics change. Now
we test RILI and the other baselines with another agent that
changes with a probability p = {1%, 5%, 10%, 20%}. All
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Fig. 15 Interacting with other agents that change their latent dynamics
at different frequencies (Appendix A.1). These simulations were per-
formed in the Circle environment from Sect. 7. (Left) The other agent
changes their dynamics with 1% probability after an interaction. This

plot corresponds to the Circle simulation in Fig. 4. (Middle to Right).
The other agent changes their dynamics after 5%, 10%, or 20% of inter-
actions. Shaded regions show the standard error across three trials

methods start with no prior experience and are trained for
the same number of interactions.

We display our results in Fig. 15. These plots show the
robot’s reward as a function of the interaction number. Ora-
cle is the baseline that can directly observe the other agent’s
latent strategy; we therefore treat Oracle as the best-case
performance. We see that when the other agent changes less
frequently (e.g., p = 1%, 5%)RILI is able to converge close
to Oracle performance. As the other agent becomes more
erratic (e.g., p = 20%), we find that the performance of the
co-adaptive robot decreases across the board.However,RILI
consistently outperforms the baselines, evenwhen facedwith
these erratic partners. To explain why RILI’s performance
decreases as the partner changes more frequently, we note
that RILI attempts to predict the other agent’s next latent
strategy based on their history of behaviors. When the other
agent rapidly changes their dynamics, it becomes increas-
ingly challenging to anticipate what rules the other agent
will follow to select their next strategy.

Coordinating in environments with sub-tasks

We have shown that RILI can learn to co-adapt alongside
changing agents for multiple tasks—but what happens as
these tasks become increasingly complicated? In this section
we scale up the complexity of the Robot task from Sect. 7.
In the new task there are 8 goals in the robot’s workspace.
Every interaction the other agent (e.g., the human) selects a
sequence of 3 goals that theywant the robot to choose, but the
robot cannot observe the other agent’s choice or the order in
which the human selects these goals. Instead, the robot must
learn to anticipate the other agent’s choices and the order
of selection. We divide the overall interaction into 3 sub-
tasks with 10 timesteps each (leading to 30 total timesteps).
During every sub-task the robot must pick the correct goal
that the other agent selected for that specific sub-task. Thus,

Fig. 16 Increasing the task complexity of the Robot environment
(Appendix A.2). (Left) Our modified Robot environment where the ego
agent (robot) interacts with the other agent (human). The other agent
selects 3 desired blocks out of the 8 possible blocks on the table. The
ego agent does not knowwhich blocks the human has selected, andmust
co-adapt to select these 3 desired blocks in the same order as the other
agent. (Right) Ego agent’s average reward vs. the interaction number.
The shaded region represents the standard error across three trials

the robot’s reward function is its distance from the respec-
tive goal in the sub-tasks. Depending on their dynamics, the
other agent chooses a new sequence of goals at the end of
the interaction. We design four different latent dynamics. In
every dynamics the other agent chooses three alternate goals
each time. In Dynamics 1 the other agent chooses a new
sequence to move away from the robot. In Dynamics 2 the
other agent keeps the same sequence of goals if the robot
goes to the left of the third goal in the sequence, otherwise
it moves away from the robot. In Dynamics 3 and Dynamics
4 the other agent cycles clockwise or counter-clockwise by
selecting a new sequence of alternate goals.

We compare RILI with the baselines in Fig. 16. We see
that although RILI reaches higher rewards than LILI, SILI,
and SAC, it does not converge to the ideal Oracle within
50, 000 interactions. The complexity added by multiple sub-
tasks andmore intricate latent dynamicsmakes it challenging
for RILI to perfectly model the other agent. However, we
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emphasize that RILI outperforms the state-of-the-art base-
lines even as the task complexity scales up.
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