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Abstract
Trajectory generation for biped robots is very complex due to the challenge posed by real-world uneven terrain. To address
this complexity, this paper proposes a data-driven Gait model that can handle continuously changing conditions. Data-driven
approaches are used to incorporate the joint relationships. Therefore, the deep learning methods are employed to develop
seven different data-driven models, namely DNN, LSTM, GRU, BiLSTM, BiGRU, LSTM+GRU, and BiLSTM+BiGRU. The
dataset used for training the Gait model consists of walking data from 10 able subjects on continuously changing inclines
and speeds. The objective function incorporates the standard error from the inter-subject mean trajectory to guide the Gait
model to not accurately follow the high variance points in the gait cycle, which helps in providing a smooth and continuous
gait cycle. The results show that the proposed Gait models outperform the traditional finite state machine (FSM) and Basis
models in terms of mean and maximum error summary statistics. In particular, the LSTM+GRU-based Gait model provides
the best performance compared to other data-driven models.
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Abbreviation
DNN Deep neural network
LSTM Long short term memory
GRU Gated recurrent units
BiLSTM Bidirectional LSTM
BiGRU Bidirectional GRU
COMBO BI BiLSTM + BiGRU
FSM Finite state machine
MAE Mean absolute error
MSE Mean squared error
SE Standard error
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1 Introduction

Several types of mobile robots have been studied and
designed in the literature (Singh et al., 2021; Kim et al.,
2021; Gao et al., 2021; Burman and Kumar, 2021), which
can be categorized by their way of locomotion in differ-
ent environments and applications: (a) land-based: legged
or wheel-type, (b) water-based, and (c) air-based. The main
focus of this paper is on land-basedmobile robots, and partic-
ularly humanoid/bipedal robots that have recently attracted
the attention of researchers and industry professionals. This is
not only due to their human-like shape, but also their ability to
provide efficient and robust walking in uneven terrain, jump-
ing, or running (Wang et al., 2014; Aoi and Tsuchiya, 2011).
However, the primary focus of research on bipedal robotics
is to achieve human-like walking stability with robustness
to disturbances in complex real-world environments (Hos-
seinmemar et al., 2019; Kwon and Park, 2009; Yamaguchi
and Takanishi, 1997; Morris et al., 2019; Doerschuk et al.,
2002). The locomotion stability of these robots is hindered
by unfavorable conditions such as ground surface inclina-
tion or obstacles in the path (Kim et al., 2021; Hildebrandt
et al., 2019; Kuffner et al., 2002), making it a great chal-
lenge to produce a gait that can ensure stable walking. The
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main focus of this work is to deal with the generation of a
kinematic trajectory for walking on varied ground slopes at
multiple speeds.

In the literature, several successful strategies have been
developed for trajectory generation, such as the inverted pen-
dulum (Kim et al., 2020; Razavi et al., 2019; Liu et al., 2021;
Sun et al., 2021; Kormushev et al., 2019), the linear inverted
pendulum (Huang and Yeh, 2019; Kim et al., 2018; Li et al.,
2013; Lee et al., 2016), LSTM pattern generation (Li et al.,
2020), multi-objective meta-heuristic optimization (Juang
and Yeh, 2017), and fuzzy control (Li et al., 2010). However,
these generated trajectories are only applicable to laboratory
environments due to issues such as high energy consump-
tion, robustness issues in the presence of disturbances, and
difficulty in finding new trajectories in emergency situations.
Some authors have applied the learning-based algorithms
to generate reference trajectories that have been success-
fully tested in real-world environments, demonstrating good
adaptability to disturbances and irregular terrains (Castillo et
al., 2022; Siekmann et al.., 2021).

According to the literature, some researchers have used
real human locomotion kinematic datasets collected under
different conditions as reference trajectories (Holgate et al..,
2009; Wang et al., 2021; Liu et al., 2020; Wang et al., 2018;
Zhou et al., 2017). This is because human trajectories are
optimal and stable in nature. A common strategy from gait
analysis, known as a finite state machine (FSM), has been
employed to approximate the continuation of multiple tasks
and phases (Simon et al., 2014). The strategy is based on
dividing the gait cycle into multiple phases and designing
separate controllers for each phase. A high-level topology
then selects the suitable controller from the set based on the
classifier algorithm output, which indicates the phase of the
gait cycle. However, as the number of activities increases, so
does the requirement for controllers, which requires a lot of
expertise that is hard to find. Therefore, authors have used
the Discrete Fourier Transform (DFT)-based Gait model to
parametrize the continuous kinematic trajectory as a func-
tion of the phase variable and tasks (Quintero et al., 2018;
Embry et al., 2018). Likewise, authors have developed the
Basis model, where the phase variable plays an important
role (Embry et al., 2016). The phase variable is a special
signal that monotonically increases with the gait cycle, and
Tasks is a stacked vector that consists of ground slope and
speed. This Gait model helps in predicting the joint kine-
matic angle with many combinations of speed and incline
(Embry et al., 2016). However, the presented model could
not capture the relationship between the joints (knee, hip,
and ankle), as it has three separate setups for predicting each
joint angle individually. Since there is a strong relationship
between the joints (Huang et al., 2021), it is necessary to
develop a coupled model that can predict the joint trajec-

tory simultaneously while taking the joint relationships into
account.

Data-driven models such as deep neural networks, long
short-term memory, gated recurrent neural networks, etc.,
can be employed to find the relationship between the fea-
tures (Yang et al., 2021; Shrestha and Mahmood, 2019). In
our case, the features are the joint knee, ankle and, hip angle.
In previous works (Singh et al., 2021, 2022), authors have
developedmachine learning anddeep learningmodels to cap-
ture the important relationship between the joints. However,
the developed models were confined only to flat ground with
one speed. Additionally, the choice of the objective func-
tion for training the data-driven model is not straightforward
because it deeply impacts the prediction performance. It has
been shown in the literature that mean absolute error outper-
forms mean squared error for the prediction ability of deep
neural networks (Qi et al., 2020). Therefore, a new objective
has been developed, taking inspiration from previous studies
in the literature (Embry et al., 2016; Qi et al., 2020).

This study proposes using data-driven deep learning
approaches to model the kinematics of joint trajectories by
using continuously changing inclines and speeds of locomo-
tion data. The dataset consists of locomotion data from 10
able-bodied individuals with continuously changing inclines
(-10 to +10 degrees) and speeds (0.8 to 1.2m/s). A newobjec-
tive function is also proposed that incorporates the effect of
the standard error from the mean trajectory that needs to be
followed. This incorporation helps themodel avoid high vari-
ance points in the dataset. This loss function is used to train
the data-driven models. The impact of changing speed with
continuously varying inclines with monotonically increasing
phase variables is also studied by developing the wireframes.
Overall, the major contribution of this study is:

– Data-driven based Gait models are proposed for continu-
ous parametrization of kinematic trajectory as a function
of stack tasks vector and monotonically increasing phase
variable.

– A new objective function is designed, which incorporates
the information of standard error of inter-subject mean
trajectory from data, for the training of proposed Gait
models.

– Comparative analysis of developed Gait models, based
on the mean and maximum error statistics obtained from
prediction, for two different cases are briefly discussed.

– Impact of changing inclines with phase variable are stud-
ied in detail.

– Wire-frames are also presented from the proposed gait
models to find the suitable model for biped robot gait
trajectory generation.

This research work is organized as follows: Sect. 2
presents the proposed methodology, which includes the data
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description, gait model, and objective function. Then, Sect. 3
explains the results and discussion, which includes themodel
parameter settings, performance evaluation index, prediction
analysis, and the impact of the objective function on the per-
formance of the proposed model. Finally, Sect. 4 concludes
the work.

2 Proposedmethodology

This section discusses the proposed methodology to design
the data-driven Gait model for predicting the joint kinematic
trajectory angle on continuously varying ground slope and
speed. The proposed methodology has three components:
(a) data description and preprocessing, (b) development of
the data-driven model, and (c) implementation of predicted
trajectory wire-frame surfaces to the policy for the control of
a biped robot/prosthetic leg. The main focus of this section
is on component (b). A schematic flow chart of the proposed
methodology is presented in Fig. 1

2.1 Data formulation and pre-processing

The kinematic locomotion dataset used in this paper was
obtained from the IEEE data port provided by Embry et al.
Embry et al. (2018). The dataset was produced by captur-
ing the walking patterns of ten subjects using a ten-camera
motion system at 100 Hz. Each subject was asked to walk
for twenty-seven combinations of speed and incline (known
as tasks and denoted by θ j with j = 1, 2, . . . , 27), varying
at regular intervals of 0.2m/s and 2.5 degrees between the
range of 0.8m/s to 1.2m/s and -10 degrees to +10 degrees,
respectively. Each gait cycle consists of 150 time steps for
each of the twenty-seven combinations. The obtained dataset
was then filtered using a 10th order Weltering filter to pro-
duce smooth gait cycle trajectories. Afterward, the dynamic
plug-in model based on the Newington-Helen Hayes model
was applied to the filtered gait cycle. The resulting output is
the kinematic and kinetic dataset [45]. Here, a plug-in gait
lower body model is used to calculate the joint angles. The
output angles from themodel for all joint angles are evaluated
from the YXZ Cardan angles. Cardan angles are evaluated
by comparing the relative orientations of segments based on
the parent and child to the joint. For example, the knee angle
is evaluated using the femur and untorsioned tibia segments.
The resulting joint angles are relative to each other, such as
the ankle angle is relative to the knee angle, the knee angle
is relative to the hip angle, and the hip angle is relative to the
pelvis angle (it is absolutewith respect to the laboratory coor-
dinates). Outliers are removed if they were more than three
standard deviations away from the mean trajectory Xφi ,θ j at
every instant i ∈ (1, 150) in each stride.

2.2 Gait model designing

This section discusses the procedure for designing the Gait
model and loss function. The Gait model q(φi , θ j ) is essen-
tially a parametrization function of a normalized gait cycle
φi for i ∈ (0, 1) with task θ j . The key assumption is that
the dataset obtained from the previous step is continuous and
periodic, which smoothly changes with tasks (Macaluso et
al., 2021). The proposed Gait model is developed using data-
driven approaches. In this study, seven data-driven models
have been used to develop theGait model for predicting kine-
matic joint trajectories. These models are: (a) Deep Neural
Network (DNN), (b) Long-Short TermMemory (LSTM), (c)
GatedRecurrentUnits (GRU), (d) Bidirectional LSTM (BiL-
STM), (e) Bidirectional GRU (BiGRU), (f) LSTM+GRU,
and (g) BiLSTM+BiGRU.

2.2.1 Data-driven models

Deep Neural Network (DNN) (Canziani et al., 2016) is a
type of neural network with multiple hidden layers between
the input and output layers. This type of neural network is
inspired by the human brain and requires more data to train
itself to provide better accuracy. It establishes a non-linear
relationship between inputs and outputs by processing the
training dataset. The number of layers helps in deriving bet-
ter high-level logic from the given inputs. A DNN consists
of interconnected neural units that are stacked on top of each
other, creating a complex structure. It uses fewer parameters
to tune manually, making it easier to generate better logic.
Therefore, the network has reusable codes that help in gen-
erating better results. The prediction model for the DNN is
given by (1),

q(φi , θ j ) = Rn(...R2(W
(2)R1(W

(1)[φi , θ j ] + b1) + b2)...)

(1)

where, Rn , Wn , and bn is function, weights, and bias for n
layer respectively.

Long-Short TermMemory (LSTM) (Greff et al., 2016) is a
type ofRNNbutwith three additional gates: input, forget, and
output. These gates control the flow of informationwithin the
model. The input gate controls the input values that enter the
memory cell, while the forget gate filters the important values
from the memory cell. The output gate controls the output
value from the memory cell. LSTM can memorize the time
dependency of data by looking back at past values in the long
run, which helps build better predictive logic. It also controls
the addition of new information into thememory cells. LSTM
has an additional advantage because it helps in dealing with
the vanishing and exploding gradient problem that exists in
RNNs. The mathematical expression for prediction model

123



756 Autonomous Robots (2023) 47:753–769

Fig. 1 Schematic flow chart of proposed methodology

using LSTM is presented by (2),

q(φi , θ j ) = Rn ..(Og.relu(Fg(Rn−1)

+ Ig(tanh(wn[ht−1, [φi , θ j ]] + bn))))
(2)

where, Rn , Wn , and bn are function, weight, and bias for
n layer respectively, Og , Ig , and Fg are output gate, input
gate, and forget gate respectively, ht−1 is input value from
previous hidden layer, relu and tanh are activation function.

Gated Recurrent Units (GRU) (Dey et al., 2017) have an
LSTM unit with two additional gates: the reset and update
gates. The reset gate controls the flow of information, while
the update gate controls the update in values of weight and
bias. GRU has a hidden state for controlling the flow of
information. Essentially, it has an uncontrolled exposure of
content of memory cells from the previous step, while LSTM
has control over the exposure of content. GRU controls the
output values of the layer but doesn’t control the addition
of new knowledge in the memory cells. The major advan-
tage of GRU is that it takes less training time compared to
LSTM. It can easily capture different time dependencies for
short times. Therefore, the performance ofGRU is better than
LSTM if long text and short data in sequence are available,
and vice versa. Expression for prediction model is presented
by (3),

q(φi , θ j ) = Rn ..(relu(Fg(Rn−1) + Ig(tanh(wn[ht−1,

[φi , θ j ]] + bn))))
(3)

where, Rn , Wn , and bn are function, weight, and bias for n
layer respectively, Ig , and Fg are input gate, and forget gate
respectively, ht−1 is input value from previous hidden layer,
relu and tanh are activation function.

Bidirectional LSTM (BiLSTM) (Huang et al., 2015) is an
update to LSTM with an additional bidirectional layer. Due

to its bidirectional nature, the weights and biases are trained
using both forward and backward propagation, with the train-
ing data flowing alternatively in both directions. This layer
captures the relationship between different features available
in the dataset. This is an improvement over traditional LSTM,
which uses only forward propagation for logic building. The
mathematical expression is presented by (4),

q(φi , θ j ) =
[
LST M([φi , θ j ],−→h t−1),

× LST M([φi , θ j ],←−h t−1)
]

(4)

Bidirectional GRU (BiGRU) (Dong, 2018) is a GRU layer
with an additional Bidirectional layer. It is a sequence pro-
cessingmodel that takes input through forward and backward
propagation alternatively. BiGRU is better than normal GRU
because it has feed-forward and back-propagation for better
logic creation regarding the relationship between the fea-
tures. It has only input and forget gates similar to GRU. Thus,
the forward and backward feeding of inputs helps it to pro-
duce better weight and bias values for each input feature.
Mathematically, it is given by (5),

q(φi , θ j ) =
[
GRU ([φi , θ j ],−→h t−1),GRU ([φi , θ j ],←−h t−1)

]

(5)

A combination of LSTM and GRU models yields the
LSTM+GRU model. It captures the advantage of LSTM’s
ability to capture the relationship of long dataset with short
text and GRU’s capability of finding the relationship of short
dataset with long text. Therefore, it performs better for both
types of datasets. It averages the predicted values of LSTM
and GRU models. Similarly, a combination of BiLSTM and
BiGRU yields the BiLSTM+BiGRU model, which lever-
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ages the bidirectional nature and LSTM+GRU property to
predict the output. It also yields the average of predicted
values obtained from respective models. However, the BiL-
STM+BiGRU performs better than the LSTM+GRU if the
availability of training dataset is more. Both of these models
combine the advantage of memory element and conventional
method, which is clearly evident in the results and discussion
section.

2.2.2 Objective function

This sectiondiscusses about the comparative analysis between
mean squared error and mean absolute error function with
their mathematical expression, which is employed in litera-
ture for training of models based on multi-variate regression.
Afterward, the authors discuss about the rationale behind
choosing the new loss function for training of the data-driven
model.

Lipschitz continuity (Mangasarian and Shiau, 1987; Gouk
et al., 2021): A function g is said to be α-Lipschitz for all
variables x, y ∈ R

n , if it satisfy (6) ∀ h ≥ 1,

||g(x) − g(y)||h ≤ α||x − y||h (6)

Mean absolute error (Coyle and Lin, 1988): It quan-
tifies the mean absolute difference between the actual
and M prediction vectors A = {x1, x2, .....xM } and A∗
= {y1, y2, .....yM } respectively, mathematically it is repre-
sented by (7),

LMAE (A, A∗) = 1

M

M∑
j=1

||x j − y j ||1 (7)

where, ||.||1 is the L1 norm.
Mean squared error (Allen, 1971; Chai and Draxler,

2014): It quantifies the quadratic rule based difference
between the actualM prediction vectors A={x1, x2, .....xM }
and A∗ = {y1, y2, .....yM } respectively, mathematically it is
represented by (8),

LMSE (A, A∗) = 1

M

M∑
j=1

||x j − y j ||22 (8)

where, ||.||2 is the L2 norm.
Based on the Lipschitz continuity equation (1), it can

be easily proved that the MAE and MSE loss function are
1-Lipschitz and not Lipschitz continuous respectively. It is
proved in literature, that if function is Lipschitz continuous
then it can upper bound the estimated regressor error from
the Empirical Rademacher Complexity (Qi et al., 2020). It
is suggested that the Laplacian distribution based loss func-
tion which relates to MAE can provide the better prediction

then the Gaussian based loss function which relates to MSE.
It is true only if the variance related term are same in both
expression (Chai et al., 2019).

Mathematical expression of MAE in terms of variance at
every-point in stride is (9),

LMAE (A, A∗) = 1

M

M∑
i=1

{
(Xφi ,θ j − q(φi , θ j ))

SE(xφi ,θ j )

}
(9)

Mathematical expression of MSE in terms of variance at
every-point in stride is (10),

LMSE (A, A∗) = 1

M

M∑
i=1

{
(Xφi ,θ j − q(φi , θ j ))

2

(SE(xφi ,θ j ))
2

}
(10)

As per literature, MSE loss function can outperform the
MAE based loss function if the expected error satisfy the
Gaussian distribution with enough samples available for
training purpose (Chai and Draxler, 2014). In this paper,
authors have less training samples. Thereby, authors have
modifies the loss function by integrating the MAE andMSE.
It is used for tuning of the weights for data-drivenmodel. The
objective function is the square of error between actual and
predicted value divided by the standard error in real values at
every stride. Since, impact of error is very different in each
point of stride, which is incorporated in terms of SE term in
expression. Mathematically, it is defined by (11),

g j = 1

M

M∑
i=1

{
(Xφi ,θ j − q(φi , θ j ))

2

SE(xφi ,θ j )

}
(11)

It provides better precision against the two other loss func-
tions which are validated in Sect. 3. Additionally, it also help
in deciding to not follow the values with a high variance error
in training dataset, which is our assumption for providing the
smooth and continuous trajectory, as shown in Fig. 2.

2.2.3 Bayesian optimizer

Bayesian optimization is a powerful technique to find the
global optimum solution in a smaller number of steps (Pon
and KK, 2021). Basically, it includes the prior belief about
the objective function and updates its belief by sampling
process to get the posterior belief that is better than the previ-
ous belief. The model used for approximating the objective
function is known as the surrogate model. In our case, the
Gaussian process regressor is used as the surrogate model.
The sampling area is determined using the acquisition func-
tion, which helps in improvement in current estimates by
reducing the variance in observation. The basic steps for
Bayesian optimization using the Keras tuner are presented
as:
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Fig. 2 Sample trajectory from data-set at speed 1 m/s and incline
0o (blue color trajectory show the mean trajectory Xφi ,θ j ; red color
represent the distance of standard error SE from the mean trajectory
SE(xφi ,θ j ))

1. Build the surrogate model that minimizes the objective
function, the mean square error is chosen as the objective
function that directly relates to the hyper-parameters.

2. Different hyper-parameters are sampled based on vari-
ance.

3. Evaluate the true objective using the hyper-parameters
sampled from step 2.

4. Update the surrogate model based on the minimum error.
5. Steps 2 to 4 are repeated till the optimum solution is

obtained.

3 Results and discussion

This section includes the performance evaluation of proposed
models using the mean and maximum error statistic indices.
In this study, the models are trained and tested using the
human locomotion dataset which is derived from the walk-
ing data on a different combination of speed and incline.
Firstly, the reasoning behind the single multiple output
model, parameter settings, and prediction evaluation meth-
ods are briefly discussed. Afterward, the prediction analysis
of the developed models for two cases is discussed. Lastly,
the significant finding has been provided which includes the
impact of losses on model performance, dispersion of error
in both cases, and wire-frame prediction analysis.

3.1 Model’s performance settings

In this study, it is considered that the proposedmodels contain
the three inputs and three outputs configuration. Two ratio-
nales behind using this configuration are: (a) the relationship
between knee, hip, and ankle joint trajectory is captured effi-
ciently. (b) the input features such as the speed and incline

Table 1 Training dataset for Case 1 (denoted by �)

Incline (deg) −10 −7.5 -5 −2.5 0 2.5 5 7.5 10

Speed (m/s) 0.8 � � � � �
1 � � � �
1.2 � � � � �

Table 2 Training dataset for Case 2 (denoted by �)

Incline (deg) −10 −7.5 -5 −2.5 0 2.5 5 7.5 10

Speed (m/s) 0.8 � � � � � �
1 � � � � �
1.2 � � � � �

are constant for one complete gait cycle while the time is
increasing at each step during that gait cycle. The model
will not be able to predict the output if the output configu-
ration does not have the three output configurations. Since
it confuses the model in making the appropriate relationship
between three inputs and one output. The model predicts a
sloppy gait cycle which is increasing with the values of the
time. Whereas, when the model was given three outputs for
three input values, the model was able to deduce a good rela-
tionship between inputs and outputs. It allows the training
algorithm to capture the relationship between the three joints
i.e., hip, knee, and ankle effectively. This makes the use of
a single model to predict all the gait cycle trajectories at the
knee, hip, and ankle.

The dataset consists of a combination of twenty-seven
tasks for various values of speed and time. The values of all
three inputs speed, hip, and ankle were normalized between
0 and 1. Then, the dataset is split into training and testing sets
of two different sizes and additionally, the two cases are also
formed. The sizes and combinations of training and testing
for both cases are explained in further sections. The input
shape for models other than the DNNmodel is reshaped into
a 3-D array. The normalization formula for the speed, incline,
and time is given by (12),

φ = t

T
, θ = i

I
, S = v

V
(12)

Here the φ is normalised Gait, θ is normalised incline, S
is normalised speed, t is time step, T is total time, i is incline
in range (-10 to +10), I is total incline gap, v is walking speed
in range (0.6 to 1.4), and V is total speed gap.

The layer configuration applied to all the models is (3,
3, [128, 512, 16]). The activation function used for hidden
layers is relu while linear is used for the output layer. The
hyperparameters were tuned using the Bayesian Optimizer.
Theoptimizer gave500, 1e−2, and10 as optimizedvalues for
a number of epochs, learning rate, and batch size respectively.
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Table 3 Maximum error statistic: Case 1

Knee trajectory
Incline (deg) → Speed (m/s) ↓ −10 −7.5 -5 −2.5 0 2.5 5 7.5 10

DNN 0.8 0.28667 0.33704 0.27289 0.54786 0.42773 0.30048 0.54630 4.20461 0.82322

1 0.91073 0.35046 0.36280 0.27154 0.45777 0.23981 0.90786 0.66399 2.37738

1.2 0.28498 0.43919 0.33390 0.44858 0.34607 0.17275 0.51093 1.15922 0.62716

LSTM 0.8 0.32096 0.62689 0.14529 0.38249 0.19999 0.35391 0.33995 2.52109 0.17618

1 0.65641 0.16917 0.39198 0.15522 0.37155 0.31920 0.63163 0.33865 1.50686

1.2 0.25279 0.61773 0.32257 0.53476 0.18924 0.39052 0.24169 0.32059 0.22242

GRU 0.8 0.32601 0.48668 0.23425 0.33103 0.19797 0.57864 0.25573 5.27214 0.21712

1 0.33171 0.22855 0.69846 0.25992 0.39442 0.25263 0.91243 0.22809 2.16839

1.2 0.38599 0.82679 0.43449 0.40838 0.27879 0.36394 0.17900 0.64808 0.13182

BiLSTM 0.8 0.43014 0.52763 0.56584 0.56203 0.89330 0.75197 0.71227 7.08934 0.49507

1 0.80737 0.57125 0.64160 0.71239 0.62104 0.57125 0.41122 0.57636 2.12517

1.2 0.53530 0.52638 0.77099 0.61575 0.54252 0.69605 0.59820 0.57213 0.44878

BiGRU 0.8 0.18819 0.53429 0.21895 0.65554 0.16817 3.31787 0.29751 8.65588 0.30953

1 0.68093 0.15561 0.44624 0.18064 0.53650 0.15561 0.38594 0.25399 1.40905

1.2 0.24459 0.80317 0.27825 0.36109 0.18257 0.54533 0.29247 1.12480 0.31351

LSTM + GRU 0.8 0.17481 0.52979 0.13036 0.34764 0.13989 0.44136 0.26244 3.84163 0.18024

1 0.39800 0.18751 0.44866 0.19250 0.16126 0.18751 0.61555 0.18558 1.82738

1.2 0.18661 0.57993 0.25187 0.31548 0.18229 0.33607 0.17203 0.26390 0.11706

BiLSTM+ BiGRU 0.8 0.45221 0.21543 0.56354 0.47874 0.76160 1.86991 0.29906 7.64524 0.35073

1 0.54831 0.35638 0.30140 0.66817 0.47717 0.35638 0.26012 0.40749 1.42779

1.2 0.29872 0.28205 0.70282 0.21894 0.30211 0.39921 0.28807 0.48700 0.30605

DNN 0.8 0.10737 0.23655 0.13450 0.20194 0.17049 0.31464 0.23540 0.34558 0.31060

1 0.23966 0.22178 0.22698 0.13871 0.17647 0.09429 0.34955 0.26715 0.43153

1.2 0.13718 0.29756 0.17121 0.25007 0.20438 0.28048 0.27350 0.28794 0.28269

LSTM 0.8 0.13662 0.21198 0.11509 0.13326 0.11244 0.25967 0.15238 0.40221 0.17084

1 0.16837 0.16207 0.12493 0.10864 0.09768 0.09944 0.43749 0.16189 0.32484

1.2 0.12815 0.25146 0.10118 0.13340 0.10853 0.13761 0.12703 0.31458 0.11112

GRU 0.8 0.16740 0.23174 0.10717 0.28185 0.07577 0.21217 0.12475 1.70619 0.21123

1 0.33671 0.07138 0.21637 0.14078 0.29187 0.18371 0.48016 0.06907 1.21307

1.2 0.16101 0.28075 0.16454 0.17367 0.20584 0.47314 0.08776 0.25916 0.07643

BiLSTM 0.8 0.14177 0.18374 0.22285 0.38038 0.29431 0.54814 0.37201 0.50362 0.45127

1 0.33435 0.42133 0.29023 0.33821 0.35289 0.42133 0.50110 0.44129 0.76526

1.2 0.20365 0.19760 0.25668 0.36154 0.46307 0.58704 0.40243 0.48415 0.47333

BiGRU 0.8 0.05733 0.48158 0.07836 0.17393 0.06821 0.61877 0.08617 0.48460 0.13473

1 0.32875 0.14696 0.12915 0.08836 0.15097 0.14696 0.38186 0.07966 0.58957

1.2 0.05437 0.22743 0.08245 0.15863 0.09357 0.61753 0.08083 0.45403 0.13722

LSTM + GRU 0.8 0.15201 0.20781 0.10332 0.20199 0.07993 0.21914 0.13419 0.99224 0.11810

1 0.20906 0.09115 0.12091 0.11182 0.17098 0.09115 0.25025 0.09520 0.52882

1.2 0.14458 0.23004 0.10492 0.10828 0.09760 0.30081 0.07211 0.23279 0.06098

BiLSTM + BiGRU 0.8 0.19495 0.29973 0.20967 0.25944 0.14151 0.33553 0.18120 0.39591 0.15554

1 0.27783 0.14536 0.14767 0.17378 0.22299 0.14536 0.40616 0.19860 0.64053

1.2 0.11296 0.20957 0.15521 0.22752 0.13758 0.56227 0.14092 0.33662 0.33808
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Table 3 continued

Knee trajectory
Incline (deg) → Speed (m/s) ↓ −10 −7.5 -5 −2.5 0 2.5 5 7.5 10

Ankle trajectory

DNN 0.8 0.51166 0.42676 0.39027 0.67925 0.35099 0.34049 0.35123 0.50285 0.44793

1 0.46507 0.39099 0.59086 0.47917 0.43939 0.47770 0.41695 0.44997 0.50073

1.2 0.47570 0.97107 0.57838 0.51805 0.36496 0.49214 0.47793 0.43882 0.41731

LSTM 0.8 0.18916 0.50869 0.14438 0.30701 0.13351 0.48831 0.20136 0.94745 0.17192

1 0.32880 0.19033 0.20953 0.19709 0.26441 0.21541 0.50499 0.22799 0.66070

1.2 0.33110 0.48099 0.30477 0.53928 0.13245 0.48105 0.17136 0.49425 0.18982

GRU 0.8 0.23668 0.42083 0.22459 0.24625 0.20549 0.39442 0.18072 0.72809 0.21123

1 0.45555 0.15831 0.24845 0.17691 0.49301 0.22496 0.65075 0.21872 1.79997

1.2 0.25354 0.58124 0.22137 0.36982 0.16199 0.51193 0.13292 0.48626 0.29802

BiLSTM 0.8 0.42381 0.30679 0.40072 0.25522 0.33582 0.61989 0.40122 1.77513 0.58135

1 0.58336 0.32160 0.16997 0.46806 0.49591 0.32160 0.96325 0.36011 0.83298

1.2 0.53048 0.54072 0.53119 0.26779 0.27575 0.43667 0.31792 0.50354 0.38762

BiGRU 0.8 0.23229 0.37657 0.25542 0.37782 0.19601 3.43975 0.22538 1.07860 0.26594

1 0.53570 0.21355 0.24838 0.22211 0.49122 0.21355 0.49532 0.25462 0.62776

1.2 0.23641 0.69670 0.48646 0.48666 0.22344 0.40871 0.26969 0.60523 0.25985

LSTM + GRU 0.8 0.10354 0.29191 0.14272 0.22604 0.14414 0.30956 0.14317 0.82455 0.12328

1 0.30105 0.13008 0.20827 0.14215 0.19597 0.13008 0.35855 0.14394 1.11209

1.2 0.11765 0.41442 0.22948 0.36906 0.10490 0.48133 0.14110 0.37269 0.19937

BiLSTM + BiGRU 0.8 0.62576 0.29711 0.54820 0.18384 0.30405 1.67516 0.42734 1.33759 0.29724

1 0.30942 0.34239 0.20756 0.47566 0.36990 0.34239 0.58220 0.30770 0.63327

1.2 0.31763 0.27101 0.50391 0.21341 0.21922 0.33580 0.35393 0.39760 0.27919

The best values of performance indices are given in bold

Table 4 Maximum error statistic: Case 2

Knee trajectory
Incline (deg) → Speed (m/s) ↓ −10 −7.5 -5 −2.5 0 2.5 5 7.5 10

DNN 0.8 0.64557 0.86658 0.73799 0.53174 0.66409 0.65181 0.38288 0.46386 0.67009

1 0.89258 0.35476 0.57830 0.43627 0.40644 0.35476 0.48380 0.46079 0.34461

1.2 0.61350 0.39976 0.43881 0.38585 0.33113 0.40993 0.37248 0.70037 0.28467

LSTM 0.8 0.21757 0.21623 0.16425 0.39714 0.23199 0.50364 0.29660 0.28512 0.21488

1 0.30829 0.14410 0.37973 0.12511 0.47071 0.14410 0.38863 0.20741 0.09861

1.2 0.17636 0.28066 0.13366 0.22425 0.17456 0.48389 0.13022 0.41086 0.07036

GRU 0.8 0.34195 0.67075 0.57707 0.51415 0.88568 1.53938 0.57584 0.40945 0.76903

1 0.52841 0.61075 0.59073 0.52660 0.80546 0.61075 1.09187 0.52351 0.55282

1.2 0.74409 1.14677 1.01650 0.81622 0.68312 0.56634 0.43480 0.39209 0.22025

BiLSTM 0.8 0.15674 0.26700 0.07328 0.55360 0.13403 0.42692 0.10577 0.17035 0.15966

1 0.42696 0.08157 0.17931 0.14008 0.43516 0.08157 1.92425 0.11989 0.08013

1.2 0.14947 0.28997 0.13640 0.20106 0.09938 0.44017 0.08175 1.02219 0.07372

BiGRU 0.8 0.20423 0.41485 0.10075 0.42689 0.14520 0.82227 0.31879 0.16540 0.10795

1 0.51777 0.18694 0.30366 0.10081 0.34242 0.18694 0.65883 0.16072 0.13968

1.2 0.16719 0.34672 0.13285 0.40904 0.15487 0.33391 0.08642 0.96199 0.11924
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Table 4 continued

Knee trajectory
Incline (deg) → Speed (m/s) ↓ −10 −7.5 -5 −2.5 0 2.5 5 7.5 10

Ankle trajectory

LSTM + GRU 0.8 0.13074 0.26113 0.24078 0.37947 0.37505 0.76508 0.22788 0.24740 0.33945

1 0.36864 0.26116 0.24488 0.29254 0.61173 0.26116 0.71560 0.32067 0.29518

1.2 0.36626 0.61111 0.51245 0.37901 0.29858 0.27396 0.21539 0.24154 0.11434

BiLSTM + BiGRU 0.8 0.11651 0.31844 0.06121 0.47402 0.04248 0.44848 0.14944 0.12061 0.11828

1 0.44077 0.07000 0.17701 0.07064 0.38188 0.07000 1.16174 0.10491 0.08637

1.2 0.09859 0.26059 0.07300 0.27981 0.05471 0.19063 0.04823 0.79826 0.07634

DNN 0.8 0.09791 0.28823 0.14505 0.19260 0.16800 0.19890 0.19249 0.46386 0.29189

1 0.33806 0.25819 0.27449 0.23819 0.23192 0.25819 0.19922 0.20270 0.24273

1.2 0.17442 0.21616 0.22240 0.24244 0.24723 0.32394 0.29793 0.23406 0.25493

LSTM 0.8 0.05934 0.16502 0.08458 0.21881 0.08031 0.20868 0.08643 0.28512 0.10581

1 0.25489 0.11611 0.14150 0.11434 0.15317 0.11611 0.20887 0.08325 0.12499

1.2 0.06216 0.22008 0.10350 0.14674 0.06650 0.21165 0.07174 0.39184 0.12914

GRU 0.8 0.08790 0.22591 0.07553 0.27071 0.10414 0.60900 0.20104 0.40945 0.29165

1 0.23990 0.29470 0.18843 0.12439 0.19960 0.29470 0.29359 0.21315 0.26077

1.2 0.10275 0.18302 0.11079 0.22435 0.11750 0.20205 0.16713 0.23522 0.10290

BiLSTM 0.8 0.05029 0.30286 0.03941 0.13643 0.09346 0.30521 0.17013 0.17035 0.17521

1 0.26919 0.12007 0.12250 0.05100 0.32775 0.12007 0.71831 0.12168 0.07907

1.2 0.06306 0.11642 0.05446 0.11101 0.12029 0.44051 0.18877 0.49438 0.06129

BiGRU 0.8 0.08776 0.33794 0.06720 0.21499 0.04576 0.58261 0.12221 0.16540 0.16248

1 0.36093 0.07835 0.13503 0.05400 0.24518 0.07835 0.33659 0.10085 0.12248

1.2 0.08736 0.21063 0.06506 0.14745 0.05804 0.28136 0.08086 0.32665 0.10844

LSTM + GRU 0.8 0.05249 0.11730 0.04781 0.22186 0.06790 0.21632 0.11017 0.24740 0.16025

1 0.21272 0.20076 0.15013 0.06436 0.17639 0.20076 0.24448 0.11120 0.11624

1.2 0.06684 0.17068 0.08926 0.17982 0.07543 0.09288 0.10441 0.30689 0.07677

BiLSTM + BiGRU 0.8 0.03826 0.28709 0.03955 0.14555 0.04093 0.33380 0.10188 0.12061 0.11800

1 0.29877 0.07596 0.12070 0.02666 0.22080 0.07596 0.47160 0.07420 0.07480

1.2 0.05392 0.11717 0.02709 0.11622 0.05676 0.36094 0.10657 0.33602 0.06036

DNN 0.8 0.31037 0.39307 0.35736 0.50562 0.37044 0.31188 0.37001 0.46386 0.29189

1 0.33737 0.32896 0.32696 0.24697 0.29922 0.32896 0.29922 0.23532 0.26886

1.2 0.27822 0.27752 0.20353 0.35768 0.26422 0.36755 0.22147 0.36453 0.25644

LSTM 0.8 0.14774 0.31590 0.10980 0.22024 0.08881 0.24417 0.08004 0.28512 0.14868

1 0.21338 0.13644 0.46414 0.14357 0.51618 0.13644 0.51618 0.17171 0.10513

1.2 0.16905 0.31499 0.14650 0.30178 0.10248 0.27999 0.08723 0.23562 0.14923

GRU 0.8 0.25570 0.26875 0.27436 0.34443 0.39442 0.97983 0.34327 0.40945 0.42904

1 0.51124 0.28975 0.26558 0.33096 0.36211 0.28975 0.36211 0.32671 0.31190

1.2 0.25433 0.31172 0.40979 0.35921 0.29636 0.42913 0.56406 0.53081 0.29785

BiLSTM 0.8 0.05418 0.35155 0.06479 0.29473 0.05522 0.69886 0.11785 0.17035 0.17521

1 0.23766 0.09211 0.16178 0.05731 0.82262 0.09211 0.82262 0.14493 0.09690

1.2 0.14197 0.27065 0.08548 0.24411 0.06719 0.40380 0.08572 0.87854 0.10897
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Table 4 continued

Ankle trajectory

Ankle trajectory

BiGRU 0.8 0.12340 0.29989 0.08983 0.91198 0.12193 0.76094 0.12390 0.16540 0.17025

1 0.18801 0.08307 0.21175 0.09261 0.41341 0.08307 0.41341 0.21025 0.11565

1.2 0.16662 0.34379 0.13293 0.20379 0.13798 0.19618 0.09317 0.57964 0.09459

LSTM + GRU 0.8 0.14336 0.20070 0.14868 0.26849 0.17530 0.56671 0.16462 0.24740 0.21281

1 0.28043 0.15876 0.30937 0.16397 0.34849 0.15876 0.34849 0.21157 0.15894

1.2 0.15435 0.25574 0.26984 0.17320 0.18443 0.30314 0.32564 0.33599 0.19402

BiLSTM + BiGRU 0.8 0.05144 0.28018 0.04959 0.55082 0.05711 0.35408 0.07935 0.12061 0.11800

1 0.16585 0.06946 0.13009 0.04796 0.42953 0.06946 0.42953 0.14829 0.07038

1.2 0.08515 0.28222 0.08021 0.18688 0.08362 0.21184 0.06544 0.66183 0.06089

The best values of performance indices are given in bold

Table 5 Summary statistic for Case 1

Model Train Test

Hip Knee Ankle Hip Knee Ankle

Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

DNN 0.19637 0.31060 0.42755 0.82322 0.44030 0.57838 0.27992 0.43153 0.97125 4.20461 0.52172 0.97107

LSTM 0.12824 0.17084 0.24238 0.33995 0.20005 0.33110 0.23057 0.43749 0.71588 2.52109 0.47811 0.94744

GRU 0.13192 0.21123 0.25788 0.43449 0.20753 0.29801 0.47360 1.70619 1.03239 5.27214 0.56820 1.79997

Bi-LSTM 0.33789 0.47333 0.60953 0.89330 0.41119 0.58135 0.42231 0.76525 1.22674 7.08934 0.59625 1.77513

Bi-GRU 0.08903 0.14696 0.23492 0.31351 0.25505 0.48646 0.36898 0.61877 1.49666 8.65588 0.75911 3.43975

LSTM+GRU 0.10736 0.15201 0.18224 0.26244 0.14155 0.22948 0.29024 0.99224 0.77743 3.84163 0.42042 1.11209

COMBO BI 0.19392 0.27398 0.27501 0.41238 0.18266 0.36963 0.33244 0.64053 1.12395 7.64524 0.52414 1.67516

The best values of performance indices are given in bold

In order to quantify the performance of the proposed models,
performance indices inspired from Embry et al. (2016) are
chosen. It measures how closely the model can predict the
untrained tasks. The error between the real value of mean
trajectory found using the experiments, φi ,θ j and predicted
kinematic trajectory q(φi , θ j ) for tasks θ j is defined by (13),

g j = maxi

{
Xφi ,θ j − q(φi , θ j )

SE(xφi ,θ j )

}
(13)

For every tasksmaximum is evaluated by taking the largest
error encountered in a gait cycle. Then, the mean and max-
imum of above evaluated maximum error for all tasks is
calculated, which is used to quantify the model performance.

3.2 Prediction analysis

3.2.1 Case 1

The dataset is split into 52:48 ratio for training and test-
ing sets. Overall fourteen and thirteen tasks combination are
selected for training and testing purpose. Tables 1, 2 presents

the training dataset for all data-driven model denoted by the
� and other blank are used for testing purpose.

Table 3 presents themaximum error obtained from all pro-
posedmodels for knee, hip, and ankle joint trajectories. Every
entry shows the maximum error encountered in the predicted
gait cycle. Here, the bold value represent the combination
used for the testing purpose whereas the normal value for
training purpose. Tables 4, 5 present the mean and maximum
error statistic for proposedmodel,which is extracted from the
Table 3. LSTM and GRU obtaithe ned approximate 40% less
error than the DNN model. Even both models outperform
the BiLSTM as well. And, also on testing dataset, LSTM
and GRU outperform the BiGRU. However, LSTM+GRU
provide better statistic than the LSTM and GRU individually
for both in training and testing. It is because, theLSTM+GRU
is suiareble for all type of dataset as discussed in Sect. 2. Due
to the lack of data availability, BiLSTM+BiGRU could not
perform better than the LSTM+GRU model.

It is inferred from above discussion, precision of all
models is comparable for our dataset. The performance of
LSTM+GRU suggests that this is the best option to be used
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Table 6 Summary statistic for Case 2

Model Train Test

Hip Knee Ankle Hip Knee Ankle

Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

DNN 0.21657 0.29793 0.47903 0.73799 0.29477 0.46386 0.24900 0.33800 0.57300 0.89300 0.35200 0.50600

LSTM 0.09427 0.12914 0.17846 0.29660 0.13612 0.28512 0.21102 0.39184 0.36946 0.50364 0.30505 0.51618

GRU 0.16005 0.29470 0.58358 1.01650 0.34708 0.56406 0.26107 0.60900 0.78747 1.53938 0.43327 0.97983

Bi-LSTM 0.09425 0.18877 0.11818 0.17035 0.09995 0.17521 0.30405 0.71831 0.56060 1.92425 0.42541 0.87853

Bi-GRU 0.09123 0.16248 0.15332 0.31879 0.13209 0.21025 0.28903 0.58261 0.50348 0.96198 0.39724 0.91197

LSTM+GRU 0.09449 0.20076 0.27802 0.51245 0.19344 0.32564 0.18995 0.30689 0.44110 0.76508 0.29813 0.56671

COMBO BI 0.07887 0.12499 0.11310 0.28512 0.10076 0.28512 0.25533 0.47160 0.44833 1.16174 0.32109 0.66183

BASIS 0.23700 0.25800 0.30600 0.32500 0.22300 0.24200 0.33300 0.69600 0.48500 1.28600 0.35800 0.67600

FSM 0 0 0 0 0 0 0.568 0.906 1.077 3.961 0.765 1.335

The best values of performance indices are given in bold

for the generation of gait cycle trajectory as compared to
other models. It works best in capturing the main relation-
ship between input and output of time series dataset.

3.2.2 Case 2

From Table 2, it can infer that two combinations of speed
0.8 m/s and 1 m/s and incline at 7.5o and 10o respectively,
provide the highest maximum error which were affecting the
precision of all data-drivenmodels. To increase the precision,
these two combinations of speed and incline is included into
training dataset. Thus, the overall training and testing dataset
is in ratio of 60:40. Overall Sixteen and eleven tasks combi-
nation are selected for training and testing purpose. Table 2
presents the training dataset for all data-drivenmodel denoted
by the � and other blank are used for testing purpose.

Table 4 discussed the maximum error obtained by the
predicted trajectories from each model for twenty-seven
combination of speed and incline. The normal values repre-
sent the error obtained for prediction on the training dataset
and the bold values present the prediction on testing dataset.
Every value in table present the maximum error encountered
in the predicted gait cycle from the data-driven model.

Table 4 is summarized in Table 6, which discussed the
overall statistic of mean and maximum error obtained from
all proposed models for all tasks. It presents that the perfor-
mance of all models is significantly improved by introducing
the worst performer tasks combination of case 1 into case 2.
Inmost cases, the LSTM+GRUoutperforms all other models
in this case well. All models are also compared with the pre-
vious work in literature i.e., basis and FSMmodel (Embry et
al., 2016). Chosen parameter settings are the same for both
models as in this study. It shows that the proposed model in
this study outperforms the basis and FSM model approxi-
mately in the range of 20–50 % for all knee, hip, and ankle

trajectories for both training and testing datasets. It is inferred
from the above result that the LSTM + GRUmodel provides
high precision as compared to all other models. Therefore,
it is recommended to use the LSTM+GRU for providing the
reference trajectories.

3.3 Discussion

Figures 3 and 4 presents the sample trajectory prediction
of knee, hip, and ankle joint angle for both cases at 1 m/s
speed for 0o incline, for all data-driven models. It shows
that the LSTM+GRU model provides a smooth trajectory as
well as accurately follows the actual gait cycle. Therefore,
it is recommended to use the combo of LSTM and GRU for
gait generation in real-time for providing references to biped
robot.

Table 7 shows that the overall statistic of prediction accu-
racy for all models. It tells that mean and max of error in
case II from all models is less than the case I. It is because
the training data-set used for case II includes the worst per-
former incline and speed data (i.e. 7.5o incline at speed 0.8
m/s and 10o incline at speed 0.8 m/s) of case I.

Table 8 shows the impact of different loss function in
term of mean and max error statistic for DNN model only. It
shows that the our proposed loss function outperform DNN-
MAE by more than approximate 20% in most cases. And
also, DNN-proposed model based on the proposed loss out-
performs the DNN-MSE by large margins. It validate the
theoretical background developed in objective function sec-
tion.

Comparative analysis of trajectory prediction for all devel-
oped models is shown in Figs. 5 and 6. One-hundred-fifty
points of the normalized incline and gait are used to make the
wire-frame plots. Trajectories are predicted for 1m/s speed.
In basic models (DNN, LSTM, GRU, BiLSTM, and BiGRU)
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Fig. 3 Comparative analysis of all models for case 1 at speed 1m/s and 0o incline

Fig. 4 Comparative analysis of all models for case 2 at speed 1m/s and 0o incline

Table 7 Summary statistic for
case 1 and case 2 (at speed 1 m/s
and incline 0o)

Cases Knee Hip Ankle
Mean Max Mean Max Mean Max

Case 1 0.44483 4.31736 0.24511 2.89211 0.29550 1.24776

Case 2 0.37494 3.49498 0.22416 2.61489 0.27339 1.06537

The best values of performance indices are given in bold

as shown in Fig. 5, the BiLSTM model is performing well
because it captures the relationship of speed and incline as
compared to all other models. The predicted trajectory from
the model smoothly changes from the +10o to -10o. Firstly,
the magnitude of the angle decreases from the +10o to 0o

and then increases from +0o to -10o incline. As per Fig. 6,

the combination of LSTM+GRU provides smooth trajectory
prediction. And, also the combo LSTM+GRU outperforms
the BiLSTMmodel as well in smooth prediction for all joint
angles. The performance of the LSTM+GRUmodel is better
than other models because it can memorize the directional-
ity variations in the inclination slope more accurately. The

Table 8 Impact of Loss
function on model performance

Model Train
Hip Knee Ankle
Mean Max Mean Max Mean Max

DNN-Proposed 0.196374 0.310601 0.427547 0.823219 0.440299 0.578384

DNN-MAE 0.258133 0.501682 0.577442 0.973513 0.529546 0.923301

DNN-MSE 0.300802 0.490659 0.540519 0.8176 0.586455 0.865027

Test

DNN-Proposed 0.279918 0.431532 0.971252 4.204612 0.521,724 0.971,071

DNN-MAE 0.561181 0.858816 1.67293 4.000961 0.978883 2.856015

DNN-MSE 1.177479 2.197443 1.594051 3.353269 1.409751 2.410433

The best values of performance indices are given in bold

123



Autonomous Robots (2023) 47:753–769 765

Fig. 5 Comparative analysis of data-driven models at 1 m/s speed
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Fig. 6 Comparative analysis of combine data-driven models at 1 m/s speed

combined structure of LSTM+GRU helps in capturing the
changes in training joint angle trajectory data because of
speed and incline variation.

4 Conclusion

This work presented the parametrization of the kinematic
dataset using data-driven models. The dataset employed for
training purposes includes the walking data of 10-able sub-
jects on treadmill with varying speeds and inclines. The novel
loss function is proposed for tuning the weights of data-
driven models. The loss function incorporated the standard
error of the inter-subject mean trajectory and squared differ-
ence of actual and predicted value at each point in the gait
cycle. The hyper-parameter of the model is optimized using
the Bayesian optimizer (given in the Keras tuner library).
Also, the superiority of the proposed loss function is proved
by comparing it with the other two standard loss functions
i.e., mean absolute error (MAE) and mean squared error

(MSE). Afterward, the proposed model performance is vali-
dated based on the two cases. Overall, the combo of LSTM
and GRU outperforms all other models in terms of statisti-
cal mean and max error indices. And, the wire-frame is also
predicted for both the untrained and trained tasks over 150
× 150-time points. Finally, the impact of the varying speeds
with inclines is also discussed. It is recommended to use the
LSTM+GRU model for predicting the smooth joint trajecto-
ries for the biped robot or prosthetic leg.

As a future scope, authors will apply the meta-heuristic
optimization approaches for the tuning of parameters of the
model, and reinforcement learning will be applied to deal
with the issue of non-periodic walking. Additionally, inputs
such as ground slopes which are based on the external sen-
sor can have uncertainty in their measurement. It can badly
impact the predictions from the model, which is subjected to
further investigation in future research.
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