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Abstract
Robots operating in everyday environments need to effectively perceive, model, and infer semantic properties of objects.
Existing knowledge reasoning frameworks only model binary relations between an object’s class label and its semantic
properties, unable to collectively reason about object properties detected by different perception algorithms and grounded in
diverse sensory modalities. We bridge the gap between multimodal perception and knowledge reasoning by introducing an
n-ary representation that models complex, inter-related object properties. To tackle the problem of collecting n-ary semantic
knowledge at scale, we propose transformer neural networks that generalize knowledge from observations of object instances
by learning to predict single missing properties or predict joint probabilities of all properties. The learned models can reason
at different levels of abstraction, effectively predicting unknown properties of objects in different environmental contexts
given different amounts of observed information. We quantitatively validate our approach against prior methods on LINK, a
unique dataset we contribute that contains 1457 object instances in different situations, amounting to 15multimodal properties
types and 200 total properties. Compared to the top-performing baseline, a Markov Logic Network, our models obtain a 10%
improvement in predicting unknown properties of novel object instances while reducing training and inference time by more
than 150 times. Additionally, we apply our work to a mobile manipulation robot, demonstrating its ability to leverage n-ary
reasoning to retrieve objects and actively detect object properties. The code and data are available at https://github.com/
wliu88/LINK.

Keywords Semantic reasoning · N-ary relation · Object-centric reasoning · Transformer networks

1 Introduction

Robust operation in everyday human environments requires
robots to effectively model a wide range of objects and to
predict object locations, properties, and uses. Semantic task
and object knowledge serves as a valuable abstraction in this
context. Perceiving and understanding semantic properties
of objects (e.g., a cup is ceramic, empty, located in kitchen,

B Weiyu Liu
wliu88@gatech.edu

Dhruva Bansal
dbansal36@gatech.edu

Angel Daruna
adaruna3@gatech.edu

Sonia Chernova
chernova@gatech.edu

1 Institute for Robotics and Intelligent Machines, Georgia
Institute of Technology, Atlanta, GA, USA

and used for drinking) aids robots in performing many tasks
in the real world, such as inferring missing information in
incomplete human instructions (Nyga et al., 2018; Chao et
al., 2020), efficiently searching for objects in homes (Zeng et
al., 2019; Yang et al., 2019), and manipulating objects based
on their affordances and states (Ardón et al., 2019; Liu et al.,
2020; Jain et al., 2013).

Prior work has encoded semantic knowledge primarily
as pairwise relations between an object’s class label and its
semantic properties (e.g., the cup is wet, the cup is in cabi-
net) (Daruna et al., 2019; Chernova et al., 2017; Zhu et al.,
2014; Tenorth & Beetz, 2017; Saxena et al., 2014) (Fig. 1
left). These semantic properties can come from a variety
of perception methods, such as the use of vision to predict
visual attributes (Ferrari et al., 2007; Nazarczuk & Miko-
lajczyk, 2020) and affordances (Do et al., 2018; Chuang et
al., 2018), haptic data to identify object materials (Kerr et
al., 2018) and surface textures (Chu et al., 2015), as well as
exploratory actions to detect object states (Thomason et al.,
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Fig. 1 N-ary relations enable robots tomore effectivelymodel complex,
inter-related object properties than binary relations. In our framework,
we learn generalizable n-ary relations from object instances represented
as n-ary observations

2018). However, pairwise encoding of semantic data fails to
take full advantage of such multimodal observations because
it ignores the complex relational structure between various
object properties. For example, observing that a cup is wet
does not help the robot infer that the cup more likely should
be placed in sink than in cabinet.

The objective of our work is to enable robots to collec-
tively reason about object properties that can be grounded
in different modalities and detected by separate perception
algorithms. Specifically, we situate our work in the task
of predicting semantic properties of objects based on par-
tial observations. We introduce a novel semantic reasoning
framework that uses n-ary relations to model complex, inter-
related object properties. In addition to modeling relations
between object properties, our framework enables the ability
to reason at different levels of abstraction (Fig. 1middle). For
example, a robot searching for a cup, with no additional infor-
mation, is able to perform class-level inference to identify
both the cabinet and sink as likely locations. Given addi-
tional information, such as wet, n-ary relations enable more
refined reasoning and the ability to detect that wet cups are
more commonly found in sink rather than in cabinet.

A key challenge presented by n-ary representations is the
collection of semantically meaningful n-ary relations, which
require various object properties to be conditioned on each
other. Unlike binary relationswhich can be created by experts
or crowdsourced at scale (Gupta et al., 2004; Liu & Singh,
2004; Miller, 1995; Lenat, 1995), n-ary relations are difficult
to construct manually. In this work, we obtain n-ary observa-
tions, each representing a set of identified semantic properties
of an object instance within a particular environmental con-
text (e.g., a small silver metal cup that is wet and in sink),
from which we then learn models capturing generalizable
n-ary relations (Fig. 1 right). Since the n-ary relations are
learned from object instances, they also encode knowledge
at the instance-level. To mine generalizable patterns from n-
ary observations, we introduce two transformer-based neural
networks, inspired by recent advances in contextualized lan-
guage models (Devlin et al., 2019; Vaswani et al., 2017). The
autoencoding model, which we call LINK-AE, is trained to
reconstruct hidden properties of object instances. The autore-

gressivemodel, whichwe call LINK-AR, is trained to predict
joint probabilities of all observed properties in each n-ary
observation. With these self-supervised training objectives,
our models learn to generalize n-ary relations, which help
predict unobserved properties of novel object instances and
perform reasoning at different levels of abstraction. In sum-
mary, our work contributes:

• an n-ary instance-level representation of objects, which
enables modeling n-ary relations between multimodal
object properties and variance between object instances,

• two scalable transformer-based neural networks which
learn semantic knowledge about objects from data and
are capable of performing inference at different levels of
abstraction,

• a dataset, which we call LINK, consisting of 1457 object
instances in different situations associated with 15 types
of 200 multimodal properties, the richest situated object
dataset to date.

We quantitatively validate our approach against five prior
methods on the above dataset and demonstrate that our
representation and reasoning method leads to significant
improvements in predicting unknown properties of novel
object instances while significantly reducing computation
time. We further show that the autoregressive formulation
enables our model to outperform other methods in predict-
ing missing properties of novel n-ary relations with different
arities. Additionally, we apply our work to a mobile manipu-
lation robot. We demonstrate that the explicit representation
of n-ary knowledge allows the robot to locate objects based
on complex human commands.We also show that the learned
relations can help the robot infer properties based on obser-
vations from multimodal sensory data.

A preliminary version of this work was presented in
(Liu et al., 2021). The current version first characterizes
the previously introduced transformer network as an autoen-
coding transformer (i.e., LINK-AE), and then introduces a
new autoregressive transformer (i.e., LINK-AR) that explic-
itly models factorized joint probability of each complete
n-ary observation. We also include an additional experiment
that directly evaluates relational inference at different levels
of abstraction by requiring models to predict novel rela-
tions with different arities ranging from binary relations to
16th-order relations. This paper also includes an extended
discussion of related work on the topic of object-centric rea-
soning and a recent baseline based on a pre-trained language
model (Devlin et al., 2019).

2 Related work

Our work is related to the following prior efforts.
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2.1 Semantic reasoning in robotics

Many ontologies and knowledge graphs have been used
across AI and robotics to encode general knowledge about
objects (e.g., locations, properties, uses, and class hierar-
chies) (Lim et al., 2011; Saxena et al., 2014; Tenorth &
Beetz, 2017; Lemaignan et al., 2017; Varadarajan & Vincze,
2013). In robotics, a key challenge for semantic reasoning is
generalization to previously unseen scenes or environments.
Bayesian logic networks have been used to cope with noise
and non-deterministic data fromdifferent data sources (Cher-
nova et al., 2017). More recently, knowledge graph (KG)
embedding models were introduced as scalable frameworks
to model object knowledge encoded in multi-relational KGs
(Daruna et al., 2019; Arkin et al., 2020). Although the above
techniques effectively model objects, they only support rea-
soning about binary class-level facts, therefore lacking the
discriminative features needed to model object semantics in
realistic environments.

Other frameworks take a learning approach to modeling
object semantics. Methods for learning relations between
objects, between object properties, and between objects and
their environments have shown to be beneficial for detect-
ing objects on table tops (Kunze et al., 2014; Günther et al.,
2018; Nyga et al., 2014), finding hidden objects in shelves
(Moldovan & Raedt, 2014), predicting object affordances
(Zhu et al., 2014), and semantic grasping (Ardón et al.,
2019; Liu et al., 2020). However, most methods leverage
probabilistic logic models to learn these relations, which
have scalability issues that limit them from modeling inter-
connected relations in larger domains (Nyga et al., 2014;
Moldovan & Raedt, 2014; Zhu et al., 2014; Ardón et al.,
2019). In contrast, our proposed framework learns n-ary
relations between 15 property types and 200 properties, the
richest representation to date.

2.2 Modeling N-ary facts

Our neural network model is closely related to methods
developed in the knowledge graph community. Many rela-
tional machine learning techniques, including most recent
transformermodels (Wang et al., 2019; Bosselut et al., 2019),
have been developed for modeling KGs and in particular
predicting missing links in KGs (Nickel et al., 2015). These
techniques treat aKGas set of triples/binary facts,where each
triple (h, r , t) links two entities h and t with a relation r (e.g.,
(Marie Curie, educated at, University of Paris)). Despite
the wide use of triple representation, many facts in KGs are
hyper-relational. Each hyper-relational fact has a base triple
(h, r , t) and additional key-value (relation-entity) pairs (k, v)

(e.g., {(academic major, physical), (academic degree, Mas-
ter of Science)}). A line of work converts hyper-relational

facts to n-arymeta-relations r(e1, ..., en) and leverages trans-
lational distance embedding (Wen et al., 2016; Zhang et
al., 2018), spatio-translational embedding (Abboud et al.,
2020), tensor factorization (Liu et al., 2020) for model-
ing. Other approaches directly learn hyper-relational facts
in their original form using various techniques, including
convolutional neural networks, graph neural networks, and
transformer models (Rosso et al., 2020; Galkin et al., 2020).
Another approach unifies n-ary representation by convert-
ing the base triple to key-value pairs; it uses convolutional
neural network for feature extraction and then models relat-
edness of role-value pairs with a fully connected network
(Guan et al., 2019). In this work, we represent object proper-
ties with key-value pairs. Compared to other representations
of higher-order relations, this representation is flexible to
model interconnected relations between any types of object
properties (e.g., the relation between color and material) and
in different levels of abstraction (e.g., the specific relation
between object category, color, weight, and material). In
addition, we model facts with much higher arities than exist-
ing work in the KG community and directly reason about
n-ary relations between role-valuepairs using the transformer
model.

2.3 Object-centric reasoning

Our approach is also related to methods for modeling objects
from sensory data. Object-centric datasets has enabled dif-
ferent robotic applications such as object retrieval (Tatsuma
et al., 2012; Dyke et al., 2020), grasping (Wade-McCue et
al., 2018; Zhang et al., 2021), manipulation (Levine et al.,
2016; Huang & Sun, 2019), and object recognition (Singh
et al., 2014; She et al., 2020). In computer vision, object
attributes are extracted from images (Ferrari et al., 2007;
Farhadi et al., 2009; Sun et al., 2013). Recent techniques in
visual question answering (Nazarczuk&Mikolajczyk, 2020)
and language grounding (Shridhar & Hsu, 2018; Jenkins et
al., 2020) allow robots to answer questions about objects
and describe objects with natural language. Haptic feedback
(Luo et al., 2017; Li et al., 2020) and auditory data (Eppe
et al., 2018; Gandhi et al., 2020) have also helped robots
interpret salient features of objects beyond vision. Interactive
perception and unsupervised exploration can further leverage
a robot’s exploratory actions to reveal sensory signals that
are otherwise not observable (Bohg et al., 2017; Sinapov et
al., 2014; Chu et al., 2015; Thomason et al., 2018; Amiri
et al., 2018; Bhattacharjee et al., 2018; Tatiya & Sinapov,
2019;Watters et al., 2019). Building on such rich object-level
datasets, recent work has also explored multisensory object-
centric perception to perform tasks like instance recognition,
grasping, and object retrieval (Gao et al., 2021). This work
encodes visual, auditory, and tactile sensory data, thereby
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moving towards providing a full spectrum of physical object
properties. Our work also shares the same goal as a recent
work that builds robot-centric object knowledge from multi-
modal sensory data (Thosar et al., 2021). Built with the tool
substitution task in mind, they extract object properties like
hollowness, flatness, and roughness, that would be relevant
to this real world task. We consider our approach compli-
mentary to the above, as our framework can leverage the rich
semantic information extracted from these methods to infer
additional unknown object properties.

3 Problem definition

Given a set of observed/known object properties, we aim
to predict an unobserved/unknown property of a novel situ-
ated object instance using semantic knowledge learned from
data. We define a situated object instance as a particular
specimen of a given object class within a particular envi-
ronmental context (e.g., the full red Solo cup on the kitchen
counter). The object’s semantic representation encodes prop-
erties grounded in different modalities, and includes both
immutable properties (e.g., class, material, shape, and hard-
ness) and mutable properties (e.g., location, clealiness,
fullness).

We use the n-ary representation to model all object data.
Each n-ary relation is defined by a set of role-value pairs
{ri : vi }ni=1, where ri ∈ R is the role set, vi ∈ V is the
value set, and i = 1, ..., n. The number n represents the arity
of the relation. In the context of modeling object semantics,
each role corresponds to a property type and each value cor-
responds to a property value. In this representation, our task
can be formally written as {r1 : v1, ..., rn−1 : vn−1, rn :?},
where n− 1 is the number of known properties, and rn is the
type of the property being queried. The number of known
properties n determines the level of abstraction for the query.
A smaller n queries more abstract semantic knowledge (e.g.,
{class: cup, material: ?}) and a larger n queries more spe-
cific semantic knowledge (e.g., {class: cup, transparency:
opaque, physical property: hard, color: brown,material: ?}).

Various robotic tasks can benefit from n-ary knowledge
about object properties. We, in particular, examine two uses
cases. First, a robot can locate specific objects based on users’
requests. For example, “find a clean glass cup” can be trans-
lated to a query {class: cup, material: glass, location: ?}.
Second, n-ary knowledge can enable a robot to infer object
properties that are hard to be directly observed by collec-
tively reasoning about properties extracted from multimodal
sensors. For example, a robot only equipped with object
detection andmaterial classification can infer that a glass cup
is likely to be fragile with the query {class: cup, material:
glass, physical property: ?}. Ta
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Fig. 2 An example of the collected data showing various cups and
diverse environmental contexts each of these instances can be found
in. Pictures at the situated object instance level are for illustration but

correspond to descriptions of the contexts in our dataset. Each situated
object instance has a corresponding fully annotated n-ary observation
(bottom left)

Table 2 Object classes and
properties in our dataset

Type (# Value) Values

class (11) bottle, bowl, box, brush, can, cup, fork, ladle, pan, spatula, sponge

material (8) ceramic, foam, glass, metal, paper, plastic, porcelain, wood

transparency (3) opaque, translucent, transparent

dimension (10) big, deep, long, narrow, shallow, short, small, thick, thin, wide

physical property (6) absorbent, compressible, elastic, fragile, hard, soft

shape (9) angular, blunt, curved, flat, forked, hollow, irregular, sharp, straight

*temperature (3) cold, hot, room temperature

*fullness (3) empty, full, half

*dampness (3) damp, dry, wet

*cleanliness (3) clean, dirty, normal

price (3) cheap, expensive, medium

weight (3) heavy, light, medium

size (3) large, medium, small

*room (11) balcony, bathroom, bedroom, child’s room, closet, dining room,

garage, kitchen, laundry, living room, study

color (15) black, blue, bronze, brown, clear, colorful, gold, green, orange,

pink, purple, red, silver, white, yellow

*location (117) in bag, in basket, in bathtub, in bin, in box, in bucket, in cabinet,

in cooler, on bathtub, on bed, on bench, on bookshelf,...

4 LINK dataset

In this section, we present the content and features of the
LINK dataset forLearning Instance-levelN-aryKnowledge.
Our dataset contains 1457 fully annotated situated object
instances. In Table 1, we compare the content of our dataset
to a representative set of data sources from the computer
vision, natural language processing, and robotics commu-
nities; as can be seen, our dataset has the most diverse
set of property types and property values, leading to much
richer and more realistic object representations. Properties
in our dataset are inherently multimodal, which help bridg-

ing robots’ perception and reasoning. In addition to visual
attributes, we intentionally model properties that are hard to
extract from visual data (e.g., dampness and temperature).
Our dataset represents variance between object instances by
having on average of nine objects per class. Objects in dif-
ferent situations are captured by mutable properties such as
location, cleanliness, temperature, and dampness. Further-
more, our dataset provides complete and logically coherent
annotations (truth values) of all properties for each situated
object instance. Figure2 illustrates the hierarchy of objects
in our dataset, which facilitates the learning of generalizable
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n-ary relations between object properties at different levels
of abstraction.

4.1 Objects and properties

Our dataset contains 98 instances of everyday household
objects organized into 11object classes. For eachobject class,
we selected objects diverse in sizes, geometries, materials,
visual appearances, and affordances from the Amazon prod-
uct website. We created the initial set of 83 properties (the
additional 117 location properties are crowdsourced) from
adjectives that people use for describing objects (Lynott &
Connell, 2009). We then followed GermaNet,1 (Hamp &
Feldweg, 1997) to categorize these properties into 15 distinct
types based on their semantic meanings. Table 2 shows the
property values and types in our dataset (mutable properties
are labeled with asterisk).

4.2 Collection of N-ary labels

Given 98 object instances and 15 property types, our next
step was to collect situated object instances where each
object is described by a semantically meaningful combi-
nation of properties. We used Amazon Mechanical Turk
(AMT) to crowdsource property combinations. The nov-
elty in our crowdsourcing process is that we asked AMT
workers to imagine objects situated in different environ-
ment contexts.Compared to established approaches to collect
semantic knowledge, such as asking workers to annotate
properties for objects in images and prompting workers to
answer commonsense questions about objects, our method
is more effective at eliciting multimodal and instance-level
knowledge.

More specifically, after we extracted pictures of each
object, as well as details of its material, weight, dimension,
and price from the Amazon product web page, we con-
ducted a three-stage crowdourcing process. First, for all 98
object instances, we showed pictures of the object to AMT
workers and asked them to list the object’s immutable prop-
erties. Second, we presented AMT workers with an object
and a room, and had them imagine and describe three sit-
uations in which that object-room combination could be
encountered, including details of the location of the object,
the associated daily activity, and the object state (e.g., a
wet cup on the bathroom counter used for rinsing after
brushing teeth). Third, we presented a new set of AMT
workers with the above collected situated object descrip-
tions, and had them label mutable properties (e.g., wet,
empty, clean) for the associated object. To ensure the qual-

1 GermaNet, the German version of the English lexical databaseWord-
net (Miller, 1995) provides hierarchical structures for adjectives.

ity of the crowdsourced data, we used 3 annotators for each
question and filtered workers based on gold standard ques-
tions. We manually verified descriptions of situations from
stage 2.

5 Approach

Given n − 1 properties, we aim to predict the the nth prop-
erty of type rn , i.e., {r1 : v1, ..., rn−1 : vn−1, rn :?}, where
n − 1 is the number of observed properties. We develop
two transformer-based neural network models based on the
following design goals: learning higher-order interactions
between typed properties (i.e., role-value pairs), accommo-
dating arbitrary order of properties, supporting inference at
different levels of abstraction by accepting arbitrary number
of observed properties, representing uncertainties in seman-
tic knowledge, and being scalable. Below, we introduce the
autoencoding model LINK-AE which we first proposed in
(Liu et al., 2021). Then,wepropose a newautogressivemodel
LINK-AR. We outline the necessary modifications to the
autoencoding transformer for the new autoregressive formu-
lation.

5.1 Autoencodingmodel

The objective of our autoencoding model LINK-AE is to
learn conditional probability

p(vn | ˜{ri : vi }ni=1) (1)

where ˜{ri : vi }ni=1 represents the corrupted version of the

n-ary relation {ri : vi }ni=1. Specifically,
˜{ri : vi }ni=1 corre-

sponds to the input {r1 : v1, ..., rn−1 : vn−1, rn : [MASK]},
where [MASK] is a special token indicating that the value
of the query property has been hidden. As shown in Fig. 3,
the masked input is first fed into a transformer encoder
(Vaswani et al., 2017), which builds a contextualized rep-
resentation of the input. The encoding at the nth position is
then used to predict the query property via a feedforward
layer and a sigmoid function. The autoencoding learning
is closely related to masked language models (Devlin et
al., 2019) that reconstruct full sentences from corrupted
ones where words are randomly replaced with mask tokens.
It has been shown that the autoencoding training allows
transformer neural networks to capture higher-order distri-
butional information in data (Sinha et al., 2021). Below
we describe each component of the autoencoding model
in detail and discuss how they help to satisfy the design
goals and learn n-ary relations between object proper-
ties.
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Fig. 3 The architecture of our LINK-AE model includes embedding
layers, a transformer encoder, and a feed-forward layer for predicting
probabilities of properties

5.1.1 Input encoder

The input encoder uses learned embeddings to convert roles
and values in the input to vectors of dimension dmodel. For
each role-value pair, we construct its representation as

h0i = xvaluei + x rolei (2)

where xvaluei is the embedding for the i th value and x rolei is
the embedding for the i th role. At the query position, the
value embedding of the [MASK] token indicates that this
property is in query. We maintain the role embedding of the
query property, allowing the model to condition its reason-
ing on the type of the query property. Different from existing
transformer-based models (Devlin et al., 2019; Bosselut et
al., 2019;Wang et al., 2019), we do not use positional embed-
dings to indicate the position of each role-value pair in the
n-ary query since, unlike natural language sentences or KG
triples, there is no particular order for object properties. As
the latter components of the model are permutation invariant
to the order of input data, removing the positional embed-
dings also allows our model to efficiently learn from object
properties represented in n-ary observations.

5.1.2 Transformer encoder

The transformer encoder takes the embedded input {h01, ..., h0n}
andbuilds a contextualized representation {hL1 , ..., hLn }where
L is the number of transformer layers in the transformer
encoder. We discuss the core components of the transformer

encoder below and refer the readers to the original paper for
details (Vaswani et al., 2017).

At the heart of the Transformer architecture is the scaled
dot-product self-attention function, which allows elements
in a sequence to attend to other elements. Each input hli is
linearly projected to a query qli , key kli , and value vli . The

intermediate output ĥl+1
i is computed as a weighted sum of

the values, where the weight assigned to each value is based
on the compatibility of the query with the corresponding key.
The function is computed on a set of queries simultaneous
with matrix multiplication.

Attention(Q, K , V ) = softmax

(
QKT

√
dk

)
V (3)

where dk is the dimension of queries and keys. The queries,
keys, and values are stacked together into matrix Q ∈
R

n×dmodel , K ∈ R

n×dmodel , and V ∈ R

n×dmodel . We omit the
layer index here for clarity.

Instead of computing the attention function once, the
multi-head attention has H heads, where each head performs
a scaled dot-product attention. This design allows each head
to attend to different combinations of the input. As shown
in Fig. 3, after the multi-head attention (MultiAttn), a fully-
connected feedforward network (FFN) is applied to each
position of the sequence separately and identically. Residual
connections (He et al., 2016) are applied both afterMultiAttn
and FFN, which are followed by layer normalizations (Ba et
al., 2016).

The transformer encoder is suited to our task because each
position can freely attend to all positions in the input, thus
aiding in modeling inter-relations between properties. The
transformer encoder is also a permutation equivariant func-
tion f because for any permutation z ∈ Zn , where Zn is the
set of all permutations of indices {1, ..., n}, f (z[{hi }ni=1]) =
z[ f ({hi }ni=1)] (Lee et al., 2019). This property supports effec-
tive reasoning of order-less object properties.

5.1.3 Final classification

The final layer uses a learned linear transformation and a
sigmoid function to convert the encoded input to predicted
probabilities of properties. Specifically,

pn = σ(Evalue FCN(hLn )) (4)

where FCN is a fully connected layer and Evalue is the learned
embedding matrix used to create input value embeddings.
The use of the sigmoid function σ allows the model to accept
multiple correct answers, thereforemodeling uncertainties in
semantic knowledge (e.g., cups can be found in both kitchen
and living room)
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Fig. 4 The arrows visualize the information path for each input posi-
tion in an autoencoding transformer encoder (LINK-AE), a standard
autoregressive transformer encoder, and a two-stream autoregressive
transformer encoder (LINK-AR). We highlight the information path
for the third role-value pair, which is in query. Comparing with LINK-

AE, the lack of arrows in LINK-AR is due to the chosen factorization,
the use of causal attention, and the separation of content and query rep-
resentation. We also illustrate the different input and final classification
configurations of the autoencoding and autoregressive models

5.1.4 Autoencoding training

During training, we construct the masked input by replacing
only a single value in an n-ary observation with the [MASK]
token. We perform this procedure exhaustively for all values
and all n-ary observations in the training set.We then group n-
ary observations sharing the same masked instances and use
their ground-truth values at the query position to construct a
one-hot label (continuous-valued properties are discretized).
Scoring multiple instances simultaneously is also known as
the 1-N setting (Dettmers et al., 2018) and helps reduce train-
ing and inference time. Our training objective is to maximize
the log-likelihood of Eq.1.We use cross-entropy between the
one-hot label and prediction as training loss. We apply label
smoothing (Szegedy et al., 2016) to prevent overfitting.

5.2 Autoregressive model

Compared to the autoencoding model which learns to recon-
struct the value of one unknown property from a corrupted
version of the input, our autoregressive model does not
require input corruption and directly learns the probability
of the complete n-ary observation. Given an n-ary relation
{r1 : v1, ..., rn−1 : vn−1, rn : vn}, our autoregressive model
LINK-AR factorizes the joint probability of the properties
with the chain rule:

p({ri : vi }ni=1) =
n∏

i=2

p(vi | ri , {rk : vk}i−1
k=1) (5)

The factors start with role-conditioned probability p(v2 |
r2, {r1 : v1})modeling binary relations and extend to higher-
order relations. Learning the factorized probabilities with
increasing numbers of conditional variables help our model
learn to perform reasoning at different levels of abstraction.
To implement the autoregressive model, we use the same

input encoder and final classification layer as the autoencod-
ing model. However, we make some crucial modifications
to the transformer encoder to support effective learning of
factorized probabilities. Below, we first discuss our new
autoregressive transformer encoder and its core component,
the two-stream causal attention. Then we describe the train-
ing procedure for the new model.

5.2.1 Two-stream causal attention

We propose to use two-stream causal attention to model∏n
i=2 p(vi | ri , {rk : vk}i−1

k=1). Built on the two-stream
attention proposed in (Yang et al., 2019), our autoregres-
sive transformer encoder conditions the prediction of each
unknownproperty on type-specific information and is permu-
tation invariant to the order of known properties. Before we
discuss the full formulation, we first describe how to model∏n

i=2 p(vi | {rk : vk}i−1
k=1) using causal attention.

The transformer encoder introduced in Sect. 5.1.2 can
be used to represent factorized probabilities

∏n
i=2 p(vi |

{rk : vk}i−1
k=1) by limiting the attention of each position i to

only itself and its previous positions (i.e., {1, ..., i}). Specifi-
cally, this type of causal attention can be achieved by adding
a position-wise bias term to QKT when computing dot-
product attention (Vaswani et al., 2017). We compare the
information paths of the autoencoding and autoregressive
transformer encoders in Fig. 4 (left and middle). Limited by
its internal structure, the autoregressive transformer encoder,
however, cannot condition the prediction on the type of the
query property.

We combine causal attention with two-stream attention to
model

∏n
i=2 p(vi | ri , {rk : vk}i−1

k=1). As illustrated in Fig. 4
(right), we learn two sets of hidden representations. The con-
tent representation h({rk : vk}ik=1) of each position hi is
constructed from content representations its previous posi-
tions and itself. The query representation g({rk : vk}ik=1, ri )
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of each position gi is built from content representations of its
previous positions and the role of the current position. Con-
cretely, we compute both representations with self-attention
as follows:

ĥli = Attention(Q : hl−1
i , K , V : {hl−1

k }ik=1) (6)

ĝli = Attention(Q : gl−1
i , K , V : {hl−1

k }i−1
k=1) (7)

The autoregressivemodel depends on theorder of the input
properties because it determines the specific factorization of
the joint probability. However, the underlying two-stream
causal transformer encoder allows themodel to be indifferent
to the order of properties serving as conditional variables.
Formally, given any permutation z ∈ Zi−1, where Zi−1 is
the set of all permutations of indices {1, ..., i − 1}:

p(vi | ri , z[{rk : vk}i−1
k=1])

=p(vi | ri , {rk : vk}i−1
k=1) (8)

5.2.2 Input encoder and final classification

We create h0i similar to the input encoder of the autoencod-
ing model (Eq. 2). We create g0i by adding a special query
embedding with the type embedding of the current position.

g0i = xquery + x rolei (9)

For final prediction, we apply the final layer introduced pre-
viously (Eq.4) at every position of the sequence starting from
i = 2. This design allows all factorized probabilities of an
n-ary observation to be computed in one forward pass of the
neural network model.

5.2.3 Autoregressive training

To learn from different permutation order, for each n-ary
observation, we sample a permutation z ∈ Zn and maximize
the log-likelihood of the input, i.e.,

Ez∈Zn

[ n∑
i=1

log p(vi | ri , {rk : vk}i−1
k=1)

]
(10)

Similar to prior permutation-basedmodels (Yang et al., 2019;
Uria et al., 2016), the trained model serves as an ensemble
of models for all possible factorization orders. During infer-
ence, the model is able to predict an unknown query property
condition on any number of observed properties in any order.

5.3 Implementation details

All components of the model are trained end-to-end. We fol-
lowan existingmethod to useBayesian optimization (Pelikan

et al., 1999) for hyperparameter tuning (Snoek et al., 2012).
The best set of parameters is found to be L = 1, H = 4,
dmodel = 240. We use Adam (Kingma & Ba, 2015) for opti-
mization. We implement our model using PyTorch and train
on a Nvidia GTX1080Ti gpu.

6 Experiments on LINK dataset

In this section, we assess the effectiveness of our model for
learning n-ary relations between object properties in two dif-
ferent tasks. In the missing-one evaluation task, the model is
presented with a previously unseen n-ary observation (i.e.,
situated object instance), and must predict a single missing
value given the value’s role and all other role-value pairs in
the instance. This evaluation task is aligned with the autoen-
coding training objective used by the LINK-AE model. This
task allows us to probe different models’ abilities to learn and
represent the highest-order relations, which are crucial for
robots to accurately model fine-grained correlations between
object properties. We use this task to further study the design
choices and gain insights into how different types of object
properties contribute to reasoning. In the known-k evalua-
tion task, which complements the first task, we more closely
study reasoning at various levels of abstraction by requiring
the model to predict missing values in novel n-ary relations
with different arities. For example, a query with two known
properties (i.e., k = 2) is {class: cup, material: glass, loca-
tion: ?}.

6.1 Experimental setup

Data Preparation: To ensure no test leakage, we first split
object instances in the dataset into 70% training, 15% test-
ing, and 15% validation. Situated object instances are then
assigned to the correct data split based on its corresponding
object instance. For the known-k evaluation task, we cre-
ate testing n-ary relations by sampling arbitrary numbers of
role-value pairs from situated object instances in the test set.2

To ensure that the n-ary relations are novel, we eliminate a
sampled n-ary relation if the combination of its role-value
pairs appears as a subset in any situated object instance in
the training and validation sets.
Metrics: For each missing value in a test instance, we obtain
probabilities of candidate values from the model. Then the
candidate values are sorted in descending order based on
the probabilities. The rank of the ground-truth value vn is
used to compute metric scores. During ranking, we adopt the
filtered setting (Dettmers et al., 2018) to remove any value

2 We do not enumrate all n-ary relations due to the very large number
of combinations of roles and role-value pairs. For example, there are(200

5

)
unique combinations of properties when the arity of n-ary is five.
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v′
n different from vn if {r1 : v1, ..., rn−1 : vn−1, rn : v′

n}
exists in the train, validation, or test set. For the missing-
one task, this whole procedure is repeated for each value of
each testing instance in the test set. For the known-k task,
we evaluate the rank for a randomly sampled missing value
for each testing instance. We report standard metric Mean
Reciprocal Rank (MRR) and proportion of ranks no larger
than 1, 2, and 3 (Hits@1, 2, and 3). For bothMRR and Hits, a
higher score indicates better performance. All results in this
section are aggregated results for 9 different random seeds.
We also report time spent for running on the whole training
and testing sets.
Baselines: We compare against the following baselines:

• Co-Occur learns co-occurrence frequency of entities.
This model has been used for modeling semantic rela-
tions in various robotic applications, including modeling
object object co-occurrence (Kunze et al., 2014), object
affordance co-occurrence (Chao et al., 2015), and object
grasp co-occurrence (Lakani et al., 2018). We apply this
model to learn the co-occurrence frequency of object
class with object properties in our experiments. The
model by design is not able to consider other properties
as contextual information.

• TuckER is a recent state of the art knowledge graph
embedding model (Balazevic et al., 2019). In this paper,
we compare to two variants of TuckER. The regular
TuckER model follows existing work (Daruna et al.,
2019; Arkin et al., 2020) to model binary relations
between object class and object properties.

• TuckER+ is a TuckER embedding model we implement
to model binary relations between all pairs of prop-
erty types (e.g., color and material, shape and location);
it approximates an n-ary relation with a combination
of binary relations. Specifically, to score an candidate
property in an n-ary query, binary relations between the
candidate property and each of the known properties are
scored and averaged.

Table 4 Ablation on input encoder design

Embeddings Metric scores

V R Pos MRR Hits@1 Hits@2 Hits@3

� � 76.3 63.3 79.4 89.1

� 75.3 62.3 79.0 86.8

� � � 74.0 59.9 77.7 87.5

� � 74.0 59.9 77.7 87.5

Bold numbers indicate the best performance

• NaLP is a neural network model developed for modeling
n-ary relational data in knowledge graphs (Guan et al.,
2019). NaLP explicitly models the relatedness of all the
role-value pairs in an n-ary observation. We apply this
model to learn n-ary relations between object properties.

• MarkovLogicNetwork (MLN) represents probabilistic
logic languages that have been used to model complex
semantic relations in various robotic domains (Nyga et
al., 2014; Zhu et al., 2014; Nyga et al., 2018; Ardón et
al., 2019; Chernova et al., 2017). We closely follow prior
work to specify probabilistic rules for our domain, please
see Appendix 1 for details.

• Masked Language Model (MaskedLM) shares the
same model architecture as the LINK-AE model but
uses the pretrained transformer encoder weights from the
BERTmodel (Devlin et al., 2019).Due to its large embed-
ding dimension, this pretrained model has significantly
more parameters.

6.2 Results onmissing-one task

As shown in Table 3, our LINK models outperform existing
methods by significant margins on all metrics. Between the
two variants, the LINK-AE model obtains slightly higher
scores. Compared to the second-best model,MLN, both our
models achieve around 10% increase in MRR while signif-
icantly reducing training and testing time; the LINK-AR

Table 3 Results% of our model
and baseline models

Model Metric Scores Time (min)

MRR Hits@1 Hits@2 Hits@3 Training Testing

Co-Occur 63.0 ± 1.4 44.3 ± 1.9 67.3 ± 1.5 80.2 ± 1.1 <1 3

TuckER 58.7 ± 4.7 38.5 ± 6.5 59.9 ± 6.4 79.3 ± 3.4 <1 3

TuckER+ 62.5 ± 3.7 43.0 ± 5.5 65.9 ± 4.2 81.4 ± 1.7 2 3

NaLP 57.9 ± 1.8 38.9 ± 3.1 60.3 ± 2.1 75.8 ± 1.3 8 10

MLN 65.9 ± 2.2 50.1 ± 2.7 68.7 ± 3.0 81.9 ± 1.8 420 487

MaskedLM 61.9 ± 3.4 43.3 ± 4.0 64.8 ± 5.3 78.7 ± 3.8 32 3

LINK-AE 76.3 ± 2.3 63.3 ± 2.7 79.4 ± 2.9 89.1 ± 2.7 3 3

LINK-AR 75.7 ± 1.6 62.3 ± 2.0 79.1 ± 2.5 88.7 ± 1.8 <1 3
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Table 5 MRR% of our model and baseline models for each property type

# Values Class Mat Color Trans Dim Phys Shape Temp Full Damp Clean Room Loc Price Weight Size
11 8 15 3 10 6 9 3 3 3 3 11 117 3 3 3

Random 27.1 33.3 19.9 60.8 18.7 37.7 22.6 61.4 61.5 61.5 61.0 28.5 4.7 60.2 60.7 60.5

Co-Occur / 55.5 39.2 83.1 17.9 76.1 64.4 91.0 77.4 74.5 67.1 56.1 44.3 56.9 70.7 70.9

TuckER / 56.1 37.7 84.0 16.7 74.3 57.8 83.9 59.9 71.6 61.4 57.3 31.4 55.6 64.6 69.0

TuckER+ 53.7 60.0 42.2 85.1 20.1 74.8 60.4 90.9 69.7 72.4 62.6 60.9 39.2 59.7 73.8 65.1

NaLP 45.0 47.4 39.0 84.4 17.7 69.2 52.4 91.0 68.5 70.8 67.7 55.2 23.1 59.0 61.6 61.4

MLN 62.9 79.1 72.5 95.7 25.3 79.4 64.3 90.0 69.1 69.5 65.3 67.7 4.6 68.9 75.8 63.7

MaskedLM 47.9 53.3 45.3 85.8 32.0 65.6 68.0 91.1 76.5 74.6 65.5 55.5 40.5 59.5 62.3 66.8

LINK-AE 72.3 78.9 73.2 97.1 43.8 84.1 75.7 92.3 90.7 82.2 90.2 68.5 59.6 74.4 76.6 61.8

LINK-AR 68.0 78.2 72.0 96.6 40.0 85.1 72.3 92.9 90.9 82.3 90.6 68.8 62.5 71.0 78.5 62.7

Bold numbers indicate the best performance

model reduces training time by more than 420 times due
to efficient autoregressive training. The significant reduc-
tion in computation time allows robots equipped with our
models to query a large amount of semantic knowledge
in real-time. In comparison with NaLP, another model
developed specifically for modeling n-ary data, our models’
superior performance confirms that the transformer struc-
ture and multi-head attention mechanism are more effective
at learning the complex semantic relations between object
properties. We also observe that TuckER+, which learns
binary relations between all pairs of object properties, out-
performs the regular TuckER. This result demonstrates that
only modeling class-level semantic knowledge can lead to
over-generalization, and that reasoning about the differences
between object instances is crucial. It is worth noting that
NaLP, TuckER variants, and MaskedLM are not able to
outperform the simpler Co-Occur model. TuckER variants
are good at learning the latent structure of binary relations,
but the structure does not generalize higher-order relations
in this experiment. NaLP has shown to be effective at mod-
eling n-ary facts mainly on dataset with 2 to 6 role-values,
but it struggles to learn n-ary relations in our data which can
have up to 24 role-values. Although finetuning pretrained
language models on large binary KGs has shown to be suc-
cessful in (Bosselut et al., 2019), we notice that this behavior
does not generalizes to higher-order relations and a smaller
dataset.

Further analyzing MRR for each type of query shown in
Table 5, we see that our models outperform existing models
in predicting most of the properties. We also notice that the
baselines have degraded performance at predicting property
types with many candidate values (e.g., location, room, and
dimension).MLN especially struggles to predict the location
rolewhich has 117possible values.One potential explanation
is the closed world assumption being made by MLN. Our
models learn probabilities of properties and leverage label
smoothing to prevent being overconfident at negative training

examples. As a result, our models have demonstrated good
performance even for these many-valued role types.

6.3 Ablation on input encoder design

We investigate our input encoder design with an ablation
study on the LINK-AEmodel. Specifically, we examine the
effect of the role embeddings andpositional embeddings (dis-
cussed in Sect. 5.1.1). Results in Table 4 show that enforcing
the order of role-value pairs in an n-ary observation using the
positional embeddings results in a drop in performance. The
results also confirm that role embeddings are useful for mod-
eling multimodal object properties represented as role-value
pairs.

6.4 Visualizing attention

To understand why our transformer-based model is effec-
tive at modeling n-ary relational data, we visualize the
multi-head attention weights of the LINK-AE model, i.e.,

softmax( QKT√
dk

). Figure5 shows the average attention weight
assigned to each role when predicting class, physical prop-
erty, cleanliness, and weight. The attention mechanism
exhibits n-ary relational reasoning patterns, which corre-
spond stronglywith human intuition-for example, dampness,
location, and fullness of an object aids in predicting its clean-
liness. Baselinemodels cannot perform this type of reasoning
and thus are not able to model object properties as well as
our model.

6.5 Results on known-K task

In this experiment, we compare to a representative subset
of the baselines.3 As shown in Fig. 6, our LINK-AR model

3 We leave MLN out because of its exceedingly long inference time
on queries with partial evidence (as a large number of properties other
than the query properties were missing).
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Fig. 5 Visualizations of the attention weights illustrate that different amount of information from each property type is used by our model to predict
different types of properties

Fig. 6 MRR%of our models and selected baselines on the known-k task. Models are evaluated on predicting missing values of novel n-ary relations
with increasingly higher arities. The trendlines show mean and variance

outperforms other models when given more than two known
properties. With an increasing number of properties, the
performance of all LINK variants remain at a high-level
while the performance of Co-Occur and TuckER+ starts
to slowly decrease. This result corroborates with the finding
in themissing-one task that our transformer-basedmodels are
more effective than baselines at modeling higher-order rela-
tions.BothCo-Occur andTuckER+ rely onbinary relations,
causing undesirable overgeneralization. It’s worthnoting that
TuckER+ has the highest MRRs when given one and two
known properties. This result shows that TuckER+, as it is
designed specifically for pairwise relations, learns a high-
quality latent structure that generalizes well to novel binary
and ternary relations. However, this superior generalization
stops at ternary relations.

7 Robot experiment: object search

In this section, we demonstrate how a household robot can
locate specific objects based on users’ requests by leveraging

the explicit representation of our learned n-ary knowledge.
Our experiment serves two purposes, i) to validate our model
in a realistic physical setting with non-AMT users, and ii) to
test our model’s ability to handle queries that reflect realistic
use cases, such as a human asking a robot to find a cold
beverage or collect dirty dishes. Queries used in this study
utilize only a sparse set of known properties,4 and the robot’s
task is to predict multiple unknown properties. Specifically,
we seek to predict the room and location of each object.

We set up a home environment in our lab with 4 rooms
and typical household furniture (Fig. 7). We also generated a
corresponding 3D floor plan of the environment (adding an
additional bathroom), which listed 24 possible locations for
storing objects (Fig. 8). We then recruited 5 users, and had
them label their preferred locations for 50 object instances
sampled from our dataset. For each object, the user was
shown an image of the object, given 1-3 properties describing
the state of the object (i.e., cleanliness, temperature, damp-

4 Human users are unlikely to phrase requests with long adjective
sequences.
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Fig. 7 Home environment for the object search experiment

Fig. 8 3D floor plan for remotely collecting preferred locations of
objects from five users

ness, and content), and then asked to list 3 ranked likely
locations for the object.

We compare the performance of our model againstNaLP,
Co-Occur, and TuckER+. All models are trained on our
complete dataset to validate against collected user data. All
models have access to the properties given to the human users
aswell as the class andmaterial of the object. To predict likely
room-location combinations, separately predicted probabil-
ities of the two properties are multiplied and ranked.

We use Hits@K andHits_Any@K asmetrics. Hits@1,2,3
indicate the percentage of times that a model correctly
predicts a user’s most preferred location of an object
within 1, 2, and 3 attempts, respectively. We also intro-
duce Hits_Any@K, which considers a prediction correct if
it matches any one of the 3 locations listed by a user, without
rank order.

Table 6 summarizes the result of this experiment. We also
report the human baseline, which we compute by cross-
validating each user against the other users. We observe

that the LINK-AR model is able to significantly outperform
all other models and nearly match human performance at
Hits@1 and Hits_Any@1. Co-Occur obtains a competitive
score on Hits@1 compared to the autoencoding LINK-AE
model, suggesting that class-level frequency can be an fall-
back heuristic for finding objects if given only one chance.

Beyond quantitative difference between our model and
baselines, we also demonstrate the qualitative improvement
on a Fetch robot (Wise et al., 2016). The robot is equipped
with the navigation stack developed in (Banerjee et al., 2019)
for mapping and navigation, and the method introduced
in (Liu et al., 2020) for object detection and grasping. As
shown in Fig. 9, the difference (A, B) between our model
and Co-Occur is clear as our model takes into account of the
properties of objects (e.g., cold, dry, clean) while Co-Occur
searches the same locations for different cups. We also show
in Fig. 10 that our model is able to find objects considering
both immutable (material in E and F) and mutable properties
of objects (dampness in C and D).

8 Robot experiment: integrating with
multimodal perception

In this section, we examine whether our model can enable
a robot to infer object properties that cannot be directly
observed by collectively reasoning about properties extracted
from multimodal sensors. This experiment also aims to test
whether our model can generalize learned n-ary knowledge
to new object instances in the real world.

In this experiment, a robot is tasked to predict either an
unknown immutable property of an object based on its class,
color, material, and room, or to predict an unknown mutable
property based on class, color, material, room, temperature,
and location. The robot physically interacts with real objects
situated in the environment and leverages different sensing
capabilities to extract multimodal observations. We use the
same Fetch robot, object detection, andmapping as the previ-
ous experiment. Color is detected using OpenCV. Material is
detected by the robot using a spectrometer, the SCiO sensor,
and themethod introduced in (Erickson et al., 2019). Temper-
ature is detected using a Melexis contact-less infrared sensor
connected to an Arduino microcontroller. To detect materi-
als and temperatures of objects in real time, the sensors are
attached to the end-effector of the robot. The robot uses RRT
to plan to poses that allow the sensors to touch the surfaces
of the objects. The poses are computed from task-oriented
6-dof grasping poses with the method introduced in (Liu et
al., 2020). As shown in Fig. 11, we test on 22 objects which
are semantically different from objects in our dataset (e.g.,
no ceramic pan and plastic box exist in our dataset).

In this experiment, LINK-AE and LINK-AR are able
to correctly predict 27/52 (52%) and 29/52 (56%) of the
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Table 6 Results% on object search

Hits@1 Hits@2 Hits@3 Hits_Any@1 Hits_Any@2 Hits_Any@3

Human Baseline 34.8 ± 6.5 52.0 ± 7.0 64.7 ± 7.3 64.7 ± 7.2 83.2 ± 7.0 90.6 ± 3.9

Co-Occur 19.2 ± 4.6 28.8 ± 3.0 37.6 ± 3.3 50.0 ± 4.2 68.4 ± 7.4 80.0 ± 5.1

TuckER+ 12.0 ± 2.0 21.2 ± 3.0 27.2 ± 4.1 42.8 ± 9.2 60.0 ± 8.1 76.6 ± 9.1

NaLP 2.8 ± 3.3 5.6 ± 4.1 10.4 ± 3.8 10.8 ± 13.2 17.2 ± 14.4 19.6 ± 14.0

LINK-AE 20.0 ± 2.0 39.6 ± 10.3 47.6 ± 8.2 55.2 ± 5.4 77.6 ± 8.9 84.8 ± 7.6

LINK-AR 34.0 ± 11.8 46.8 ± 7.3 52.4 ± 7.1 64.0 ± 11.2 77.6 ± 5.2 86.8 ± 4.8

Fig. 9 Two object search tests comparing our model with Co-Occur.
Provided properties are shown on top

queried object properties. In comparison, the third best per-
forming models, TuckER+ and Co-Occur, both correctly
predict 24/52 (46%). Object materials are correctly detected
45/52 (87%) times. Figure11 shows examples of the queries
and predictions from the LINK-AE model.

9 Conclusion

This work addresses the problem of predicting semantic
properties of objects based on partial observations. We intro-
duce two scalable transformer neural networks that learn
n-ary relations between object properties fromn-ary observa-
tions, where each represents a set of identified properties of a
specific object situated in a particular environmental context.
The LINK-AE autoencodingmodel is trained to predict a sin-
glemissingproperty given all other properties in each specific
n-ary observation while the LINK-AR autoregressive model

Fig. 10 Ourmodel predicts different locations based on the given object
properties

directly predicts factorized probabilities of all properties in
each n-ary observaton. To train and evaluate our approach,
we contribute LINK, a dataset containing objects situated
in various environmental contexts and modeled by diverse
semantic properties.

Results of the missing-one experiment show that both
our models, LINK-AE and LINK-AR, are able to outper-
form prior state-of-the-art Markov Logic Network with 10%
improvement in accuracy and 150 times improvement in
computation efficiency. The known-k experiment further
demonstrates that prior methods gradually lose accuracy
when dealing with increasingly specific relations (i.e., 8th to
17th order relations) while our methods maintain high accu-
racy.The result also indicates thatLINK-ARcanbettermodel
more abstract relations (i.e., 3rd to 8th order relations) than
LINK-AE because LINK-AR is trained to directly predict
factorized probabilities conditioning on different numbers
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Fig. 11 The Fetch robot uses an infrared temperature sensor to detect
the temperature and a spectrometer to detect the material of each novel
object situated in different environmental contexts. Our model lever-

ages extracted information (shown on top of each figure on the right)
to predict an unknown object property (shown on bottom)

of observed properties. In addition, we evaluate our mod-
els in two robot experiments, demonstrating that modeling
instance-level knowledge about object properties enables
robots to search objects based on object states and properties
and jointly reason about properties detected by multimodal
perception. The robot experiments confirm that while both
our models outperform baselines, LINK-AR obtains higher
performance in realistic settings where only a small amount
of properties are observed.

Besides the object search and multimodal perception
applications examined in this work, our semantic reasoning
framework can potentially be applied to a wider variety of
robotic tasks that requiremodeling and inferring object prop-
erties, including grounding abstract instructions to task plans
(Nyga et al., 2018;Misra et al., 2016) and repairing task plans
by substituting objects (Daruna et al., 2021). We are also
interested in more closely integrating our methods with mul-
timodal and interactive perception. One potential path is to
develop a multimodal transformer network (Xu et al., 2022)
which can takes in observations of object properties in the
form of detected semantic labels and raw sensor inputs. This
approach would allow the model to develop a joint embed-
ding space of high-level symbolic concept and low-level
perceptual data.Another direction is to combine n-ary knowl-
edge reasoning with sequential decision making to guide
interactive perception of object properties. Most existing
methods (Chu et al., 2016; Sinapov et al., 2014) exhaus-
tively perform pre-defined exploratory actions. This strategy

assumes a limited set of interactions, is time-consuming, and
can cause damage to objects in more realistic settings (e.g.,
dropping a glass cup reveals a unique sound signal but may
also break it). Our n-ary representation of object properties
can potentially enable robots to actively select exploratory
actions to identify properties of interest.
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Appendix A Markov logic network: back-
ground and implementation

A Markov Logic Network (MLN) combines the ideas of
first-order logic with Markov networks by assigning lower
probability to worlds that violate more first-order logic for-
mulas (Richardson&Domingos, 2006). In this way, anMLN
can learn joint distributions that include first-order logic con-
straints. For each formula, the MLN learns a weight about
relative influence the formula has over the likelihood of a
possible world. Given a subset of variable assignments, the
MLN can infer the likelihoods of possible complete variable
assignments.
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Table 7 Example MLN formula
templates

Role MLN MLN formula template in pracmln format (variables in bold)

Class has_class(+class) ∧ has_shape(+shape)

has_class(+class) ∧ has_specific_place(+specific_place)

has_class(+class) ∧ has_color(+color)

has_class(+class) ∧ in_room(+room)

has_class(+class) ∧ has_dimension(+dimension)

has_class(+class) ∧ has_material(+material)

has_class(+class) ∧ has_physical_property(+physical_property)

Size has_size(+size) ∧ has_physical_property(+physical_property)

has_size(+size) ∧ has_shape(+shape)

has_size(+size) ∧ has_class(+class)

has_size(+size) ∧ has_weight(+weight)

Weight has_weight(+weight) ∧ has_class(+class)

has_weight(+weight) ∧ has_color(+color)

has_weight(+weight) ∧ has_size(+size)

has_weight(+weight) ∧ has_material(+material)

has_weight(+weight) ∧ has_dimension(+dimension)

In pracmln, each formula template in is grounded to multiple formulas to cover the domain of each variable
in the formula (e.g., weight = {light,medium, heavy}), denoted by the ‘+’ symbol

A naive MLN implementation for this problem using one
monolithic MLN for all roles and complex MLN formulas
(i.e. non-binary) is not possible because the large number
of roles and values per role leads to computationally infea-
sible grounded markov networks to run MLN training and
inference. Our best performing MLN implementation using
pracmln (Nyga et al., 2013), was achieved by modeling each
role using a dedicated MLN. The formulas of each MLN
dedicated to a role were hand-tuned to maximize MLN
inference performance for that role while being computa-
tionally feasible, see Table 7 for example formula templates
we used. By using a dedicated MLN per role, we can include
more relationships that improve test performance and remove
relationships that degrade test performance, while avoiding
computationally infeasible grounded Markov network train-
ing and inference due to extraneous relationships modeled
by formulas for other roles.
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