
Autonomous Robots
https://doi.org/10.1007/s10514-022-10067-4

A novel framework for generalizing dynamic movement primitives
under kinematic constraints

Antonis Sidiropoulos1 · Dimitrios Papageorgiou1 · Zoe Doulgeri1

Received: 14 December 2021 / Accepted: 23 September 2022
© The Author(s) 2022, corrected publication 2023

Abstract
In this work, we propose a novel framework for generalizing a desired trajectory pattern, encoded using Dynamic Movement
Primitives (DMP), subject to kinematic constraints. DMP have been extensively used in robotics for encoding and reproducing
kinematic behaviours, thanks to their generalization, stability and robustness properties. However, incorporating kinematic
constraints has not yet been fully addressed. To this end, we design an optimization framework, based on the DMP formulation
from our previous work, for generalizing trajectory patterns, encoded with DMP subject to kinematic constraints, considering
also time-varying target and time duration, via-point and obstacle constraints. Simulations highlight these properties and
comparisons are drawn with other approaches for enforcing constraints on DMP. The usefulness and applicability of the
proposed framework is showcased in experimental scenarios, including a handover, where the target and time duration vary,
and placing scenarios, where obstacles are dynamically introduced in the scene.

Keywords Dynamic movement primitives · Online trajectory adaptation · Constrained optimization · Constrained motion
generation

1 Introduction

The remarkable advancements in robotics over the past few
decades have triggered an increasing interest in research
oriented towards deploying robots in industrial and house-
hold environments. Designing autonomous robotic systems
that can co-exist with humans and efficiently replicate their
capabilities poses a major challenge. To this end PbD (Pro-
gramming by Demonstration) has been proposed as an
effective means for endowing robots with human capabili-
ties (Billard et al., 2008). This is tightly coupled with the
mathematical model that is adopted for encoding the demon-
strated trajectory pattern and its generalization properties.

B Antonis Sidiropoulos
antosidi@ece.auth.gr

Dimitrios Papageorgiou
dimpapag@ece.auth.gr

Zoe Doulgeri
doulgeri@ece.auth.gr

1 Department of Electrical and Computer Engineering,
Aristotle University of Thessaloniki, Panepistimioupoli,
54124 Thessaloniki, Greece

Movement primitives have been extensively used for
encoding and generalizing trajectory patterns. In this cat-
egory, Dynamic Movement Primitives is a celebrated and
widely employed method, due to it spatio-temporal general-
ization capabilities, their stability properties and robustness
to perturbations (Ijspeert et al., 2013). However, one cannot
guarantee a-priori that the new generalized trajectory, pro-
duced by the DMP, will not exceed the robot’s or task-related
kinematic constraints, i.e. constraints relating to position,
velocity and/or acceleration. There are even cases where this
generalization can be problematic causing overshoots and in
turn large velocities and accelerations. Moreover, changing
the target position online (during execution) or the motion
duration can result in undesired discontinuities and/or high
accelerations.

1.1 Related works

Many works in the literature have attempted to tackle these
issues. For the case of large overshoots, modified DMP
formulations have been proposed (Hoffmann et al., 2009;
Koutras and Doulgeri, 2020). These works however try to
mitigate the negative effects of “over-scaling”, but with-
out enforcing specific bounds on the position, velocity and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-022-10067-4&domain=pdf
http://orcid.org/0000-0002-6089-5980
http://orcid.org/0000-0003-0361-8757
http://orcid.org/0000-0003-2188-9358

Autonomous Robots

acceleration of the generated trajectory. Thus, Koutras and
Doulgeri (2020) can still produce large spatial scalings in
some cases, while (Hoffmann et al., 2009) fails to reproduce
the demonstrated trajectory pattern to new targets that are rel-
atively far away from the demonstrated one. In (Papageorgiou
and Doulgeri, 2020), a parametric DMP formulation is pro-
posed for the problem of spatial generalization under spatial
constraints, given a known task geometry. However, velocity
or acceleration constraints are not considered. For the case of
discontinuous changes in the target position, an exponential
goal filtering was proposed in Ijspeert et al. (2013), which
however requires additional tuning or even on-line adjust-
ment of the exponential filter parameter to ensure the desired
speed of convergence to the target. Moreover, all these works
cannot guarantee the satisfaction of position, velocity and
acceleration constraints.

To this end, repelling forces generated from artificial
potential fields have been proposed to enforce position lim-
its in Gams et al. (2009) or for velocity limits in Dahlin and
Karayiannidis (2020). Nonetheless, one major drawback of
these methods is that they can incur large accelerations. Tun-
ing of the repelling force gain canmitigate this effect in some
cases, at the cost however of larger deviations from the nom-
inal trajectory pattern. What is more, tuning may have to be
repeated for a different trajectory or task. Consequently, with
repelling forces, one cannot anticipate how large will be the
accelerations and the deviations from the nominal trajectory.
Transforming theDMP trajectory through the hyperbolic tan-
gent to enforce position limits was proposed in Duan et al.
(2018), which however does not account for velocity, accel-
eration or via-point constraints.

Adjusting a movement primitive to pass from via-points,
while being a useful property, is yet another source of
prospective constraints violations. The ability of ProMP
(Probabilistic Movement Primitives) to adjust to via-points
(Paraschos et al., 2018) was exploited in Mghames et al.
(2020) for pushing pieces that occlude strawberries to be
harvested. In Ben Amor et al. (2014), a probabilistic exten-
sion of the original DMP was proposed that could include
via-points, but it requires specifying also the velocity and
acceleration for a specific via-point that may be considered
a disadvantage (Maeda et al., 2014). Despite the via point
inclusion, (Mghames et al., 2020; Ben Amor et al., 2014)
do not account for velocities and/or acceleration constraints
along the generated trajectory.

Another way to handle constraints is by means of opti-
mization. To the best of the authors knowledge, there are
only a few works in the literature that have adopted this
approach with DMP. The authors in Cardoso et al. (2015) use
aweighted sumofGaussian functions that generate the accel-
eration. The weights of these Gaussians are optimized by
solving offline a quadratic program (QP) that minimizes the
error between the generated acceleration and the temporar-

ily scaled demonstrated acceleration, subject to kinematic
constraints. They then integrate this model and provide it as
reference to an impedance controller, realizing a dynamical
system analogous to that of a DMP. However, the generated
optimized trajectory cannot scale temporarily or spatially if
the target or time duration change on-line and consequently
this optimization cannot be performed on-line. In Krug and
Dimitrov (2015), Model Predictive Control (MPC) is used
with DMP, for merging multiple DMP patterns. The aim is to
find the percentage by which each DMP should contribute to
the generated motion which is a different problem to the one
considered in this work. The proposed optimization in Krug
and Dimitrov (2015) introduces also affine constraints for
obstacles approximated by their convex hull. However, the
latter is applied only in 2D simulations, without considering
velocity/acceleration constraints or the computational load of
the optimization. In Liang et al. (2021), the authors propose
to tackle the motion retargeting problem for generating dual-
arm sign languagemotions by applying an offline constrained
optimization that minimizes the difference from trajectories
generated byDMP,which encode the human demonstrations.

There exist also other approaches that explore trajectory
generation under constraints, but do not employ DMP. For
intance, Explicit Reference Governors are utilized in Mer-
ckaert et al. (2022) to enforce input (actuator limits) and
state constraints (joint position, velocity limits) in real-time,
for robots operating close to humans. However, reaching
of a desired pose is considered, and not generalization
of a trajectory pattern under constraints. Generating con-
strained trajectories with ProMPwas proposed in Frank et al.
(2021), by formulating the problem as an optimization of the
ProMP’s distribution, where the constraints are realized by
imposing low probability of the ProMP’s distribution close to
the constraints. However, its real-time execution capabilities
are not addressed. Finally, while there are a lot works in liter-
ature on trajectory planning that consider constraints (Wen&
Pagilla, 2021; Buizza Avanzini et al. 2018), the optimization
that is carried out does not consider a reference trajectory
pattern, in contrast to the case examined here.

1.2 Contribution

In this work, we propose an optimization framework that
achieves optimal generalization of a learned trajectory pat-
tern to a new fixed target and time duration under position,
velocity and acceleration kinematic constraints including
via points and obstacles for static scenes (off-line) and an
MPC-like extension for handling constraints introduced in
real-time and varying target and/or time duration (on-line).
Both approaches leverages the DMP formulation introduced
in our previous work (Sidiropoulos & Doulgeri, 2021). The
off-line approach produces the global optimal solutionwhich
is the optimal choice if no dynamic changes occur. The on-

123

Autonomous Robots

line approach considers only a confined local time horizon,
hence it may produce locally optimal (w.r.t. the entire time
duration) solutions, which is nevertheless an inevitable com-
promise to achieve real-time performance while handling
on-line dynamic changes and constraints. The distinctive fea-
ture of the proposed framework is that it can generate optimal
DMP trajectories, accounting for all the aforementioned type
of constraints. In contrast, previous works are designed to
address only a subset of them. Specifically, (Gams et al.,
2009; Duan et al., 2018), focus on position and Dahlin and
Karayiannidis (2020) on velocity constraints too. Via points
are only considered in Mghames et al. (2020), Ben Amor et
al. (2014) and only obstacles in Krug and Dimitrov (2015).
Finally, (Cardoso et al., 2015; Liang et al., 2021)were applied
and tested only off-line. Moreover, those that do not employ
optimization produce sub-optimal trajectories, in the sense
that the generated trajectory may deviate from the uncon-
strained DMP trajectory even when the latter satisfies the
constraints. The advantages and efficiency of our method is
highlighted through simulations, which include comparisons
with other methods, and practical experimental scenarios.

The rest of this paper is organized as follows: In Sect. 2
we provide preliminaries on the new DMP formulation. Sec-
tion 3 presents the proposed off-line optimization framework,
compared against othermethods. This framework is extended
in Sect. 4 to also accommodate online trajectory modifica-
tions subject to kinematic constraints, providing also several
comparative simulations. Experimental validation is per-
formed in Sect. 5 and the conclusions are drawn in Sect.
6. The code for the simulations and experiments is available
at https://github.com/Slifer64/novel-DMP-constraints.git.

2 DMP-preliminaries

In this section we briefly introduce the basics of the DMP
formulation from Sidiropoulos and Doulgeri (2021) for 1-
DoF. The DMP encodes a desired trajectory yr (t) and can
generalize this trajectory starting from a new initial position
y0 towards a new target/final position g with time duration
t f . The DMP’s evolution is driven by the canonical system,
which provides the phase variable σ (time substitute), to
avoid direct time dependency. The DMP and the canonical
system are given by:

ÿ = ÿσ − D(ẏ − ẏσ) − K (y − yσ) (1)

σ̇ = h(σ)/τ , σ (0) = 0 , σ (t f) = 1 (2)

where y is the position, K , D are positive scalars and yσ
provides the generalized trajectory:

yσ � ks(φ(σ)Tw − ŷ0) + y0 (3)

ẏσ = ksφ1(σ)Tw (4)

ÿσ = ksφ2(σ)Tw (5)

where the desired trajectory yr is encoded as a weighted
sum of K Gaussians through φ(σ)Tw, φ(σ)T = [φ1(σ) · · ·
φK (σ)]/∑K

k=1 φk(σ),withφk(σ) = e−hk (σ−ck)2 . The spatial
scaling term ks is given by:

ks � g − y0
ĝ − ŷ0

(6)

where ĝ = φ(1)Tw, ŷ0 = φ(0)Tw. The velocity and accel-
eration can be obtained analytically from Eq. (4), (5) where

φ1(σ) � ∂φ
∂σ

σ̇ and φ2(σ) � ∂2φ

∂2σ
σ̇ 2 + ∂φ

∂σ
σ̈ . The weights w

are optimized using Least Squares (LS) or Locally Weighted
Regression (LWR) (Ijspeert et al., 2013) so that φTw ≈ yr .
To achieve good approximation, a general heuristic is to
place the centers ci of the Gaussian kernels equally spaced in
time and then define the inverse widths of the Gaussians as
hi = ah

(ci+1−ci)2
, hN = hN−1, i = 1, · · · , N , where ah > 0

is a scaling factor controlling the overlapping between the
kernels. Regarding the canonical system Eq. (2), τ > 0 con-
trols the speed of the phase variable’s evolution and h(σ)

can be any function such that its integral 1
τ

∫ t
0 h(σ (u))du is

a continuous monotonically evolving function that satisfies
the boundary conditions σ0 = 0, σ f = 1 and is constant out-
side the interval [0, 1]. A valid choice could be for instance
τ = t f and h(σ) = 1 for σ ∈ [0, 1] and zero outside.

This specific DMP formulation has been shown in
Sidiropoulos and Doulgeri (2021) to be mathematically
equivalent to the classical DMP formulation from Ijspeert
et al. (2013). Additional it has the advantage, over the clas-
sical DMP, that the DMP’s reference position, velocity and
acceleration are affinew.r.t. theDMPweights and that we can
obtain the DMP trajectory values for an arbitrary time instant
σ from Eq. (3–5) without needing to perform explicitly any
integration. This key property lends itself to the proposed
optimization in this work.

3 Off-line optimal DMP

Generalization of the learned kinematic behaviour to dif-
ferent targets and with different time durations is a very
expedient property of DMP. However, one cannot guaran-
tee a-priori that the new generalized trajectory, which will be
produced by the DMP, will not exceed the robot’s or user-
specified kinematic constraints, i.e. constraints relating to
position, velocity and/or acceleration. There are even cases
where this generalization, especially the spatial generaliza-
tion, can be problematic causing overshoots and in turn large
velocities and accelerations.

123

https://github.com/Slifer64/novel-DMP-constraints.git

Autonomous Robots

3.1 Proposed solution

We propose to tackle these issues by means of optimiza-
tion. The high level objective is to find the trajectory that
satisfies the kinematic constraints and it is the closest to
the nominal trajectory, i.e. the unconstrained trajectory that
would be produced by the DMP. This objective is formu-
lated as a convex optimization problem which provides the
optimal DMP weights that generalize the trajectory learned
by the DMP, under the enforced constraints. We begin by
presenting our approach for a single DoF denoted here by
y. Given the desired time duration T of the executed trajec-
tory and the kinematic constraints y(σ) ≤ y(σ) ≤ ȳ(σ),

ẏ(σ) ≤ ẏ(σ) ≤ ¯̇y(σ), ÿ(σ) ≤ ÿ(σ) ≤ ¯̈y(σ) we wish to
find the trajectory that satisfies these constraints and is the
closest to the unconstrained trajectory yd(σ), ẏd(σ), ÿd(σ)

produced by Eq. (3–5) using the initial trained DMPweights.
The kinematic constraints could be for instance the robot’s
joint limits, if y represents the position of a joint, or reflect
the workspace and speed limits if y refers to the task space
coordinates.

We first discretize the kinematic constraints as y
i
≤ yi ≤

ȳi , ẏi ≤ ẏi ≤ ¯̇yi , ÿi ≤ ÿi ≤ ¯̈yi , defined at M discrete points1

i = 1...M corresponding to the normalized timestamps σi =
ti/T equally spaced in [0 1]. For simplicity, we assume a
linear canonical system σ̇ = 1/T for s ∈ [0 1) and σ̇ = σ̈ =
0 otherwise. Moreover, to simplify the problem formulation
and make it independent of the spatial scaling, we consider
the scaled weights ws � ksw and transform any position y
according to:

h0(y) � (y − y0) + ks ŷ0 (7)

We can now form the following QP:

minws

L∑

i=1

(1−λ)||h0(yd,i) − φT (σi)ws ||22

+ λ||ẏd,i − φT
1 (σi)ws ||22

st. h0(yi) ≤ φT (σi)ws ≤ h0(ȳi)

ẏ
i

≤ φT
1 (σi)ws ≤ ¯̇yi ∀ i = 1...M

ÿ
i
≤ φT

2 (σi)ws ≤ ¯̈yi
φT (0)ws = h0(y0), φT (1)ws = h0(g) (8)

where the objective function has L data points, with normal-
ized timestamps chosen uniformly in [0 1] and λ determines
whether we want to optimize w.r.t. the position trajectory

1 Due to the continuity of the Gaussian functions, it is sufficient to
specify a finite number of datapoints M to ensure that the constraints
will also be satisfied for intermediate data points as well.

(λ = 0) or velocity profile (λ = 1). The equality constraints
in Eq. (8) are the initial and final value constraints. The opti-
mal solution can be retrieved through w∗ = k−1

s w∗
s . We can

also incorporate additional equality constraints, related for
instance to via-points, by transforming them through Eq. (7).
We can even set the velocity at the final position to be non-
zero, e.g. for a striking motion. In this way, hitting primitives
can be readily realized, in contrast to other approaches that
modify theDMPmodel solely to achieve this purpose (Kober
et al., 2010; Mülling et al., 2013). The extension of Eq. (8)
to multiple DoFs is straightforward.

Remark 1 Notice that the DMP formulation from Sidiropou-
los and Doulgeri (2021), in contrast to the classical DMP
(Ijspeert et al., 2013), has the property that the DMP position,
velocity and acceleration is affine w.r.t. the DMP weights w

(see Eq. 3–5). This expedient property allows us to express
the problem as a QP and solve it efficiently, which can-
not be attained with the classical DMP. To the best of the
authors’ knowledge, this is the first realization of a DMP
formulation that can achieve generalization under kinematic
constraints, while being mathematically equivalent with the
classical DMP (Sidiropoulos & Doulgeri, 2021) and sharing
all of its favourable properties.

3.2 Simulations

To highlight the efficacy of the proposed optimization pro-
cedure we carried out several simulations, using as training
data a demonstration obtained via kinesthetic guidance on a
ur5e robot.We train a DMPwith 30 kernels applying LS. For
reproduction, we offset the target g by [0.7 −0.7 0.05] from
the demonstrated target gd . The kinematic constraints are
[−1.2 −1.2 0.22]T ≤ p ≤ [1.2 1.2 0.5]T ,−0.3 ≤ ṗ j ≤ 0.3
and −0.4 ≤ p̈ j ≤ 0.4 for j ∈ {x, y, z}. Equality con-
straints are used for setting the initial and final position with
zero velocity and acceleration. For the optimization we use
L = M = 200 points uniformly distributed in [0 1] and for
solving this QP problem the OSQP library was used (Stellato
et al., 2020). The value of λ is set to 0 when optimizing the
position and 1 when optimizing the velocity.

We demonstrate first the results of the proposed approach
for optimizing w.r.t. to the position (path), referred as DMP∗

p,
and for optimizing w.r.t. the velocity (shape), referred as
DMP∗

v . The Cartesian paths are plotted at the left of Fig. 1a
alongwith the demo (grey dashed line) and the unconstrained
DMPpath (blue dashed line). The demonstrated target is plot-
ted with magenta ’x’ mark and the new target with red. The
position bounds in the z-axis are also visualizedwith light red
planes. Optimizing the position (purple line) results in sat-
uration at the position limits, while optimizing the velocity
(green line) scales down the trajectory, preserving the initial
shape. Which of the two is better is application dependent.

123

Autonomous Robots

Fig. 1 a DMP∗ with position and velocity optimization. Left: Cartesian path. Right: Trajectory along z axis. b Comparison of DMP∗with other
approaches. Left: Cartesian path. Right: Trajectory along z axis

The position, velocity and acceleration trajectories along the
z-axis plotted at the right of Fig. 1a, with dashed gray lines
denoting the kinematic limits, show that the kinematic con-
straints were satisfied.

We also compare our method against the original DMP,
the modified DMP proposed in Koutras and Doulgeri (2020)
aimed at mitigating the effects of over-scaling by applying a
rotation (referred hereafter as DMP-rot) and the approach
proposed in Cardoso et al. (2015), which also applies
optimization w.r.t. the acceleration (referred hereafter as QP-
DMP). We consider the same trajectory and constraints as
before. The results are depicted in Fig. 1b. We observe that
both the DMP and DMP-rot violate the constraints. In partic-
ular, DMP-rot produces a spatial scaling larger than theDMP,
because the final position g is afar from the initial y0 in the
xy-plane, so the distance ||g − y0|| which scales all DoFs
in DMP-rot, over-scales the trajectory along the z-axis. The
large scaling of the DMP is expected, as the demonstrated
initial and final positions were relatively close. In contrast,
the proposed approach, depicted with green solid line, pro-
duces a predictable and reliable behaviour that satisfies the
kinematic constraints. Regarding the QP-DMP (light brown
line), the results are relatively close to the ones obtained with
DMP∗. Both approaches satisfy the constraints and the shape
of the trajectory they produce resembles the shape of the
unconstrained nominal trajectory (blue dashed line). How-
ever, the QP-DMP cannot be used if the target changes,
whereas DMP∗ can still be used, even though it may not
be optimal due to the target being altered. Moreover, the QP-
DMP cannot optimize w.r.t. the position, while with DMP∗
this option is available.Also notice that theQP-DMP requires
storing all demonstrated acceleration data to perform the

optimization and the use of the acceleration as training can
introduce a lot of noise in practice.

4 On-line optimal DMP

Given an n − DoF trajectory pattern encoded by a DMP as
in Eq. (3–5) using K Gaussian kernels, which produces the
reference trajectory yd ∈ R

n , we tackle here the problem of
on-line generalization of this motion pattern for a new tar-
get and motion duration, that can be time-varying in general,
under kinematic, obstacle or via-point constraints, which can
be introduced on-line. In such cases, the optimallity of DMP∗
is compromised.Merely confining the time horizon in Eq. (8)
to a smaller local time window could result in the optimizer
generating “locally” optimal solutions, which can even result
in infeasibility in the next optimization horizon due to con-
flicting constraints .2 Increasing the prediction horizon could
alleviate this issue, but a larger horizon can make the compu-
tational cost prohibitive for real-time use. In the following,
we detail how to extend DMP∗ so as to address these issues.

4.1 Proposed solution

The proposed solution is presented schematically in Fig. 2.
The DMP model takes as input at the current time step j

2 Such is the case for instance if in order to achieve better tracking
(i.e. lower cost for the objective function) within a horizon, the position
comes very close to the upper limit, and the velocity and acceleration
are positive. The optimizer may be unable to find a feasible solution at
the start of the next horizon, as due to the acceleration limits, it may not
be possible to make the velocity negative in time, before the position
breaches the upper limit.

123

Autonomous Robots

Fig. 2 On-line optimal DMP block diagram

the current target g j and time duration T f , j and generates
the reference trajectory yd , ẏd , ÿd over a horizon of N data-
points, where the first one, j + 1, corresponds to the next
control cycle Ts and the rest are spaced equally in time by
�t � Ts , to make the optimizer more far-sighted in order
to produce better solutions and anticipate imminent infeasi-
bilities. We optimize an MP (Movement Primitive) model,
that has to produce a trajectory as close as possible to these
N points while also satisfying the constraints. The MP is
defined as y = �w1, where w1 ∈ R

Kn are the weights to

be optimized and � � In ⊗ φ̄
T
, where ⊗ denotes the Kro-

necker product and φ̄ ∈ R
K are normalizedGaussian kernels

as in the classical DMP, which are however truncated (the k-
th component of φ̄ is set to zero if it is less than 10−6). The
latter plays a decisive role in making the optimization prob-
lem sparser, enabling the solution to be derived in real-time.
The optimal trajectory for the next control cycle at j + 1 is
generated by the optimized MP through y∗

j+1 = � j+1w
∗
1

and its derivatives (similar to Eqs. (4), (5)3), where w∗
1 are

determined by solving in real-time at the current time instant
j the following optimization problem:

minw1,s

j+N∑

i= j+1

(�iw1 − zd,i)
T Qi (�iw1 − zd,i) + sT Qs s

s.t. l i ≤ Aiw1 + I3n s ≤ ui , i = j + 1, ..., j + N

||s||1 ≤ s̄

A jw1 = b j

ALw1 = bL (9)

The cost function comprises two terms. The first one
penalizes the error between the MP generated position and

velocity �iw1, where � i = [�T
i �̇

T
i]T , and the desired one

zd,i = [yTd,i ẏTd,i]T , which is produced on-line by the DMP
using Eqs. (3), (4). Matrix Qi = blkdiag((1 − λ)In, λIn),
discriminates between optimizing the path (λ = 0) or the
velocity profile (λ = 1). To endow the optimizer with greater

3 The k-th truncated Gaussian is φ̄k(σ) =
{

φk(σ) , φk(σ) > 10−6

0 , otherwise
.

The derivative is approximated by ¯̇φk(σ) = −2hk(σ − ck)φ̄k(σ)σ̇ ≈
˙̄φk(σ) for small values of the truncation threshold.

flexibility in finding feasible solutions we consider the kine-
matic limits as hard bounds and introduce the lower and upper
soft limits l i , ui ∈ R

3n for position, velocity and acceleration
within the hard limits. We want to preferably operate within
the soft limits and only exceed them if infeasibility would be
inevitable otherwise. To this end, we introduce the relaxation
variables s = [sTp sTv sTa]T ∈ R

3n , which are the maximum
position, velocity and acceleration soft limit violations in the
current horizon. To forbid the violation of the hard limits,
the relaxation variables are bounded by the margin between
the soft and hard limits s̄ = [s̄ p11×n , s̄v11×n , s̄a11×n]T ,
through ||s||1 ≤ s̄. If the soft limits are exceeded, we want
the solution to ultimately return back within them. To this
end we penalize the relaxation variables through the second
term in the cost function sT Qs s. Constraints regarding posi-
tion, velocity and acceleration soft limits are introduced via

l i ≤ Aiw1+ I3n s ≤ ui , with Ai � A(σi) = [�T
i �̇

T
i �̈

T
i]T ,

where we also insert the relaxation variables to allow viola-
tion of the soft limits when needed to avoid infeasibility.
Finally, the initial state constraint, which ensures smooth
generated positions and velocities and continuous acceler-
ations, is enforced through A jw1 = b j , with A j � A(σ j)

and b j = [yTj ẏTj ÿTj]T being the current state, while the
final state constraint is enforced by ALw1 = bL , with
AL � A(σL) and bL = [yTd,L ẏTd,L ÿTd,L] being the desired
final state. Similarly we can add additional constraints, such
as via-points or obstacle constraints as we show in the sim-
ulations of Sect. 4.2. Henceforth, we will refer to the online
approach as DMP

∗
.

Problem (9) resembles MPC (Model Predictive Control),
with the major difference being that in our case we have
an analytic expression of the system’s state, instead of using
state equations in the formof adynamical system.The latter is
viable thanks to ourDMP formulation (Sidiropoulos&Doul-
geri, 2021), which is crucial for allowing us to employ large
time steps �t within the points of the optimization horizon
to make the optimizer more far-sighted. This is in contrast to
the classical DMP formulation, which would require numer-
ical integration, increasing considerably the computational
burden. The use of truncated kernels φ̄ is also important
as it increases the sparsity of the problem, allowing us to
use larger horizons N while still obtaining the solution in
real-time. Finally, in addition to having a large N , the relax-
ation variables further reinforce the optimizer’s flexibility in
finding feasible solutions. Details are deferred in Appendix
A, where simulations studies make more palpable the above
claims.

Remark 2 In order for the soft limits exceedance cost to
be comparable or even greater than the tracking cost,
so that solutions within the soft limits are favoured, a
reasonable heuristic is to choose the gains in Qs =
blkdiag(qp In, qv In, qa In) as qk ≥ N ||[lTk,i , uTk,i]||∞/s̄k

123

Autonomous Robots

for k ∈ {p, v} for position, velocity and qa ≥ 0.1N ||[lTa,i ,

uTa,i]||∞/s̄a for acceleration (the 0.1 multiplier is to account
for the larger magnitudes that accelerations usually have
compared to position/velocity).

4.2 Simulations

In this section we carry out several simulations, demonstrat-
ing the results of the proposed optimization for generalizing
a DMP trajectory, while changing the target, time duration,
introducing via-points on-line, or avoiding obstacles, under
kinematic constraints. We also compare our approach with
two alternatives methods for imposing kinematic constraints
on a DMP, i.e. incorporation of repelling forces in the DMP
model, generated from artificial potential fields, for avoiding
the kinematic limits and apply MPC directly on the DMP
model’s state equations as detailed in Appendix B. In all
cases, we set N = 10, �t = 100 ms, i.e. the optimizer sees
ahead around 1 sec. The margin between soft and hard limits
is 0.02 m for position, 0.1 m/s for velocity and 0.5 m/s2 for
acceleration. The gains in Qs were chosen [105 100 1] in the
spirit of Remark 2 (despite small variations in the kinematic
bounds, we have more or less that qp ≥ 103, qv ≥ 10 and
qa ≥ 1)

To solve problem given in Eq. (9), we collect the opti-
mization variables in x = [wT

1 s
T]T , and rewrite it as a QP:

minx xTHx + 2qT x
s.t. l ≤ Ax ≤ u

Aeq x = beq
(10)

where H = blkdiag(
∑ j+N

i= j+1 �T
i Qi�i , Qs), q =

[−∑ j+N
j+1 zTd,i Qi�i , 01×3n]T , Aeq =

[
A j 03n×3n

AL 03n×3n

]

, beq =

[
b j

bL

]

, A =

⎡

⎢
⎢
⎢
⎣

A j+1 I3n
...

...

A j+N I3n
03n×nK I3n

⎤

⎥
⎥
⎥
⎦
, u =

⎡

⎢
⎢
⎢
⎣

u j+1
...

u j+N

s̄

⎤

⎥
⎥
⎥
⎦
and similarly for

l .We employ sparsematrices and use theOSQP library (Stel-
lato et al., 2020) to solve the above problem on-line at each
control cycle.

4.2.1 Variable target and variable time duration

To test the DMP
∗
for variable target (final) position, we

assume that the target g changes from the initial demon-
strated target gd to a new target g′ based on the dynamics:

ġ = 5(g′ − g) (11)

and is updated in the simulation at a rate of 30 Hz, to emu-
late the delay from a vision sensor that tracks the target. For

testing the variable time duration, we assume the following
dynamics:

Ṫ f = 100(T ′
f − T f) (12)

where T f is the current and T ′
f the new desired motion dura-

tion. For enforcing the desired time duration we employ the
following canonical system:

σ̈ =
{
50(σ̇d − σ̇), σ < 1

−400σ̇ − 800(σ − 1), otherwise
(13)

where the desired speed of evolution of the phase variable is
σ̇d = (1− σ)/(T f − t), so that the total time duration is T f .

The results are depicted in Fig. 3, where we also plot
the response of the DMP without constraints. In this and
all subsequent figures the soft limits are plotted with dashed
magenta and the hard limitswith dashed gray line.On the left,
we see the results for changing the motion duration T f from
7 to 5 sec at time instant t = 2 sec. On the right we view the
results for updating online the target g, with an update rate of
30Hz.We can see that DMP

∗
manages to produce a solution

within the soft limits, whereas the DMP not only exceeds
even the hard limits, but also produces large accelerations.
This is typical in DMP for changing the time duration or the
target. These issues can be alleviated by filtering the new
time duration or target, but the gain of such filters would
require tuning.More importantly though, one cannot provide
guarantees that the magnitude of the produced acceleration
will be within specific bounds and that the DMP will both
reach the target and have the desired time duration (the latter
two can be greatly affected by the gains used in filtering).
In this scenario, the merit of DMP

∗
is that such issues are

automatically handled by the optimizer.

4.2.2 Via-points

To illustrate the adaptation to via-points on-line, we set 3 via-
points, each one introduced in the DMP

∗
1.75 sec before its

time instant. For comparison, we also simulate the DMP∗,
providing it with all via-points offline. The results are pre-
sented in Fig. 4, with the Cartesian path on the left and the
trajectory along the z-axis on the right. The trajectory pro-
duced by DMP

∗
stays within the soft limits and after it has

passed from all via-points, its shape resembles that of the
DMP. It is also interesting to note that the solution produced
by the DMP

∗
is quite close to that of DMP∗.

4.2.3 Obstacle avoidance

For avoiding obstacles, we assume that the obstacles are
expressed w.r.t. to a bounding ellipsoid, although capsules
or polytopes can also be handled similarly. We consider

123

Autonomous Robots

0 2 4

0.2

0.4

0.6

0 2 4
-0.5

0

0.5

0 2 4

0

5

10

0 2 4

0.2

0.4

0.6

0.8

0 2 4
-0.5

0

0.5

0 2 4

-1

0

1

2

3

Fig. 3 Left: The time duration of the motion is changed from 7 sec to 5
sec at t = 2 sec. Right: The target changes online, with an update rate
of 30 Hz

Fig. 4 Via-points. Left: Cartesian path. Right: trajectory along z-axis

that obstacle j is expressed as E j = {x ∈ R
n : (x −

c j)T�−1
j (x − c j) = 1} and assume that obstacles don’t

overlap. We take each predicted point yi of DMP
∗
along

the prediction horizon and include a plane constraint for
time-step σi if (yi − c j)T�−1

j (yi − c j) < 1.1 (we want the
constraint to be activated even when a point is outside but
close to the obstacle, since the marginal value 1 can cause
chattering of the solution between two consecutive optimiza-

Fig. 5 Left:Optimal path for optimizing position (purple) or optimizing
velocity (green). Right: Trajectory along x-axis (Color figure online)

tion horizons). The plane constraint is defined by calculating

yE = c j + (yi − c j)/
√

(yi − c j)T�−1
j (yi − c j), which

is the point on the surface of E j along the ray from c j to
yi and taking the tangent plane of E j on yE , with normal
nE = ∇x((x − c j)T�−1

j (x − c j))x=yE . Hence, the con-

straint is nTE (�(σi)w1 − yE) ≥ 0. This process adds at most
N additional linear constraints in Eq. (9). Simulation results
with 2 obstacles are given in Fig. 5, both for optimizing the
path (purple) and for optimizing the velocity (green). In both
cases, the solution had to momentarily exceed the soft limits,
mainly to avoid the obstacles, but it always remained within
the hard limits. It can also be observed that optimizing the
velocity retains the shape of the trajectory, while optimizing
the position produces a path that is closer to the unconstrained
one, as expected.

4.2.4 Comparison with repelling forces

The results of the comparison between DMP
∗
(for optimiz-

ing the position) and DMP with repelling forces (DMP-RF)
are plotted in Fig. 6, with the Cartesian path on the left and
the trajectories along the x-axis on the right. We can see
that the DMP-RF position trajectory (yellow line) is very
close to that of DMP

∗
(purple line). However, it generates

very large accelerations that considerably exceed hard limits.
Further tuning of the repelling forces open parameters could
help reduce the acceleration, but at the expense of larger
deviations from the nominal trajectory. In contrast, DMP

∗

produces a feasible trajectory, without any need for tuning,
which only exceeds slightly the soft velocity and acceleration
limits towards the end so as to reach the target in time with
zero velocity and acceleration. Also, it provides the option
of optimizing either the position or the velocity profile as we
have already shown, while the latter is not attainable with
repelling forces.

123

Autonomous Robots

Fig. 6 DMP
∗
vs DMP with repelling forces. Left: Cartesian path.

Right: trajectory along x-axis

4.2.5 Comparison with MPC

The comparison between DMP
∗
and MPC based on the

DMP model (DMP-MPC) is shown in Fig. 7. In both meth-
ods, we optimize w.r.t. the velocity and use a horizon of
N = 10 points. The trajectory along the x axis is plotted on
the left, and along the z-axis on the right. We tested MPC
with time-step �t = 10 ms (green line) and �t = 100 ms
(dashed light brown line). With a small time-step, the DMP-
MPC fails to find a feasible solution at t = 0.8 sec, as the
position along the x-axis has reached the lower limit and
the velocity is still negative. This is related to the fact that
a small time-step would require a large horizon N so that
the optimizer can forestall such infeasible situations. Using
MPC with a larger time-step, �t = 100 ms, allows the MPC
to bypass this infeasibility. Nonetheless, the acceleration is
much more noisier and also the acceleration limits can be
easily violated. This is because, if �t is relatively large, the
acceleration constraint in Eq. (17) can be a poor estimate of
the actual acceleration. Moreover, the MPC fails also in this
case to find a feasible solution along the z-axis at t = 4.3 sec,
because it cannot reach the target position with zero velocity
and acceleration within the specified time duration. In con-
trast DMP

∗
manages to find a solution, since the trajectory

can be analytically retrieved at each time instant thanks to
the new DMP formulation (Sidiropoulos & Doulgeri, 2021),
regardless of how large �t may be. Moreover, due to the
continuity of the Gaussian kernels, the optimization at the N
discrete points of the current horizon, affects also their neigh-
boring points, that will be considered in future optimization
windows.

As a final remark, notice that all trajectories generated by
DMP

∗
have smooth positions and velocities and continuous

0 1 2 3 4

-0.2

0

0.2

0.4

0.6

0 1 2 3 4
-0.5

0

0.5

0 1 2 3 4
-3

-2

-1

0

1

0 1 2 3 4

0.2

0.4

0.6

0 1 2 3 4
-0.5

0

0.5

0 1 2 3 4

-1

0

1

Fig. 7 DMP
∗
vsMPC based on the DMPmodel. Left: trajectory along

x-axis. Right: trajectory along z-axis

accelerations, thanks to the equality constraint A jw1 = b j

in Eq. (9).

5 Experimental results

In this section we apply the proposed online DMP optimiza-
tion framework in two practical scenarios. The first one is a
handover of a bottle to a human, highlighting how the pro-
posed method can handle online variations of the target and
time duration of a motion, while satisfying kinematic con-
straints. The second experiment involves placing an object
inside a bin with obstacles being dynamically introduced
on the scene. This scenario will showcase the ability of
the proposed method to adjust online the DMP trajectory
by introducing via-points, specified online according to the
obstacles, while again respecting the kinematic constraints.
In each experimental scenario, the trajectory pattern that
is used is demonstrated using kinesthetic guidance and is
encoded in a DMP. We use a ur5e robot, with control cycle
Ts = 2 ms, with a RG2FT gripper at its wrist. We also use a
realsense2 camera and apriltags (Wang & Olson, 2016) for
tracking the position of objects relevant to each task. In all
experiments, we choose for the DMP

∗
K = 30 kernels,

optimization horizon N = 10 with �t = 100 ms, relax-
ation limits [0.03, 0.1, 1.0] and relaxation cost weightings
[105, 100, 1] for position, velocity and acceleration respec-
tively. In the handover, we optimize w.r.t. the velocity profile
(λ = 1) and in the placing task we optimize the position
(λ = 0). In all experiments, the average running time for the
optimization was around 1 ms.

123

Autonomous Robots

The handover scenario is depicted at the top of Fig. 8. The
position of the apriltag that is attached at the human’s hand
is used as the target position for the handover. Therefore the
target varies, since the human moves his hand. Moreover, we
modify the motion duration T f as follows:

T f (t) =
⎧
⎨

⎩

t + 4|| p(t) − g(t)||, || p(t) − g(t)|| > 0.25

min{t + 0.25

|| p(t) − g(t)|| , 4|| p(0) − g(0)||}, o/w

where p(t) is the current position of the robot’s end-effector
and g(t) is the apriltag’s position (plus a constant offset, so
that the target is on the human’s palm and not its back). This
adaptive law decreases the duration as the distance between
robot and human gets smaller, but after a threshold (0.25
m) the duration increases again so that the robot deceler-
ates when getting very close to the human to make him feel
more comfortable. For enforcing the new time duration, the
canonical system given in Eq. (13) is used. More sophisti-
cated approaches for estimating the handover position and
time duration could be used, instead of the simple heuristics
we adopt here, but this is beyond the scope of our work. Here
we want to showcase how the DMP

∗
can be employed in

a scenario that involves online adjustments of the target and
the time duration of a motion, while respecting the enforced
kinematic limits. The experimental results are depicted in
Fig. 9a. On the left, the Cartesian path of the DMP

∗
is plot-

ted with purple line and the human’s hand position (target)
with red line. The DMP path, without constraints, is also
plotted with blue line. On the right, the trajectory along the
x axis is plotted, which is the antipodal axis between robot
and human. The bottom right plot shows the evolution of the
motion duration T f . The target makes some small steps (see
magnified subplot on the top right subplot Fig. 9a), which
is due to camera’s frame rate and sensor noise. This in turn
introduces discontinuities in the DMP trajectory (blue line)
and the acceleration constraints are violated. Still, the DMP

∗

produces a continuous trajectory within the soft limits.
The setup for the second experiment is depicted at the

bottom of Fig. 8. In this scenario, the robot has to place a
small cube inside a bin. During execution, two obstacles are
introduced in the scene. The first one is present from the start
of the motion and the second one is introduced dynamically
while the robot is moving. For the first obstacle, the 4 orange
via-points, relative to its apriltag, are introduced, shown in
Fig. 8, so that the robot passes over the obstacle to avoid it. For
the second obstacle, the 3 red via-points are associated with
its apriltag. In this case we want to locally modify the DMP
trajectory so that the robot pushes aside the obstacle and the
area in front of the bin is cleared for the placing to ensue. In
general, the via-points that modify locally the DMP trajec-
tory could be supplied by a higher level perception system.
This is beyond the scope of this work, so we have manually

Fig. 8 Experimental scenarios. Top: handover. Bottom: placing of cube
inside bin

prespecified for each apriltag the number and relative posi-
tions of the via-points w.r.t. the apriltag’s position. At the
left of Fig. 9b the path executed by DMP

∗
is shown with

purple, with the via-points visualized with red asterisks. The
DMP path without the via-points is also depicted with blue
dashed line. Without the via-points, the first obstacles would
have been thrown down and the second one would have been
pushed towards the bin, jeopardizing the successful placing
of the cube. At the middle of Fig. 9b, we see the adjust-
ment along the z-axis to bypass the first obstacle and at the
right, themovement along the y-axis to push aside the second
obstacle. We can also see that the hard limits are respected,
with very small violations of the soft limits in the velocity
and acceleration. These small violations occur momentarily
during the time window that the trajectory adjustment takes
place and are instantly minimized. A video with the exper-
iments can be found in https://youtu.be/21HvNpjpBGU,
which also includes supplementary simulations and exper-
iments on dynamic obstacle avoidance.

6 Conclusions

In this work, we presented a novel framework for generaliz-
ing a desired trajectory pattern, encoded using DMP, subject
to kinematic constraints. The proposed framework can han-
dle dynamic adjustments of theDMP trajectory, due to target,
motion duration changes, incorporation of via-points and/or
obstacles, while satisfying kinematic constraints. Compara-
tive simulations demonstarte the efficacy of our framework,

123

https://youtu.be/21HvNpjpBGU

Autonomous Robots

Fig. 9 aHandover experiment. Left: Cartesian path. Right: trajectory along the x-axis. b Placing experiment. Left:Cartesian path. Right: trajectories
along y and z axes

compared to other relevant approaches. Experimental results
were also carried out, that validate the applicability and
effectiveness of our approach. As a future work we aim at
incorporating also constraints for the entire robot arm, apart
from the robot’s end-effector.

Funding Open access funding provided by HEAL-Link Greece.

Declarations

Conflict of interest No funding was received for conducting this work
and there isn’t any kind of conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: Impact of on-line optimization
parameters

Here we present simulations that provide further insight on
the impact of the parameters of the proposed on-line opti-
mization method.

The effect of the prediction time step �t is illustrated
on the left of Fig. 10, where we perform velocity profile
optimization for N = 10 and �t ∈ {10, 100} ms and also
N = 50 and �t = 10 ms. The optimization with small

prediction time-step (green line) reaches an infeasible state
at 2.5 sec and appears to optimize the position instead of
the velocity profile. Both these issues relate to the small
prediction time-step which renders the optimization “short-
sighted”. Thus it neither anticipates possible future infeasible
states nor captures the velocity profile. In contrast, with the
proposed larger time-step (�t = 100 ms, purple line), the
velocity profile is preserved and the optimizer does not stum-
ble in any infeasible state. It is also interesting to note that
the latter is very close to the ideal case of a large optimiza-
tion horizon with small time step (N = 50 �t = 10 ms,
dashed brown line), which is however not practical due to
the excessive computational overhead.

It is important to emphasize that using such a large time-
step is made possible due to the DMP structure given in Eq.
(1)which allows to obtain the position, velocity and accelera-
tion at any time instant without needing to explicitly perform
any numerical integrations in contrast to the original DMP
formulation from Ijspeert et al. (2013) or the QP-DMP (Car-
doso et al., 2015). It should also be noted that a very large
time step �t may not be favourable. This is because we con-
sider a sparse (w.r.t. time) set of N points, so if the points
are very far apart temporarily, the optimization will not be
able to capture the shape of the trajectory, or even prevent
imminent infeasibilities.

In the presence of relatively strict constraints infeasibility
may occur, even if a relatively large�t is used. This is where
the relaxation variables come into play, making the optimiza-
tionmore flexible and effective in bypassing infeasible states.
To highlight the utility of relaxation variables, we compare
the use of soft limits and relaxations variables with the case
where only the hard limits are used. In all cases we optimize
w.r.t. the position and set�t = 100ms. The results are shown
on the right of Fig. 10, where the constraints are more strict,
in the sense that the unconstrained trajectory violates both

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Autonomous Robots

0 1 2 3 4

-0.5

0

0.5

0 1 2 3 4

-1

-0.5

0

0.5

1

0 1 2 3
-0.4

-0.2

0

0.2

0.4

0.6

0 1 2 3

-1

-0.5

0

0.5

1

0 1 2 3

-0.2

0

0.2

0.4

0.6

0 1 2 3 4

0.2

0.4

0.6

Fig. 10 Effect of proposed modifications on the on-line DMP opti-
mization. Left: effect of prediction time-step. Right: effect of relaxation
variables

position, velocity and acceleration limits. Using soft limits
and relaxations we obtain a feasible solution (purple line)
that exceeds the soft limits slightly in the position and veloc-
ity only in some optimization steps. Using directly the hard
limits the optimizer stumbles upon an infeasible state at 0.84
sec.

Finally, we evaluate the effect that truncated kernels have
on the average running time for solving problem Eq. (10) and
on the sparsity of the cost function matrix H and the inequal-
ity constraints matrix A for different values of the problem
size, i.e. the number of DoFs n, the kernels K and optimiza-
tion horizon N . We denote the sparsity of the a matrix P
as sp(P), which is the number of non-zero elements over
the total number of elements. The running time is measured
by executing the optimization in C++ code on a desktop pc
with an Intel ®Core ™i7-9700 processor. For testing, we
consider the trajectory along the z-axis and the constraints
that were used in Sect. 3 and is shown in Fig. 1b. This tra-
jectory is replicated n times (one for each DoF). We chose

this DMP trajectory, since it violates both position, velocity
and acceleration constraints, hence it will be more challeng-
ing to the solver. The results are imprinted on Table 1. For
relative small problem size (1st case), the improvement with
truncated kernels is relatively small. However, as the prob-
lem size increases, the impact of truncated kernels becomes
more evident. For instance, in the 3rd case, which is a typ-
ical example of the problem size that one would encounter
in practice, the running time is around 1 ms. Even in the
last case, where the problem size is relatively large, the run-
ning time stays below 2 ms. In contrast, without the use of
truncated kernels, the running time approaches 3 ms for the
3rd case andmay even become prohibitive for larger problem
sizes (case 4). The effect of truncated kernels is also reflected
in the problem’s sparsity, which makes the problem at least
3 times sparser for larger problem sizes (cases 3 and 4).

Appendix B: DMP with repelling forces and
MPC

Incorporation of repelling forces, generated from artificial
potential fields, in theDMPmodel for avoiding the kinematic
limits can be realized as follows:

ÿ = −Ky − Dẏ + f (s) + kp f p + kv fv (14)

where f (s) = Kys+Dẏs+ ÿs , f p, fv are the repelling forces
for position and velocity limits respectively and kp, kv >

0 are tunable gains. Notice that in this case it is not easy
to enforce acceleration constraints, since we would have to
increase the order of the systemEq. (14) and also consider the
stability of the system’s characteristic polynomial. Different
types of repelling forces have been proposed in the literature
(Gams et al., 2009; Dahlin&Karayiannidis, 2020).We opted
for the repelling force proposed in Kastritsi et al. (2019) as
it distorts less the trajectory away from the constraints, thus
serves as a better competitor against our method. For one
DoF denoted by y and limit yl the repelling force is given

Table 1 Average running time
(± standard deviation) for
solving problem (10) and
sparsity of the cost function
matrix H and the inequality
constraints matrix A for
different optimization horizon
N , kernels K and DoFs n

Prob. size Truncated (10−6) Non-truncated

N K n sp (H) sp (A) Runtime (ms) sp (H) sp (A) Runtime (ms)

8 20 1 38% 45.7% 0.21 ± 0.02 76.2% 82.2% 0.31 ± 0.02

10 25 3 9.6% 12.6% 0.51 ± 0.05 26.7% 28.4% 1.05 ± 0.05

10 30 6 3.9% 5.4% 0.94 ± 0.18 13.8% 14.4% 2.71 ± 0.76

14 40 8 2.3% 3.2% 1.71 ± 0.25 10.8% 11.2% 7.70 ± 0.81

123

Autonomous Robots

by:

frep(y, yl) = −2 ln(1 − ψ)

d20 (1 − ψ)
(d0 − |p − pl |) p − pl

|p − pl | (15)

for |p − pl | ≤ d0 and is zero otherwise, where ψ =
(|p−pl |−d0)2

d20
and d0 > 0 is the distance after which the

repelling force is activated.BasedonEq.(15)wechoose f p =
frep(y, y) + frep(y, ȳ) and fv = frep(ẏ, ẏ) + frep(ẏ, ¯̇y).
The gains for the repelling forces were set to f p = 0.05 and
fv = 0.5 and the distance below which the repelling forces
are activated was d0 = 0.03.

To apply MPC on the DMP model, we have to introduce
the discrete state space equations of the DMP:

zi+1 = Fi zi + Bivi (16)

where zi = [yTi ẏTi]T , Fi = I6 +
[
03 I3

−K −D

]

�t , with �t

being the time-step and Bi =
[
03
I3

]

. Denoting the optimiza-

tion variables vector as x = [z j+1 ... z j+N v j ... v j+N−1],
the following optimization problem has to be solved at each
time-step j :

minx
j+N∑

i= j+1
(zi − zd,i)

TQi (zi − zd,i)

s.t.
zi = Fi−1zi−1 + Bi−1vi−1

zi ≤ zi ≤ zi
..
y
i ≤ Da(zi+1 − zi) ≤ ..

yi

(17)

where Da = [03 I3/�t].

References

Ben Amor, H., Neumann, G., Kamthe, S., Kroemer, O., Peters, J.
(2014). Interaction primitives for human-robot cooperation tasks.
In 2014 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 2831–2837 https://doi.org/10.1109/ICRA.2014.
6907265

Billard, A., Calinon, S., Dillmann, R., Schaal, S. (2008). In textit-
Siciliano, B., Khatib, O. (eds.) Robot Programming by Demon-
stration, pp. 1371–1394. Springer. https://doi.org/10.1007/978-3-
540-30301-5_60

Buizza Avanzini, G., Zanchettin, A. M., & Rocco, P. (2018).
Constrained model predictive control for mobile robotic
manipulators. Robotica, 36(1), 19–38. https://doi.org/10.1017/
S0263574717000133.

Cardoso, C., Jamone, L., Bernardino, A. (2015) A novel approach to
dynamic movement imitation based on quadratic programming.
In 2015 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 906–911 . https://doi.org/10.1109/ICRA.2015.
7139285

Dahlin, A., & Karayiannidis, Y. (2020). Adaptive trajectory generation
under velocity constraints using dynamical movement primitives.

IEEE Control Systems Letters, 4(2), 438–443. https://doi.org/10.
1109/LCSYS.2019.2946761.

Duan, A., Camoriano, R., Ferigo, D., Calandriello, D., Rosasco, L.,
Pucci, D. (2018). Constrained dmps for feasible skill learning on
humanoid robots. In 2018 IEEE-RAS 18th International Confer-
ence on Humanoid Robots (Humanoids), pp. 1–6 https://doi.org/
10.1109/HUMANOIDS.2018.8624934

Frank, F., Paraschos, A., & vander Smagt, P., Cseke, B. (2021). Con-
strained probabilistic movement primitives for robot trajectory
adaptation. IEEE Transactions on Robotics. https://doi.org/10.
1109/TRO.2021.3127108.

Gams, A., Ijspeert, A. J., Schaal, S., & Lenarcic, J. (2009). On-line
learning and modulation of periodic movements with nonlinear
dynamical systems.Autonomous Robots, 27, 3–23. https://doi.org/
10.1007/s10514-009-9118-y.

Hoffmann, H., Pastor, P., Park, D., Schaal, S. (2009). Biologically-
inspired dynamical systems for movement generation: Automatic
real-time goal adaptation and obstacle avoidance. In 2009 IEEE
International Conference on Robotics and Automation, pp. 2587–
2592.

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S.
(2013). Dynamical movement primitives: Learning attractor mod-
els for motor behaviors. Neural Computation, 25(2), 328–373.

Kastritsi, T., Papageorgiou, D., Sarantopoulos, I., Doulgeri, Z.,
Rovithakis, G.A. (2019). Stability of active constraints enforce-
ment in sensitive regions defined by point-clouds for robotic
surgical procedures. In 2019 18th European Control Confer-
ence (ECC), pp. 1604–1609 https://doi.org/10.23919/ECC.2019.
8796278

Kober, J., Mülling, K., Krömer, O., Lampert, C.H., Schölkopf, B.,
Peters, J. (2010). Movement templates for learning of hitting and
batting. In 2010 IEEE International Conference on Robotics and
Automation pp. 853–858 https://doi.org/10.1109/ROBOT.2010.
5509672

Koutras, L., Doulgeri, Z. (2020). A novel dmp formulation for global
and frame independent spatial scaling in the task space. In 2020
29th IEEE International Conference on Robot and Human Inter-
active Communication (RO-MAN), pp. 727–732 . https://doi.org/
10.1109/RO-MAN47096.2020.9223500

Krug, R.,&Dimitrov, D. (2015).Model predictivemotion control based
on generalized dynamical movement primitives. Journal of Intel-
ligent & Robotic Systems, 77(1), 17–35. https://doi.org/10.1007/
s10846-014-0100-3.

Liang, Y., Li, W., Wang, Y., Xiong, R., Mao, Y., Zhang, J. (2021).
Dynamic movement primitive based motion retargeting for dual-
arm sign language motions. In 2021 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 8195–8201 https://
doi.org/10.1109/ICRA48506.2021.9561120

Maeda, G., Ewerton, M., Lioutikov, R., Amor, H.B., Peters, J., Neu-
mann, G. (2014). Learning interaction for collaborative tasks with
probabilistic movement primitives. In 2014 IEEE-RAS Interna-
tional Conference on Humanoid Robots, pp. 527–534.

Merckaert, K., Convens, B., Wu, C.-J., Roncone, A., Nicotra, M. M.,
& Vanderborght, B. (2022). Real-time motion control of robotic
manipulators for safe human-robot coexistence. Robotics and
Computer-Integrated Manufacturing, 73, 102223. https://doi.org/
10.1016/j.rcim.2021.102223.

Mghames, S., Hanheide, M., Ghalamzan, E. A.(2020). Interactive
movement primitives: Planning to push occluding pieces for fruit
picking. In 2020 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 2616–2623 https://doi.org/
10.1109/IROS45743.2020.9341728

Mülling, K., Kober, J., Kroemer, O., & Peters, J. (2013). Learning to
select and generalize striking movements in robot table tennis.
The International Journal of Robotics Research, 32(3), 263–279.
https://doi.org/10.1177/0278364912472380.

123

https://doi.org/10.1109/ICRA.2014.6907265
https://doi.org/10.1109/ICRA.2014.6907265
https://doi.org/10.1007/978-3-540-30301-5_60
https://doi.org/10.1007/978-3-540-30301-5_60
https://doi.org/10.1017/S0263574717000133
https://doi.org/10.1017/S0263574717000133
https://doi.org/10.1109/ICRA.2015.7139285
https://doi.org/10.1109/ICRA.2015.7139285
https://doi.org/10.1109/LCSYS.2019.2946761
https://doi.org/10.1109/LCSYS.2019.2946761
https://doi.org/10.1109/HUMANOIDS.2018.8624934
https://doi.org/10.1109/HUMANOIDS.2018.8624934
https://doi.org/10.1109/TRO.2021.3127108
https://doi.org/10.1109/TRO.2021.3127108
https://doi.org/10.1007/s10514-009-9118-y
https://doi.org/10.1007/s10514-009-9118-y
https://doi.org/10.23919/ECC.2019.8796278
https://doi.org/10.23919/ECC.2019.8796278
https://doi.org/10.1109/ROBOT.2010.5509672
https://doi.org/10.1109/ROBOT.2010.5509672
https://doi.org/10.1109/RO-MAN47096.2020.9223500
https://doi.org/10.1109/RO-MAN47096.2020.9223500
https://doi.org/10.1007/s10846-014-0100-3
https://doi.org/10.1007/s10846-014-0100-3
https://doi.org/10.1109/ICRA48506.2021.9561120
https://doi.org/10.1109/ICRA48506.2021.9561120
https://doi.org/10.1016/j.rcim.2021.102223
https://doi.org/10.1016/j.rcim.2021.102223
https://doi.org/10.1109/IROS45743.2020.9341728
https://doi.org/10.1109/IROS45743.2020.9341728
https://doi.org/10.1177/0278364912472380

Autonomous Robots

Papageorgiou, D., Doulgeri, Z. (2020). Learning by demonstration
for constrained tasks. In 2020 29th IEEE International Con-
ference on Robot and Human Interactive Communication (RO-
MAN), pp. 1088–1093 https://doi.org/10.1109/RO-MAN47096.
2020.9223579

Paraschos,A.,Daniel, C., Peters, J.,&Neumann,G. (2018).Using prob-
abilistic movement primitives in robotics. Autonomous Robots,
42(3), 529–551. https://doi.org/10.1007/s10514-017-9648-7.

Sidiropoulos, A., Doulgeri, Z. (2021). A reversible dynamic movement
primitive formulation. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pp. 3147–3153 https://doi.org/
10.1109/ICRA48506.2021.9562059

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., & Boyd, S. (2020).
OSQP: An operator splitting solver for quadratic programs.Math-
ematical Programming Computation, 12(4), 637–672. https://doi.
org/10.1007/s12532-020-00179-2.

Wang, J., Olson, E. (2016). AprilTag 2: Efficient and robust fiducial
detection. In 2016 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pp. 4193–4198. IEEE, https://
doi.org/10.1109/IROS.2016.7759617

Wen, Y., R. Pagilla, P. (2021). Path-constrained optimal trajectory plan-
ning for robot manipulators with obstacle avoidance. In 2021
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS) (Accepted).

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/RO-MAN47096.2020.9223579
https://doi.org/10.1109/RO-MAN47096.2020.9223579
https://doi.org/10.1007/s10514-017-9648-7
https://doi.org/10.1109/ICRA48506.2021.9562059
https://doi.org/10.1109/ICRA48506.2021.9562059
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1109/IROS.2016.7759617
https://doi.org/10.1109/IROS.2016.7759617

	A novel framework for generalizing dynamic movement primitives under kinematic constraints
	Abstract
	1 Introduction
	1.1 Related works
	1.2 Contribution

	2 DMP-preliminaries
	3 Off-line optimal DMP
	3.1 Proposed solution
	3.2 Simulations

	4 On-line optimal DMP
	4.1 Proposed solution
	4.2 Simulations
	4.2.1 Variable target and variable time duration
	4.2.2 Via-points
	4.2.3 Obstacle avoidance
	4.2.4 Comparison with repelling forces
	4.2.5 Comparison with MPC

	5 Experimental results
	6 Conclusions
	Appendix A: Impact of on-line optimization parameters
	Appendix B: DMP with repelling forces and MPC
	References

