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Abstract
In this paper, we introduce a distributed autonomous flocking behavior of Unmanned Aerial Vehicles (UAVs) in demanding
outdoor conditions, motivated by search and rescue applications. We propose a novel approach for decentralized swarm
navigation in the direction of a candidate object of interest (OOI) based on real-time detections from onboard RGB cameras.
A novel self-adaptive communication strategy secures an efficient change of swarm azimuth to a higher priority direction
based on the real-time detections. We introduce a local visual communication channel that establishes a network connection
between neighboring robots without explicit communication to achieve high reliability and scalability of the system. As a
case study, this novel method is applied for the deployment of a UAV swarm towards detected OOI for closer inspection and
verification. The results of simulations and real-world experiments have verified the intended behavior of the swarm system
for the detection of true positive and false positive OOI, as well as for cooperative environment exploration.

Keywords Swarm systems · Flocking control · Exploration and navigation · Search and rescue · Self-adaptive communication

1 Introduction

Unmanned Aerial Vehicles (UAVs) are applicable for var-
ious scenarios related to this work of which most promise
great potential for multi-robot deployment, including map-
ping of inaccessible areas (Miiller et al., 2018), inspection of
industrial complexes (Eudes et al., 2018), and area surveil-
lance (Stasinchuk et al., 2021). Swarm systems (Chung et
al., 2018) increase the scalability and reliability required for
applications such as environmental exploration, monitoring
(Carpentiero et al., 2017), and search and rescue operations
(Couceiro et al., 2013).

In this paper, we present the results of a novel decentral-
ized swarming approach for search and rescue operations
in demanding outdoor environments, specifically that of
desert and dunes (Fig. 1). The proposed work builds on
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some enabling technologies for compact swarm stabilization
(Saska et al. 2017; Petracek et al. 2020; Ahmad et al. 2021)
designed by theMulti-robot SystemsGroup at CzechTechni-
cal University in Prague. This proposed approach surpasses
the preliminary works by designing a new decentralized con-
trol and coordination rules for the exploration of an area
containing a set of OOI, which are difficult to identify with
onboard sensors. The swarm must also deal with multi-
ple false positive detections in a strictly decentralized way.
The deployment of robots in real time without any explicit
communication places the demand on research for a decen-
tralized, decision-making mechanism based on behavioral
observation of local teammates within large swarms. Prac-
tical motivations for this research can include missions for
locating missing persons or in searching for debris, such as
in the event of an aircraft crash where the swarm may be
tasked to locate and mark OOI (e.g., survivors, or a flight
data recorder). To fully exploit the distributed sensory capa-
bilities of an agile UAV swarm for such applications, an
online object detector within the feedback of the swarm con-
trol architecture is required. The appearance of false positive
detections frequently occurs in the real-world deployment of
autonomous sensory units. As such, swarm intelligence can
increase system reliability in the event of such phenomena.
We propose using flexible swarm architecture for verifica-
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Fig. 1 UAV swarm exploring a desert environment in a decentral-
ized search and rescue task without wireless communication among
the robots

tion of the positivity of any OOI detections, while seeking
to preserving the cohesion and reliability of the group. The
detections are efficiently verified by the approaching swarm
using distributed sensory data, such as camera images from
different view angles and distances. To achieve this, a con-
sensus on the swarm’s flight direction must be reached to
secure the cohesiveness of the swarm during a change of
the group target. Such an agreement may be reached using
decentralized navigation rules based on limited communica-
tion among swarm members.

A radio channel (Chen et al., 2020) is a standard way to
establish a communication channel between cooperating fly-
ing robots. However, using explicit radio communication to
provide relative localization between UAVs (e.g., by sharing
GPS data) requires all-to-all communication, which brings
an unnecessary communication load. Furthermore, a radio
communication channel can be unreliable, particularly in
demanding environmental conditions, or it may become sat-
urated in a swarm with a high number of agents. A visual
local communication channel is an appropriate alternative
to a radio channel. This approach secures connection and
data transmission between swarm neighbors in local prox-
imity only, providing system reliability, robustness, and,
primarily, scalability (Chowdhury et al. 2018; Cheng et al.
2017). Regardless of the theoretical communication capabil-
ities of modern radio modules, local visual communication
represents a general solution independent of environmental
conditions and number of robots.

It is desirable to secure system responsiveness in the case
of a verified true positive OOI detection (Nascimento et al.,
2013). In SAR missions, one of the applicable options for
human first responders is to deploy a swarm agent towards
an OOI. This agent can serve as a static beacon for the human
SAR team, can inspect the detected location in detail, or
deliver first aid supplies (seeFig. 1). The rest of the swarmcan
effectively continue field exploration in order to search for
remaining OOIs. To preserve swarm cohesion, it is necessary
to dynamically update the cohesion and separation influence

between swarm agents in the UAV deployment area. This
necessity is further addressed in this paper.

1.1 Related work

In Cardona et al. (2019), the authors showed the ability of
a swarm system to fulfill a SAR task, including exploration
in areas that are potentially dangerous for human workers.
Amulti-UAV path planning with explicit communication for
task allocation within SAR was introduced in (Hayat et al.,
2020). Another paper dealingwith the deployment of swarms
in SAR (Arnold et al., 2018) is focused on the simulation
of a group of UAVs cooperatively searching for survivors.
The authors designed reactive swarm behavior, including
collision avoidance, formation control, and a method for
optimizing the coverage area of cameras. In comparison to
these papers, we consider relative localization of neighbor-
ingUAVs, implicitmutual communication, and onboardOOI
detection with problems created by demanding outdoor con-
ditions in real-world missions.

One of the crucial tasks of swarm exploration is naviga-
tion of the flocking system. In Zhao et al. (2018), GNSS
localized swarms of robots were tasked to follow a pre-
planned path where a virtual guidance force was introduced
to lead swarmmembers along the path.Navigation agreement
among agents was secured by following the informed agent.
Another approach introduced in Madridano et al. (2021) and
tested in simulations proposes a multi-layer architecture for
the coordinated navigation of aUAV swarm. Leader-follower
decentralized navigation for group of ground robots relying
on motion capture localization infrastructure and explicit
communication was proposed and experimentally verified
in Yoshimoto et al. (2018). In our proposed approach, we
consider the realistic assumption of unavailable external
global localization. The swarm system was designed to rely
on relative-localization of neighboring UAVs with a decen-
tralized navigation consensus using real-time selection of
leaders.We rely on a navigation consensus algorithm thatwas
proposed for ground robots in Ferrante et al. (2014), where
only some swarm agents are informed about the desired goal
location.

Another aspect of swarm SAR operations is communi-
cation between neighbors, which is important for decision-
making and swarm behavior consensus. In Wiltsche et
al. (2013), an asynchronous protocol for communication
between SAR robots was presented. The protocol was used
together with cooperatively-controlled robots searching for
a moving target. A routing protocol above Wi-Fi standard,
called CHOPIN, was proposed in Araujo et al. (2014) for
communication between the places of collaborating robots
where a third-party communication network was unavail-
able. An approach based on the minimalistic communication
between fireflies was introduced in Varughese et al. (2020),
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Hornischer et al. (2021). The presented single-bit informa-
tion is diffused in a wave through the swarm to secure
self-organization. The proposed approach goes beyond these
works by offering an enhanced localization-communication
system suitable for large scale swarm decision making with-
out an explicit communication network.

We found the Cardona and Calderon (2019) paper to be
the most relevant work compared to this approach. A swarm
system for performing SAR missions in a simulated envi-
ronment was introduced in Cardona and Calderon (2019).
In addition to proximal control, the authors use a virtual
attraction force towards victims. The paper also describe
the generation of a sub-swarm to fulfill a subtask around a
victim. However, agent localization, mutual communication,
and specific object detection were not considered. Further-
more, we consider the negative effects of demanding outdoor
environments within the design of the flocking system and
demonstrate the success of our solution in several different
real-world experiments.

1.2 Contribution

The purpose of the proposed paper is to bridge the laboratory-
reality gap in swarm deployment, as well as to show the
potential in deploying a team of UAVs for the solution
of demanding tasks. Herein, we explore a novel flocking
approach for the autonomous exploration of demanding out-
door environments using robots able to relatively localize
neighboring robots. The proposed method enables decen-
tralized navigation agreement and decision-making using
only implicit communication by observing blinking mark-
ers. Another important contribution of this work is the
achievement of a task-driven decentralized heading align-
ment securing the distributed sensing of workspace. To
support our statement of bridging the reality gap, the reli-
ability and robustness of the overall system were verified
through repeated real-world testing of the proposed flocking
system in the demanding conditions of desert, dunes, and hill
environments.

1.3 Problem statement

The problem tackled in this paper regards the multi-robot
exploration of demanding environments for SAR purposes.
We utilize a swarm of UAVs to maintain the coverage of a
large given area and take advantage of its distributed sens-
ing capabilities in order to increase the reliability of OOI
detection. The task of the swarm is to detect and locate a
set of OOIs with unknown positions and to reject any false
positive detections obtained by the onboard sensors. It is
assumed that the proposed flocking system relies exclusively
upon onboard sensory equipment with the use of minimal
inter-agent communication. Agents can exchange a piece of

information with neighboring agents for navigation agree-
ment purposes. We further assume that the environment is
unknown, but obstacle-free at the chosen flight level. In order
to tackle this problem, the requirements for the UAV plat-
form include a relative mutual agent localization system, a
rangefinder for height estimation, an onboard computer, and
a forward-facing RGB camera.The waypoints for sweeping
trajectories are manually set by a human operator. We define
the sweeping trajectory as the reference trajectory for the
swarmwhen any OOI is not being approached by the swarm.

The reason behind the use of a relative localization sys-
tem in GPS-available conditions is straightforward: shared
GPS may not provide sufficient results with standard GPS
precision and drift when used with compact swarms. Guar-
anteed GPS accuracy may vary in the real world concerning
a given environment, additional onboard equipment (due to
interference), or weather. Further, relative localization can be
designed as a backup in the case of GPS signal or communi-
cation performance loss, due to signal reflection from nearby
buildings or jamming.

2 Preliminaries

2.1 UVDAR-COM

In our swarming solution, each UAV agent is equipped with
the UVDAR (UltraViolet Direction And Ranging) system
developed by Walter et al. (2019), Walter et al. (2018b)
for estimation of the relative position of surrounding swarm
agents. The system consists of UV LED markers and UV-
sensitive cameras carried onboard each UAV. Computer
vision is used to localize the UV LED markers attached to
neighboring agents that are observed by onboard UV cam-
eras. A linear Kalman filter is applied to improve the position
tracking of neighboring UAVs.

In this paper, we used an extended version of the UVDAR
system utilized as an alternate communication system to
radio communication. The extension, UVDAR-COM sys-
tem (Horyna et al., 2022), is inspired by free-space optical
(FSO) communication (Khalighi & Uysal, 2014; Kaushal
& Kaddoum, 2016), which has been used in recent years for
data transfer between terrestrial and space systems.UVDAR-
COM transmits the message frame through blinking UV
markers and using UV-sensitive cameras as optical signal
receivers. The used visual communication channel creates a
mesh network over the UAVs (nodes), where each node can
directly communicate with other nodes with visual contact.
Additionally, the positions of the UV markers in the cam-
era image frame are processed in the same way as is done
by the default UVDAR system. Thus, the extended system
provides relative localization, as well as low-bandwidth local
communication. The spatial separation of visual signals and
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Fig. 2 Onboard RGB camera object detection using a CNN

theHoughTransform used for tracking ofUVmarkersmakes
the UVDAR-COM system resistant to UV reflections.

2.2 Object detection and localization

The aim of the proposed swarm approach is to explore a
given environment and to search for multiple OOI, such as
lost people, wrecked cars, or airplane debris. To provide real-
istic properties of onboard real-time sensing, the proposed
system was designed and tested with a Convolutional Neural
Network (CNN) “person detector” built upon theOpenVINO
toolkit (Intel Corporation, 2018).

The output of the person detector (see Fig. 2) is the rel-
ative position and bounding box of the object in the camera
frame, as well as a confidence score. The confidence score is
necessary to determine whether the detection is a true pos-
itive or a false positive. The distance of the detection from
the UAV is estimated from the size of the detected OOI in
the image. The detections are filtered by a Kalman filter and
the position of the OOI is estimated, even when the OOI is
outside the field of view.

2.3 Swarm hierarchy

The novel flocking behavior (see Sect. 3) proposed in
this paper is based on the observation of the surrounding
workspace by a particular agent. The agent neighborhood
(or just neighborhood) is a subset of the swarm containing
agents around a particular agent. Neighborhood states are
used to achieve decentralized flocking motion and decision
making. Neighborhood selection is introduced in Sect. 3.7.

We suppose that every swarm agent is deployed with the
same sensory equipment. Nevertheless, the significance of
individual agents can vary in time. A swarm member having
more relevant information than a regular agent is called the
informed agent. We deal with two types of informed agents:

• An informed agent that knows the swarm trajectory way-
points in the deployed area. Agents of this type represent
around 10%of the total number of swarmmembers. They
are decentralized and dynamically chosen based on an ID

given by the UVDAR-COM system (e.g, selected by the
lowest ID in the agent neighborhood).

• An informed agent that has valid OOI detection. Agents
of this type arise based on observation of the surround-
ings.

2.4 Frames of reference

In this work, variables and computations are expressed in
the local frame of a UAV. The local frame is fixed to the
environment and aligned to the initial position of the UAV.
The local frame is oriented such that its x-axis is aligned with
the east direction, and the z-axis is pointing upward. In our
experiments, the fixed orientation of local frames is ensured
by using magnetometers for heading estimation.

3 Flocking control

Following the basic principles of decentralized swarming
behavior, the control law for each swarming member is
expressed as:

q̇d = αp + βn + γ a, (1)

where q̇d ∈ R
3 is the control vector containing the desired

velocities in the horizontal plane and the desired heading rate.
Vectors p,n, a ∈ R

3 represent the proximal, navigation, and
heading alignment vectors, respectively. Scalars α, β, γ ∈
R>0 are weights of the corresponding vectors.

The proposed flocking control law is shown in Fig. 3
within the overall flocking system architecture of a single
agent. The data from onboard sensors are processed in the
Data processing part of the system. Processed data are inputs
of both control layers (the Low-level control and the high-
level Flocking control). TheNavigation control is dependent
on the OOI detections and the proposed self-adaptive com-
munication system.

3.1 Proximal vector

The proximal control vector keeps the focal agent (an arbi-
trary agent from the swarm) at the desired distance from
surrounding agents. It includes cohesion control, which
keeps the swarm together, and the separation control, which
prevents collisions between agents. We assume that each
robot is able to measure the relative position of its neigh-
bors by the UVDAR sensor. The proximity vector (inspired
by potential functions from (Merheb et al., 2016; Gazi &
Passino, 2002) is thus proposed as:
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Fig. 3 Architecture of the proposed flocking system of a single agent

p =
N∑

i=1

ui

[
1 − ddes

di

]
, (2)

where ui is the unit vector pointing from the focal agent to
the i th neighbor, di is the relative range of the i th neighbor,
ddes is the desired distance between the agents, and N is the
number of agents in the given neighborhood (see Sect. 3.7).
The unit vector

ui =
[ pi‖pi‖

0

]
(3)

depends on the relative position pi ∈ R
2 of the i th neighbor

from the focal agent in the horizontal plane.

3.2 Navigation vector

The navigation control vector n determines the direction of
motion of the focal agent towards a desired goal position. The
goal direction may not be known by every agent. Further-
more, the goal direction can be changed in real-time should
there be a change of swarm trajectory or visual detection of
an OOI. It is desirable to make a decentralized agreement
between all robots for the goal direction, regarding the cur-
rent state of agents. Such an agreement, together with an
appropriate inter-agent communication strategy, secures the
dynamic response of the swarm behavior without risking the
loss of cohesion or becoming stuck in a local minimum.

This extends the self-adaptive communication strategy
(SCS) proposed in Ferrante et al. (2014) to enable navigation
agreement among robots. The proposed navigation approach
assumes that each agent can communicate some direction
information to its neighbors (see Sect. 3.3). The received

directional information of the UAV’s neighbors is averaged
together with transmitted directional information:

η = atan2

[
η0 + ∑N

i=1 sin ηi

N + 1
,
η0 + ∑N

i=1 cos ηi

N + 1

]
, (4)

where η0 is transmitted directional information, ηi is direc-
tional information received from the i th neighbor, and N
is the number of agents in the neighborhood of the focal
agent. Directional information are computed onboard UAVs
according to Eq. (6). The navigation vector is obtained as:

n =
⎡

⎣
cos η

sin η

0

⎤

⎦ . (5)

3.3 Self-adaptive communication system

The novel self-adaptive communication system (SCS) is
designed in the proposed flocking system (Fig. 3) for the
dynamic and decentralized adjustment of the navigation vec-
tor. Such an approach allows for the change of flight direction
without inter-agents oscillations or loss of cohesion. The
communication system defines the transmitted information
based on a comparison of the current UAV state (an inter-
nal information) and the averaged information received from
neighboring agents. The communication system achieves an
agreement on the common group goal direction with the
highest priority (e.g., direction to OOI). The overall com-
municated information is composed of two types:

• Directional type of information (a directional angle) nec-
essary for navigation agreement among robots, according
to the Eq. (4).

• Visual type of information from the range [0, 1]. Deter-
mines if the UAVs have an OOI detection at the given
time. The higher the value is, the higher the detection
probability.

The directional and visual information transmitted by the
focal agent (η0 and ν0, respectively) are defined as:

η0 =wscs (k) ηg + (1 − wscs (k)) η, (6)

ν0 =
{
1 if νw > τν,

0 if νw ≤ τν,
(7)

wherewscs ∈ [0, 1] is the weighting coefficient (see Eq. 10),
and ηg ∈ [0, 2π) is the internal directional information. In
other words, ηg is the goal flight direction of the focal robot
(e.g., azimuth towards waypoint or OOI detection). Further,
η ∈ [0, 2π) is averaged directional information from Eq. (4),
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and τν ∈ [0, 1] is the threshold of transmitted visual informa-
tion, which maps values from the range of [0, 1] to a single
bit value. It determines the ratio between neighboring agents
with and without visual contact on an OOI. The threshold
τν determines how fast the information about OOI detection
spreads through the swarm by uninformed agents. Finally,
νw ∈ [0, 1] is the weighted visual information:

νw = wscs (k) IIv + (1 − wscs (k)) IRv, (8)

where IIv ∈ {0, 1} is internal visual information (1—valid
detection of OOI, 0—no onboard detection of OOI at the
given time) and IRv ∈ [0, 1] is the averaged received visual
information:

IRv = 1

N

N∑

i=1

νi , (9)

where νi is the visual information received from the i th
neighbor, and N is the number of agents in the neighbor-
hood of the focal agent.

Asmentioned above, the interpolationof the internal infor-
mation ηg, IIv (estimated by onboard sensors of the focal
UAV), with averaged information received from neighbor-
ing agents η, IRv , is achieved by the weighting coefficient
wscs ∈ [0, 1]. In other words, wscs in Eqs. (6) and (8)
determines how much priority the focal UAV gives to its
own intention over the intention of the group. The weight-
ing coefficient provides dynamic and decentralized change
of influence of individual swarm members on the goal flight
direction of the swarm. The parameter wscs is defined as:

wscs (k) =
{

wscs (k − 1) + 	wscs if ξ > ξ0,

wscs (k − 1) − 	wscs if ξ ≤ ξ0,
(10)

where 	wscs is the weight increment between two time-
steps, ξ ∈ [0, 1] is the local information consensus, and ξ0 is
its threshold. We propose the local information consensus as
a quantity representing the difference between received and
transmitted information frames. ξ is equal to 1, only if the
transmitted piece of information is the same received piece
of information. We define the local consensus as:

ξ =wvdHv (IRv, IIv) + wddHd (IRd , IId)

wv + wdm
, (11)

where dHv (IRv, IIv) and dHd (IRd , IId) are Hamming dis-
tances between averaged received and internal information.
The subscripts v, d indicate visual or directional types of
information. The weights wv,wd determine the importance
of the individual type of information. Constant m represents
the number of bits in the directional information after con-
version from Eq. (6) to the binary form. To achieve swarm

convergence in the higher priority direction,we introduce two
special cases of information available for informed agents:

• Informed agent that knows the swarm waypoint in the
deployed area and determines the internal directional
information IId as the angle from the common swarm
heading to the following waypoint.

• Informed agent that obtains a valid object detection and
determines the internal visual information IIv regarding
the true positivity of the current detection.

The visual information aspect of the local consensus in
Eq. (11) provides the sensitivity of the system on insignifi-
cant desired directional change. Conversely, the directional
information aspect of the local consensus results in a response
to the change of swarm direction in the case of change of the
system waypoint. Moreover, this ensures smooth navigation
transitionwithout significant directional differences between
individual robots.

3.4 Heading alignment vector

We propose a novel heading alignment strategy, which
assures planar omnidirectional sensing in the workspace.
This strategy differs from the commonly used strategy
of heading agreement among robots (De Benedetti et al.,
2017). The proposed self-organizing approach supports data
collection and processing. Omnidirectional sensing of the
workspace is required for deployment of directional sensors
or sensors with a limited field of view, such as cameras. Thus,
we take full advantage of aerial multirotor robots in compar-
ison to car-like vehicles (Ferrante et al., 2012), where the
heading alignment of robots influences flocking cohesive-
ness.

To achieve the proposed unique heading alignment behav-
ior, each UAV needs to evaluate itself as a peripheral or inner
swarm member by observing its neighboring agents. To esti-
mate the position of a UAV within the swarm, we define the
parameter δ to determine the largest angle among two neigh-
bors as:

δ = argmax
A(i),A(i+1)∈A

{ f (A (i) , A (i + 1))}, (12)

where bearings of neighboring agents αi and αi+1 are ele-
ments of the set

A = {α1, α2, α3, . . . , αn, α1};α j < α j+1. (13)

The function f (αi , αi+1) provides the angle between the two
given bearings. We define the desired headingψd of an agent
as:
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ψd =
{

α + π if δ > ε,

η else,
(14)

where α is the mean bearing of neighbors of the focal UAV.
The desired heading is set to the opposite of the angle α if
the parameter δ exceeds the given threshold ε, otherwise the
desired heading is set to the averaged directional information
defined in the Eq. (5).

According to the approach described above, we define the
heading alignment vector as:

a =
⎡

⎣
0
0
1

⎤

⎦ (ψd − ψ) , (15)

where ψ is the heading of the UAV and ψd is the desired
heading. With respect to the Eq. (1), the alignment vector
has the meaning of heading control error with γ as the pro-
portional feedback gain.

3.5 UAV separation in OOI proximity

As discussed above, one such required strategy for SARmis-
sions with possible multiple OOI is to separate one of the
swarm members from the other UAVs in the event of an OOI
detection confirmation. This UAV can serve as a static bea-
con, inspect the area of detection, or deliver first aid supplies.
Separation of a UAV for a new task requires decentralized
distribution of team tasks. To fulfill demands on the required
decentralized and dynamical decision making that is cur-
rently unavailable in state-of-the-art methods designed for
UAV swarming in real conditions, we propose the control
law as an extension of the Eq. (1) in the form:

q̇d =αp′ + β
(
ρ0n + (1 − ρ0)ng

) + γρ0a, (16)

where ng is the navigation vector pointing towards the
detected object and p′ is the enhanced proximal control

p′ =ρ0

N∑

i=1

ρiui

[
1 − ddes

di

]
. (17)

Coefficients ρ0, ρi are inverse distance weighting coeffi-
cients that are computed based on the known relative position
of individual neighbor agents, and the relative position of the
detected object. The coefficient ρ0 affects the influence of
the swarm on the particular agent, whereas the coefficient ρi
affects the influence of the agent on the rest of the swarm. The
designed control strategy ensures a smooth transition from
swarm control into a single UAV control around the detected
OOI area.

(a) Radius-based neighbors selection.

(c) Method of neighbors selection based
on neighbors’ bearing density.

(d) Detail of the proposed method with
circular sector around the closest neighbor.

(b) K K-nearest ( = 4) neighbors selection.

Fig. 4 Commonly used neighbors selection methods with the proposed
strategy.With respect to the blue UAV, green UAVs represent neighbors
while red UAVs represent outlying robots. Yellow agent represents a
neighbor candidate (Color figure online)

3.6 False positive detection handling

To achieve dynamic response on false positive detections, the
focal UAV, when having visual contact on a possible OOI,
computes the visual consensus νc ∈ [0, 1] of neighbors:

νc = 1

Nc

Nc∑

i=1

νi , (18)

where νi is the visual information received from i th UAV
that is closer to the OOI than the focal UAV, and Nc is the
number of UAV fulfilling this condition. TheOOI is removed
from the list of OOI candidates of the focal UAV if the visual
consensus is below the threshold. The threshold expresses
the ratio between neighbors who evaluated the OOI as a true
positive and neighbors who evaluated the OOI as a false pos-
itive.

3.7 Selection of neighbors considered in swarming
rules

The above-mentioned control vectors are computed based
on states of neighboring agents given by observing the sur-
rounding workspace. The Lessons learned section (Sect. 5)
discusses motivation beyond the novel design of the neigh-
bor selection, as we had found the commonly used selection
methods (radius-based (Krishnanand & Ghose, 2009)—
Fig. 4a, K-nearest method (Akat & Gazi, 2008)—Fig. 4b)
to be inappropriate for deployment in demanding outdoor
environments. An inappropriate design of neighbor selec-
tion can lead to inter-agents oscillations, destabilization of
the swarm, or loss of cohesion.

We propose an iterative neighbors selection method based
on the bearings of neighbors selection (Fig. 4c). The aim of
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the method is to get a set of agents close to the focal agent,
while having the difference between two arbitrary neighbors’
bearings not exceed the given angle limit. In other words, we
define the desired neighbors’ bearing density.

The iterative neighbors selection method is proposed as
follows. First, the closest agent is assigned as a neighbor. In
every iteration step, a circular sector is determined around
the agents that are already assigned as neighbors (Fig. 4d).
Another robot from the list of visible agents is sorted by
distance, then considered a neighbor if it does not lie in the
circular sector of any neighbor. Thus, UAVs are assigned as
neighbors if

βn,h > βs > βn,l , (19)

where βn,h = βn + βi and βn,l = βn − βi are higher and
lower angle limits of the circular sector of n-th neighbor,
respectively, and βs is the bearing of the neighbor candidate.
Features of the selection method are given by the size of the
internal angle βi of the circular sector.

The proposed approach of the neighbors selection secures
equal coverage of the neighbors around a UAV. Furthermore,
it provides cohesive behavior between distant swarm mem-
bers. Such behavior supports the robustness of the swarm
system, since it is resistant to short-term outages of the
relative localization data (e.g., due to an occlusion by an
obstacle). Moreover, the proposed method rejects agents
nearby if they are behind a closer neighbor. Such neighbors
are sources of imbalances in attractive and repulsive forces.

4 Results

Experiments verifying the proposed flocking algorithms
were performed in both simulations and the real world. The
hardware platform used during the experimental campaigns
is shown in Fig. 5 and described with basic MRS con-
trol system in Baca et al. (2021). A Quadcopter 450 frame
with rotors, Pixhawk attitude rate controller, and Intel NUC
onboard computer are the basis of the aerial vehicle. The
sensory equipment consists of:

• Downward-facing rangefinder for estimatingheight above
the ground.

• GPS receiver for self-localization.
• Forward-looking RGB camera for detection of an object
of interest.

• UV LEDs and UV cameras (parts of the UVDAR (Wal-
ter et al., 2018a) localization system) for localization of
neighboring agents and communication.

TheMpcTracker from Baca et al. (2018, 2021) is used as the
reference tracker in the proposed swarm system to control

Fig. 5 Sensory equipment of the aerial vehicles used for experimental
verification

the motion of individual agents, according to the Eq. (1). A
flocking controller was designed above the speed tracker to
achieve the required flocking behavior.

The goal of the presented experiments was to explore a
given area, detect objects of interest, confirm the detections,
and, if positive, allow one UAV to be separated from the
swarm at the location of each object. As mentioned in the
introduction, this UAV may be used for closer inspection, to
act as a static beacon, to detail the space around found objects
for human first responders, or to deliver first aid supplies.

Verification of the proposed methods consists of three
main domains. First, the flocking control system analysis
showed swarm behavior in large-scale applications com-
posed of tens of robots. Second, navigation control, self-
adaptive communication strategy (SCS), and extension of
the UVDAR system are verified in the realistic Gazebo sim-
ulator. Finally, the verification and analysis of the proposed
system deployed on the hardware is verified in various envi-
ronments, complemented by themotivation of an experiment
with onboard person detection in the control feedback.

4.1 Large-scale swarm simulations

Thefirst set of experimentswere performedusing aROSnode
simulating 100 robots. A simulator neglecting the dynamic
model ofUAVand interactionwith other agentswas designed
in C++ with visualization in RViz1 to achieve reasonable
computational expenses. The purpose of this experiments is
to verify the scalability of the swarm system in proximal and
alignment control, as well as neighbors and leaders selection.
The desired distance between robots was set to 7 m.

1 http://wiki.ros.org/rviz
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(a) (b) (c)

Fig. 6 Demonstration of the proposed self-alignment mechanism (Color figure online)

The histograms in Fig. 7 compare the influence of meth-
ods of neighbor selection (introduced in Sect. 3.7) on robots
behavior in its surroundings. The first two rows represent an
experimentwith radius neighbor selection. The radius thresh-
old r (Fig. 4a) was set to 125 % and 200 % of the distance
to the closest neighbor. In the lower threshold, up to 50 %
of robots were evaluated as the leader. However, the low
value of the selection radius brings a high number of outly-
ing neighbors, especially in the case of unequally distributed
UAVs during initialization. This leads to slow transmission
of navigation information, local instability, and formation
split. Setting a high value of radius increases the number of
detected neighbors, leading to better transmission of the nav-
igation message. Moreover, the number of informed agents
decreases to 15%, thereby reducing information redundancy.
An excessive number of neighbors affects the proximal con-
trol, such that attractive forces outbalance repulsive forces.
This leads to the creation of smaller swarm groups and forces
UAVs towards others in the group (Fig. 7— the lower bound
of distance to neighbors is low). Tuning the outlier radius
between the tested values would lead to the desired perfor-
mance.However, such tuning is challenging, especiallywhen
the uncertainty of relative localization is taken into account.
This phenomena will be discussed in Sect. 5. The K-nearest
neighbor selection (principle in Fig. 4b) shows a similar pat-
tern in the comparison of distances to neighbors. However,
attractive and repulsive forces are outbalanced, especially
around the edges of the swarm.

Histograms of results obtained by the proposed method
of neighbor selection based on bearing density of neighbors
(Fig. 4d) are introduced in the last row of Fig. 7. The number
of detected neighbors varies based on the position of theUAV
in the swarm, while also keeping the minimal distance to
neighbors sufficiently high. Moreover, the proposed strategy
detects neighbors at a far proximity without creating local
subgroups and outbalancing attractive and repulsive forces.
Informed agents represented 15 % within the high radius
neighbors selection.

Fig. 7 Histograms representing the number of detected neighbors (left
column) andminimal, average, andmaximal distance to neighbors (right
column). Methods from Sect. 3.7 are compared in individual rows

The simulation results presented in this section showed
bottlenecks for some commonly used neighbor selection
methods, which are highly dependent on initial condi-
tions and tuning parameters (e.g., thresholds, number of
neighbors). It was verified that the proposed method of bear-
ing selection improves these properties. Specifically, the
proposed method allows for detecting a high number of
neighbors regardless of distance from the UAVs, while also
keeping them close to the desired distance using the proximal
control. This helps to keep cohesion between swarm mem-
bers if asymmetrical distance estimations have occurred.
Moreover, the focal agent can not detect two UAVs with sim-
ilar bearing, which helps to balance cohesion and separation
forces.
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4.1.1 Self-alignment demonstration

Alignment control and novel planar omnidirectional sensing
were tested with 20 swarm members in the same simulation
setup as the previous experiment. The initial position and
orientation of agents were set randomly, as shown in Fig. 6a.
The goal position of the experiment was set to align the nav-
igation vector (5) along the x-axis. Figure 6b represents the
steady-state of swarm heading with the fundamental navi-
gation vector alignment. Planar omnidirectional coverage of
the workspace introduced in Sect. 3.4 is shown in Fig. 6c.
The blue vectors represent robots, which were evaluated as
peripheral agents according to the rule (12). Peripheral UAVs
are aligned with a vector pointing to the opposite direction
of the mean of bearing vectors. The rest of the swarm (red
vectors) are aligned with the navigation vector, as is seen in
Fig. 6b.

4.2 Gazebo simulations

For the simulations presented in this section, seven UAVs
were stabilized and navigated through four given waypoints
using a UVDAR-COM system, a rangefinder for estima-
tion of height above ground, and a forward-facing RGB
camera for object detection (see Fig. 8a for one of the
simulations results). The simulations were performed in
ROS and the realistic Gazebo simulator. Only one UAV is
informed (red path) and knows the positions of the defined
waypoints.

All UAVs are capable of detecting an object of interest by
an onboard RGB camera. Three artificial objects were added
to the simulation. Two of them represent an object of interest
(green circle) while the third object (red circle) represents an
object to be detected by the camera as a false positive. Fig-
ure 8a (where one of the simulation trial is depicted) shows
the behavior of the swarm in the xy-plane. Part of the graph
between timestamps t1 and t2 shows the swarm approach to
the first detected objects based on the utilized SCS method.
After reaching the detection verification range, theUAVclos-
est to the detected object is separated and grounded to act
as a static beacon. The second object is evaluated to be a
false positive detection. In this case, the swarm returns to the
sweeping trajectory as shown in the proximity of the red spot
in Fig. 8a.

The internal states of swarmmembers in the time between
timestamps t1 and t2 are shown in Fig. 8b. The upper graph
represents the evolution of the local consensus variable over
a given time. The bottom graph shows the weight for the
computation of transmitted information (SCS weight). The
influence of individual agents on swarm navigation can be
observed in both graphs. Primarily, the loss of influence of
an informed agent becomes visible when a collision between

(a)

(b)

Fig. 8 Simulation of the designed system with seven UAVs in the real-
istic Gazebo simulator (Color figure online)

transmitted and received information occurs after the first
timestamp.Alternatively,wscs riseswhen the local consensus
of a particular UAV exceeds its threshold. The analogous
behavior is represented in Fig. 8b around timestamp t2, where
the swarm reaches the object of interest and one UAV is
deployed.

4.3 Real-world experiments

Multiple varying experiments in different environments were
conducted to verify the robustness and usability of the pro-
posed approach. Videos of real robot experiments are avail-
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able at http://mrs.felk.cvut.cz/auro-2022-sar. In this section,
we highlight two sets of experiments in desert dunes and
grass hills to demonstrate the performance of the approach
over uneven terrain. During the first tests (for a record of one
of the runs, see Fig. 9a), we used shared GPS positions as the
localization technique.

A swarm of 14 UAVs was sent to fly in the direction of
the positive x-axis of a local world frame that was given by
predefined waypoints. A group of aerial vehicles fulfilled the
goal without any collision, while also keeping in formation.
The desired distance among robots was 7 m and maximum
velocity was set to 1 m.s−1. The bottom of Fig. 9a shows
the histogram analyses analogical to the results presented in
Fig. 7. In the case of a real-world experiment, the count of
detected neighbors in the neighborhood is generally lower.
This is caused by the higher ratio of peripheral swarm mem-
bers in comparison to simulated experiments in Sect. 4.1.

In the second set of outdoor experiments (Fig. 10a), we
used UVDAR as the localization technique and artificial
objects to focus on verification of the proposed navigation
and decision-making approach in real conditions. The swarm
system consisted of nine UAVs with one informed agent
equipped with a known reference path. The swarm system
behaved as was expected from the simulations. Information
about OOI detections by peripheral UAVs was propagated
by the self-adaptive communication system to the rest of the
swarm, leading to an approach to theOOI detection. After the
OOI detection was verified, the swarmmember closest to the
OOI was deployed to the detection and landed nearby (dark
green trajectory in Fig. 10a). The choice of which deployed
UAV to send was performed in a decentralized manner by
using the flocking control rule described by the Eq. (16). The
rest of the swarm continued its sweeping trajectory towards
the location where a false positive detection was obtained.
As planned, the swarm left the trajectory again, but once
the detection was verified as false, the swarm returned to
the sweeping trajectory. The same scenario as with the first
approach to theOOI detectionwas observed close to the third
artificial OOI. As in the first set of experiments, the swarm
explored the area and detectedOOIs as expected, without any
collision or loss of cohesiveness. The extreme lighting con-
ditions of the desert influenced the accuracy of the UVDAR
system.Nevertheless, the overall performance of the flocking
system was not significantly influenced. This was thanks to
the resistance to asymmetric UVDAR detections of the used
neighbors’ selection method, as well as to the distributed
communication strategy.

The order metric and the accuracy metric are used as
metrics for evaluating navigation performance, which we
proposed in Ferrante et al. (2014). We define order as:

(a)

(b)

(c) (d)

(e) (f)

Fig. 9 Results of the real-world flocking with 14 UAVs. a UAVs’ tra-
jectories and histograms showing formation properties, as in Fig. 7

� = 1

M

∥∥∥∥∥

M∑

i=1

ni

∥∥∥∥∥ = 1

M
‖b‖ , (20)
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(a)

(c)

Fig. 10 Real experiment with nine UAVs relying on the UVDAR sys-
tem. Artificial objects of interest were used (Color figure online)

whereM is the total number of UAVs and ni is the navigation
vector of i-th agent. The order is equal to 1 when the UAVs
have a commondirection of the navigation vector. Otherwise,
the order is less than 1. The accuracy is defined as:

θ = 1 − 1 − � cos (� b − � g)
2

, (21)

where � b is the direction of b and � g is the current goal
direction (to a waypoint or OOI detection). The accuracy
indicates how close to the goal direction UAVs are mov-
ing. The accuracy is equal 1 when the order is equal to 1,
and UAVs move along the goal direction. The results of the
presented metric analysis are shown in Fig. 11a. The sharp
drops in the accuracy correspond to the change of direction
of the navigation vector. These changes have three sources:
approach to an object of interest (red arrows), recovery back
to the sweeping trajectory (blue arrows), and change of way-
point (green arrow). The order and accuracy analysis shows
convergent behavior of the flocking navigation system. An
accuracy drop below 0.5 indicates directional change higher
than 90◦.

The last set of tests was successfully performed with the
online CNN person detector (Fig. 2) in the control feedback.
A swarm of four UAVs was supposed to detect two people
near a given path (Fig. 12a). The deployed swarm members
were not allowed to directly approach the position of the
detected people, as had been the case in the tests with artifi-
cial objects, but a safety margin was introduced to keep the
UAVs at a safe distance. The results show the motivational
deployment of the proposed SAR system in real-world con-
ditions.

5 Lessons learned

Herein, we introduce the lessons learned during our exper-
imental campaigns in the demanding outdoor environments
which have negatively influenced the deployment of swarm
systems in reality. Such study, observed failure cases, and
proposed solutions of these cases may benefit the robotic
community in designing swarm systems resistant to demand-
ing conditions. We find the following to have been the most
crucial.

5.1 Relative localization & communication

We rely on the onboard UVDAR-COM (Sect. 2.1) system
that was determined to be necessary for large scale deploy-
ment, as GPS tends to be unsuitable with higher counts of
agents in a compact group. Multiple experiments behind the
scenes for the swarm system deployed with GNSS localiza-
tion and an explicit radio communication proved unreliable.
This problem is partially solvable by properly choosing the
radio communication network. Then, the proposed solution
can be used as a backup system in the case of GNSS signal
or explicit communication performance loss. This may be an
issue due to signal reflection from nearby buildings, or due
to jamming.
Failure cases:
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(b)

(a)

(c) (d) (e)

Fig. 11 Real experiment with nine UAVs relying on the UVDAR-COM system and artificial objects of interest (Color figure online)

• Collisions of UAVs due to precision and drift of GPS or
unreliable explicit communication.

• Loss of cohesion of UAVs.

5.2 HW redundancy

Demanding environments (e.g., desert) may present condi-
tions that reach the limits of the sensory equipment of the
UAVs.Thus,wefind sensory redundancy to be a vital demand
(e.g., rangefinder-barometer redundancy for height estima-
tion that was used).
Failure cases:

• The UAV gets to the failsafe mode due to exceeded tem-
perature limit of the rangefinder.

• Height oscillations above the edges of the dunes.

5.3 SW redundancy

We propose also using software redundancy for decentral-
ized decision-making in order to mitigate the uncertainty of
sensory data. E.g., theUAVseparation strategy (see Sect. 3.5)
was enhanced by the neighbors’ statemonitoring for filtration
of UAVs incorrectly evaluated for separation.
Failure cases:

• Less or more than the preferred number of UAV sepa-
rated from the group near an OOI, due to uncertainty of
distance estimation towards the OOI or neighbors.

5.4 Failure detection and handling

We used a failure detection and handling system as part of
the Low-level Control from Fig. 3 in order to perform safe
experiments without damaging the UAVs or their surround-
ings. The UAV is switched to the failsafe mode and lands
immediately once a failure not corresponding with safe flight
is detected.
Failure cases:

• UAV exceeding the threshold of the maximal safe thrust
or tilt (e.g., due to a strong wind).

5.5 Neighbor selection

We recommend emphasising a robust method of neighbor
selection (Sect. 3.7) in outdoor conditions where neigh-
bor detection based on camera observation is influenced by
weather and lighting conditions. Such influences are a source
of asymmetry in detections. Thus, we designed and proposed
a unique neighbors selection method robust against adverse
effects that are not present in laboratory conditions and exper-
imental results available in the literature.
Failure cases:

• Loss of cohesion when neighboring UAVs are outside the
detection radius of the radius-based selection method.
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(c)

(b)

(a)

Fig. 12 Real experiment with 4 UAVs. CNN person detector was used
to detect human victims (Color figure online)

6 Conclusion

In this paper, a novel distributed autonomous flocking behav-
ior for UAVs was introduced and motivated by search and
rescue applications. A fully decentralized approach was
intended, including swarm navigation with the minimum
amount of information exchanged among robots possible
with implicit communication integrated into an enhanced
direct localization system. Moreover, we proposed a unique
task-driven decentralized heading alignment rule for dis-
tributed sensing of a surrounding workspace. Thus, complex
swarming behavior triggered by online inputs from onboard
RGB cameras in SAR applications was achieved without

the need to share GNSS positions or use explicit wireless
communication, both of which appeared to bottleneck large
compact swarming systems in real conditions. Successful
real-world experiments with our UAVs using the onboard
UVDAR-COM system demonstrated reliable behavior of the
swarming system and flight in a compact shape with small
mutual distances.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-022-10066-
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