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Abstract
While path planning for Unmanned Surface Vehicles (USVs) is in many ways similar to path planning for ground vehicles, the
lack of reliable USV models and significant maritime environmental uncertainties requires an increased focus on robustness
and safety. This paper presents a novel graph construction method based on Visibility–Voronoi diagrams that allow users to
tune path optimality and path safety while considering vehicle dynamics and model uncertainty. The vehicle state is defined
as both a 2D location and heading. The method is based on a roadmap generated from a Visibility–Voronoi diagram, and
uses motion curves and path smoothing to ensure path feasibility. The roadmap can then be searched using any graph-search
algorithm to return optimal paths subject to a cost function. This paper also shows how to generate and search this roadmap
in an anytime fashion, which makes the method suitable for local planning where sensors are used to build a map of the
environment in real-time. This approach is demonstrated effectively on underactuated systems, with empirical results from
USV docking and obstacle field navigation scenarios. These case studies show the path maintains feasibility subject to a
simplified vehicle model, and is able to maximize safety when navigating close to obstacles. Simulation results are also
used to analyze algorithm complexity, prove suitability for local planning, and demonstrate the benefits of anytime roadmap
generation.

Keywords USV · Path planning · Graph search · Feasibility · Anytime algorithm

1 Introduction

Unmanned Surface Vehicles (USVs) are becoming more
common in military and civilian applications. Such opera-
tions include port security, oceanic surveying, and reconnais-
sance. With this increased use also comes an increased need
for efficient path planning strategies that can safely route the
USV through the operating environment.

While path planning is a termused to refer towide range of
navigational algorithms, this paper will focus on developing
a spatial plan between two vehicle states for a single agent.
Thus, this paper does not consider time-varying trajecto-
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ries, ormulti-agent scenarios. Likemany unmanned systems,
USVs generally have a well-defined operating area, such as
a specific waterway. The set of all vehicle states within this
operating area is generally referred to as the configuration
space, while the set of vehicle states that avoid obstacle col-
lisions is called the traversable space or free space. However,
each vehicle has different motion characteristics. Thus, paths
are sought that are both fully within the free space and con-
sidered dynamically-feasible or kinematically-feasible. It is
also often desired to achieve an optimal plan subject to a cost
function, such as minimum distance or minimum time.

While USVs have recently increased in use, unmanned
ground vehicles (UGVs) have been in use for a longer period
of time and are more common due to the introduction of
driverless car technologies. Since both UGVs and USVs can
be assumed to be operating on a horizontal plane, planning
algorithms are often presented as being applicable to both
modalities. However, in practice there are several factors that
complicate directly translatingUGVplanners toUSVs. First,
generating feasible paths is exceptionally difficult. While
there is well-established literature on developing kinematic
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and dynamic models for UGVs, there is a large amount of
uncertainty in how to model USVs and by extension low
reliability of these models Fossen (2011); Schoener (2019);
Mask (2011). Second, there are often significant errors in the
knowledge of the vehicle free space. The lack of infrastruc-
ture, the unstructured nature of obstacles (sandbars, floating
obstacles, etc.), sensing errors and the non-planar elements
of vehicle motion all contribute to this uncertainty. Third,
USVs have limited obstacle avoidance capability due to low
maneuverability and long stopping distances.

The combination of these factors means that USV path
planning should minimize the potential risk of collisions.
However, reducing risk comes at the expense of lower qual-
ity vehicle paths (as measured by cost). That is, increasing
safety leads to staying further from objects, which in turn
leads to paths that are longer, takemore time to complete, and
consumemore energy. Thus, this paper presents a novel USV
path planning approach for obtaining feasible paths, while
allowing the user to tune path optimality and path safety
in the presence of model and environmental uncertainties.
This method is based on a Visibility–Voronoi (V–V) dia-
gram roadmap, which have recently been suggested for USV
path planning Niu et al. (2016), and can be searched by tradi-
tional graph search algorithms. V–V diagrams are roadmaps
where a Visibility graph is created from inflated objects and
a Voronoi graph is created inside the inflated objects. The
approach presented in this paper improves on existing USV
planning and V–V methodologies in the following ways:
Contributions

1. Introduces a new anytime process for generating V–V
diagrams and suggests a heuristic for anytime path plan-
ning using a V–V diagram

– Thus the algorithm finds a valid solution as quickly
as possible and uses the remaining time to optimize
the solution

– The anytime strategymakes it suitable for online local
USV planning, while previous V–V were used for
offline global planning

2. Feasible paths are generated for even under-actuated sys-
tems, as edges are generated and smoothed using motion
curves

3. Each path node now includes position and heading, while
prior USV approaches were based only on position

4. Unlike many approaches, results are presented from
maritime maps generated on-board a USV through per-
ception techniques

A literature review is presented in Sect. 2, which begins
with a general discussion of path planning algorithms and
considerations, followed by the techniques that have been
presented for generating feasible USV paths. The proposed

roadmap generation method is presented in Sect. 3, along
with its anytime variant in Sect. 4. Section 5 presents sample
results for a specific case study vehicle, and analyzes real-
time performance. Concluding remarks and suggested future
work are presented in Sect. 6.

2 Literature review

This literature review will begin with a discussion of general
practices for spatial path planning to provide breadth to the
techniques used as well as their benefits and challenges for
use on USVs. This discussion is organized by the catego-
rizations of path planning algorithms: Roadmaps and Graph
Search Theory, Potential Fields, and Sampling-Based Plan-
ning (SBP). The general path planning discussion is then
followed by the presentation of techniques that have been
specifically proposed for USV path planning and a discus-
sion of USV motion modeling.

2.1 Roadmaps and graph search theory

One of the most common approaches to path planning for
unmanned systems is to cast the problem in the form of
a graph. This approach begins by decomposing the free
space into a finite set of vehicle states, called vertices or
nodes. Edges between nodes are then generated subject to the
requirement that the edges themselvesmust also lie inside the
vehicle’s free space. Such graphs are traditionally generated
using a Visibility Graph Lozano-Pérez and Wesley (1979),
Voronoi Diagram Bhattacharya and Gavrilova (2008), or
grid partitioning of the configuration space. However, more
advanced techniques generate vertices and edges through
sampling-based methods Dunlap et al. (2011); Barraquand
and Latombe (1991), (discussed in Sect. 2.3) or attempt to
optimize node and edge generation Kumar et al. (2019). The
generated graphs are commonly referred to as a roadmap.

Once a roadmap through the vehicle’s free space has been
obtained, the path planning problem is reduced to searching
the graph for the best series of edges to follow from the start to
goal node. Traditional graph-search algorithms include the
Dijkstra algorithm, originally proposed in Dijkstra (1959),
and the A* (pronounced “A-star”) algorithm, presented in
Hart et al. (1968). Both approaches return optimal results
(subject to the graph and measured by a cost function), but
A* attempts to reduce search time by the introduction of an
admissible heuristic. Furthermore, graph search algorithms
are considered resolution complete, meaning a solution will
be found if one exists as long as the free space is discretized
with enough resolution.

The more recent focus of graph search theory has been on
improving graph search efficiency. The D* algorithm, pre-
sented in Stentz (1995), showed how to efficiently re-plan to
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a goal state when node costs are changed. A faster alternative
to D*, the D* Lite algorithm, was later presented in Koenig
and Likhachev (2005), which incrementally repairs solution
paths through a priority queue of nodes where changes occur,
referred to as inconsistent nodes. The Anytime Repairing
A* (ARA*) algorithm presented in Likhachev et al. (2004),
also shows how to use the repairing nature of D* to imple-
ment anytime graph searches for path planning applications.
ARA* is able to quickly find a valid, often sub-optimal
solution, but any remaining time is used to incrementally
improve path quality until the optimal solution has been
found. Furthermore, the Lifelong Planning A* (LPA*) algo-
rithm presented in Koenig et al. (2004) is able to re-use
parts of previous searches regardless of the choice of start
and goal states. While searching the graph can be relatively
efficient using these approaches, when navigating cluttered
environments and accounting for vehicle dynamics Omar et
al. (2015), generating the graph itself is often the more com-
putationally expensive task.

2.2 Potential fields

Another class of algorithms used for path planning and nav-
igation are based on Artificial Potential Fields (also called
APFs or Potential Fields), which have been implemented on
mobile robots since the 1980s Koren and Borenstein (1991).
The basic principle of Potential Fields is that a net field is
created by a goal that attracts and obstacles that repel the
unmanned system. For path planning, the minimum poten-
tial route to the goal provides a safe route to the goal state
Hwang and Ahuja (1992). However, potential fields are also
used for obstacle avoidance where the resultant force mag-
nitude and direction are used to select vehicle direction and
speed. One of the better properties about potential fields is
the ability to tune the level of safety it provides. To increase
safety, an obstacle’s repulsive force can be increased, result-
ing in a vehicle path that will typically move farther from
the obstacle and yield longer paths. Conversely, reducing the
repulsive force of obstacles will typically decrease the safety
distance and yield shorter paths. However, the relationship is
not fully deterministic since the net repulsive force depends
on object density. Thus settings that work in an object sparse
environments are less effective in object dense areas.

Potential fields have also been shown to exhibit a number
of undesirable attributes. First, zero resultant force locations
other than the goal are difficult for the system to handle
natively, sometimes referred to as the local minimum prob-
lem. This has been addressed by later works that modify
the potential field based on the relationship between the
vehicle and obstacle Zhou and Li (2014). Second, the vehi-
cle’s path or behavior can be highly oscillatory in cluttered
environments, though researchers have presented mitigating
strategies to this issue Sfeir et al. (2011). Third, the resulting

path is not guaranteed to be feasible according to a vehicle
model. While researchers have shown that pairing potential
fields with an optimal controller can allow for planning feasi-
ble paths Rasekhipour et al. (2017), accurate vehicles models
needed for this appraoch are difficult to derive for USVs and
this work has not been proved experimentally. Additionally,
the literature is yet to show how to simultaneously address
the local minimum, oscillation, and feasibility concerns of
potential field planners.

2.3 Sampling-based planning

Sampling-Based Planning (SBP) reduces the portion of the
configuration space considered for planning through sam-
pling the space or control inputsElbanhawi andSimic (2014).
While sampling-based methods have the ability to quickly
find solutions to complex planning scenarios, the solutions
themselves are generally sub-optimal. Additionally, SBP
algorithms do not ensure a solution and are typically only
probabilistic complete and/or resolution complete.

One of the first SBP approaches, and one that is still popu-
lar today, is a Probabilistic Roadmap (PRM) Barraquand and
Latombe (1991). A PRM generates random samples in the
configuration space and connects the random samples to the
nearest neighbor in the existing roadmap as long as it will
not create a collision. While this approach is effective for
holonomic vehicles, the paths generated are not guaranteed
to be feasible for non-holonomic vehicles such as USVs.

Perhaps the most powerful SBP algorithm in use today
is that of a rapidly exploring random tree (RRT), which
was originally proposed in LaValle (1998). RRTs begin in
a similar fashion to PRMs, by selecting a random sample in
the configuration space and and finding a nearest neighbor
from the existing tree. Rather than creating an edge between
these samples, edges are “grown” from the nearest neigh-
bor toward the randomly generated sample. This results in
fast exploration of the space and these edges can be grown
based on a motion model including motion constraints Kim
and Ostrowski (2003), effectively avoiding the problem that
PRMs have with non-holonomic vehicles. RRTs are used
to directly solve path planning problems by growing sep-
arate RRTs between the start and goal states, which when
connected contain a valid solution. Efficient re-planning of
RRTS has also been studied by Ferguson et al. (2006), where
trees are trimmed and reconnected due to changes in the
search. While RRTs can efficiently explore the configura-
tion space, the result can be highly sub-optimal. This led to
the introduction of the RRT* Karaman and Frazzoli (2011)
and anytime RRT* algorithms Karaman et al. (2011) which
typically converge toward an optimal solution.

Sampling-Based Model Predictive Control Optimization
(SBMPO) also addresses the optimality issue Dunlap et al.
(2011); Caldwell et al. (2010). SBMPO differs from RRTs
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by sampling the control inputs to the vehicle’s motionmodel,
which also eliminates the two-point boundary value problem
(BVP) of connecting one state to a future state Dunlap et
al. (2011). SBMPO is then paired with the A* graph-search
algorithm Hart et al. (1968) to determine node suitability for
expansion via additional control input sampling and integra-
tion. Additionally, an implicit state grid is used to avoid the
local minimum problem that can arise when selecting nodes
for expansion based on cost Ericson (2004). Like RRTs,
SBMPO is able to generate feasible paths due to its use of
a kinematic or dynamic model, though it lacks the time effi-
ciency of RRTs.

2.4 USV path planning

There are significantly fewer path planningmethods designed
forUSVs than ground vehicles.However,USVmethods have
been proposed from each of the aforementioned path plan-
ning categories: graph search algorithms, potential fields,
and sampling-based methods. USV algorithms are generally
categorized into global and local algorithms Peralta et al.
(2020). Global algorithms refer to planning strategies used
when complete knowledge of the environment is known, such
as areas with known landmasses and few other vessels, and
time efficiency is less of a concern. Local algorithms apply
when sensors are needed to discover the environmental haz-
ards during navigation.

For global planning, the use of visibility graphs and
voronoi diagrams have already been proposed Niu et al.
(2016). However, Niu et al. (2019) later showed that a
Visibility–Voronoi (V–V) diagram has several advantages
over the traditional roadmap approaches. The V–V diagram
separates the configuration space into areas close to hazards,
where voronoi diagram edges are used, and the remaining
area is navigated throughvisibility diagramedges.The result-
ing roadmap is able to ensure a tunable level of safety, while
optimizing the distance traveled in areas where safety is not
a concern. However, this approach does not directly address
feasibility. Potential fields have also been shown to have
safety benefits Manzini (2017) for global planning in sparse
areas, but may have issues with local minimum in obstacle
dense environments. The Fast Marching Method (FMM) has
been used with USVs to avoid the local minima issue while
improving smoothness and safety over global graph search
approachesLiu et al. (2015), but the required tuning and com-
putational efficiency is not well-suited for local planning.

In terms of local planning, the work of Chiang and Tapia
(2018) attempts to develop a sampling-based path planning
algorithm that complies with the rules for maritime ves-
sels developed in the 1972 Convention on the International
Regulations for Preventing Collisions, better known as COL-
REGs. The proposed method is based on a modification of
the RRT* algorithm and can avoid stationary and moving

objects. The work of Peralta et al. (2020) compared the USV
local planning methods of A*, Potential Fields, RRT*, the
Fast Marching Method Sethian (1996) and an updated Fast
Marching method on a lake navigation case study. This work
concluded that A* should be chosen when optimality is the
primary concern and the updated Fast Marching method pro-
vided the highest level of security, as determined by author
observation on feasibility and safety.

2.4.1 Dynamic modelling of USVs

In order to understand the difficulty in ensuring path feasi-
bility, it is important to briefly discuss the issues associated
with dynamic modeling of USVs. It has been shown that
obtaining an accurate dynamic model of a boat is a highly
complex process, with separate strategies for calm waters
and rougher seas (where wave excitation is more significant)
Fossen (2011). However, evenwhen focusing on calmwaters
obtaining an accurate model is challenging. The work of
Fossen Fossen (2011) is currently viewed bymany as the sig-
nature resource for suchmodeling efforts. Thiswork suggests
finding the six degree of freedom model using a 3rd-order,
truncated Taylor series in order to capture the Hydrodynamic
drag and Coriolis effect with a rigid-body ship. The param-
eters of this model must be experimentally generated by
executing a set of predetermined maneuvers, which can be
expensive and time consuming. Thus, these modeling efforts
are generally best reserved for larger, more expensive vessels
or those that will be mass-produced.

There have beenworks that specifically sought to simplify
the modeling process for USVs using a parametric identifi-
cation approachMask (2011); Schoener (2019). The work of
Mask (2011) used a diagonal 2nd-order, 3 degree of freedom
model to capture the primary effects of the control forces
of the vehicle. This gave a baseline for control-aided mod-
elling of Surge, Sway and Yaw. The primary disadvantage
of this model is there are no cross-coupling effects between
these degrees of freedom. For instance, there are no additive
drag effects on surge drag from both forward and turning
motion, which can be significantwhen one realizes the differ-
ence in side and forward surface area. The work of Schoener
(2019) uses a Genetic Algorithm to solve for the high num-
ber of model coefficients in its proposed 2nd-order model. In
essence, this attempt addresses the issue of accurately deter-
mining the highly cross-coupled model coefficients through
optimization. While this process was able to capture forward
motion and cross-correlated effects, the results were noted to
be less accurate than desired and appeared to be on the border
of stability due to 2nd order curve-fitting of the coefficients.

In addition to the parametric approaches, researchers
have more recently investigated learning methods for USV
dynamic modeling Wang et al. (2016); Ensemble (2020).
The work of Ensemble (2020) attempts to learn the dynam-
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ics directly through an ensemble learning approach, which
combines the benefits of multiple weaker learners. The work
of Wang et al. (2016) avoids the issues of disturbances and
unknown dynamics altogether by using a single-hidden-layer
feedforward network to determine control effort and mini-
mize error.

2.4.2 Feasibility throughmotion curves and smoothing

When an accurate dynamic model is unknown, which is in
general true of USVs, a simpler representation of vehicle
motion could be sought to ensure feasibility. In ground vehi-
cles, a kinematic model may suffice, but USVs do not have
meaningful kinematic models due to the significant effects
of vehicle drag. Another approach is to leverage segments
of feasible motion, called motion curves, to construct more
complex vehicle paths. As long as the transition between the
segments is also feasible, then the path itself must be feasi-
ble.One such approach isDubins curves, presented inDubins
(1957), where the shortest path trajectory between two pla-
nar vehicle states is found for a vehicle with a minimum
turn radius. The resulting paths include only arcs with this
minimum turn radius and straight line segments. This work
was later extended to include reversing motion by Reeds and
Shepp Reeds and Shepp (1990). A similar approach has also
been proposed for vehicles that are capable of zero-radius
turns Chitsaz et al. (2009). However, these motion curve
approaches do not directly show how to avoid collisions and
ensure vehicle safety.

Curve interpolation, also known as path smoothing, mod-
ifies an existing path to ensure compliance with a set of
pre-defined motion constraints. Typical constraints include
bounds on vehicle motion (e.g. linear/angular velocity and
acceleration) or requiring path velocities and accelerations
to be continuous. Smoothing algorithms have been proposed
based on Bezier curves Choi et al. (2008), Clothoids Silva
andGrassi (2018), and splines Lau et al. (2009). In addition to
these approaches, smoothing techniques have also been pro-
posed that avoid collisions with stationary Zhu et al. (2015)
or moving obstacles Keller et al. (2014).

3 Primarymethodology

3.1 Overview

The USV path planning problem considered in this paper
is to generate a local USV path, p, defined by a series of
nodes n = {x, y, ψ} consisting of a 2D location (x, y) and
orientation ψ . The path p must also satisfy the following
constraints:

1. p is feasible subject to a model of vehicle motion

2. p should be contained in the free space of the vehicle
operating environment OE

3. p should maintain a distance from marine objects of
more than dthresh . (Mathematically this is defined as
dist(p,O) > dthresh , where dist(p,O) returns the mini-
mumdistance between p and the set of object boundaries,
O).

Traditionally, the distance dthresh is chosen to satisfy
dthresh = rmin + emax where rmin is the radius of the mini-
mum area bounding circle of the vehicle’s 2D geometry and
emax is themaximum expected error in the vehicle’s ability to
follow p. But as emax can be quite largewithUSVs, this leads
to longer paths and can even close off all routes to the goal.
Instead, the method presented here uses a roadmap based
on a modified V–V diagram to balance the need for appro-
priate levels of safety with the need to take efficient routes.
Unlike otherV–Vdiagram approaches toUSVpath planning,
path feasibility is ensured by generating edges using motion
curves and path smoothing. It is also shown that building the
roadmap is suitable for local path planning through the use
of an anytime variant of roadmap generation.

3.2 Roadmap generation and search

A roadmap R can be viewed as consisting of a set of nodes,
and edges between these nodes. Thus

R = {n, e} (1)

where n is the set of all nodes and e is the set of all edges
in R.

Building the modified V–V roadmap used in this paper,
requires the user to specify the operating environment of
the vehicle, OE , the objects O contained in OE , and two
user-selected distances, dsa f e and dmin . These distances are
expected to follow the relationship

rmin + emax ≥ dsa f e > dmin ≥ rmin . (2)

Based on (2), paths that ensure dist(p,O) > dmin avoid static
collisions and have a minimum level of safety, while paths
that ensure dist(p,O) > dsa f e are not expected to cause
collision due to uncertainties and have the maximum desired
level of safety.

The steps needed to generate the modified V–V diagram
R are then given by Algorithm 1, where ns and ng are nodes
that defined the start and goal state respectively.

Algorithm 1 uses three subroutines. The first is buffer
(O, d), which grows the objectsO by a distance d, resulting
in a new set of non-overlapping polygon objects. The second
is Voronoi(OE,K), which computes the voronoi roadmap
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Algorithm 1 Building a V–V Roadmap R
Input: OE , O, dmin , dsa f e
Output: R

1: K = buffer(O, dmin) � Minimum clearance bounds
2: B = buffer(O, dsa f e) � Desired safety bounds
3: V = {nV , eV } = Voronoi(OE,K)

4: V ′ = {nV ′ , eV ′ } = V ∩ B � Voronoi roadmap inside B
5: eB = edge(nB,nB,B) � Generate edges between nodes
6: es = edge(ns ,nB,B)

7: eg = edge(nB, ng,B)

8: R = {{nV ′ ,nB}, {eV ′ , eB, es , eg}}� Final roadmap nodes and edges

of OE , given object definitions K based on the method pre-
sented inFortune (1986). Lastly, the function edge(n1,n2,B)

grows dynamically feasible edges between the nodes in n1
and those in n2 and returns all edges that do not intersect B.
When Algorithm 1 completes, finding p is simply reduced
to an A* graph search on R. As such, p is optimal subject to
R and the cost function criteria.

While Algorithm 1 is generalized to use any method of
dynamically feasible edge generation, the results presented
in this paper will use Dubins curves Dubins (1957), which, as
noted in Sect. 2.4.2, finds the shortest path between two states
for a vehicle with a minimum turn radius r . Thus, we can
effectively replace edge(n1,n2,B) with dubins curve edge
generation subroutine Dubins(n1,n2,B, r).

While Dubins(nB,nB,B, r) would generate feasible
edges between grown objects B, it has quadratic compu-
tational complexity and requires the complex process of
checking each generated curve for collision with B. Thus,
a more efficient alternative to Dubins(nB,nB,B, r) should
be considered. The work of Niu et al. (2016), which used
linear edges for V–V diagram generation, suggests only gen-
erating the edges that are considered tangent to an object in
B. However, this concept must be re-considered for Dubins
edge generation.

Tofind amore efficient alternative to generating allDubins
edges, realize the edgeswithin eB that are part of the distance-
optimal path p will satisfy one of four cases:

1. e ∈ eB connects adjacent nodes on the boundary of a
grown object in B.

2. e ∈ eB is linear and tangent to the bounds of an object in
B at both endpoints.

3. e ∈ eB connects two nodes n1 and n2, where n1, n2 ∈ nB
and n1, n2 ∈ nV ′ , denoted nB,V′ = nB ∩ nV ′

4. e ∈ eB is tangent to a boundary in B at one end and
connected to a node in nB,V′ at the other end

All four of these cases are illustrated in the scenario of
Fig. 1.

Recognition of these cases allows Dubins(n1,n2,B, r) to
be replaced with two more efficient routines. The first of

Fig. 1 Roadmap R and resulting distance optimal path p, showing
the edges that will be generated by new functions tangents (Case 1
and 2) and VoronoiTangents (Case 3 and 4). Edges not highlighted are
generated by Voronoi segments, or Dubins curves involving ns or ng

these is tangents(nB,B), which generates tangential edges
for the objects in B (Cases 1 & 2 above). The second rou-
tine is VoronoiTangents(nB,nV ′), which generates tangent
edges between the nodes in nB and nB,V′ , as well as edges
from nodes in nB,V′ to different nodes in nB,V′ (Cases 3 & 4
above). While the Dubins routine would generate an edge to
be checked for possible collision between every pair of input
nodes, there are significantly fewer tangential edges. Since
every edge is checked for collision before returning the final
set of edges, the tangent functions are significantlymore com-
putationally efficient. With the introduction of these tangent
functions, the resulting vehicle roadmap R can then be found
using Algorithm 2, and finding p is again reduced to an A*
graph search on R.

Algorithm 2 V–V Roadmap using Dubins Curves
Input: OE , O, dmin , dsa f e, r
Output:R

1: K = buffer(O, dmin)

2: B = buffer(O, dsa f e)
3: V = {nV , eV } = Voronoi(OE,K)

4: V ′ = {nV ′ , eV ′ } = V ∩ B
5: eB = tangents(nB,nB,B) � Generate tangent edges
6: eB,V′ = VoronoiTangents(nB,nV ′ )
7: es = Dubins(ns ,nB,B, r)
8: eg = Dubins(nB, ng,B, r)
9: R = {{nV ′ ,nB}, {eV ′ , eB, eB,V′ , es , eg}}
10: return R � Final Roadmap nodes and edges

To better illustrate the steps of Algorithm 1, consider the
scenario of Fig. 2a where the operating environment OE ,
obstacles O, starting node ns = {5, 5, 90◦} and goal node
ng = {90, 50, 90◦} are as shown. Using values of dmin = 1.5
and dsa f e = 5 the set of polygon objects K and B are found
and shown in Fig. 2b (Steps 1 & 2). The voronoi diagram V
is then generated based on the limits of the environment OE
and K, as shown in Fig. 2c (Step 3). The intersection of V
and B then yields V ′ as shown in Fig. 2d (Step 4). Tangent
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(a) (b)

(d)(c)

(e) (f)

Fig. 2 Steps toward building the Visibility–Voronoi and dubins motion curve roadmap
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Fig. 3 The final Roadmap R and path p generated by Algorithm 2 for
the same scenario as Fig. 2

and voronoi tangent edges are then generated and shown in
Fig. 2e (Steps 5& 6). Next, dubins curves are generated from
the start node to the nodes of nB and from the nodes of nB to
the goal node as shown in Fig. 2f (Steps 7 & 8). The roadmap
R (returned in Step 9), as well as the distance optimal path
p from ns to ng , is then given in Fig. 3.

3.3 Path smoothing to ensure feasibility

The set of edges found in eB,V′ , estart , egoal are all dynami-
cally feasible according to Dubins curves, as are the tangent
edges that are a subset of eB. However, the rest of the edges
in eB (which lie on the boundaries of B, and the edges in eV ′

are not guaranteed to be feasible. In fact, whenmore than two
edges in eV ′ share a common node ni ∈ nV ′ sharp angles are
created by consecutive adjacent voronoi edges as shown in
Fig. 4. To address this concern it is suggested that a smooth-
ing function be used to ensure feasibility. While a smoothing
function could be used on the entire roadmap, here only p is
smoothed to improve efficiency. As Algorithm 2 is based on
a vehicle with a minimum turn radius, a minimum curvature
smoothing function, such as the one presented in Parlangeli
and Indiveri (2010) is suggested (see Fig. 4).

3.4 Planning close to objects

While Algorithm 1 or Algorithm 2 is effective when ns and
ng are far from objects, if ns or ng are inside B, there will
be no valid edges connecting to these nodes. Similarly, if ns
or ng is close to B there may be no Dubins curve involving
these states that does not intersect B. Realize that ns and ng
will in general be inside or close to B whenever the vehicle
needs to dock, or a new plan is requested while navigating
an edge shared with B.

To address this issue, it is suggested that the boundary
used to check collisions of edges be based on B′ = (B −
SG)∪K rather than B, where SG is area to be removed from
B. The choice of SG should be dependent on the chosen
motion curve. Here SG is chosen as two circular regions
with diameter dSG centered on ns and ng , where dSG is the
larger value of 3 ∗ r (three times the minimum turn radius of
the USV) and dsa f e. This ensures ns and ng can be connected
to the rest of the roadmap as long as it is dynamically feasible
to do so without collision. Note that SG can be viewed as a
algorithmparameter, whichmay need to be tunedwhen using

Fig. 4 Left: Example roadmap that requires smoothing of Voronoi edges eV′ for feasibility. Scenario uses settings of dsa f e = 7.5 m, dmin = 1.5
m, and r = 5 m. Right: Original path p from roadmap compared to smooth path psmooth that results from Dubins Curve smoothing of p

123



Autonomous Robots (2022) 46:911–927 919

Fig. 5 Visual representation of computingB′ = (B−SG)∪Kwhen the
start and/or goal are close to an object. Here dsa f e = 5 m, dmin = 1.5
m, and r = 2.5 m

motion curves other than Dubins. An example calculation of
B′ is found in Fig. 5.

4 Anytimemethodology

While the roadmaps produced by Algorithm 2 satisfy the
need for feasible and safeUSVpaths, generating the roadmap
has the potential to be computationally intensive if OE
encompasses a large number of objects or highly complex
objects. Thus, generating the full USV roadmap may require
more time than the USV can allow before needing to act on
a plan. One way to address this issue is to alter roadmap
generation to be an anytime process.

Generating R as an anytime process is based on a few key
insights about the relationship between the roadmap R and
optimal path p generated in Algorithm 2.

1. R could be built incrementally by adding objects inO to
R sequentially rather than as a single batch

2. The distance optimal path p is more likely to contain
edges and nodes generated from objects close to the most
direct route from ns to ng .

3. During the building process, there is no value in adding
an object in O to R unless it has the potential to result
in a lower cost path than current best path from ns to ng
found in R.

The first insightmay at first imply the roadmap can be built
one object o ∈ O at a time, but in actuality R should be built
one safety boundary b ∈ B at a time. This is because a given
bmay contain any number of objects inO and it is the multi-
ple nature of these objects that leads to adding voronoi edges
between objects to the roadmap. The second insight suggests
that a priority queue can be established which determines the

order in which objects in O should be added to R based on
the distance to the line segment connecting ns to ng . Based
on the third insight, the cost of the best path in R should be
monitored and an admissible heuristic established for deter-
mining which objects should remain in the priority queue
during the building process. When using a distance-based
cost function, the path length forms this cost bound and the
sum of the minimum distance from ns and ng to the object’s
safety boundary forms an admissible heuristic.

Before presenting the anytime V–V Roadmap generation
algorithm, consider that collision detection in Algorithm
2 requires the potentially complex batch process B =
buffer(O, dsa f e). However, in the field of collision detection,
the use of shape primitives, such as axis-aligned bounding
boxes (AABBs), is often suggested to efficiently rule out
collisions before conducting the more complex process of
intersection with polygon bounds such as those found in B
Cai et al. (2014). Thus for anytime roadmap generation a
list of collision detection geometriesCDwill be maintained,
which will initially be composed of the AABB of each object
oi in O grown by a distance dsa f e. During algorithm execu-
tion if the AABB of an object oi causes a collision with a
roadmap edge or oi is selected to generate roadmap nodes
and edges, the function overlaps(oi , o, dsa f e) is used to gen-
erate the the list of all objects inO, denoted oi , that are 2dsa f e
distance-reachable from oi . An object o j is 2dsa f e distance-
reachable from oi if an ordered set of objects from oi to o j

exists such that adjacent objects in the set are never sepa-
rated by a distance of more than 2dsa f e. The AABB of each
object in the set oi is then removed from CD and replaced
by Bi = buffer(oi , dsa f e), where Bi will be a single polygon
boundary.

Based on the presented insights and collision detection
strategy, the anytime procedure for roadmap generation is
defined by Algorithm 3, where q = sort(O) sorts the objects
starting with the object closest to the line segment from ns to
ng . Collision checks utilize the full set of collision detection
geometries CD, and not just the collision detection geome-
tries corresponding to objects currently in the roadmap.

If Algorithm 3 is interrupted, then p̂ contains the best path
currently found in the roadmap. If the algorithm is allowed to
finish, p̂will be equivalent to the optimal path p.WhileAlgo-
rithm3 is presented as a sequential algorithm, the architecture
lends itself to parallelization of the main loop and parallel
computations within each loop iteration through the use of
queues for generating edges and check generated edges for
collisions before adding them to the roadmap. Only sequen-
tial processing is considered in this paper however, and an
exampleAnytimeV–VRoadmapGeneration is shown in Fig.
6.

From Fig. 6 it can be seen that after the first iteration of
the main loop from Algorithm 3, edges have been generated
due to the selection of only a single object and added to R.
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Fig. 6 Progression of AnytimeV–VRoadmap building using example scenario with ns ={−20m, 50m, 0◦} to ns ={120m, 50m, 0◦}, dmin = 1.5m,
dsa f e = 5 m, and r = 2.5 m
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Algorithm 3 Anytime V–V Roadmap Generation using
Dubins Curves

Input: OE , O, dmin , dsa f e, r
Output:R

1: Initialize R, B � Both empty
2: CD = AABB(O)

3: Initialize Queue q = sort(O)

4: while q 
= ∅ do
5: obest = q. f ront() � first element
6: obest = overlaps(obest ,O, dsa f e)
7: q.remove(obest ) � remove element
8: CD.remove(AABB(obest ))
9: Bbest = buffer(obest , dsa f e)
10: CD.push(Bbest ), B.push(Bbest ) � add element
11: es,best = Dubins(ns ,nBbest ,CD, r)
12: ebest,g = Dubins(nBbest , ng,CD, r)
13: ebest = tangents(nBbest ,nB,CD)

14: Kbest = buffer(Obest , dmin)

15: V ′
best = {nV ′

best
, eV ′

best
} = Voronoi(Bbest ,Kbest )

16: eB,V ′ = VoronoiTangents(nB,nV ′
best

)

17: e = {eBbest , es,best , ebest,g, eV ′
best

, eB,V ′ }}
18: R = R ∪ {{nBbest ,nV ′

best
, }, e} � update roadmap

19: p̂ = astar(R)

20: d̂ = pathlength( p̂)
21: for all oi ∈ q do
22: if (dist(ns , oi ) + dist(oi , ng)) >= d̂ then
23: q.remove(oi ) � remove element
24: end if
25: end for
26: end while
27: return R

Furthermore, there is no path within R between ns and ng
until the fourth algorithm iteration. It can also be seen after
the 4th iteration that all objects chosen for edge generation are
close to the line between ns and ng , which is the dubins curve
heuristic for this case. Thus, if the algorithm was interrupted
at any point after the completion of iteration 4, then a valid
path would be returned. However, by giving the algorithm
more time, it is able to improve the path quality in iteration
5 and again in iteration 7. Once iteration 8 is completed, the
algorithm is completes due to an empty queue q, and the p̂
can now be assured to be the optimal path p.

5 Results

As previously discussed, the V–V work of Niu et al. (2019)
is the most closely related published work to the method pre-
sented in this paper, but its authors state it is intended for
global planning. The results shown below, which are bro-
ken into two studies of algorithm performance, are intended
to show the method presented in this paper is suitable for
local planning. The first is a case study of paths obtained
when avoiding real marine objects and algorithm parame-
ters consistent with a medium-sized (16-foot long) USV. The
case study is discussed in Sect. 5.1. The second study uses

Fig. 7 The Minion Research Platform is a 16-foot long USV that is
equipped with a high fidelity GPS/INS and four multi-beam Lidar sen-
sors

randomly generated scenarios to analyze the computational
complexity of the presented algorithm and applicability to
local planning where plans are obtained in real-time. These
simulation results are presented in Sect. 5.2. The computer
used to produce the processing times noted in Sects. 5.1 and
5.2 has a Intel i7-8650UCPU@1.9GHz and 16GBofRAM.
All timing results are for single-threaded performance.

5.1 Case study: Maritime RobotX Challenge

The case study presented here is based on the Maritime
RobotXChallenge,which is an international, university-level
student competition designed to foster student interest in
autonomous and robotic systems operating in the maritime
domain, with an emphasis on the science and engineering
of cooperative autonomy. This competition involves tasks
derived from existing Naval operations and challenges, such
as USV docking, complex navigation, and environmental
perception. All competing USVs are based on the Marine
Advanced Research 16-foot WAM-V platform, which is the
vessel studied in Schoener (2019) and Mask (2011). This
competition motivated the development of the path planning
algorithm presented in this paper due to tasks that require
navigation close to obstacles, but a need to handle uncertain-
ties in vehicle model and environment.

The ERAU-ownedWAM-VUSV, namedMinion (see Fig.
7), is designed to allow the operator to select vehicle con-
trol by either differential thrust or azimuth control of the
propulsion motors. However, both control schemes result in
under-actuated systems, yielding a minimum turn radius that
varies with vehicle speed. This means Dubins curve edge
generation is appropriate when Minion operates at a pre-
defined vehicle speed. As an under-actuated system, theUSV
has an inability to compensate for some unknown distur-
bances or modeling errors. The vehicle is also equipped with
four Lidar sensors for environmental perception, which map
objects using the scheme defined in Thompson et al. (2019).
Thus, the V–V path planning scheme proposed in this paper
is appropriate for this USV and its perception suite. Minion
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Fig. 8 A docking scenario from the 2018 Maritime RobotX Com-
petition. In this scenario ns = {90m,−405m, 6◦} and ng =
{68.25m,−342.5m, 73◦} and all obstacles are created from empiri-
cal data. Algorithm 3 is implemented using settings of dsa f e = 5 m,
dsa f e = 1.5 m, and r = 2.5 m

is just under 3 m wide, so dmin = 1.5 m is chosen. Also,
Minion’s typical operational speed is 1.5 m/s, which corre-
sponds to a minimum turn radius of just under 2.5 m, thus
dsa f e = 5 m and r = 2.5 m are chosen.

The results presented in this paper will utilize planning
scenarios Minion encountered when attempting the dock-
ing and obstacle field navigation tasks at the 2018 Maritime
RobotXChallenge. During competition, the vehicle state and
Lidar measurements were recorded. By replaying these logs
and executing the perception algorithm presented in Thomp-
son et al. (2019), the originally perceived environment can
be re-created, as seen in Figs. 8a and 9a.

During the docking scenario, the vehicle must navigate
into one of two docking bays on a H-shaped, moored, float-

Fig. 9 A obstacle field scenario from the 2018Maritime RobotX Com-
petition using empirical data. Algorithm3 is implemented using settings
of dsa f e = 5m, dsa f e = 1.5m, and r = 2.5mover a series ofwaypoints

ing dock. Given that Minion is just under 3 m wide and the
docking bays are only 3.2mwide, this is a scenario where the
planning algorithm must plan close to an object (the dock)
but stay as far from the object as it can and still succeed
at the task. After identifying the docking bay and its ori-
entation using the methodology presented in Barnes et al.
(2018), Algorithm 3 produces the plan shown in Fig. 8b.
The plan first navigates between the two buoys located at
approximately (84E,−394N ) and (93E,−389.5N ) while
following the voronoi edges to maximize safety. The path
then connects to the voronoi edges to lead it into the center
of the bay, which maximizes safety and likelihood of success
when entering the dock. The optimal vehicle path is returned
in 114msecs in this scenario.
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The RobotX Challenge’s obstacle field scenario requires
the vehicle to make several “lawn-mower” style passes
through an obstacle field marked by four cylindrical, white
buoys. The obstacles within the field are spherical in nature
and vary from 0.5 to 1.2 m in diameter. Figure 8a shows
the perceived objects, outlines the area marked by the four
cylindrical buoys, and shows the 10 targetwaypoints for com-
pleting the lawnmower pattern.

Algorithm 3 is applied to each consecutive pair of way-
points, and the path between each pair of waypoints is
concatenated to give a complete “lawn-mower” pattern p
as shown in Fig. 9b. It can be seen that the final vehicle
path p closely mirrors the originally designated pattern, but
deviates in order to maintain safety. This is understandable
considering the waypoints were assigned manually without
consideration of the objects inside the obstacle field.When p
is less than dsa f e = 5m from an object, p follows the voronoi
edges between the objects. However, the path is never less
than dmin = 1.5 m from an object. Algorithm 3 returned the
Fig. 9b result, which consists of 9 separate paths (one path
between each consecutive pair of the 10waypoints), in a total
of 451 msecs.

5.2 Simulated environment

Given the need to consider edges between each node pair
in R, it is reasonable to assume the order of complexity is
O(N 2) for Algorithm 1, where N is the number of nodes
used in R. If each object o ∈ O has a nearly equivalent
number of nodes, it can be further assumed that Algorithm 2
would have a complexity of O(m2), where m is the number
of objects inO. However, since Algorithm 3 only adds nodes
and vertices to R for objects likely to influence the optimal
path p, Algorithm 3 is expected to have a complexity of
O(m̃2), where m̃ is the number of objects for which nodes
are added to R before the optimal path is found. Thus, m̃ ≤
m. Furthermore, if Algorithm 3 returns before completion,
then an estimate of the optimal path p̂ may be found which
required m̂ objects to be added to the roadmap, where m̂ ≤
m̃. So, it is theorized in order to return a non-empty path
p̂ the complexity is quadratic (O(m̂2)), but the quadratic
complexity results in significantly slow execution only when
the local environment is highly complex.

To test the theorized complexity ofAlgorithm3, and deter-
mine if the algorithm is efficient enough for local planning,
a series of simulations are conducted. These simulations are
based on a 500 m × 500 m operating area OE , with ran-
dom starting state, ns , and random goal state, ng . A thousand
random scenarios are then generated for the case where OE
contains 0, 25, 50, 100, 200, 250, 300, 400, and 500 obstacles.
Objects are non-overlapping regular hexadecagons (16-sided
polygon) circumscribed by a circle with radius between 0.5m
and 2m and the object location within OE is random. For

Fig. 10 Average timing for 1000 random scenarios of non-overlapping
16-sided objects

each scenario the algorithm completion time and time to find
the first path estimate p̂ is recorded. The completed sim-
ulations are then sorted based on if a solution exists. The
average algorithm completion time for all scenarios and sce-
narios where a solution does not exist is shown in Fig. 10.
Furthermore, when a solution does exist, Fig. 10 shows both
the average time to find the the first path estimate p̂, and the
time to find the optimal path p.

Figure 10 is strong evidence that the Algorithm 3 has a
quadratic complexity of O(m̃2). The completion time of all
scenarios (Blue line), in fact has a coefficient of determina-
tion r2 = 0.998 for a quadratic fit. Furthermore, there is also
a strong quadratic relationship when looking at the time to
find the first estimate of the optimal path (Red line) and the
time to find the optimal path (Orange Line), with coefficients
of determination of 0.996, and 0.998 respectively. However,
the benefits of the anytime approach are clearly shown as
well, as the first path is in on average returned much faster
than the time it takes to return the known optimal path.

The one surprising result of Fig. 10 is the algorithm com-
plexity when a valid path does not exist appears to be linear
instead of quadratic with a coefficient of determination of
0.916. To explain this phenomenon, consider that a path will
not exist if and only if ns or ng is so close to objects that
feasible edges cannot be created from ns or to ng without
collision. Recall that Algorithm 3 prioritizes adding objects
to R based on distance to ns and ng . Thus, if there are objects
within a 2r distance of ns or ng , then they will be added to R
first. Furthermore, once these objects are added to R a edge
involving ns and ng should exist if it will ever exist. If it does
not exist at that time, the algorithm can terminate. As there is
a physical limit to how many objects can be within 2r of ns
and ng , the complexity is not quadratic or linear based on the
number of objects, but bounded when a path will not exist.
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Fig. 11 Worst case timing results from 1000 random scenarios of non-
overlapping 16-sided objects

However, the complexity will still be quadratic based with
respect to the total number of nodes on the objects within 2r
of ns and ng .

While algorithm complexity is important to understanding
performance, the time required to obtain a path in real-world
scenarios is often a more practical measure for determining
applicability to local planning.Additionally, returning a valid
path is often a higher priority than returning an optimal path.
Thus, Fig. 11 presents the worst-case completion time for
obtaining an optimal path and obtaining any path among all
randomly generated scenarios.

The results of Fig. 11 indicate that even in a worst-case
scenario, the proposed algorithm can be effective for local
planning. To understand this, consider that a USV will often
move at a slow rate of speed. For example, the Minion USV,
for which this algorithm was originally developed, typically
operates at 1.5m/s.While finding the optimal pathwas shown
to take up to 6.27 s in the most obstacle dense environment,
finding a valid solution only requires 1.17 s. This worst case
time corresponds to traveling 1.8 m while moving at 1.5 m/s
and the results of Fig. 10 indicates that this distance will
typically bemuch shorterwith a 250ms average timeyielding
a travel distance of 0.375m. However, if the algorithm chose
to wait on the optimal path, then it could travel close to 10m
while waiting on a solution. So there is tremendous value in
the anytime approach.

While the results shown here are based on the number
of obstacles, increasing the number of nodes should also
yield a quadratic complexity. This is due to the original
hypothesis of O(N 2) complexity, where N is the number
of nodes used in R. More obstacles means more nodes, but
more complex obstacle geometries also increases the total
number of nodes. Thus, a decimation algorithm such as the

Douglas-Peucker algorithm Douglas and Peucker (1973) or
Visvalingam algorithm Visvalingam and Whyatt (1993) is
highly recommended for use with this algorithm to decrease
the complexity of the obstacles themselves.

6 Conclusion

This paper builds on existing USV path planning and
Visibility–Voronoi (V–V) diagram approaches in several key
ways. First, the presented approach is presented as an anytime
process. This anytime approach prioritizes node and edge
generation in areas where the optimal path is expected to lie,
as defined by a heuristic. This often enables the algorithm
to return a feasible, near-optimal path even when interrupted
before completion due to the relatively sparse nature of the
USV environment. Second, the presented method differs
from existing USV and V–V approaches by using motion
curves and path smoothing to ensure path feasibility subject
to a simplistic vehicle model. This is especially important for
USVs, which are primarily under-actuated systems. Third,
unlike prior V–V approaches, all roadmap nodes include
a definition of vehicle heading, which improves complex
maneuvering capabilities. Lastly, it is shown that this newV–
V planning approach allows the user to balance uncertainties
in the vehiclemodel and environment with the need for better
paths (as measured by a cost function). This is done through
the use of two safety boundaries, one that ensures aminimum
level of safety at all times, and a second that is only violated
when necessary to find a solution or achieve a significantly
better path in terms of cost. Furthermore, it is shown that
the algorithm has a quadratic complexity when a valid path
exists and a near-linear complexity when a valid path does
not exist. Unlike many prior approaches that are validated
using only simulated scenarios, real-time maps from a USV
perception suite are used in addition to random simulations
to prove the effectiveness of the presented approach.

6.1 Future work

Several efficiency-based improvements should considered in
future work. First, the authors believe significant computa-
tional improvements can be achieved through parallelization
of the presented algorithm, both in how objects are added
to the roadmap and in how edges are generated and subse-
quently checked for collision. Second, future work should
also consider methods to reduce the number of edges gen-
erated, as most motion curve generated edges involving the
start and goal node are thrown out due to object collision.
Third, treating collision detection as a 3D problem could
lead to improvements in path safety and cost. Lastly, effi-
cient methods of re-planning should be investigated.
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Future work should also consider the use of other motion
curves.While the general approach presented here is agnostic
to the choice of motion curve, several of the efficiency-based
improvements used in the anytime version of the algorithm
are based on Dubins curves. As a result, the use of other
motion curvesmay require new assumptions, simplifications,
and heuristics. The use of other motion curves will also
required the use of a different smoothing function.
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