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Abstract
This paper presents a distributed scalable multi-robot planning algorithm for informed sampling of quasistatic spatials fields.
We address the problem of efficient data collection using multiple autonomous vehicles and consider the effects of commu-
nication between multiple robots, acting independently, on the overall sampling performance of the team. We focus on the
distributed sampling problem where the robots operate independent of their teammates, but have the ability to communicate
their current state to other neighbors within a fixed communication range. Our proposed approach is scalable and adaptive to
various environmental scenarios, changing robot team configurations, and runs in real-time, which are important features for
many real-world applications.We compare the performance of our proposed algorithm to baseline strategies through simulated
experiments that utilize models derived from both synthetic and field deployment data. The results show that our sampling
algorithm is efficient even when robots in the team are operating with a limited communication range, thus demonstrating the
scalability of our method in sampling large-scale environments.

Keywords Environment monitoring · Adaptive sampling · Multi-Robot systems · Marine robots

1 Introduction

In this paper, we present a distributed planning approach to
design paths for multiple robots to achieve efficient sampling
of a quasistatic spatial field. Our objective is to plan a non-
myopic path for the robots to maximize the information gain
in a limited time. We address the problem of efficient sam-
pling of environmental processes usingmultiple autonomous
vehicles.

Many natural processes can be modeled by hotspots
exhibiting extreme measurements and higher spatial vari-
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ability than the rest of the field. Examples of such spatial
fields include algal blooms, coral reefs (see Fig. 1), distribu-
tion of flora and fauna, and aerosol concentration. To model
such environmental phenomenawith high precision, we need
the sampling robots to visit many information rich locations
within their limited endurance. One possible way to achieve
this is by exploring the hotspot regions in the early stages
of the survey as the hotspots are rich with the information
needed to model the phenomenon of interest. Estimating a
good representation of spatial phenomena plays a key role
in applications like environmental monitoring, search and
rescue, anomaly detection, and geological surveys. We pro-
pose an informed non-myopic path planning technique for
robotic platforms to efficiently collect measurements from
a quasistatic spatial field, so that an accurate model of the
underlying physical phenomenon can be built.

In a multi-robot setup, task division between the robots
becomes essential as opposed to a single robot sampling
approach (Manjanna et al., 2018). We do not formulate the
multi-robot scenario as a distributed or collective learning
problem. Instead, we train each robot as an independent
agent1 and observe their sampling performance when they

1 The robots are assumed to be homogeneous in terms of their capabili-
ties. They may all have the same set of learnt parameters. However, this
is not compulsory as long as they are all trained on similar distributions.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-022-10048-7&domain=pdf
http://orcid.org/0000-0001-8906-7364


818 Autonomous Robots (2022) 46:817–829

Fig. 1 Aerial view of two robotic boats surveying the reef at a marine
reserve off the coast of Barbados island. Example paths of the boats are
illustrated with solid lines of colors red and white. The goal is to plan
paths that are rewarding in terms of information gain and have minimal
overlap. We achieve higher rewards by determining the best policy and
minimal overlap through communication between the robots

Fig. 2 Overview of our approach. We train each individual robot to
perform efficient sampling and deploy them together to analyze the
coverage behavior when the robots are given an ability to communicate

are put together in a sampling task and are given the ability
to intermittently communicate as shown in Fig. 2. Doing so
makes the problem more tractable; and the multi-robot sys-
tem becomes easily scalable as the same trained parameters
can be used on any new robot added to the system. The team
becomes more resilient to failure as all robots are individu-
ally trained to perform the task efficiently, and the team can
be put together in any robot combination.

An overview of the training and testing phases of an indi-
vidual robot is illustrated with a block diagram in Fig. 3. In
the training phase, the parameters for the policy are learnt on
a set of generic distributions that represent the field that needs
to be surveyed. Then in the testing phase, when the robot is
being deployed in the field, the prior of the current field is
used to generate a policy for the robot given its current loca-
tion or state. In our example application of sampling visual
data of the coral reef using a robotic boat, we train the algo-
rithm with a set of satellite images of different coral regions.
While deploying the robot with these learnt parameters from
the training, we use an aerial image of the survey area to pro-
vide a prior scoremap for the algorithm to generate an action
plan for the robotic boat.

←

Training 
Phase

Testing 
Phase

Fig. 3 Overview of the training and testing phases

Once the robots are trained, they are all put together in a
sampling task and are allowed to communicate only their vis-
ited locations with other neighboring robots that are within
the communication range. Communication between agents
plays an important role in a decentralized multi-robot sys-
tem. In this paper, we consider the effects of communication
betweenmultiple robots on the overall sampling performance
of the team.We compare the overall sampling performance of
the team as the communication range of the robots changes.
Our proposed multi-robot sampling algorithm performs effi-
ciently even when robots in the team are operating with a
limited communication range, thus demonstrating the scala-
bility of our approach for sampling large-scale environments.

Key contributions of this paper include:

– A scalable multi-robot system with distributed decision
making to achieve nonuniform sampling of a quasistatic
field.

– Analysis of the effect of robot communication range on
the overall sampling performance of the team.

– Investigationof the task-sharingbehavior between robots.
We present an empirical evaluation of our sampling tech-

nique with statistically significant results. We demonstrate
our methodology with sea-floor bathymetry data collected
during our field trial as illustrated in Fig. 4. We also evalu-
ate our sampling approach on a set of diverse environments
presented in Fig. 5, some synthetically generated and others
commonly occurring in nature. We compare our sampling
algorithm to baseline strategies through simulated experi-
ments that utilize models derived from both synthetic and
real robot deployment data.

2 Related work

There is a large literature on robotic data sampling and cover-
age. Especially in themarine domain,muchof this is based on
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Fig. 4 a Two-robot and b Three-robot sampling paths planned over
bathymetry data collected during our field trials in Barbados. c Four-
robot sampling paths planned over a satellite image of a coral reef.

Colored circles represent the start points of the robots.dAn autonomous
surface vehicle (ASV) deployed to sample the bathymetry and visual
data over the reefs in Barbados

Fig. 5 Distributions used for analyzing the multi-robot policy gradient
spatial sampling algorithm. The first two distributions (a, b) are gener-
ated synthetically using a mixture of Gaussians. Distribution in c is a
scoremap generated using real reef data (multi-spectral processing of an

aerial image over a reef). d is the diffusive spreading pattern simulating
the impacts of different nutrients on algae (Dai & Zhao, 2014). e is a
trimmed section of the distribution in d

mechanisms that use waypoints of geometric priors with lim-
ited dependence on the distribution of incoming observations
(Shkurti et al., 2012; Bender et al., 2013; Stephanie Kemna
et al., 2018; Manjanna & Dudek, 2017). Many techniques
use data regarding boundaries of the environment (Choset &
Burdick, 1996) and some methods try to minimize odometry
error or energy utilization (Sipahioglu et al., 2010; Xu et al.,
2011). Our work places emphasis on the density of valuable
measurements that can be collected in a limited amount of
time.

The design of pragmatic, efficient coordinatedmulti-robot
exploration algorithms to carry out the mission reliably and
quickly is a topic of active research. The use of multiple
robots instead of a single robot is often suggested to have
several advantages and leads to a variety of design trade-
offs. Classical algorithmic results related to computational
complexity perform poorly in stochastic and time-varying
real-world scenarios (Dudek & Roy, 1997; Yan et al., 2013;
Higuera & Dudek, 2013). Another advantage of robot teams
is due to the merging of overlapping information, which can

help compensate for sensor uncertainty (Burgard et al., 2005;
Almadhoun et al., 2019).

Robotic sampling requires an efficient strategy to decide
where to sample so that there is the highest knowledge gain.
Decision making can be regarded as a cognitive process
resulting in the selection of one or more actions (i.e., a pol-
icy) among several alternatives. Two popular approaches for
decision making in multi-robot scenarios are centralized and
decentralized. A decentralized approach for decisionmaking
is scalable, robust, and efficient (Dudek et al., 1996; Vaughan
et al., 2002). Generally, the problem of distributed multi-
robot exploration can be stated as n identical robots set out
to explore an unknown area, each robot is equipped with
sensing, localization, mapping, and limited-range communi-
cation capability (Sheng et al., 2006). Julian et al. propose
an information theoretic approach to distributively control
multiple robots equipped with sensors to infer the state of
an environment (Julian et al., 2012). In their approach, the
robots iteratively estimate the environment state using a
sequential Bayesian filter, while continuously moving along

123



820 Autonomous Robots (2022) 46:817–829

the gradient of mutual information to maximize the infor-
mativeness of the observations provided by their sensors.
However, they assume a connected communication graph
throughout the exploration task. Instead, in our approach, we
consider a fixed distance communication disk model around
the robot (Spanos & Murray, 2005; Ji & Egerstedt, 2007;
Zavlanos & Pappas, 2008). This allows for intermittent com-
munication between the robots, which is more realistic in
large-scale applications.

Even though multi-robot systems have numerous advan-
tages, they do have additional costs. One such overhead is
coordination and communication between the robots. The
overall system performance can be directly affected by the
quality of coordination and control. Communication, as a
means of coordination, enables robots to share position infor-
mation, state of the environment, sensor measurements, and
enable individual robots to learn about the intentions, goals,
and actions of other robots. Yan et al., in their survey, clas-
sified the communication structure based on the information
transfer modes, such as explicit and implicit communica-
tion (Yan et al., 2013). Explicit communication allows direct
exchange of information between the robots (Freda et al.,
2019; Lowe et al., 2017; Salam & Hsieh, 2019), whereas in
implicit communication, robots get information about their
fellow robots through the environment (Godoy et al., 2016).
Explicit communication model enables the robots to work
in a team towards completing the task efficiently. In this
paper, we explore explicit and asynchronous communica-
tion between robots with a constraint on the communication
range.

Compared to complete coverage algorithms, adaptive
sampling approaches trade off completeness for efficiency.
In many cases, even if the process being studied is rapidly
varying, subsampling can be effective when the sample
points are correctly selected (Venkataramani & Bresler,
2000). When the environmental phenomena being sam-
pled are smoothly varying without any local maxima peaks,
non-adaptive strategies are known to perform well (Singh
et al., 2006). However, if the environment contains peaks
with high local-variance, adaptive sampling can exploit the
clustering phenomena to map the environmental field more
accurately than non-adaptive sampling (Manjanna &Dudek,
2017). In our multi-robot adaptive sampling approach, we
explore the possibility of multiple independently trained
robots performing the sampling task efficiently with min-
imal communication between the robots. Our formulation
does not encompass the objective of minimizing the com-
munication, but it is a by-product of our sampling approach.
We compare the overall sampling performance of the team
by varying the communication range of the robots, thus eval-
uating our approach for scalability in large-scale sampling
problems.

3 Problem formulation

The sampling region is a continuous two-dimensional area
of interest E ⊂ R

2 with user-defined boundaries. The spa-
tial sampling region is discretized into uniform grid cells,
such that the kth robot’s position �xk can be represented by
a pair of integers �xk ∈ Z

2. Each grid cell (i, j) is assigned
a prior score value q(i, j) of the data that can be sampled
in that cell. We assume that a low-quality initial estimate of
the phenomenon being sampled is known either through pilot
surveys or satellite data and use this prior to initialize the grid
cell scores.

The objective is to maximize the total accumulated score
by all K robots, Jtotal = ∑K

k=1 Jk . This in turn can be
achieved bymaximizing the accumulated score by each robot
Jk . For brevity, we will use J to indicate each robot’s accu-
mulated score. Thus, the goal of an individual robot is to
maximize J over a trajectory τ within a fixed amount of
time T . We will specify each robot’s behavior using a param-
eterized policy. This is a conditional probability distribution
π�θ(�s, �a) = p(�a|�s; �θ) that maps the current state �s of the sur-
vey to a distribution over possible actions �a. Our aim will be
to automatically find good parameters �θ, after which the pol-
icy can be deployed without additional training on sampling
new environmental fields.

Finding a sequence of actions that maximizes a long-term
objective could be done using dynamic programming or other
iterative techniques. However, in our formulation, the sys-
tem state is described using a map containing the per-cell
score or value of the physical phenomenon being measured
and this scoremap changes as areas are visited by the robot.
Hence, the state is composed of the agent’s current posi-
tion and the scoremap containing the per-location value of
the phenomenon being measured. As a result of formulat-
ing complex states, the state space grows exponentially with
the size of the sampling region. Dynamic programming is
impracticable with such a large state space—especially if the
time to solve each particular problem is limited. Instead, we
turn to methods that directly optimize the policy parameters
�θ based on (simulated) experiences. To apply these methods,
we will first formalize the sampling problem as a Markov
Decision Process(MDP).

3.1 Formalizing sampling as anMDP

An MDP is a formal definition of a decision problem that
is represented as a tuple (S, A, T (�st+1|�st , �at), r(�st , �at ), γ ),
where S and A are the state and action space, T models
transition dynamics based on the current state and action,
and r defines the reward for the current state-action pair. γ

is a discount factor that reduces the desirability of obtaining
a reward t time-steps from now rather than in the present by
γ t . The objective is then to optimize the expected discounted
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cumulative reward J = Eτ [∑H
t=0 γ t rt (st , at )], where H is

the optimization horizon.
Our current sampling formulation considers the state �s to

include both position of the kth robot �xk as well as the map
q containing per-location utility value of the phenomenon
being measured, �s = (�xk, q). To begin with, we consider a 4-
connected action space with the options for the robot tomove
to and scan the cell North, East, South or West of its current
location. The action space can be easily expanded or con-
strained according to the motion constraints of the platform
used.We consider a probabilistic choice of actions, that is, an
action is chosen according to the policy distribution π�θ(�s, �a).
Once the data in the current robot location is measured, the
utility value q(i, j) of the current grid-cell (i, j) is reduced
to 0. The discounted reward function is defined as γ t q(�xk),
with the discount factor 0 ≤ γ ≤ 1 encouraging the robot to
sample cells with high scores in early time steps t . Discount
factor γ with a value closer to 0 encourages myopic tra-
jectories, whereas a γ closer to 1 pushes towards achieving
trajectories that are farsighted (meaning paths that achieve
higher accumulated rewards)

4 Policy gradient for sampling

The complex and large state space required to formulate
the sampling problem makes it unrealistic to apply dynamic
programming or other iterative techniques for robotic sam-
pling problems. Even though we have used iterative methods
to solve similar problems, they do not scale well with the
increase in the size of the sampling region (Manjanna &
Dudek, 2017). Hence, we make use of policy gradient search
that directly optimizes the policy parameters �θ based on (sim-
ulated) experiences.

Policy gradient methods use gradient ascent for maximiz-
ing the expected return Jθ . Thegradient of the expected return
(∇θ Jθ ) guides the direction of the parameter (θ ) update. The
policy gradient update is given by,

θk+1 = θk + η∇θ Jθ , (1)

where η is the learning rate. The policy gradient is given by,

∇θ Jθ =
∫

τ

∇θ pθ (τ )R(τ )dτ, (2)

where R(τ ) is the reward obtained by following the trajec-
tory τ . One of the effective methods to estimate the gradient
∇θ Jθ is to make use of the likelihood-ratio trick that is given
by the identity ∇ pθ (y) = pθ (y)∇logpθ (y). Applying this
likelihood-ratio trick to the policy gradient in Eq. 2, decom-
posing ∇θ logpθ (τ ) into single time steps and applying the

logarithm yields,

∇θ logpθ (τ ) =
H−1∑

t=0

∇θ logπθ(at |st , t) (3)

One of the first policy gradient algorithms, REINFORCE
Algorithm (Williams, 1992), applies Eq. (3) and uses a
variance-reducing baseline b to define the policy gradient
as,

∇θ Jθ = Epθ (τ )

[
H−1∑

t=0

∇θ logπθ(at |st , t)(R(τ ) − b)

]

(4)

This expression, however, depends on the correlation
between actions and previous rewards. These terms are
zero in expectation, but can often induce additional vari-
ance. Ignoring these terms yields lower-variance updates.
G(PO)MDP algorithm (Greensmith et al., 2004) and Pol-
icy Gradient Theorem (PGT) algorithm (Sutton et al., 2000)
propose to reduce the variance of policy gradient estimates
by using the observation that rewards from the past do not
depend on actions in the future. Accordingly, the policy gra-
dient is given by,

∇θ Jθ = 1

m

m∑

i=1

H−1∑

t=0

∇θ logπθ (a
(i)
t |s(i)

t )

⎛

⎝
H−1∑

j=t

r(s(i)
j , a(i)

j ) − b(s(i)
t )

⎞

⎠ . (5)

The expectation over pθ (τ ) is approximated by sum-
ming over all the sampled trajectories (τ (i) = (s(i)

0 , a(i)
0 ,

s(i)
1 , a(i)

1 , ...)). The gradient is based on m sampled tra-

jectories from the system, with �s(i)j the state at the j th
time-step of the i th sampled roll-outs. Furthermore, b is
a variance-reducing baseline. In our experiments, we use
the observed average reward as baseline (b = E[R(τ )] ≈
1
m

∑m
i=1 R(τ (i))).

4.1 Policy design

An effective approach to define stochastic policies over a set
of deterministic actions is the use of Gibbs distribution of a
linear combination of features as a policy (also referred to as
Boltzmann exploration of the softmax policy). We consider
a commonly used linear Gibbs softmax policy parametriza-
tion (Sutton et al., 2000) given by,

π(s, a) = eθT φsa

∑
b e

θT φsb
, ∀s ∈ S; a, b ∈ A, (6)
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Fig. 6 a Multiresolution aggregation of feature space. b DAISY: local
image descriptors that inspired our feature aggregation (Tola et al.,
2009)

where φsa is an k-dimensional feature vector characterizing
a state-action pair (s, a) and θ is an k-dimensional parame-
ter vector. This is a commonly used policy in reinforcement
learning approaches.

The final feature vector φsa is formed by concatenating
a vector φ′

sδaa′ for every action a′ ∈ [North, East, South,

West], where φ′
s ⊂ R

k is a feature representation of the
state space, and δaa′ is the Kronecker delta. Thus, the final
feature vector has 4×k entries, 75% of which corresponding
to non-chosen actions will be 0 at any one time step.

4.2 Feature design

In our previous work (Manjanna et al., 2018), we pro-
posed and evaluated multiple feature aggregation designs.
Our empirical analysis showed that having a multiresolution
aggregation of the feature space resulted in achieving better
discounted rewards. In multiresolution feature aggregation,
feature cells grow in size along with the distance from robot
location as depicted in Fig. 6a. Thus, areas close to the robot
are represented with high resolution and areas further from
the robot are represented in lower resolution. We draw our
inspiration for this feature design from a popular local image
descriptor called DAISY descriptor (Tola et al., 2009) pre-
sented in Fig. 6b. The intuition behind this feature design is
that the location of nearby reward values is important to know
exactly, while the location of faraway rewards can be repre-
sented more coarsely. The multiresolution feature design is
also suitable for bigger worlds as it scales logarithmically
with the size of the world.

5 Sampling withmulti-robot teams

We propose a decentralized sampling approach where each
robot in a team performs an informed survey using a policy-
gradient-based sampling strategy as outlined above. As
mentioned earlier, we do not formulate the multi-robot sce-

nario as a learning problem. Instead, we train each robot as
an independent agent.

One way to achieve collaborative sampling between mul-
tiple independent robots is by assigning a reward function
for the robot rk that is proportional to the distance of grid
location li from other n − 1 coworking robots and inversely
proportional to the distance of grid location li from its current
location lrk . Thus encouraging robot k to visit locations that
are close to the lrk and farther from other co-working agents.
This results in dividing the task spatially so that each robot
has its own subregion to sample.

R(lrk , li ) ∝

∑

j∈(1,2,..n), j �=k

distance(lr j , li )

distance(lk, li )
. (7)

However, performing such weighted reward adjustments
can compromise the resilience and robustness of the multi-
robot team.Overall, itwill degrade the samplingperformance
as the robots can and do get stuck within their own self-
defined region of space. Instead, in our proposed approach,
the robots communicate only their visited locations with the
neighboring robots within their communication range. This
information is used by each robot to transition to the state
where the rewards from all the visited locations are removed.
In thiswork,we explore howdifferent communication ranges
impact the overall sampling performance of the robot team.
For our empirical analysis, we run experiments on the distri-
butions presented in Fig. 5.

5.1 Distance constrained communication

We explore the ability of a multi-robot team to sample effi-
ciently with a distance-limited communication between the
robots. Every robot can communicate only its current state
with the neighboring robots that are within the communica-
tion range. This state information is then used by neighboring
robots to update their sampling plan accordingly.

This setup with distance constrained communication imi-
tates the real-world scenario in any outdoor deployment
environment. Especially on the surface of water, the commu-
nication signals attenuate faster (Coelho et al., 2018) making
it infeasible to exchange messages between robots that are
far apart. We define the distance constraints as a percentage
of the maximum possible distance (Dmax ) in the bounded
survey region. Thus, 0% represents no communication and
100% represents complete communication throughout the
survey region.

We note that robots can choose the same overlapping path
when there is no communication between them under this
strategy. Sometimes if the robots are synchronized in sam-
pling, they will end up following the same path even after
communicating on every step as they have knowledge only
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Fig. 7 Sampling performance and illustrative paths of two robots operating with distance constrained communication. The shaded regions around
the median line illustrate the standard error over 20 trials for each communication range
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about the current step. Moreover, having such frequent com-
munication is expensive and infeasible in the real world. Our
previous observations show that a communication after the
collection of every 10–30 sampleswould fetch good rewards.

6 Experimental results

6.1 Setup

We train all our robots on a set of distributions generated
by a mixture of Gaussians. All robots have identical learnt
parameters, thus are independently capable of collecting
good samples in the data collection task. A diverse set of five
distributions is used to simulate the physical phenomenon
of interest. Two of these distributions are synthetically gen-
erated using a mixture of Gaussians (Fig. 5a, b). The next
distribution in Fig. 5c is a scoremap generated by multispec-
tral image processing on an aerial image of the coral reef. Last
two distributions in Fig. 5d, e are generated using the model
for a diffusive spreading pattern simulating the impacts of
different nutrients on algae (Dai & Zhao, 2014). Over the
multiple trials, we combine different starting states of the
robots (such as all robots starting at a fixed location, or ran-
domly chosen location, or every robot starting at opposite
corners). We experimented with 10 communication ranges.
In this section, we only present a small set of our experimen-
tal results to achieve better readability and clarity in the plots.
We apply Savitzky–Golay filter (Savitzky & Golay, 1964) to
smoothen the planned paths. This kind of path smoothing is
used only if the paths are planned offline. Many applications
in the domain of environmental monitoringwith autonomous
vehicles have a need to sample in information rich locations
at the earliest (Low et al., 2008). This is true when robotic
vehicles have a limited endurance to carry out the survey
and the environmental processes are quasistatic. Hence, we
measure the total accumulated discounted rewards as one of
the performance metrics. In our experiments we use hyper-
bolic discounting for training as it encourages a non-myopic
reward collection by the agent. Two or more robots survey-
ing a region to collect samples are expected to cover different
regions so that the resources are utilized efficiently. Hence,
we measure the overlap between the robot paths as the sec-
ondmetric for sampling performance. To achieve an efficient
spatial sampling, we want the planned paths to achieve as lit-
tle overlap as possible and as high discounted rewards as
possible.

6.2 Results and discussion

Figure 7 demonstrates the results from our experiments
involving two robots starting their sampling path from the
same starting point. The first column in Fig. 7 illustrates the

example paths generated by two robots with full communi-
cation. The second and the third columns in Fig. 7 present the
discounted rewards and the path overlap, respectively. The
shaded area specifies the standard error of the mean over 20
trials for each of the 7 communication ranges. These results
illustrate that, irrespective of the underlying distribution, a
communication range between 10% and 30% of the Dmax

can achieve good sampling with minimal message exchange.
To confirm this hypothesis, we further analyze the results by
averaging over all 5 spatial distributions.

Figure 8a presents the averaged results over all spatial
distributions plotted against the communication range on
the x-axis. This plot indicates a significant improvement in
the reward collection and a significant decrease in the path
overlap once the communication range is over 15% of the
maximumpossible distance Dmax. Another observation from
Fig. 8a is that the robots are achieving good sampling perfor-
mance with minimal message exchange between them. This
resulting behavior of increased sampling performance with
minimal communication is a desired feature for a decentral-
ized multi-robot sampling approach.

We evaluate the scalability of our approach by increasing
the number of robots involved in sampling (Fig. 8c). The plots
presented in Fig. 8b illustrate the change in total rewards col-
lected by the robotic team as the number of deployed robots
increases (x-axis). It can be observed that the curves for the
total rewards collected plateaued with the increase in the
number of robots. This is because of the bounded sampling
region where all robots are fenced according to our formula-
tion of the problem.

We also evaluated the robot sampling technique on real
bathymetry data collected using two ASVs (Fig. 4d) during
our field trip in Barbados in 2019. Fig. 4a, b present the paths
of multiple robots sampling from these depth maps, where
larger rewards are associated with shallower regions, thus
inducing the robots to cover relatively shallow regions first.
Figure 4c demonstrates the path planning performed on an
aerial image of the coral reef. We demonstrate the result-
ing paths when a varying number of robots start at different
locations, as illustrated in Fig. 4. These results establish the
applicability of our distributed sampling technique for real-
world data sampling scenarios.

Experiments in Fig. 4a present the sampling of bathymetry
data of the seafloor using two autonomous surface vehicles.
Water in its pure form is an insulator, but as found in its nat-
ural state, it contains dissolved salts and other matter which
makes it a partial conductor. The higher its conductivity, the
greater the attenuation of radio signals which pass through
it VK5BR (1987). In a recent study (Dala & Arslan, 2021),
a Long Range (LoRa) communication antenna was found
to achieve a communication range between 80 and 160m
depending on whether that antenna was buffering or not.
Using our proposed algorithm, a region of 1 × 1km can
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Fig. 8 a Accumulated rewards as the number of robots is increased.
The shaded area represents the standard error over 20 trials. b Sam-
pling performance metrics averaged over all the 5 distributions. These
results illustrate higher sampling performance achieved evenwithmini-

mal communication. The shaded area represents the standard error over
100 trials. c Paths for varying team size (2, 4, 5, and 10) on an example
static spatial field

be efficiently sampled by two robots with a communication
range of 140m, which is a realistic range on the surface of
water to achieve reliable communication connection.

6.3 Performance comparison with baseline
techniques

We compare our proposed algorithm to two baseline sam-
pling strategies through simulated experiments that utilize
models derived from both synthetic and real robot deploy-
ment data. The first comparison algorithm is a multi-robot
coverage path planning technique called DARP algorithm
(DivideArea based on the robot’s initial Positions) Kapoutsis
et al. (2017). DARP algorithm divides the region into a num-
ber of equal areas each corresponding to a specific robot, such
that a complete coverage is guaranteed, the coverage path is
of minimum cost and non-backtracking. The second com-
parison algorithm is a multi-robot adaptation of the maxima
search algorithm (Meghjani et al., 2016). Each robot sequen-
tially selects the current maxima in the given spatial field
and plans a path to that location using A-star path planner.
Once the value at a given location is collected, it is reduced
to 0 as in our proposed approach. The first three columns

of Fig. 9 present the illustrations of fixed horizon paths exe-
cuted by the two robots using our proposed approach, the
DARP algorithm, and the multi-robot maxima search algo-
rithm, respectively. The comparison of discounted rewards
achieved by all three techniques is presented in the fourth
column of Fig. 9.

We evaluate our proposed approach by comparing the
performance in terms of total accumulated rewards and the
total discounted rewards. We found that our proposed policy
gradient based sampling technique performs better than the
other two baseline approaches by collecting high rewarding
samples in the early phase of their surveys. As illustrated in
Fig. 9d, h, our approach performs significantly better for sam-
pling fields with uneven hotspot distribution. If the process
of interest is uniformly distributed as in Fig. 9i, our approach
performs comparably with the complete coverage approach
(Fig. 9l). Many environmental processes have a nonuniform
spatial distribution as presented in the depthmaps of the coral
reefs presented in Fig. 9m and our proposed approach was
able to collect high rewarding samples at the early phase of
the survey as depicted by the results in Fig. 9p.
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Fig. 9 Comparing the performance of our sampling approach with two baseline techniques. Illustrative paths of two robots following our algorithm
and the baseline algorithms

6.4 Additional properties

In this section, we present additional properties and potential
extensions to the proposed planning algorithm. The results in
Fig. 10b illustrate an example of the robustness of our multi-
robot sampling system. As shown in Fig. 10a, when there
are no failures, both the robots share and cover the hotspot

regions. The robots are all individually trained to perform
efficient sampling of a spatial field. Hence, even when one of
the robots fails during a survey, the other robot samples from
the hotspot regions and achieves a good overall performance
for the team as depicted in Fig. 10b. These preliminary results
display a fault-tolerance nature of our multi-robot sampling
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Fig. 10 a Sampling paths of the robots when there are no failures. b Sampling paths of the robots when when one of the robots fail after first 75
time steps. c Paths planned for two robots sampling with a constrained action space. Colored stars represent the start points of the robots

strategy andwewould like to further investigate this behavior
in the near future.

In Sect. 3.1, we described that the problem formulation
and our solution can be easily extended to any kind of action
space. The preliminary results validating these claims are
illustrated in Fig. 10c. Here, we present an example of two
robots operating in constrained action space with a suite of
only three “forward moving” actions available in any state:
turn 45◦ left, go straight, and turn 45◦ right. All these actions
are in relation to the current heading of the robot and hence
the heading should be included into our state space to plan for
this action space. We are working on extending our planner
to plan over action spaces designed using motion primitives
that are specific to a robotic platform.

7 Conclusions and future directions

In this paper, we presented a distributed path planning
approach to generate an efficient sampling path for a team of
robots. Our objective is to have paths that are highly reward-
ing in terms of information gain and have minimal overlap.
We achieve higher rewards by using data-driven methods to
determine the best policy and attain minimal overlap through
communication between the robots. Instead of formulating
the multi-robot scenario as a learning problem, each robot
is trained independently and put together to perform a sam-
pling task. Our analysis of the coordinated sampling behavior
shows that the robot team was able to efficiently collect high
rewards with a minimal exchange of messages between the
robots.

Our results demonstrate that, irrespective of the under-
lying distribution that is being sampled, our approach is
able to collect high rewards with a limited communication
range of 10–20% of the Dmax. These outcomes are signif-
icant when sampling in large-scale environments where a
complete communication between the robots is unrealistic.

We also empirically analyzed the scalability and adaptabil-
ity of our approach with changing the number of robots and
changing action space.

In the ongoing work, we will be examining a larger scale
deployment of robots using the methods examined here, and
the impact of physical disturbances on the system. In the
near future, we plan to theoretically analyze the coordination
behavior of the sampling robots. One interesting idea would
be to learn the number of robots needed to efficiently sample
a given spatial field using prior knowledge about the field
itself.
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