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Abstract
Unmanned aerial vehicles (UAVs) have become popular in a wide range of applications, including many military and civilian
uses. State-of-the-art control strategies for these vehicles are typically tailored to a specific platform and are often limited
to a portion of the vehicle’s flight envelope. This article presents a single physics-based controller capable of aggressive
maneuvering for the majority of UAVs. The controller is applicable to UAVs with the ability to apply a force along a body-
fixed direction, and a moment about an arbitrary axis, which includes UAVs such as multi-copters, conventional fixed-wing,
agile fixed-wing, most flying-wings, most tailsitters, some tilt-rotor/wing platforms, and some flapping-wing vehicles. We
describe the implementation of this controller on numerous platforms, and demonstrate autonomous flight in outdoor flight
tests for a quadrotor and an agile fixed-wing aircraft. To specifically demonstrate the extreme maneuvering capability of
the control logic, we perform a rolling flip with the quadrotor and a rolling Harrier and an aggressive turnaround with the
fixed-wing aircraft, all using a single controller.
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List of symbols
A Closed-loop position error state transition matrix
ades Desired acceleration
Cbi Direction cosine matrix from Fi to Fb

Cri Direction cosine matrix from Fi to Fr

c j Control surface constant for the j th actuator
d̂ j Direction of force for the j th actuator
eb Angular error about the body frame axes
faero Aerodynamic force
fc Control force
f c Magnitude of control force (‖fc‖)
fnc Non-control force
f̂ Direction of control force ( f

c

f c )

f̂
re f

Direction of control force of the reference aircraft
Fb Body frame
Fi Inertial frame
Fr Reference body frame
g Acceleration due to gravity
g(usj ) Flapping thrust model
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Δh Height error
I Moment of inertia with respect to center of mass
J j Propeller advance ratio for the j th actuator
kt Propeller thrust coefficient
kq Propeller torque coefficient
Kad Derivative attitude control gain
Kap Proportional attitude control gain
Khi Integral height control gain
Khp Proportional height control gain
Kpd Derivative position control gain
Kpp Proportional position control gain
Kv Proportional speed control gain
m Mass
mc Control moment
mnc Non-control moment
p Position
pre f Reference position
Δp Position error
q Orientation quaternion
qre f Reference orientation quaternion
q̄re f Augmented reference orientation quaternion
qx Quaternion rotation of θx
qy Quaternion rotation of θy
qz Quaternion rotation of θz
Δq Error quaternion
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UAV Unmanned Aerial Vehicle
r j Position vector from the center of mass to the j th

actuator
R Propeller radius
t Time
u f
j Force generated by the j th actuator

us Column matrix of actuator signals
usj Actuator signal for the j th actuator
u j Normalized actuator signal for the j th actuator
uτ
j Torque generated by the j th actuator

V Lyapunov function
v Velocity
vre f Reference velocity
Δv Velocity error
vs, j Slipstream speed over the j th actuator
VTOL Vertical Takeoff and Landing Aircraft
x x-position in Fi

y y-position in Fi

z z-position in Fi

μ Torque cancellation constant
ω Angular velocity
ωre f Reference angular velocity
θ Triad of rotations for position control ([θx θy

θz])
ρ Air density
φ Roll
θ Pitch
ψ Yaw
γ Wing tilt angle
�b Resolved in the body frame
�i Resolved in the inertial frame
�r Resolved in the reference body frame
�x The x component of a vector
�y The y component of a vector
�z The z component of a vector
�prev Value at the previous time step
�0 Scalar part of quaternion
�1:3 Vector part of quaternion
� Hamilton quaternion product
�T Transpose
�∗ Conjugate
�̇ Time derivative

1 Introduction

Furthering the autonomous capabilities of unmanned aerial
vehicles (UAVs) has become a popular research topic due
to their many civilian and military applications. In practice,
the ideal UAV platform is dependent on the mission, as UAV
designs typically trade off maneuverability and flight effi-
ciency, as shown in Fig. 1. For missions in confined cluttered
spaces, rotor-craft are the ideal platform. Formissions requir-

ing long range flight in uncluttered environments, fixed-wing
aircraft are the ideal platform. In missions requiring both
long range flight and flight in confined cluttered spaces, agile
fixed-wing aircraft or tailsittersmay be themost suitable plat-
form.

Over the past decade, researchers have developed con-
trol algorithms to automatically track agile trajectories, using
both rotor-craft and fixed-wing aircraft, as well as more
recently developed hybrid-type platforms such as tailsitter
aircraft. Autonomous aggressive quadrotor flight is achieved
in [17], where the quadrotor autonomously flies through
vertical windows and perches. The flight controller is decom-
posed into discrete phases, where each phase has a local
controller consisting of an outer-loop PID position con-
troller, and an inner-loop PD attitude tracker. In [5], a
quaternion-based PD attitude control algorithm is presented
for a quadrotor which can recover from collisions with walls.

Autonomous agile flight with a tailsitter is achieved in
[21], by demonstrating a level flight to hover transition using
a physics-based cascaded control algorithm. The level flight
to hover transition has also been demonstrated autonomously
with agile fixed-wing aircraft by using a PD control law in
[9], a nonlinear Lyapunov backstepping controller in [23] and
an LQR-Trees controller in [18]. In [19], a control system
is developed that can perform aerobatic maneuvers along a
path. The elevator and rudder are used to track an acceleration
commandusing aPI control law,while the roll can be selected
independently as it is decoupled from path tracking. This
decoupling allows for rolling harrier (constant non-zero roll-
rate) or knife-edge (90◦ roll) flight.

These state-of-the-art control strategies are all tailored to a
specific platform, and many of them are tailored to a specific
maneuver. Use of these strategies would require a different
algorithm for each platform; and even on the same platform,
many approaches require separate controllers and tuning for
each maneuver. While modern autopilot hardware/software
systems, such as the Pixhawk with PX4 are able to control
a multitude of vehicles in conventional flight regimes, they
do so using different control modules for multicopter, fixed-
wing and VTOL vehicles; and these modules use a different
control structure for each type of vehicle.

In this work, we propose a single control strategy which is
capable of performing a wide range of maneuvers and can be
applied to a wide range of platforms. A universal controller
has many advantages; including portability between differ-
ent platforms. Using a single controller for many maneuvers
is also advantageous for agile maneuvering; as the transition
between maneuvers is easier to achieve when the same con-
troller is used in all flight modes—controller switching is
often difficult to achieve smoothly.

The goal of a UAV control system, irrespective of the
platform, is to track position and orientation (six degrees of
freedom). The control strategy is strongly dependent on the
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Fig. 1 Types of unmanned aerial vehicles

UAV’s actuators, which vary with each platform. However,
for the majority of UAVs, the final effect of the actuators
is the same: they produce a force along a body-fixed axis,
and moments about three linearly independent axes, which
is equivalent to a moment about an arbitrary axis. The rea-
son for this similarity is most applications require complete
control of the UAV orientation, thus requiring the ability to
exert amoment about an arbitrary axis. TheUAV requires the
ability to generate a force in order to counteract gravity, and
accelerate the vehicle in a desired direction. Although the
control problem would be simplified if this force could be
directed in an arbitrary manner, achieving this would require
additional actuators, whichwould in turn addweight and cost
to the platform. In order to save this weight, most UAV plat-
forms are built with one body-fixed direction of force, and the
under-actuated system controls position by re-orienting itself
to re-direct this force. It is for this class ofUAVs forwhich our
controller is applicable, which includes multi-copters, con-
ventional fixed-wing, agile fixed-wing, most flying-wings,
most tailsitters, some tilt-rotor/wing platforms, and some
flapping-wing vehicles.

In [10], a generalized control strategy is developed for
the class of vehicles with the ability to generate a body-fixed
force, and three linearly independentmoments.However, this
strategy specifically assumes the vehicle generates small lift
and drag forces. This assumption causes the strategy to be
applicable for most wingless VTOL vehicles such as multi-
rotors, but not applicable for winged vehicles such as fixed-
wing aircraft or tailsitters.

A continuation of this approach is presented in [20], in
which the controller design does not assume small lift and
drag forces. The authors present a controller that aims to
exert a desired force by using angular velocity as a control
input to align the body-fixed thrust with the direction of the
desired force. This desired force is calculated based on a ref-
erence acceleration, position and velocity feedback, gravity,
and aerodynamic forces. A limitation to this approach is that

it is designed for axisymmetric aerial vehicles,which exclude
vehicleswith asymmetric body shapes such as a conventional
fixed-wing aircraft.

This approach is continued further in [11], which allows
the control logic to be applied to fixed-wing aircraft, and
is successfully implemented in a simulation environment.
While this work presents a methodology towards a unified
control approach in theory, it is unclear whether this method
would work as well in practice. The controller feedback is
based on the angle of attack; which is difficult to sense and
estimate. In addition, the simulation control inputs are an
applied torque and thrust. Although aircraft control surfaces
effectively apply torque, it is difficult to know the magni-
tude of this torque, and thus in a hardware implementation,
it’s likely that the torque to control surface mapping is not
accurate.

In [4], we presented a control architecture that can be
applied to any aerial system capable of producing a moment
about an arbitrary axis and a force along a body-fixed axis.
We specifically demonstrated how it would be applied to a
quadrotor and an agile fixed-wing aircraft, and validated the
approach in simulation. In this work, in addition to a quadro-
tor and agile fixed-wing aircraft, we demonstrate how this
approach could be applied to a flapping-wing UAV, a tailsit-
ter aircraft, and a tilt-wing aircraft.We also verify this unified
control approach with experiments; specifically on a quadro-
tor (see Fig. 3) and an agile fixed-wing platform (see Fig. 4).
We perform both simple and aggressivemaneuvers with both
platforms using a single control strategy. This work presents
a novel unified control framework that can be applied to a
wide range of unmanned aerial vehicles, and to the best of
our knowledge, this is the only control architecture that can
be applied to many types of UAVs that has been verified
experimentally.
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2 Modeling

Three coordinate systems are used in this paper to describe
the controller and the dynamics of a UAV. Fi is the ground-
fixed inertial framewith north-east-down basis vectors;Fb is
the body-fixed frame; and a third frame,Fr , is the coordinate
system fixed to the reference orientation of the UAV, called
the reference body frame, and will be used in the controller
methodology presented in Sect. 3.

The translational and rotational dynamics of the UAVs
of interest can be derived from the Newton-Euler equations
and Poisson’s equation for a single rigid body, which can be
succinctly stated in the following first-order form:

ṗi = CT
bivb (1)

v̇b = 1

m
(fncb + fcb) − ωb × vb (2)

q̇ = 1

2
q � ωb (3)

ω̇b = I−1
b

(
(mnc

b + mc
b) − ωb × Ibωb

)
(4)

where � is the Hamilton quaternion product, pi is the
absolute position of the UAV centre of mass expressed
as components in Fi (designated with subscript i) and q
is the aircraft orientation, expressed as a unit quaternion,

q = [
q0,qT1:3

]T
. Analogously at the velocity level, vb is the

translational velocity of the centre of mass andωb is the rota-
tional velocity of the UAV, both expressed in the body-fixed
frame (designated with subscript b). The rotation matrix Cbi

describes the orientation of the body frame relative to the
inertial frame;m is the mass of the UAV, and Ib is the second
moment of mass of the UAV relative to the center of mass, in
the body frame. The cumulative forces and moments acting
on theUAVare separated into a control andnon-control force,
fcb and fncb , and a control and non-control moment, mc

b and
mnc

b . The control force is caused by a thrust from either a pro-
peller and or flapping-wing, whereas the non-control force
stems from gravity, lift, and drag. The control moment can
be generated by thrusts being applied far from the center of
mass, propeller drag torque, and control surfaces,whereas the
non-control moments can be caused by propeller gyroscopic
effects, lift, and drag. Givenwe are specifically designing our
controller for unmanned aerial vehicles capable of exerting
a body-fixed force, we can further simplify the control force
equation:

fcb = f c f̂b (5)

where f̂b is a unit vector in the direction of the body-fixed
force, resolved in the body frame, and f c is the magnitude
of the control force.

Fig. 2 Control architecture

3 Controller

We design a non-linear controller based on the underlying
physics of the UAV while avoiding any plant linearization
approximations. This allows simple control laws to achieve
good performance throughout the entire flight envelope of the
UAV. The control logic is comprised of two parts. The first
stage determines the controlmoment (along an arbitrary axis)
and force (along a body-fixed axis) needed to track the refer-
ence trajectory of the UAV, and the second stage allocates the
control moment and force to UAV-specific actuator signals.
The architecture is modular, containing a position controller,
a force controller, an attitude controller, and a control allo-
cation block. This modular structure is shown by the block
diagram in Fig. 2.

We assume a state estimator provides pose and twist esti-
mates of the aircraft, and a trajectory generation algorithm
specifies a reference pose and twist (pre fi , qre f , vre fr , and

ω
re f
r ) to be tracked. First, the position controller uses the

linear position and velocity errors to modify the reference
orientation. This new augmented orientation, q̄re f , is simi-
lar to the reference orientation qre f , but modified to correct
translational motion errors. The attitude controller then gen-
erates controlmoments that track this augmented orientation.
The force control is decoupled from above and its goal is to
counteract gravity and the aerodynamic forces, as well as
track the height and velocity of the UAV. The control allo-
cation is achieved by determining the forces and moments
that are exerted on the UAV given a set of actuator com-
mands (us), and then this relationship is inverted to obtain a
set of actuator commands that apply the commanded control
moment and force.

3.1 Position controller

The position controller augments the reference attitude of
the UAV in order to redirect the body-fixed force to a direc-
tion that reduces translational errors. While there are many
ways of achieving this, we augment our reference attitude by
performing three successive rotations. This triad of rotations
is computed using the following equation:

Θ = f̂
re f
r × (KppCri (p

re f
i − pi ) + Kpd (v

re f
r − CriCT

bivb))

(6)
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where the direction of body-fixed force associated with the

reference orientation is denoted by f̂
re f
r , and the PD control

law on translational motion are both resolved in the body
frame associated with the reference attitude, Fr . Note that

f̂
re f
r and f̂b are component-wise equal. The proportional and
derivative gains are denoted by Kpp and Kpd respectively.
Equation (6) uses the direction cosine matrices from inertial
to body,Cbi , and inertial to reference,Cri , which are formed
from the attitude,q, and reference attitude,qre f , respectively.

The gains Kpp and Kpd are chosen to be small enough
that typical errors in position and velocity lead to the com-
ponents of 1

2Θ , (Θx
2 ,

Θy
2 ,

Θz
2 ), being small angles. In the

chance that any component of 1
2Θ becomes large, we limit

each component ofΘ to 45◦ to ensure the half of each compo-
nent can be considered small. Without this limitation, very
large position errors could cause the components of Θ to
become so large that the augmented orientation no longer
points the thruster in a direction that reduces errors in posi-
tion.

We form three quaternion rotations fromΘx , Θy andΘz :

qx =
[
cos

Θx

2
, sin

Θx

2
, 0, 0

]T

(7a)

qy =
[
cos

Θy

2
, 0, sin

Θy

2
, 0

]T

(7b)

qz =
[
cos

Θz

2
, 0, 0, sin

Θz

2

]T

(7c)

We can then form our augmented reference orientation by
performing three successive rotations of the original refer-
ence orientation:

q̄re f = qre f � qz � qy � qx (8)

which can be interpreted as taking the reference orientation,
and then subsequently rotating it about the z axis of Fr , and
then rotating by intermediary y axis, and then an intermediary
x axis. The order of rotations affect the outcome, and thus this
order is chosen based on the body frame definitions discussed
in Sect. 4.

While this augmented reference orientation could be com-
puted in various other ways, such as treating Θ as an
axis-angle rotation, we elect to use three successive rotations
in order to keep the augmented reference orientation close
to the original reference orientation. For any UAV for which
this controller is applicable, there is part of the attitude that
does not affect the thrust direction, such as the roll of a fixed-
wing aircraft, or the yaw of quadrotor. Ideally, the position
controller wouldn’t affect this portion of the augmented ref-
erence attitude. Performing these three successive rotations

has a smaller effect on that portion of the augmented refer-
ence attitude then say, treating Θ as an axis-angle rotation.

Ultimately, these rotations redirect the thrust in order to
reduce linear position and velocity error that are not along
the force axis; the errors along the force axis are corrected
by the force controller discussed in Sect. 3.2. This approach
is generalized to an arbitrary thrust axis, making it suitable
for quadrotors, tailsitters, agile aircraft, or even tilt rotors
undergoing transitions. In addition, this methodology has no
limitations on the actual or reference orientation, and remains
valid for any orientation of the UAV.

Another advantage to this approach is the modularity of
the architecture. The modularity makes it very easy to turn
on and off position control (by setting the gains to zero). This
is advantageous for gain tuning, as it is easier to first focus
on tuning the attitude controller without use of the position
controller, and once the attitude tracker is satisfactory the
position controller can then be tuned. Another case where
the ability to easily turn off the position controller is advan-
tageous is in extreme maneuvering. Say the higher level goal
of amaneuver is to perform aflip, and the position of theUAV
is irrelevant, one could simply turn off the position controller
during the flip to achieve better attitude tracking. The last sce-
nario where the ability to turn off the position controller is
advantageous is in a manual/pilot assist mode, where a pilot
is the ‘position controller’ and specifies the augmented refer-
ence attitude with a joystick, and then the inner-loop attitude
controller can still track this manually generated augmented
reference attitude.

3.2 Force controller

The control force is chosen such that it cancels the aero-
dynamic and gravity forces, and accelerates the vehicle
according to

adesb = Kv(CbiCT
riv

re f
r − vb) + KhpΔhb + Khi

∫
Δhb dt

(9)

where

Δhb = Cbi [0, 0, (pre fi,z − pi,z)]T (10)

The desired acceleration is based on a proportional control
lawon the velocity error, using proportional velocity gain Kv ,
and a proportional-integral control law on the height error,
with the proportional and integral height gains denoted by
Khp and Khi respectively.

We compute the control force such that it will counteract
gravity, counteract the aerodynamic forces (lift and drag), as
well accelerate the vehicle according to Eq. (9). The mag-
nitude of the control force, f c, which is applied along the
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body-fixed force axis, is calculated as follows:

f c = (−mCbigi − faerob + madesb )T f̂b (11)

where the UAV mass is denoted by m, the acceleration due
to gravity, expressed in the inertial frame is denoted by gi ,
and the aerodynamic force is denoted by faerob , which is a
function of theUAV’s geometry and current velocity. A curve
fit of this force as a function of velocity can be approximated
from a simulation environment for winged vehicles, and can
be approximated as zero or a pure drag force for wingless
vehicles. Ultimately, the desired total force in the parentheses
in Eq. (11) would be the desired control force if force could
be generated in any direction, however, since it can only be
generated along the body-fixed force axis, f̂b, the commanded
control force, f c, is the projection of the desired total force
onto this axis.

3.3 Attitude controller

The goal of the attitude controller is to compute a control
moment that will track the augmented reference orientation
output from the position controller. The attitude controller
computes an error quaternion which is used to obtain angular
errors about the body axes, which are in turn, mapped to
desired moments.

The error quaternion, Δq, is calculated by premultiplying
the augmented reference quaternion, q̄re f , by the attitude
quaternion conjugate, q∗:

Δq = q∗ � q̄re f (12)

The error quaternion is then converted to angular errors
about the body frame axes, eb, using:

eb =
⎧
⎨

⎩

2 cos−1(Δq0)
Δq1:3

||Δq1:3|| , ||Δq1:3|| �= 0

0, ||Δq1:3|| = 0
(13)

where Δq1:3 refers to the vector part of the error quaternion,
andΔq0 refers to the scalar component. To ensure the angular
errors remain less than 180◦, if Δq0 < 0, then −Δq is used
instead of Δq in Eq. (13).

A PD controller is used to calculate the moment needed
to correct the angular error. Two gain matrices,Kap andKad ,
are used to map an angular error to a desired angular accel-
eration, which is multiplied by the inertia matrix to obtain a
desired control moment about each axis. This multiplication
by the inertia matrix could be removed and factored into the
control gains, but it allows for easier transitioning to differ-
ent platforms while using a similar set of control gains. The

control moment is calculated by:

mc
b = Ib(Kapeb + Kad(CbiCT

riω
re f
r − ωb)) + μ(ωb × Ibωb)

(14)

wheremc
b is the controlmoment to be applied by the aircraft’s

actuators. The second part of Eq. (14) can precisely cancel
the gyroscopic coupling torque by setting μ = 1. However
in practice, whether μ = 0 or μ = 1 there is little difference
due to the relatively small inertia tensor and angular velocity
values.

A stability analysis of the attitude controller is shown in
Sect. 3.4.1, and a similar attitude controller presented in [25],
is shown to be globally stable.

3.4 Stability analysis

Since a UAV has four control inputs, it is only possible to
achieve asymptotic tracking for at most four output states.
This leads to most researchers developing controllers for
either position tracking flight modes (and one attitude state),
or attitude tracking flight modes (and one position state)
[14]. However, there are many circumstances where it is
beneficial to forego the asymptotic tracking of four states
in order to have some control over all six states (the entire
position and attitude). Consider a conventional fixed wing
aircraft, the ultimate goal is to control position, however,
there are critical aspects of the attitude that must be con-
trolled, such as avoiding stall, or flying with an inefficient
orientation. In this scenario, foregoing asymptotic tracking
of position, for the ability to avoid stalling, is worthwhile if
the controller can still keep the tracking errors within certain
bounds. By contrast, asymptotic tracking of attitude while
having no position control does not make sense for a conven-
tional fixed-wing aircraft. Aerobatic flight is another example
where controlling all six states is necessary, since the desired
maneuver is a trajectory in both attitude and position. For
these reasons, we develop a controller that tries to track all
six states, where the controller constantly trades off between
position and attitude tracking. While it is not possible to
achieve asymptotic tracking of all six states, we are able to
demonstrate the attitude controller is globally asymptotically
stable with regards to regulation of the augmented reference
orientation, which is the original reference orientation, but
modified to control position. For the position error stabil-
ity analysis we assume the aircraft attitude is the augmented
reference attitude. This assumption is based on the fast rota-
tional and slow translational dynamics of aircraft [22]. Under
this assumption we show the position errors are Lyapunov or
asymptotically stable, depending on the reference orientation
and platform.
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3.4.1 Attitude

We recall the attitude kinematics as

q̇ =
[
q̇0
q̇1:3

]
= 1

2

[
q0
q1:3

]
�

[
0
ωb

]
. (15)

and the error quaternion defined as

Δq = q∗ � q̄re f . (16)

We can obtain our error quaternion kinematics by taking the
time derivative of both sides of the equation

Δq̇ = q̇∗ � q̄re f + q∗ � ˙̄qre f . (17)

We show the stability analysis for regulation, so ˙̄qre f = 0.
By simplifying and substituting Eq. (15) into Eq. (17) we
obtain

Δq̇ = 1

2

([
q0
q1:3

]
�

[
0
ωb

])∗
� q̄re f . (18)

Using the property for two quaternions a and b, (a�b)−1 =
b−1 � a−1, and for unit quaternions, (a � b)∗ = b∗ � a∗,
Eq. (18) becomes

Δq̇ = 1

2

[
0

−ωb

]
�

[
q0
q1:3

]∗
� q̄re f . (19)

Recalling our error quaternion definition from Eq. (16),
Eq. (19) becomes

Δq̇ = −1

2

[
0
ωb

]
� Δq, (20)

and by multiplying through becomes

Δq̇ =
[

Δq̇0
Δq̇1:3

]
= 1

2

[
ωT
b Δq1:3

−Δq0ωb − ωb × Δq1:3

]
. (21)

Turning our attention to the attitude dynamics, we recall
the rotational equations ofmotion, subject to no disturbances,
as

Ibω̇b = mc
b − ωb × Ibωb (22)

where our control torque mc
b comes from Eqs. (13 and 14).

For the regulation task, ω
re f
r = 0, and the control torque

becomes

mc
b = Ib(Kap2 cos

−1(Δq0)
Δq1:3

||Δq1:3|| − Kadωb)

+μ(ωb × Ibωb). (23)

We can replace ||Δq1:3|| with
√
1 − Δq20 in Eq. (23) since

Δq is a unit quaternion,which can be substituted intoEq. (22)
to obtain the closed-loop attitude dynamics

Ibω̇b = Ib(Kap2 cos
−1(Δq0)

Δq1:3√
1 − Δq20

− Kadωb)

+(μ − 1)(ωb × Ibωb). (24)

We consider a Lyapunov function candidate

V = 1

2
ωT
b (IbKap)

−1Ibωb + 2(cos−1(Δq0))
2 (25)

At the equilibrium point, Δq = [1 0 0 0]T and ωb = 0,
V = 0. We require Kap > 0, which makes V > 0 for all
error quaternion and angular velocity combinations besides
the equilibrium point. We can then take the time derivative
of the Lyapunov function candidate and obtain

V̇ = ωT
b (IbKap)

−1Ibω̇b − 4 cos−1(Δq0)√
1 − Δq20

Δq̇0. (26)

We can substitute Eqs. (21 and 24) into Eq. (26) to obtain

V̇ = ωT
b (IbKap)

−1
(
Ib(Kap2 cos

−1(Δq0)
Δq1:3√
1 − Δq20

−Kadωb

)
+ (μ − 1)(ωb × Ibωb)) − 4 cos−1(Δq0)√

1 − Δq20

×(
1

2
ωT
b Δq1:3), (27)

which simplifies to

V̇ = −ωT
b (IbKap)

−1IbKadωb + ωT
b (IbKap)

−1(μ − 1)

×(ωb × Ibωb) + ωT
b (IbKap)

−1(IbKap)2 cos
−1(Δq0)

× Δq1:3√
1 − Δq20

− 4 cos−1(Δq0)√
1 − Δq20

(
1

2
ωT
b Δq1:3), (28)

123



866 Autonomous Robots (2021) 45:859–883

which simplifies to

V̇ = −ωT
b Kap

−1I−1
b IbKadωb + ωT

b (IbKap)
−1(μ − 1)

× (ωb × Ibωb) + 2 cos−1(Δq0)√
1 − Δq20

(ωT
b Δq1:3 − ωT

b Δq1:3).

(29)

If we set μ = 1 we get a precise cancellation of the gyro-
scopic coupling torque. Alternatively, this term could go to
zero by removing the multiplication of Ib in Eq. (23), and
forcing Kap

−1 to be a linear combination of Ib and the iden-
tity matrix, which is shown in [25]. We can further simplify
our Lyapunov function derivative to

V̇ = −ωT
b Kap

−1Kadωb. (30)

As we can see in Eq. (30), if we require Kap
−1Kad > 0

our Lyapunov function derivative is negative semi-definite,
showing the attitude errors are globally stable. We can show
these errors are globally asymptotically stable usingLasalle’s
invariant set theorem.

We solve for the error states when V̇ = 0:

V̇ = −ωT
b Kap

−1Kadωb = 0 ⇒ ωb = 0 ⇒ ω̇b = 0

Since V̇ = 0 implies ωb = 0 and ω̇b = 0, then when V̇ = 0
the closed-loop attitude dynamics, represented by Eq. (24),
simplifies to

0 = IbKap2 cos
−1(Δq0)

Δq1:3√
1 − Δq20

. (31)

Since Ib > 0 and Kap > 0, for this equation to hold Δq =
[1 0 0 0]T .

Applying Lasalle’s invariance principle, since V̇ ≤ 0 for
allΔq,ωb, and the only solution to V̇ = 0 exists whenΔq =
[1 0 0 0]T andωb = 0, thenwe can concludeΔq = [1 0 0 0]T
andωb = 0 is an asymptotically stable equilibrium point.We
can combine this with our Lyapunov analysis to conclude the
attitude errors are globally asymptotically stable.

3.4.2 Position

We now turn over attention to the stability analysis of posi-
tion and velocity errors. First we define our position error,
resolved in the inertial frame, as

Δpi = pre fi − pi (32)

and our velocity error, also resolved in the inertial frame, as

Δvi = Δṗi = ṗre fi − ṗi = vre fi − vi . (33)

For our stability analysis we consider constant velocity tra-
jectories, causing the velocity error to propagate according
to

Δv̇i = −v̇i = −gi − faeroi

m
− f c

m
f̂i . (34)

The direction, resolved in the inertial frame, in which the
aircraft can exert thrust, f̂i , will depend on the aircraft’s ori-
entation as shown in

f̂i = CT
bi f̂b. (35)

Since aircraft have fast rotational and slow translational
dynamics [22], in the position stability analysis we assume
the aircraft attitude, represented by both q and Cbi , is the
attitude output from the position controller, the augmented
reference attitude, which is represented by both q̄re f andCr̄ i .
This assumption causes Eq. (35) to become

f̂i = CT
r̄i f̂b. (36)

We utilize Eqs. (6–8) to compute q̄re f . We can substitute
our position and velocity error definitions in Eqs. (32 and 33)
into Eq. (6) to obtain

Θ = f̂
re f
r × Cri (KppΔpi + KpdΔvi ). (37)

As mentioned in Sect. 3.1, the gains Kpp and Kpd are cho-
sen to be small enough that typical errors in position and
velocity lead to Θx

2 , Θy
2 , and Θz

2 being small. This small
angle assumption allows us to make the approximations:
sin θx

2 ≈ θx
2 , sin

θy
2 ≈ θy

2 , sin
θz
2 ≈ θz

2 , cos
θx
2 ≈ 1,

cos θy
2 ≈ 1, and cos θz

2 ≈ 1. These approximations are sub-
stituted into Eqs. (7a–7c), which are then substituted into
Eq. (8) to obtain q̄re f . The direction cosine matrix Cr̄ i can
be obtained from q̄re f .

For the remainder of the proof, we must specify the
type of UAV and a reference orientation. We consider an
agile fixed-wing aircraft in both a level flight and hover
reference orientation, followed by a quadrotor in a hover
reference orientation. For brevity, we only present analysis
using these three examples but we have also analyzed an
agile fixed-wing aircraft performing a knife-edge, and more
platforms/reference orientations could be analyzed.

3.4.3 Agile fixed-wing level flight

By using a reference orientation of 0◦ roll, 0◦ pitch, and 0◦
yaw, and neglecting higher order terms because of the small
Kpp and Kpd assumption, we can obtain the direction of the
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thrust in the inertial frame as

f̂i =
⎡

⎣
1

KppΔpy + KpdΔvy
K ppΔpz + KpdΔvz

⎤

⎦ , (38)

which can be substituted into Eq. (34) to obtain the velocity
error dynamics

Δv̇i =
⎡

⎢
⎣

− f c+ f aerox
m

− f c

m (KppΔpy + KpdΔvy)

−g − f aeroz
m − f c

m (KppΔpz + KpdΔvz)

⎤

⎥
⎦ . (39)

As we can see, aerodynamic force only acts in the x (drag)
and z (lift) directions, because of the 0◦ roll, 0◦ pitch, and 0◦
yaw reference orientation. We assume the reference orienta-
tions are chosen such that the lift and weight forces cancel
out. The control force, f c, can be obtained from Eqs. (9 and
11), which simplifies to f c = KvΔvx− f aerox with this refer-
ence orientation and neglecting higher-order terms because
of the small Kpp and Kpd assumption. We also must realize
the control force is the magnitude of an actuator output (usu-
ally a propeller) which has a physical limitation, denoted by
f c,max . This bounds f c: 0 ≤ f c ≤ f c,max . We can further
simplify our velocity error dynamics to

Δv̇i =
⎡

⎢
⎣

− KvΔvx
m

− f c

m (KppΔpy + KpdΔvy)

− f c

m (KppΔpz + KpdΔvz)

⎤

⎥
⎦ . (40)

By not substituting the control law for f c into the y and
z components, and allowing it to be any value such that
0 ≤ f c ≤ f c,max , the closed-loop translational dynamics
become linear, and can be written in the form

[
Δṗi
Δv̇i

]
= A

[
Δpi
Δvi

]
, (41)

where

A =

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 − Kv

m 0 0

0 − Kpp f c

m 0 0 − Kpd f c

m 0

0 0 − Kpp f c

m 0 0 − Kpd f c

m

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

. (42)

We can compute the closed-loop eigenvalues of A and
obtain

λ1 = 0 (43)

λ2 = −Kv

m
(44)

λ3,4 =
−Kpd f

c ±
√

− f c(4Kppm − K 2
pd f

c)

2m
(45)

λ5,6 =
−Kpd f

c ±
√

− f c(4Kppm − K 2
pd f

c)

2m
(46)

If − f c(4Kppm − K 2
pd f

c) ≤ 0, then the real part of all
eigenvalues of the closed-loopAmatrix are less than or equal
to zero. Since f c ≥ 0, we need 4Kppm − K 2

pd f
c ≥ 0. This

leads to
4Kppm

K 2
pd

≥ f c, which can be guaranteed if the control

gains are chosen such that
4Kppm

K 2
pd

≥ f c,max . Assuming the

gains meet this criterion, the closed-loop system is Lyapunov
stable. We could achieve asymptotic stability by including
Δpx and Δpy in the force controller, but we leave out these
terms so the aircraft can achieve path following as opposed
to position tracking.

3.4.4 Agile fixed-wing hover

We can go through the same steps in hovering flight as done
in level flight. For hover we specify a reference orientation
of 0◦ roll, 90◦ pitch, and 0◦ yaw. By neglecting higher order
terms because of the small Kpp and Kpd assumption we can
obtain the direction of the thrust in the inertial frame as

f̂i =
⎡

⎣
KppΔpx + KpdΔvx
K ppΔpy + KpdΔvy

−1

⎤

⎦ , (47)

which can be substituted into Eq. (34) to obtain the velocity
error dynamics

Δv̇i =
⎡

⎢
⎣

− f c

m (KppΔpx + KpdΔvx )

− f c

m (KppΔpy + KpdΔvy)
f c

m − g

⎤

⎥
⎦ . (48)

Aswe can see, there is no aerodynamic force (lift and drag)
while hovering, because the aircraft is stationary. As done
previously, the control force can be obtained from Eqs. (9
and 11), which simplifies to f c = mg − KhpΔpz − KvΔvz
with this hover reference orientation and neglecting higher-
order terms because of the small Kpp and Kpd assumption.
We can further simplify our velocity error dynamics to

Δv̇i =
⎡

⎢
⎣

− f c

m (KppΔpx + KpdΔvx )

− f c

m (KppΔpy + KpdΔvy)

− 1
m (KhpΔpz + KvΔvz)

⎤

⎥
⎦ . (49)

Similar to the level flight analysis, by not substituting the
control law for f c into the x and y components, and allowing
it to be any value such that 0 ≤ f c ≤ f c,max , the closed-loop
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translational dynamics become linear, and can be written in
the form
[
Δṗi
Δv̇i

]
= A

[
Δpi
Δvi

]
(50)

where

A =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

− Kpp f c

m 0 0 − Kpd f c

m 0 0

0 − Kpp f c

m 0 0 − Kpd f c

m 0

0 0 − Khp
m 0 0 − Kv

m

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

(51)

We can compute the closed-loop eigenvalues of A and
obtain

λ1,2 =
−Kv f c ±

√
K 2

v − 4Khpm

2m
(52)

λ3,4 =
−Kpd f

c ±
√

− f c(4Kppm − K 2
pd f

c)

2m
(53)

λ5,6 =
−Kpd f

c ±
√

− f c(4Kppm − K 2
pd f

c)

2m
(54)

Following the same analysis as the level flight case, we

require
4Kppm

K 2
pd

≥ f c,max . In addition, K 2
v − 4Khpm ≤ 0,

which implies K 2
v

4m ≤ Khp . Thus all closed-loop eigenval-
ues are less then zero, proving the agile fixed-wing aircraft
position is asymptotically stable in hover conditions.

3.4.5 Quadrotor hover

We can repeat the same steps for hovering quadrotor as done
for the agile fixed-wing aircraft. For a hovering quadrotor
we specify a reference orientation of 0◦ roll, 0◦ pitch, and 0◦
yaw. By neglecting higher order terms because of the small
Kpp and Kpd assumption, we can obtain the direction of the
thrust in the inertial frame as

f̂i =
⎡

⎣
KppΔpx + KpdΔvx
K ppΔpy + KpdΔvy

−1

⎤

⎦ , (55)

which can be substituted into Eq. (34) to obtain the velocity
error dynamics

Δv̇i =
⎡

⎢
⎣

− f c

m (KppΔpx + KpdΔvx )

− f c

m (KppΔpy + KpdΔvy)
f c

m − g

⎤

⎥
⎦ . (56)

Aswe can see, there is no aerodynamic force (lift and drag)
for a hovering quadrotor. As done previously, the control
force can be obtained from Eqs. (9 and 11), which simplifies
to f c = mg − KhpΔpz − KvΔvz with this hover reference
orientation and neglecting higher-order terms because of the
small Kpp and Kpd assumption. We can further simplify our
velocity error dynamics to

Δv̇i =
⎡

⎢
⎣

− f c

m (KppΔpx + KpdΔvx )

− f c

m (KppΔpy + KpdΔvy)

− 1
m (KhpΔpz + KvΔvz)

⎤

⎥
⎦ . (57)

These closed-loop dynamics are identical to the hovering
agile fixed-wing aircraft. Following the same analysis for the
hovering agile fixed-wing aircraft, we can show the closed-
loop system is asymptotically stable.

4 Control allocation

We now need to map the control moment and body-fixed
force to actuator signals and this process is platform-specific.
We use simple and computationally inexpensive models to
approximate this mapping; opposed to using more accurate
and computationally expensive models. The inherent prop-
erties of a closed-loop control system enables the control
performance to succeed despite some inaccuracies in the con-
trol allocation step. We first discuss actuator models used for
most aerial systems: a propeller, a control surface, and a flap-
ping surface. We then discuss how these actuators are used
to apply a moment and body fixed-force, specifically for a
quadrotor, an agile fixed-wing, a tailsitter, a flapping-wing,
and a tilt-wing aircraft.

4.1 Actuator properties

Each type of actuator has an input signal denoted by usj for
the system’s j th actuator, and this signal corresponds to a
force and torque, denoted by u f

j and uτ
j , which are resolved

in the body frame.

4.1.1 Propeller

For a propeller, we consider the input signal, usj , to be the
rotational speed of the propeller, and this can be mapped to
a thrust and torque as follows:

u f
j = kt (J j )u

s2
j f̂b (58a)

uτ
j = ±kq(J j )u

s2
j f̂b (58b)

where the propeller thrust and torque coefficients are denoted
by kt and kq (we drop the j subscript because each platform
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contains only one type of propeller). Simplified thrust and
torque models assume kt and kq are constant, which is valid
for stationary propellers (i.e. hovering flight). A quadrotor is
usually in a near-hover state and thus we assume kt and kq
are constant. However, an agile fixed-wing, tailsitter, and tilt-
wing aircraft all fly at higher speeds, and thus the propeller is
not stationary. As the aircraft flies faster the same propeller
rotational speed will produce less force, as the difference in
airflow velocity entering and leaving the propeller lessens.
We account for this phenomenon by modeling the thrust and
torque coefficients as a function of advance ratio, J , using the
model presented in [13], where the advance ratio is defined
as

J j = ||vb||
2R

usj,prev
60

(59)

where usj,prev is the propeller rotational speed at the previous
time step, in RPM, and R is the propeller radius. The advance
ratio is bounded such that 0 ≤ J j ≤ 0.5, which ensures the
propeller is in its normal working state [12].

4.1.2 Control surface

Air flowing over a deflected surface changes direction, caus-
ing a change in momentum of the air, which ultimately exerts
a force on the aircraft. For the same magnitude of deflection,
faster flowing air undergoes a greater change in momentum,
producing a larger force. These forces are typically small in
magnitude but far from the aircraft center of mass; thus are
ultimately used to exert moments on the aircraft. We model
the force and torque generated by a control surface as follows:

u f
j = c jv

2
s, j d̂ j u

s
j (60a)

uτ
j = 0 (60b)

where the input signal is the deflection angle, the direction
of the force is d̂ j , and the constant specific to the control
surface and atmospheric conditions is denoted by c j . In the
aircraft community it is common to scale the control surface
effectiveness with the square of the airspeed [7]. In con-
ventional aircraft, the speed of the airflow over the control
surfaces is equivalent to the speed of the aircraft. However,
for small agile aircraft the propeller slipstream effects must
also be considered. For example, a hovering agile aircraft is
stationary but yet generates all of its control authority from
the propeller slipstream. Thus we scale the control surface
effectiveness with the slipstream speed, vs, j , instead of the
aircraft speed. We can estimate this slipstream speed, vs, j ,

using momentum theory [16]:

vs, j =
√

v2b,l + 2||u f
k ||

ρ(πR2)
(61)

where the aircraft longitudinal speed is denoted by vb,l , and
the commanded thrust force corresponding to the thruster
inducing the slipstream is denoted by ||u f

k ||. For example,
the agile fixed-wing aircraft has one thruster, thus the slip-
stream approximation is the same for each control surface.
Whereas the tailsitter has two thrusters, causing the slipsteam
approximation for control surface 3 to be based on thruster
1, and the slipstream approximation for control surface 4 is
based on thruster 2 (see Fig. 5).

The approximated slipstream is bounded to always be
greater than the slipstream in a hover (calculated using
Eq. (61), and setting vb,l = 0 and ||u f

k || = mg
number of thrusters ),

to avoid excessive control action at low slipstream values.
In addition, we filter the approximated slipstream using
a second-order low-pass filter with a 2 Hz natural fre-
quency and .707 damping ratio, since a noisy approximated
slipstream will cause abrupt changes in control surface
deflections. The low-pass filter introduces some delay, but
considering it takes some time for the flow created by the
propeller to reach the control surfaces downstream, adding
this delay is consistent with the slipstream we are modeling.

4.1.3 Flapping surface

If we assume that we can experimentally obtain a func-
tion relating the flapping frequency of a flapping surface to
the mean thrust it generates, we can also apply this univer-
sal control approach to flapping-wing vehicles. Using this
assumption we can generally model a flapping surface as:

u f
j = g(usj )f̂b (62a)

uτ
j = 0 (62b)

where we assume this function g can be obtained experimen-
tally, and usj is the frequency of the flapping surface.

4.1.4 Actuator dynamics

The simplified models discussed above neglect the dynam-
ics of the actuators. In reality these actuators are dynamic
systems, and a propeller rotational speed, a control surface
deflection, or a flapping surface frequency cannot be assigned
instantaneously, but could be modeled by an ordinary dif-
ferential equation. However in the context of small UAVs,
the actuator dynamics occur much faster than the attitude
dynamics, enabling one to neglect these effects in the control
allocation step. In Sect. 5, we validate the controller in simu-
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Fig. 3 Spiri quadrotor

lation (where actuator dynamics aremodeled in the plant) and
in flight experiments (where actuator dynamics are present),
and the control strategy is shown to be effective. As the vehi-
cles scale in size, if the actuator dynamics slow down in
comparison to the attitude dynamics, it could be necessary
to account for the actuator dynamics in the control allocation
step.

4.2 Obtaining actuator commands

We denote the position vector from the UAV’s center of mass
to the j th actuator’s applied force as r j , which is resolved in
the body frame.We can then compute the forces and torque’s
created by the control inputs as:

mc
b =

k∑

j=1

r j × u f
j + uτ

j (63a)

fcb = f c f̂b =
k∑

j=1

u f
j (63b)

where the system contains k actuators. We then make
platform-specific assumptions that allow one to solve for the
actuator signal as a function of the appliedmoment and body-
fixed force. We discuss these details for a quadrotor, an agile
fixed-wing, a tailsitter, a flapping-wing, and a tilt-wing air-
craft.

4.2.1 Quadrotor

Consider a quadrotor with an ‘X’ configuration, such as the
Pleiades Spiri shown in Fig. 3.

Aquadrotor platformhas four propellers;we substitute the
propeller model in Eq. (58) into Eq. (63) for j = 1, 2, 3, 4
to obtain:

mc
b =

4∑

j=1

r j × ktu
s2
j f̂b ± kqu

s2
j f̂b

=
4∑

j=1

(r j × kt f̂b ± kq f̂b)us
2

j (64)

f c f̂b =
4∑

j=1

ktu
s2
j f̂b ⇒ f c =

4∑

j=1

ktu
s2
j (65)

where we can obtain the applied moment and body fixed-
force as a function of the input signal. We also note that
the force equation simplifies to scalar form. We can rewrite
Eqs. (64) and (65) in matrix form, and invert it to obtain the
input signal as a function of moment and body-fixed force:

⎡

⎢⎢⎢
⎣

us
2

1

us
2

2

us
2

3

us
2

4

⎤

⎥⎥⎥
⎦

=
[

kt kt kt kt
(r1 × kt f̂b − kq f̂b) (r2 × kt f̂b − kq f̂b) (r3 × kt f̂b + kq f̂b) (r4 × kt f̂b + kq f̂b)

]−1 [
f c

mc
b

]
(66)

4.2.2 Agile fixed-wing

Consider the McFoamy agile fixed-wing aircraft shown in
Fig. 4, which has four control inputs, one propeller (us1), an
aileron (us2), an elevator (us3), and a rudder (us4) deflection.
The aileron is made up of two control surfaces driven by one
servomotor; thus each surface deflects equal and opposite
causing the input signal us2 to produce two forces, one on
each side of the plane and denoted by subscripts 2l and 2r .

Using the actuator models presented in Eqs. (58) and (60)
with Eq. (63) we can obtain:

mc
b = (r2l × c2v

2
s d̂2l + r2r × c2v

2
s d̂2r )u

s
2

+r3 × c3v
2
s d̂3u

s
3 + r4 × c4v

2
s d̂4u

s
4 (67)

f c f̂b = ktu
s2
1 f̂b ⇒ f c = ktu

s2
1 (68)

which give the applied moment and body fixed-force as a
function of the input signal. Note that we assume the forces
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Fig. 4 McFoamy agile fixed-wing

generated by the control surfaces are negligible compared to
the thruster force, which is necessary to classify this aircraft
as a vehicle that can apply a moment about an arbitrary axis
and a body-fixed force. We also assume that the torque gen-
erated by the propeller is negligible compared to the torque
generated by the control surfaces; this assumption is not nec-
essary, but is presented this way to be consistent with the
flight testing presented later in Sect. 5.3.3. For this airframe,
r1 × kt f̂b = 0 which is why it is dropped in the equation. We
again note that the force equation simplifies to scalar form.
We can rewrite Eqs. (67) and (68) in matrix form, and invert
it to obtain the input signal as a function of moment and
body-fixed force:

⎡

⎢⎢
⎣

us
2

1
us2
us3
us4

⎤

⎥⎥
⎦ =

[
kt 0 0 0
0 (r2l × c2v2s d̂2l + r2r × c2v2s d̂2r ) r3 × c3v2s d̂3 r4 × c4v2s d̂4

]−1 [
f c

mc
b

]
(69)

Most of the time the thrust command is simply the force
command.However, in the case of a saturated control surface,
the thruster can also be used to generate more slipstream to
produce a larger moment, which is discussed in detail in [2].

Fig. 5 Tailsitter

4.2.3 Tailsitter

Consider the tailsitter shown in Fig. 5, which has four control
inputs: two propellers (us1 and us2) and two control surfaces
(us3cu

s
4) called elevons.

Using the actuator models in Eqs. (58) and (60) with
Eq. (63) we can obtain:

mc
b = (r1 × kt f̂b + kq f̂b)us

2

1 + (r2 × kt f̂b − kq f̂b)us
2

2

+r3 × c3v
2
s3 d̂3u

s
3 + r4 × c4v

2
s4 d̂4u

s
4 (70)

f c f̂b = (ktu
s2
1 + ktu

s2
2 )f̂b ⇒ f c = ktu

s2
1 + ktu

s2
2 (71)

where once again, we assume the force generated by the
control surfaces is negligible compared to the thruster forces

in order to classify this vehicle as one that can apply force in
a body-fixed direction. We can write this in matrix form and
invert it to obtain the control inputs as a function of moment
and body-fixed force:

⎡

⎢⎢
⎢
⎣

us
2

1

us
2

2
us3
us4

⎤

⎥⎥
⎥
⎦

=
[

kt kt 0 0
(r1 × kt f̂b + kq f̂b) (r2 × kt f̂b − kq f̂b) r3 × c3v2s3 d̂3 r4 × c4v2s4 d̂4

]−1 [
f c

mc
b

]
(72)
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Fig. 6 Delfly flapping-wing [24]

4.2.4 Flapping-wing

Consider the Delfly flapping-wing UAV shown in Fig. 6,
which has four control inputs, one flapping-wing (us1), an
aileron (us2), an elevator (us3), and a rudder (us4) deflection.
The aileron is made up of two control surfaces driven by one
servomotor; thus each surface deflects equal and opposite
causing the input signal us2 to produce two forces, one on
each side of the plane and denoted by subscripts 2l and 2r .

Using the actuator models presented in Eqs. (60) and (62)
with Eq. (63) we can obtain:

mc
b = (r2l × c2v

2
s d̂2l + r2r × c2v

2
s d̂2r )u

s
2

+r3 × c3v
2
s d̂3u

s
3 + r4 × c4v

2
s d̂4u

s
4 (73)

f c f̂b = g(us1)f̂b ⇒ f c = g(us1) (74)

which give the applied moment and body fixed-force as a
function of the input signal. Similar to the previously men-
tioned vehicles, we assume the force generated by the control
surfaces are negligible compared to the flapping-wing thrust.
For this airframe, r1×kt f̂b = 0which is why it is dropped in
the equation. We also note that the force equation simplifies
to scalar form. We can rewrite Eq. (73) in matrix form, and
invert it to obtain the input signal as a function of the desired
moment:

⎡

⎣
us2
us3
us4

⎤

⎦ =
[
(r2l × c2v2s d̂2l + r2r × c2v2s d̂2r ) r3 × c3v2s d̂3 r4 × c4v2s d̂4

]−1 [
mc

b

]
(75)

To generate the desired body-fixed force, we assume that the
relationship of Eq. (74) is invertible, leading to

us1 = g−1( f c) (76)

4.2.5 Tilt-wing

Consider the Vahana tilt-wing aircraft, a single-passenger
flying taxi proposed by Airbus A3 [1], shown in Figs. 7
and 8. This aircraft has eight propellers—four on the front
wing, and four on the rear wing—and two control surfaces
on the rear wing. The wing tilt angle, γ , is the angle between
the direction of the thrust force and the body x-axis. Poten-
tially, this angle gives an additional degree of freedom to
the controller. However, since the wing tilt is likely to take
place at a much slower rate than variations of thrust or con-
trol surface deflections, we can assume that the variation of
γ will be determined by the trajectory generator, rather than
by the feedback controller. In this case, the angle γ can be
viewed by the controller as a prescribed variable, rather than
an unknown, and the control allocation can be obtained by
combining the actuator models of Eqs. (58) and (60) with
Eq. (63) to obtain:

mc
b =

8∑

j=1

(r j × kt f̂b + (−1)nkq f̂b)us
2

j

+
10∑

j=9

(r j × c jv
2
s j d̂ j u

s
j ) (77)

f c f̂b =
8∑

j=1

ktu
s2
j f̂b ⇒ f c =

8∑

j=1

ktu
s2
j (78)

Another difference between the Vahana platform and the
preceding platforms is that it is redundantly-actuated—there
are ten actuators to generate four force/moments. This results
in infinite possible sets of actuator commands that can be used
to generate the applied moment and body-fixed force. This
indeterminacy is best resolved by formulating and solving an
optimization problem, and using Eqs. (77) and (78) as con-
straints to that problem. For example, one could minimize
an objective consisting of the weighted norm of the vector of
control inputs

∑8
j=1(w j usj

2)2+∑10
j=9(w j usj )

2. In this case,
the resulting optimization problem would have a quadratic
objective and linear constraints in the design variables, and
would be solvable in real-time. Another advantage of this
optimization approach is that inequality constraints can be
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Fig. 7 Vahana tilt-wing (γ = 0◦) [1]

Fig. 8 Vahana tilt-wing (γ = 90◦) [1]

included to represent actuator limits, such as maximum con-
trol surface deflections and maximum propeller speeds.

4.2.6 Platform-specific properties

We show the values of the platform specific properties in
Table 1. Not all the values are applicable to every platform,
and those values are denoted by N/A. For the flapping-wing
and tilt-wing we cannot specify some values because we do
not have the platforms, which is denoted by NI (no info).

5 Validation

We implement our universal control approach on a quadrotor
and an agile fixed-wing aircraft, depicted in Figs. 3 and 4.
We specifically choose these two platforms to experimentally
validate our control approach because we view them as two
very different platforms, while other types of UAV’s can be
viewed as a combination of these two platforms. In addition,
we do not have access to the other platforms discussed in
Sect. 4.

5.1 Simulation

Before testing our control algorithm in flight tests, we test
the control algorithm in a Matlab/Simulink simulation envi-

Fig. 9 Simulated quadrotor rolling flip [4]

Fig. 10 Simulated fixed-wing aggressive turnaround [4]

ronment. The simulation environment is comprised of the
modeling described in Sect. 2, coupled with detailed aerody-
namics and thruster dynamics models presented in [12] for
the agile fixed-wing aircraft, and in [15] for the quadrotor.We
successfully demonstrate automatic aggressive maneuvering
using our control architecture in both of these simulation
environments and we present the detailed results from these
simulations in [4]. We show the simulated motion of a
quadrotor rolling flip presented in [4] in Fig. 9, and of a
fixed-wing aggressive turnaround in Fig. 10. In these figures
the trajectory line starts as blue and gets lighter with time,
and in Fig. 9 the top of the quadrotor is red and the bottom
is blue.

A hardware-in-the-loop (HIL) simulation is then used to
initially test the hardware implementation, prior to testing on
the real vehicle. In an HIL simulation, the on-board flight
controller (Pixhawk) sends virtual actuator commands to
a desktop computer running the UAV dynamics and sen-
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Table 2 Platform properties

Platform Parameter Symbol Value Unit

Quadrotor Mass m 1.02 kg

Thrust:weight – 2.9 –

Fixed-wing Mass m 0.45 kg

Thrust:weight – 2.3 –

sor measurement model, which in turn, sends back virtual
sensor measurements to on-board hardware. For the agile
fixed-wing, we use our Simulink-based dynamics and sen-
sor model to generate the virtual sensor measurements [3].
For the quadrotor, we use the built-in HIL simulation using
RotorS/Gazebo [8], with slight modifications to reflect our
systems’ inertial and thruster characteristics.

The HIL simulations were a useful tool in bridging the
gap between the pure theoretical simulations and experimen-
tal flight tests. The initial set of control gains tuned in the
Simulink simulation led to unstable flight in the HIL sim-
ulation. However, once the gains were re-tuned in the HIL
simulation, little gain tuningwas needed during flight testing.

5.2 Experimental setup

5.2.1 Platforms

After satisfactory results were obtained in the HIL simula-
tions, we performed outdoor autonomous flight tests with
both a quadrotor and agile fixed-wing platform. The quadro-
tor platform, the Pleiades Spiri, and the fixed-wing platform,
WM Parkflyers McFoamy, are depicted in Figs. 3 and 4 and
the physical properties are presented in Table 2.

All of the sensing and computation is done on-board each
platform, using a Pixhawk flight computer running the open-
source PX4 flight stack. State estimates of both UAVs are
obtained from the default Extended Kalman Filter (EKF2) in
PX4 that fuses the IMU, barometer, and GPS measurements.
The control loop is executed at 200 Hz.

5.2.2 Outdoor environment

Our agile fixed-wing flight tests took place at theWest Island
Model Aeronautics Club, and our quadrotor flight tests took
place at the McGill University Forbes Field, both large out-
door fields in Montreal, Canada. We only tested autonomous
airborne maneuvers—we manually flew the vehicle up to
altitude, and then put the vehicle in autonomous mode, per-
formed variousmaneuvers autonomously, and thenmanually
landed the vehicle.

We recorded flight data over numerous tests and days,with
varyingwind conditions.Wewere able to autonomously exe-

cute several maneuvers with each platform, and were able to
perform these maneuvers reliably and repeatedly. We specif-
ically analyze an arbitrary attempt of twomaneuvers for each
platform, both attempted on dayswithmoderatewinds.Wind
measurements were not recorded at the test sites but data
from nearby weather stations recorded average wind speeds
of 10–12 knots during the fixed-wing flight [6] and 4–6 knots
during the quadrotor flight [6].

5.3 Experimental results

We specifically show two aggressive maneuvers that are per-
formed with two vastly different platforms: two types of
rolling flips with a quadrotor, and a rolling Harrier and an
aggressive turnaround with an agile fixed-wing, in order
to demonstrate the versatility of the control logic. To fur-
ther demonstrate this versatility, each maneuver has been
designedheuristically and isnot completely dynamically fea-
sible.

Similar control gains are used for each platform, and are
shown in Table 3. While the same gains could be used for
both platforms, which is shown in simulation in [4], better
performance is achieved by tuning gains to each platform
due to the uncertainty in the allocation of control forces and
moments to actuator signals.

For easier understanding of the flight data, we transform
the data such that origin of the position vector is the position
at which the maneuver is commanded (t = 0s). We also,
rotate the inertial frame such that the heading at the start of the
maneuver is zero. This rotationmakes the x axis the direction
of flight for the fixed-wing aircraft. Lastly, we display the
attitude in Euler angles, roll (φ), pitch (θ ) and yaw (ψ), even
though our controller is based on a quaternion representation,
because the euler angles make it easier to understand the
motion.

The UAV’s six degrees of freedom (position and orienta-
tion) are shown alongside there reference values in Figs. 15,
16, 17 and 18. We reiterate that our controller is trying to
track all six of these states with only four control inputs, and
thus perfect asymptotic tracking is not possible.

5.3.1 Quadrotor: rolling flip case 1

Wesuccessfully performa rollingflipwith a quadrotor,which
is shown in the supplementary video, as well as a sequence
of overlayed images in Fig. 11.

For quantitative analysis of the maneuver we refer to
Fig. 15 which compares the state estimates of position and
orientation to the reference values, and also shows the control
inputs. The control inputs are shownwith normalized values,
where zero corresponds to the idle motor PWM signal, and
one corresponds to the maximum motor PWM signal.
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Table 3 Controller gains Gain Symbol Value (fixed-wing) Value (quadrotor) Unit

Position proportional Kpp .08 .08 rad/m

Position derivative Kpd .1 .1 rad/ms

Attitude proportional Kap 160 13×3 110 13×3
rad
s2 /rad

Attitude derivative Kad 8 13×3 20 13×3
rad
s2 / rads

Speed proportional Kv 3 3 m
s2 /ms

Height proportional Khp 5 5 m
s2 /m

Height integral Khi 0.5 0.5 m
s2 /ms

Fig. 11 Quadrotor rolling flip case 1 image sequence: the flip begins
on the right side of the image, performs the flip while losing altitude,
and then returns to the start of the maneuver

We show one second of hovering flight, and then start the
flip maneuver at t = 0s. Our reference trajectory is formu-
lated by setting a constant reference position and yaw angle
to that at the start of the maneuver (causing the step in refer-
ence position at t = 0 s), a zero pitch angle, and a roll angle
which starts at zero, has a constant acceleration, followed
by a coast at maximum velocity, concluding with a braking
phase of constant deceleration until the roll angle reaches
360 degrees.

This reference trajectory is not dynamically feasible, as
it’s not possible to do a flip while remaining in the same
position, although we are still able to achieve the higher-
level requirements of the maneuver. As shown in Fig. 15, the
quadrotor drops about 3m in altitude while the quadrotor’s
thrusters are pointing downwards, and moves laterally about
1m in x and in y. Once the flip is achieved and the quadrotor
is stabilized, the quadrotor directs itself back to the reference
position and remains stationary. There is a small steady-state
error in the x and y position, which can be attributed to the

moderate wind gusts and lack of integral term in the control
law.

Considering the aggressiveness of the flip maneuver, the
attitude is tracked very well. During the flip, the maximum
pitch and yaw error remain less than 20◦ and 10◦ respectively.
The roll angle initially lags the reference, which is followed
by a slight overshoot at the end of the flip. After the flip is
complete, all of the euler angles are tracked with less than 2◦
error.

The actuators behave as expected,where initially the speed
of rotors two and three increase, while rotors one and four
decrease, causing a moment in the x direction needed to roll
the vehicle. As the flip is completing, a moment in the oppo-
site direction is needed to reduce the angular velocity, causing
rotors two and three to decrease speed, while rotors one and
four are increased.

5.3.2 Quadrotor: rolling flip case 2

We aim to perform the same rolling flip maneuver described
in Sect. 5.3.1, except this time with a more aggressive
roll reference, which ultimately speeds up the execution
of maneuver, making the quadrotor lose less altitude. Two
changes were made to achieve this more aggressive flip.

First, we change the proportional attitude gain to Kap =
110 diag(1, 1, 0.2) rad

s2
/rad, and the derivative attitude gain

to Kad = 20 diag(1, 1, 0.2) rad
s2

/ rad
s . This change keeps the

gains associated with the roll and pitch axes the same, but
reduce the gains associated with the yaw axis by a factor of
5. This reduction in yaw gain is theoretically not necessary,
however, due to the simple control allocation strategyused for
our quadrotor it is necessary to lower the yaw gains to prevent
the motors from saturating for too long during this evenmore
aggressive flip, and effectively losing control authority in roll
and pitch.

The second change we made is turning off the position
controller while the quadrotor is flipping, and turning it back
on once the roll reference is back to zero. This is done in
[14] and is an example of one of the benefits of a modular
control architecture—the ability to easily turn on and off the
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Fig. 12 Quadrotor Rolling flip case 2 image sequence: the flip begins
on the left side of the image, performs the flip quickly, loses altitude,
and then returns to the start of the maneuver

position controller which is discussed in Sect. 3.1. In this
example, the simple reference trajectory in position contra-
dicts the reference attitude at times, and during these times
the position controller can degrade the performance of the
maneuver. For example, initially the reference roll increases,
causing the aircraft to roll and increase in y position, but
then the position controller wants to decease the y position,
making the augmented reference roll less than reference roll,
ultimately slowing the flip down.

Both of these changes allow the quadrotor to track a faster
and more aggressive flip. The maneuver is shown in the sup-
plementary video, as well as a sequence of overlayed images
in Fig. 12.

For quantitative analysis of the maneuver we refer to
Fig. 16. For the most part, the analysis of the maneuver is
the same as in Case 1. The major difference is the flip is
completed in about 0.75s opposed to 1s, which causes the
quadrotor to reduce the altitude drop to only 1.5m opposed
to 3m.

Turning off the position controller for the duration of the
flip can be seen in attitude plots, where the augmented refer-
ence attitude is the same as the reference attitude from t = 0 s
to t = 0.75s.After t = 0.75s the position controller is turned
back on, and the reference and augmented reference attitudes
are no longer the same.

5.3.3 Fixed-wing: rolling harrier

We successfully demonstrate a rolling Harrier which con-
sists of the aircraft flying along a straight line, while rolling
continuously. The maneuver is shown in the supplementary
video, as well as a sequence of images in Fig. 13. For quan-
titative analysis, we plot the state estimated and reference
pose of the UAV, as well as the control inputs in Fig. 17. The
control inputs (throttle, aileron, elevator, rudder) are shown

Fig. 13 Fixed-wing rolling harrier image sequence

Fig. 14 Fixed-wing aggressive turnaround image sequence: the plane
starts at the bottom right in level flight, pitches until inverted flight, and
then rolls into level flight with the opposite heading

with normalized values. For the control surfaces, negative
one corresponds to the maximum negative deflection while
one corresponds the themaximumpositive deflection. For the
throttle command, zero corresponds to the idle motor PWM
signal, and one corresponds to the maximum motor PWM
signal.

We show one second of level flight, and then start the
rolling Harrier maneuver at t = 0s, after the plane has trav-
eled 20m (about t = 2.2s) the plane is commanded back to
level flight. The reference trajectory for the rolling Harrier is
comprised of flying in a straight line while rolling at a con-
stant five radians per second. The straight line starts at the
initialization of the maneuver, and extends in the direction of
the current heading, which causes a step in reference posi-
tion and orientation at (t = 0 and t = 2.2). The maneuver
is achieved with less than 1m cross-track and altitude error.
The reference x position cannot be seen because it is equal to
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Fig. 15 Quadrotor rolling flip case 1 flight data

the estimate of the x position; but this is not perfect tracking,
just due to how the reference trajectory is created.

Turning attention to the attitude results, the pitch and yaw
tracking errors remain less than 20◦ during the rolls. The roll
angle does lag behind the reference, but by less than 0.1 s.

The actuators behave as expected, the elevator and rudder
(u3 and u4) are non-zero when correcting pitch and yaw,
but have a mean value near zero. On the other hand, the
mean aileron deflection (u2) is negative, which induces a
positive roll rate. At the end of the rolling harrier (t = 2.2s)
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Fig. 16 Quadrotor rolling flip case 2 flight data

the reference roll angle steps up to zero, causing the aileron
to saturate. The saturation of the aileron causes the thruster
(u1) to increase and also saturate, in order to increase the
slipstream over the aileron and give the aircraft more attitude
control authority, as mentioned in Sect. 4.2.2.

5.3.4 Fixed-wing: aggressive turnaround

We successfully demonstrate an aggressive turnaround—a
maneuver which starts in level flight, and quickly reverses
direction to level flight with a 180◦ change in heading. The
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Fig. 17 Fixed-wing rolling harrier flight data

maneuver is shown in the supplementary video, as well as
a sequence of overlayed images in Fig. 14. For quantitative
analysis, we plot the state estimated and reference pose of
the UAV, as well as the control inputs in Fig. 18.

We show a quarter second of level flight, and then start
the aggressive turnaround at t = 0s. Again, the trajectory

generation is designed heuristically and is not dynamically
feasible, but demonstrates the versatility of the controller.
Due to the lack of feasibility, the aircraft does not perfectly
track the reference, but the higher-level goals of themaneuver
are achieved.
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Fig. 18 Fixed-wing aggressive turnaround flight data

The reference trajectory is formed by first commanding a
hover. Once the pitch angle exceeds 45◦, the aircraft is com-
manded to inverted flight with a heading opposite to the start
of the maneuver. Once the aircraft pitches down to inverted
level flight, it is commanded to roll 180◦, which concludes
with the aircraft in level flight with opposite heading.

Wecan see higher level goal of themaneuver is achieved—
the aircraft starts in level flight at about 8m

s , and changes it’s
heading by 180◦ while only traveling 2m in the direction
of flight, 0.5m laterally, and increasing altitude by only 1m.
Again, the 1m altitude increase shouldn’t be viewed as 1m
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tracking error, as it not possible turn the aircraft around with-
out occupying space either laterally or vertically.

Looking at the orientation results, the referencepitch angle
initially steps to 90◦, while the reference roll and yaw remain
zero. The position controller aims to point the thruster even
further backwards, resulting in a augmented reference orien-
tation of a pitch angle greater than 90◦, with zero roll and
yaw. However, since the euler angle convention limits pitch
to 90◦, the augmented reference orientation actually has a
pitch angle less than 90◦ and a 180◦ roll and yaw. The pitch
estimate climbs up to 90◦ at t = 0.3s, at this point, the pitch
angle starts to decrease, but the roll and yaw angles of instan-
taneously jumped to 180◦, due to this euler angle convention.
The aircraft points itself further backwards until the it is in
inverted level flight at t = 0.6s. At this point, the reference
and augmented reference roll become zero, and the aircraft
rolls into level flight by t = 1s.

The actuator behavior aligns with the state estimates of
the aircraft. At t = 0s the elevator (u3) saturates to give a
large pitching moment, and the thruster (u1) also saturates to
increase the slipstream speed over the elevator, generating an
even larger moment (as mentioned in Sect. 4.2.2). Just before
t = 0.6s, the aircraft is close to the augmented reference
pitch and the elevator deflection is near zero, but now the
aircraft wants to roll 180◦ into level flight, and therefore the
aileron saturates (u2), and to give an even larger moment, the
slipstream speed is increased by saturating the thruster. At the
end of the maneuver, the attitude is close to the augmented
reference attitude, and all the control surfaces are near zero.

6 Conclusion

In this work we present a universal control system appli-
cable to most types of UAVs. The control strategy can be
applied to any UAV capable of exerting a moment about
an arbitrary axis and a force along a body-fixed direction,
which includes UAVs such as multi-copters, conventional
fixed-wing, agile fixed-wing, most flying-wings, most tailsit-
ters, some tilt-rotor/wing platforms, and some flapping-wing
vehicles.

The physics-based controller is capable of tracking vir-
tually any feasible trajectory—including extreme aerobatic
maneuvers. The controller is modular, containing a position
controller, an attitude controller, and a force controller, all
which are platform-independent. The output of these con-
trollers are a force and moment which are then allocated to
platform-specific actuator commands.

Experimental validation of the control logic is demon-
strated with autonomous aggressive maneuvers, on two
vastly different platforms—two rolling flips with a quadrotor
and a rolling Harrier and an aggressive turnaround with an
agile fixed-wing aircraft. We demonstrate these maneuvers

in moderate winds using the same controller with a simi-
lar set of gains. We demonstrate satisfactory tracking of our
reference pose during these aggressive maneuvers; all while
dealing with the realities of a real-world aerial robotic sys-
tem such as sensor noise, limited on-board computation, and
large disturbances such as wind gusts.

Although we only experimentally demonstrate with two
platforms, the methodology extends to other platforms, as
mostUAVplatforms can be viewed as a combination of fixed-
wing and quadrotor aircraft. In addition, we give insight on
how this control architecture would be applied to a tailsitter
aircraft, and flapping-wing UAV, and a tilt-wing UAV.

We believe this to be the first UAV controller with appli-
cability to such a wide range of platforms and motions that
has been demonstrated experimentally.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-021-10015-
8.
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