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Abstract
In this paper, we propose a method to determine the 3D relative pose of pairs of communicating robots by using human pose-
based key-points as correspondences. We adopt a ‘leader-follower’ framework, where at first, the leader robot visually detects
and triangulates the key-points using the state-of-the-art pose detector namedOpenPose. Afterward, the follower robots match
the corresponding 2Dprojections on their respective calibrated cameras and find their relative poses by solving the perspective-
n-point (PnP) problem. In the proposed method, we design an efficient person re-identification technique for associating the
mutually visible humans in the scene. Additionally, we present an iterative optimization algorithm to refine the associated
key-points based on their local structural properties in the image space. We demonstrate that these refinement processes are
essential to establish accurate key-point correspondences across viewpoints. Furthermore, we evaluate the performance of the
proposed relative pose estimation system through several experiments conducted in terrestrial and underwater environments.
Finally, we discuss the relevant operational challenges of this approach and analyze its feasibility for multi-robot cooperative
systems in human-dominated social settings and feature-deprived environments such as underwater.

Keywords Underwater human–robot cooperation · Marine robotics · Underwater visual perception

1 Introduction

Accurate computation of relative pose is essential in multi-
robot estimation problems such as cooperative tracking,
localization (Kim & Eustice, 2013; Rekleitis et al., 2002),
mapping (Johnson-Roberson et al., 2017; Se et al., 2005),
path planning (Landa-Torres et al., 2017), and more. Unless
global positioning information (e.g., GPS, USBL) is avail-
able, the robots need to estimate their positions and orien-
tations relative to each other based on their exteroceptive
sensorymeasurements and noisy odometry (Zhou&Roume-
liotis, 2008). This process is necessary for registering their
measurements to a common frame of reference to maintain
coordination during task execution.
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In a cooperative setting, robots with visual sensing capa-
bilities solve the relative pose estimation problem by triangu-
lating mutually visible local features and landmarks. A lack
of salient features significantly affects the accuracy of this
estimation (Valgren & Lilienthal, 2010), which eventually
hampers the overall success of the operation. Such difficul-
ties often arise in poor visibility conditions underwater due
to a lower number of point-based salient features and land-
marks (Damron et al., 2018; Sattar et al., 2008).Nevertheless,
being a low-power passive sensor, cameras have been the
choice for exteroceptive perception in many important appli-
cations such as inspection of ship hulls and coral reefs (Kim
& Eustice, 2013; Dunbabin et al., 2019), 3D reconstruc-
tions of archaeological sites (Johnson-Roberson et al., 2017),
and human–robot collaborative missions in general (Islam
et al., 2018). An important observation is that the proximity
of human divers to robots is a fairly common occurrence in
these applications and other monitoring and surveying tasks
at shallow waterbodies (Kalaitzakis et al., 2020; Manderson
et al., 2018). Besides, humans are frequently present and vis-
ible in many social scenarios (Islam et al., 2019; Kümmerle
et al., 2013) where natural landmarks are not reliably identi-
fiable due to repeated textures, noisy visual conditions, etc.
Hence, the problem of having limited natural landmarks can
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Fig. 1 A simplified illustration of 3D relative pose estimation between
robot 1 and robot 2 (3). The robots know the transformations between
their intrinsically-calibrated cameras and respective global frames, i.e.,
{1}, {2}, and {3}. Robot 1 is considered as the leader (equipped with a
stereo camera) and its pose in global coordinates (1RG , 1tG ) is known.
Robot 2 (3) finds its unknown global pose by cooperatively localiz-
ing itself relative to robot 1 using the human pose-based key-points as
common landmarks

be alleviated by using mutually visible humans as markers
(i.e., features correspondences), particularly in human–robot
collaborative applications. Despite the potential, the feasibil-
ity of using human presence or body-pose for robot-to-robot
relative pose estimation has not been explored in the litera-
ture.

In this paper, we propose a method for computing six
degrees-of-freedom (6-DOF) robot-to-robot transformation
between pairs of communicating robots by using mutually
detected humans’ pose-based key-points as correspondences.
As illustrated in Fig. 1, we adopt a leader-follower frame-
work where one of the robots (equipped with a stereo
camera) is assigned as a leader. First, the leader robot detects
and triangulates 3D positions of the key-points in its own
frame of reference. Then the follower robot matches the
corresponding 2D projections on its intrinsically calibrated
camera and localizes itself by solving the perspective-n-point
(PnP) problem (Zheng et al., 2013). It is to be noted that
this entire process of extrinsic calibration is automatic and
does not require prior knowledge about the robots’ initial
positions. Additionally, it is straightforward to extend the
leader-follower framework for multi-robot teams from the
pairwise solutions. Furthermore, if the leader robot has global
positioning information, i.e., has a GPS or an USBL receiver,
the follower robots can use that information to localize them-
selves in the global frame as well.

In addition to the conceptual design, we present an end-
to-end system with efficient solutions to the practicalities
involved in the proposed robot-to-robot pose estimation
method (see Sect. 3). As mentioned, we use OpenPose (Cao
et al., 2017) for detecting human body-poses in the image
space. Although it provides reliable detection performance,

the extracted 2Dkey-points across different views do not nec-
essarily associate as a correspondence.We propose a twofold
solution to this:

– First, we design an efficient person re-identificationmod-
ule by evaluating the hierarchical similarities of the
key-point regions in the image space (see Sect. 3.2). It
takes advantage of the consistent human pose structures
across viewpoints and evaluates their pair-wise similari-
ties for fast body-pose association. We also demonstrate
that the state-of-the-art (SOTA) appearance-based person
re-identificationmodels fail to provide acceptable perfor-
mance under single-board real-time constraints.

– Subsequently, we formulate an iterative optimization
algorithm to refine the noisy key-point correspondences
by further exploiting their local structural properties in
respective images (see Sect. 3.3). We demonstrate that
the pair-wise key-point refinement is crucial to ensure
their validity in a perspective geometric sense.

This two-stage process facilitates efficient and robust key-
point associations across viewpoints for accurate robot-to-
robot relative pose estimation (see Sect. 4). In this paper,
we primarily focus on these two novel modules because the
rest of the computational aspects are generic to all multi-
robot cooperative pose estimation systems. Nevertheless, we
present a fast implementation of the proposed system and
evaluate its end-to-end performance over several terrestrial
and underwater field experiments. Lastly, we analyze its
practical feasibility and discuss various operational consid-
erations (in Sect. 4.5).

2 Related work

2.1 Robot-to-robot relative Pose estimation

The problem of robot-to-robot relative pose estimation has
been thoroughly studied for 2D planar robots, particularly
for range and bearing sensors. Analytic solutions for deter-
mining 3-DOF robot-to-robot transformation using mutual
distance and/or bearing measurements involve solving an
over-determined system of nonlinear equations (Zhou &
Roumeliotis, 2008; Trawny & Roumeliotis, 2010). Simi-
lar solutions for the 3D case, i.e., for determining 6-DOF
transformation using inter-robot distance and/or bearing
measurements, has been proposed as well (Zhou & Roume-
liotis, 2011; Trawny et al., 2010). In practice, these analytic
solutions are used as an initial estimate for the relative
pose, and then iteratively refined by optimization techniques
(e.g. nonlinear weighted least-squares) to account for the
noisy observation and uncertainty in robot motion.
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Robots that rely on visual perception (i.e., use cameras
as exteroceptive sensors) solve the relative pose estima-
tion problem by triangulating mutually visible features and
landmarks (Wang & Wilso, 1992). Therefore, it reduces
to solving the PnP problem by using sets of 2D-3D corre-
spondences between geometric features and their projections
on respective image planes (Zheng et al., 2013). Although
high-level geometric features (e.g., lines, conics) have been
proposed, point-based features are typically used in prac-
tice for relative pose estimation (Janabi-Sharifi & Marey,
2010). Moreover, the PnP problem is solved either using
iterative approaches by formulating the over-constrained sys-
tem (n > 3) as a nonlinear least-squares problem, or by
using sets of three non-collinear points (n = 3) in com-
bination with Random Sample Consensus (RANSAC) to
remove outliers (Fischler & Bolles, 1981). Besides, vision-
based approaches often use temporal-filtering methods, the
extended Kalman-filter (EKF) in particular, to reduce the
effect of noisymeasurements in order to provide near-optimal
pose estimates (Wang & Wilso, 1992; Janabi-Sharifi &
Marey, 2010). On the other hand, it is also common to
simplify the relative pose estimation by attaching specially
designed calibration-patterns on each robot (Rekleitis et al.,
2006). However, this requires that the robots operate at a
sufficiently close range, and remain mutually visible.

2.2 Human body-Pose detection

Visual detection of 2D human pose has made significant
progress over the last decade. The SOTA methodologies can
be categorized into the top-down and bottom-up approaches.
The top-down approaches (Gkioxari et al., 2014; Pishchulin
et al., 2012) detect the humans in the image space first,
and then perform localization and association of their body-
parts. One major limitation of these approaches is that their
run-times are proportional to the number of persons in the
image. Additionally, the robustness of the pose estimation
largely depends on the accuracy of their person detectors.
In contrast, the bottom-up approaches (Cao et al., 2017;
Pishchulin et al., 2016) do not suffer from these two issues.
However, they require solving a more computationally chal-
lenging inference problem of learning global contextual cues
for simultaneous body-part detection and association.

The classical approaches typically use pictorial structures
(Ferrari et al., 2008; Andriluka et al., 2009) to model the
appearance of human body-parts. A set of densely sampled
shape descriptors are used for localizing the body-parts and
then classifiers such as AdaBoost, SVMs, etc., are used for
detection. Associating the detected body-parts is rather chal-
lenging; a mixture of tree-based models are typically used to
learn separate pairwise relationships for different body-part
configurations (Johnson&Everingham, 2011). Graph-based
connectivity models are then used to formulate the inference

(association) as a graph-cut problem. These pairwise con-
nectivitymodels can be further generalized (Pishchulin et al.,
2013) to capture the anatomical relationships amongmultiple
body-parts. Recently proposed approaches use Deep Neural
Networks (DNNs) to learn the human pose detection from
large training datasets to perform fast and accurate global
inference.DeepPose (Toshev&Szegedy, 2014), for instance,
formulates the problem as a regression problem and uses a
cascade of DNNs to learn the inference in a holistic fashion.
On the other hand, OpenPose (Cao et al., 2017) jointly learns
to detect and associate using pose machines (Ramakrishna
et al., 2014). In contrast to DNNs, each module of a pose
machine is trained locally; the sequential predictions of these
modules are then refined to perform a hierarchical joint infer-
ence. Such hierarchical structures facilitate fast inference for
multi-person pose estimation in addition to achieving SOTA
performance. Due to these compelling reasons, we useOpen-
Pose in this work.

2.3 Human-aware robot control

Human-awareness is important for autonomous mobile
robots operating in social settings and human–robot collab-
orative applications. A large body of literature and systems
exist (Islam et al., 2018;Mead&Matarić, 2017) which focus
on the areas of understanding human motion, instructions,
behaviors, etc. Additionally, tracking human pose relative to
a robot is particularly common in applications such as person
tracking or following (Islam et al., 2019; Montemerlo et al.,
2002), collaborative manipulation (Mainprice & Berenson,
2013), behavior imitation (Lei et al., 2015), etc. However, the
feasibility of using humans’ presence or their body-poses as
markers for robot-to-robot relative pose estimation has not
been explored in the literature.

3 System design andmethodology

Our proposed robot-to-robot relative pose estimation system
incorporates several computational components: detection of
human body-poses in images captured from different views
(by leader and follower robots), pair-wise association of the
detected humans across viewpoints, geometric refinement of
the key-point correspondences, and 3D pose estimation of
the follower robot relative to the leader. We present a snap-
shot of the end-to-end computational pipeline in Fig. 2. As
in standard multi-robot cooperation, the proposed system
requires synchronized communication between the leader
and follower robots. From a follower robot’s perspective, the
primary challenge is to identify the mutually visible humans
and then correctly associate their body-poses. Subsequently,
geometric refinements of those associated pose-based key-
points are essential for accurate relative pose estimation in
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Fig. 2 The end-to-end computational pipeline is outlined from the
perspective of a follower robot which shares a clock with the com-
municating leader robot by using a timestamp-based buffer scheduler
for synchronized data registration. The mutually visible human body-
pose based key-points are then associated and refined for relative pose
estimation. We design these two novel components (marked in purple
boxes) to establish robust and accurate key-point correspondences at a
fast rate (195 milliseconds per estimation on NVIDIA™ Jetson TX2)

the wild. We design robust and efficient modules to meet
these operational requirements in a reasonable computational
overhead. In the following sections, we present methodolog-
ical details of these modules and discuss the relevant design
choices.

3.1 Human body-pose detection

OpenPose (Cao et al., 2017) is an open-source library for
real-time multi-human 2D pose detection in images, origi-
nally developed using Caffe and OpenCV libraries1. We use
a Tensorflow implementation2 based on theMobileNetmodel
that provides faster inference compared to the original model
(also known as the CMU model). Specifically, it processes
a 368 × 368 image in 180 milliseconds on the embedded
computing board named Jetson TX2 (NVIDIA™, 2014),
whereas the original model takes multiple seconds.

OpenPose generates 18 key-points pertaining to the nose,
neck, shoulders, elbows,wrists, hips, knees, ankles, eyes, and
ears of a human body. As shown in Fig. 3, a subset of these
2D key-points and their pair-wise anatomical relationships
are generated for each human. We represent the key-points
KP(I ) by a NI ×18 arraywhere NI is the number of detected
humans in an image I . If a particular key-point is occluded or
not detected, then the values are left as (−1, −1). We config-
ureKP(I ) in a way that the first row belongs to the left-most
person, the second row belongs to the next left-most person,
and gradually the last row belongs to the right-most person in
the image. This way of sorting the key-points helps to speed

1 https://www.github.com/CMU-Perceptual-Computing-Lab/
openpose.
2 https://www.github.com/ildoonet/tf-pose-estimation.

Fig. 3 Multi-human2Dbody-pose detection usingOpenPose in various
human–robot collaborative settings

up the process of associating the rows of KP(Ileader ) and
KP(I f ollower ). That is, the follower robot needs tomake sure
that it is pairing the key-points of the same individuals. This is
important because in practice theymight be looking at differ-
ent individuals, or the same individuals in a different spatial
order. Associating multiple persons across different images
is a well-studied problem known as person re-identification
(ReId).

3.2 Person Re-identification using hierarchical
similarities

Although several existing deep visual models provide very
good solutions for person ReId (Ahmed et al., 2015; Li et al.,
2014), we design a simple and efficient model to meet the
real-time single-board computational constraints. The idea is
to avoid using a computationally demanding feature extractor
by making use of the hierarchical anatomical structures that
are already embedded in the key-points. First, we bundle
the subsets of key-points in several spatial bounding boxes
(BBox) as follows:

– Face BBox: nose, eyes, and ears;
– Upper-body BBox: neck, shoulders, and hips;
– Lower-body BBox: hips, knees, and ankles;
– Left-arm BBox: left shoulder, elbow, and wrist;
– Right-arm BBox: right shoulder, elbow, and wrist;
– Full-body BBox: encloses all the key-points.

Figure 4 illustrates the spatial hierarchy of these BBoxes
and their corresponding key-points. They are extracted by
spanning the corresponding key-points’ coordinate values in
both the x and y dimensions. We use an offset (of additional
10% length) in each dimension to capture more spatial infor-
mation around the key-points. A BBox is discarded if its area
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Fig. 4 An illustration of how the hierarchical body-parts are extracted for person ReId based on their structural similarities; once the persons are
associated, the pair-wise key-points are refined and used as correspondences

falls below an empirically chosen threshold of 600 square
pixels. We found that BBox areas below this resolution are
not always informative and are prone to erroneous results.
This happens when the corresponding body-part is either not
detected or very far from the camera.

Once the BBox areas are selected, we exploit their pair-
wise structural properties as features for person ReId; specif-
ically, we compare the structural similarities between image
patches pertaining to the face, upper-body, lower-body, left-
arm, right-arm, and the full body of a person. Based on their
aggregated similarities, we evaluate the pair-wise association
between each person as seen by the leader (in Ileader ) and by
the follower (in I f ollower ). The structural similarity (Wang
et al., 2004) for a particular pair of single-channel rectangular
image-patches (x, y) is evaluated based on three properties:
luminance l(x, y) = 2μxμy/(μ

2
x + μ2

y), contrast c(x, y) =
2σ xσ y/(σ

2
x + σ 2

y), and structure s(x, y) = σ xy/σ xσ y; here,
μx (μy) denotes the mean of image patch x (y), σ 2

x (σ 2
y)

denotes the variance of x (y), and σ xy denotes the cross-
correlation between x and y. The structural similarity metric
(SSIM) is then defined as:

SSI M(x, y) = l(x, y)c(x, y)s(x, y) = 2μxμy

μ2
x + μ2

y
× 2σ xy

σ 2
x + σ 2

y
.

In order to ensure numeric stability, two standard constants
c1 = (255k1)2 and c2 = (255k2)2 are added as:

SSI M(x, y) = 2μxμy + c1
μ2
x + μ2

y + c1
× 2σ xy + c2

σ 2
x + σ 2

y + c2
. (1)

We use k1 = 0.01, k2 = 0.03, and an 8 × 8 sliding window
in our implementation. Additionally, we resize the patches
extracted from Ileader so that their corresponding pairs in
I f ollower have the same dimensions. Then, we apply Eq. 1
on every channel (R,G, B) and use their average value as
the similarity metric on a scale of [0, 1]. Specifically, we use
this metric for person ReId as follows:

– We only consider the mutually visible body-parts for
evaluating the pair-wise SSIM values. This choice is
important to enforcemeaningful comparisons; otherwise,
it is equivalent to using only the full-body BBox, which
we found to be highly inaccurate.

– Each person in I f ollower is associated with the most sim-
ilar person corresponding to the maximum SSIM value
in Ileader . However, the association is discarded if that
value is less than a threshold δmin = 0.4 which is cho-
sen by an AUC (area under the curve)-based analysis
(see Sect. 4.2). This reduces the risk of inaccurate asso-
ciations, particularly when there are mutually exclusive
people in the scene.

3.3 Key-point refinement

Once the specific persons are identified, i.e., the rows of
KP(Ileader ) and KP(I f ollower ) are associated, the mutually
visible key-points are paired together to form correspon-
dences. Although the key-points are ordered and OpenPose
localizes them reasonably well, they cannot be readily used
as geometric correspondences due to perspective distortions
and noise. We attempt to solve this problem by designing an
iterative optimization algorithm that refines the noisy corre-
spondences based on their structural properties in a 32 × 32
neighborhood. By denotingφ I (p) as the 32×32 image-patch
centered at p = [px , py]T in image I , we define a loss for
each correspondence (pl ∈ Ileader ,p f ∈ I f ollower ) as:

L(pl ,p f ) = 1 − SSI M(φ Ileader (pl),φ I f ollower
(p f )). (2)

Then,we refine each initial key-point correspondence (p0l ,p
0
f )

by minimizing the following function:

p∗
f = argmin

p
L(p0l ,p) s. t. ||p − p0f ||∞ < 32. (3)

As Eq. 3 suggests, we fix pl = p0l and refine p f = p0f to
maximize SSI M(φ Ileader (pl),φ I f ollower

(p f )). In our imple-
mentation, we adopt a gradient-based refinement algorithm
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(a)

(b)

(c)

Fig. 5 Results of estimating structure from motion using only human pose-based key-points as features

that performs the following iterative update:

pt+1
f = ptf − η · ∇L(p0l ,p

t
f ). (4)

We follow the procedures suggested in (Avanaki, 2009;
Otero andVrscay, 2014) for computing the gradient of SSIM.
For fast processing, we vertically stack all the key-points and
their gradients to perform the optimization simultaneously
with a fixed learning rate of η = 0.003 for a maximum itera-
tion of 100. We present empirical validations for the choices
of the refinement resolution and other hyper-parameters in
Sect. 4.2.

3.4 Robot-to-robot pose estimation

Once the mutually visible key-points are associated and
refined, the follower robot uses the corresponding 3D posi-
tions (provided by the leader) to estimate its relative pose
by solving a PnP problem. Thus, we require that the leader

robot is equipped with a stereo camera (or an RGBD cam-
era) so that it can triangulate the refined key-points using
epipolar constraints (or use the depth sensor) to represent
the key-points in 3D. Let xl denote the 3D locations of the
key-points in the leader’s coordinate frame, and p f denote
their corresponding 2D projections on the follower’s cam-
era. Then, assuming the cameras are synchronized, the PnP
problem is formulated as follows:

Tl
f = argminTl

f
||p f − K f Tl

f xl ||2. (5)

Here,K f is the intrinsic matrix of the follower’s camera and
Tl

f is its 6-DOF transformation relative to the leader. In our
implementation, we follow the standard iterative solution for
PnP using RANSAC (Zheng et al., 2013).
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(a) (b)

(c)

(d) (e)

Fig. 6 Structure from motion for a two-view case using only human pose-based key-points as features (Color figure online)

4 Experimental analysis

We conduct several experiments with 2-DOF and 3-DOF
robots to evaluate the performance and feasibility of the
proposed relative pose estimation method. We present these
experimental details, analyze the results, and discuss various
operational considerations in the following sections.

4.1 Proof of concept: structure frommotion

At first, we perform experiments to validate that the human
pose-based key-points can be used as geometric correspon-
dences for relative pose estimation. As illustrated in Fig. 5a,
we emulate an experimental set-up for structure from motion
with humans; we use an intrinsically calibrated monocular
camera to capture a group of nine (static) people from multi-
ple views. Here, the goal is to estimate the camera poses and
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Table 1 A quantitative performance comparison for various person ReId models on standard datasets; a set 150 test images are used for comparison
from each dataset

Person ReId Market-1501 Dataset CUHK-03 Dataset FPS
models Rank-1 Acc. (%) MAP (%) Rank-1 Acc. (%) MAP (%) (Jetson TX2)

Aligned ReId 92.90 90.12 67.15 68.03 0.67

Deep person ReId 85.86 68.24 62.26 65.15 0.33

Tripled-loss ReId 85.25 74.88 72.75 60.27 0.62

Proposed person ReId 75.67 72.26 57.82 54.91 7.45

Table 2 Effectiveness of the proposed person ReId method on real-world data; each set contains 100 images of multiple humans in ground and
underwater scenarios

Person ReId Set A (1-2 humans per image) Set B (3-5 humans per image)
models Rank-1 Acc. (%) FPS (Jetson TX2) Rank-1 Acc. (%) FPS (Jetson TX2)

Aligned ReId 62.75 0.62 56.65 0.48

Deep person ReId 55.32 0.29 42.36 0.12

Tripled-loss ReId 55.15 0.58 44.85 0.44

Proposed person ReId 76.55 6.81 71.56 5.45

Bold indicates best score

(a) (b)

Fig. 7 Empirical selection of hyper-parameters: a SSIM threshold for
pose association in the proposed person ReId module and b resolution
of the key-point refinement region. The evaluation is performed on the

combined set of 250 images containing a total of 687 person associa-
tions with 8256 key-point correspondences

reconstruct the 3D structures of the humans using only their
body-poses as features.

In the evaluation, we first use OpenPose to detect the
human pose-based 2D key-points in the images (Fig. 5a).
Then, we utilize the proposed person ReId and key-point
refinement modules to obtain the feature correspondences
across multiple views (Fig. 5b). Subsequently, we follow the
standard procedures for structure from motion (Hartley &
Zisserman, 2003): fundamental matrix computation using
8-point algorithm with RANSAC, essential matrix compu-
tation, camera pose estimation by enforcing the Cheirality

constraint, and linear triangulation. Finally, the triangulated
3D points and camera poses are refined using bundle adjust-
ment. As demonstrated in Fig. 5c, the spatial structure of
the reconstructed points on the human bodies and the cam-
era poses are consistent with our setup. Results of another
experiment for a two-view case are shown in Fig. 6, which
further validate that the estimated camera poses are compa-
rable to the ground truth, i.e., analogous SIFT feature-based
estimation. Next, we demonstrate the effectiveness of our
proposed refinement modules in ensuring this robust pose
estimation performance.
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(b)(a)

Fig. 8 Necessity of the proposed key-point refinement process; results correspond to the experiment illustrated in Fig. 5

Fig. 9 3-DOF ground experiment: one leader and one follower robot;
the follower robot’s trajectory is shown by red arrows (Color figure
online)

4.2 Effectiveness of the body-pose association and
key-point refinement modules

It is easy to notice that person ReId is essential for asso-
ciating mutually visible persons across different views. As
mentioned in Sect. 3.2, we focus on achieving fast associa-
tion by making use of the local structural properties around
the anatomical key-points in the image space. In contrast,
the SOTA person ReId approaches adopt deep visual feature
extractors that are computationally demanding. In Table 1,
we quantitatively evaluate the SOTA models named Aligned
ReId (Zhao et al., 2017), Deep person ReId (Li et al., 2014),
and Tripled-loss ReId (Zheng et al., 2011) based on accu-
racy and mean averaged precision (mAP) on two standard
datasets. Specifically, a test-set containing 150 instances
from the Market-1501 and CUHK-03 datasets are used
for the evaluation; also, their run-times on a NVIDIA™ Jet-
son TX2 are shown for comparison. The results indicate that
although these models (once trained on similar data) per-

(a) (b)

Fig. 10 An experiment to evaluate the accuracy of 2D relative pose estimation with two planar robots and two mutually visible humans (Color
figure online)
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(a)

(b)

Fig. 11 Illustrations where a lack of natural landmarks limits the utility of standard feature detectors. As seen, presence of a single human in the
scene facilitates considerably more anatomical key-point correspondences than the point-based features

form well on standard datasets, they are computationally too
expensive for single-board embedded platforms.

Moreover, as demonstrated in Table 2, these off-the-shelf
models do not perform that well on high-resolution real-
world images. Although their performance can be improved
by training onmore comprehensive real-world data, the com-
putational complexity remains a barrier. To this end, the
proposed person Reid module provides significantly faster
run-time and better portability as it does not require rigorous
large-scale training. Its only hyper-parameter is the SSIM
threshold δmin (see Sect. 3.2), which we select by standard
AUC-based analysis of ROC (receiver operating character-
istic) curve. As shown in Fig. 7a, we choose δmin = 0.4,
which corresponds to 83.5% true-positive and 6.5% false-
positive rates for person ReID on the combined test set of 250
images containing 687 person associations. Additionally, we
select the key-point refinement resolution through an abla-
tion experiment with 8256 key-point correspondences. We
observe that the optimal key-point location is found within
25 × 25 pixels of the initial estimate by OpenPose for over
96% of the cases. As shown in Fig. 7b, we make a more
conservative choice of 32×32 refinement region in our imple-
mentation.

Finally,we evaluate the utility and effectiveness of the pro-
posed key-point refinement algorithm based on re-projection
errors and compare the results with traditional SIFT feature-
based reconstruction. As Fig. 8a demonstrates, the 3D
reconstruction and camera pose estimation with raw key-
points are inaccurate as the unrefined correspondences are
invalid in a perspective geometric sense. As Fig. 8b shows,
the average re-projection error for the refined key-points
reduces to 6.85e−5 pixels, which is acceptable considering

Fig. 12 6-DOF underwater experiment: one leader and two follower
robots (aerial view)

the fact that there are ten times less anatomical key-points
than SIFT feature-based key-points. This evaluation corre-
sponds to the experiment presented in Fig. 5, which shows
that the refined key-points constitute accurate scene recon-
struction and camera pose estimation. Another qualitative
validation of the iterative key-point refinement algorithm and
its convergence behavior can be found in Fig. 6.

4.3 Robot-to-robot 3-DOF pose estimation

We also perform experiments for 3-DOF robot-to-robot rela-
tive pose estimationwith 2D robots. In the particular scenario
shown in Fig. 9, we use two planar robots (one leader and
one follower) and two mutually visible humans in the scene.
The robot with an AR-tag on its back is used as the fol-
lower robot while the other robot is used as the leader. The
AR-tag is used to obtain the follower’s ground truth relative
pose for comparison. On the other hand, the leader robot is
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equipped with an RGBD camera; it communicates with the
follower and shares the 3D locations of the mutually visi-
ble key-points. Specifically, it detects the human pose-based
2D key-points and associates the corresponding depth infor-
mation to represent them in 3D. Subsequently, the follower
robot uses this information to localize itself relative to the
leader by following the proposed estimation method.

As demonstrated in Fig. 9, we move the follower robot in
a rectangular pattern and evaluate the 3-DOF pose estimates
relative to the static leader robot. We present the qualitative
results in Fig. 10; it shows that the follower robot’s pose esti-
mates are very close to their respective ground truth. Overall,
we observe an average error of 0.0475% in translation (cm)
and a 0.8625◦ average error in rotation, which is reasonably
accurate. We obtain similar qualitative and quantitative per-
formance with a dynamic leader as well. Next, we present
field experimental validations of the relative pose estimation
performance in feature-deprived underwater scenarios.

4.4 Robot-to-robot 6-DOF pose estimation in
adverse underwater visual conditions

As seen in Fig. 11, standard point-based feature detectors fail
to generate a large pool of reliable correspondences when
there are very few salient features and landmarks in the
scene. Consequently, the sampling-based parameter estima-
tion techniques (e.g., RANSAC) often generate inaccurate
results in feature-deprived underwater scenarios. However,
we demonstrate that human pose-based key-points can still
be refined to establish reliable geometric correspondences for
robot-to-robot relative pose estimation. Moreover, we get a
reasonably large pool of correspondences with only one or
two humans in the scene, which is fairly common in cooper-
ative underwater missions.

We perform several field experiments in human–robot col-
laborative setups; Fig. 12 shows the setup of a particular
underwater experiment where we capture human body-poses
from different perspectives to estimate the 6-DOF transfor-
mations of two follower robots relative to a leader robot.
The leader robot is equipped with a stereo camera; hence,
the 3D information of the human pose-based key-points
is obtained by using stereo triangulation technique. Subse-
quently, we find the corresponding 2D projections on the
follower robots’ cameras using the proposed person ReId
and key-point refinement processes. Finally, we estimate the
follower-to-leader relative poses from their respective PnP
solutions.

We present a particular snapshot in Fig. 13a; it illustrates
the leader and follower robots’ perspectives and the associ-
ated human pose-based key-points. Subsequently, Fig. 13b,
c demonstrate the geometric validity of those key-point cor-
respondences and the reconstructed 3D points are shown in
Fig. 13d. As seen, the estimated 3D structure is consistent

with the mutually visible humans’ body-poses. Finally, the
estimated 6-DOF poses of the follower robots relative to the
leader robot are shown in Fig. 13e.

Such leader-to-follower pose estimates are useful in coop-
erative diver following (Islam et al., 2019), convoying
(Shkurti et al., 2017), and other interactive taskswhile operat-
ing in close proximity. The robust performance and efficient
implementation of the proposed modules make it suitable for
use by visually-guided underwater robots in human–robot
collaborative applications. However, there are a few practi-
calities involved which can affect the performance; next, we
discuss these aspects and their possible solutions based on
our experimental findings.

4.5 Discussion: operational challenges and
practicalities

Synchronized cooperation: A major operational require-
ment of multi-robot cooperative systems is the ability to
register synchronized measurements in a common frame of
reference, which can be quite challenging in practice. For
problems such as ours, an effective solution is to maintain
a buffer of time-stamped measurements and register those
as a batch using a temporal sliding window. We effectively
used such timestamp-based buffer schedulers (ROS.org,
2018) in our implementation with reasonable robustness.
However, the challenge remains in finding instantaneous
relative poses, especially when both robots are in motion.
Nevertheless, these aspects are independent of the choice
of features/key-points for relative pose estimation and more
generic requirements to multi-robot cooperative systems.

Trade-off between robustness and efficiency: It is quite
challenging to ensure a fast yet robust performance for visual
feature-based body-pose estimation and person ReId on lim-
ited computational resources of embedded platforms. This
trade-off between robustness and efficiency led us to design
fast body-pose association and refinement modules. These
efficient modules enable us to achieve an average end-to-end
run-time of 375-420 milliseconds for relative pose estima-
tion on Jetson TX2. Note that the proposed person ReId and
key-point refinement account for only 195-240 milliseconds
(up to nine humans in the scene). Hence, faster human body-
pose detectors (than OpenPose) can significantly boost the
end-to-end run-time of the system.

In Sect. 4.2, we demonstrated that the proposed person
ReId model performs reasonably well in practice despite its
simplistic design. One operational benefit in our application
is that the humans are seen at once from every perspective;
hence, both their appearances and body-poses remain con-
sistent. We provide a demonstration of this benefit in Fig. 14;
it shows three queries for ReId where humans with similar
suit/wearable are seen at various distances and orientations
from the camera. Although the gallery images contain sev-

123



590 Autonomous Robots (2021) 45:579–593

(a)

(b)

(c)

(d) (e)

Fig. 13 An underwater experiment for 3D relative pose estimation using one leader and two follower robots

eral humans with similar appearances, we observe that the
top three results correspond to best matches both in terms of
human appearance and body-pose.Wepostulate that comput-
ing aggregated similarity scores on local pose-based BBoxes
contribute to these results. Since the general-purpose per-
son ReId problem is significantly harder and requires more
sophisticated computational pipelines (Zhao et al., 2017; Li
et al., 2014), our proposed module seems to take advantage
of the body-pose consistency across viewpoints for a faster
run-time.

Number of humans and relative viewing angle: We
observed a couple of other practical issues during the field
experiments. First, the presence of multiple humans in the
scene helps to ensure reliable pose estimation performance.

We found that two or more mutually visible humans are ideal
for establishing a large pool of reliable correspondences.
Additionally, the pose estimation performance is affected
by the relative viewing angle; specifically, it often fails to
find correct associations when the � leader-human-follower
is larger than (approximately) 135◦. This results in a situation
where the robots are exclusively looking at opposite sides
of the person without enough common key-points. More-
over, other than temporal lags, we did not observe significant
deviations in pose estimation performance with an increas-
ing number of robots within this viewing angle; note that we
used up to three follower robots in our experiments.

Practical use cases: Other than the operational chal-
lenges discussed above, the proposed system does not incur
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Fig. 14 Three test cases for the proposed person ReId module are
shown: each query ismatchedwith a gallery of candidate images (inside
the blue box); the top three matches and respective scores are shown

alongside the query image. The scores represent averaged SSIM scores
for the mutually visible body-part BBoxes (see Sect. 3.2)

additional constraints or require any prior knowledge such
as global positioning information, robots’ initial positions,
3D sensing capabilities of the follower robots, etc. As
mentioned, it is useful for robot-to-robot pose estimation
in human–robot collaborative applications where multiple
robots need to maintain spatial coordination during task exe-
cution. The prominent use cases are multi-robot convoying,
diver following, cooperative mapping, inspection, and sur-
veying. Moreover, it is best suited in applications where the
human body-poses are already evaluated for other purposes
(e.g., detection/tracking, human–robot communication). It is
important to note that the proposed system is not intended to
be used as a replacement of full-form visual SLAM or coop-
erative global localization. Nevertheless, if the leader robot
has a GPS or an USBL receiver, it facilitates the follower
robots to essentially localize themselves globally by using
visual sensing alone.

5 Conclusions and future work

In this paper, we explore the feasibility of using human body-
poses as markers to establish reliable multi-view geometric

correspondences and to eventually solve the robot-to-robot
relative pose estimation problem. First, we use OpenPose
for extracting the pose-based 2D key-points pertaining to the
humans in the scene.Thenweassociate the humans seen from
multiple views using an efficient person re-identification
model. Subsequently, we refine the key-point correspon-
dences using an iterative optimization algorithm based on
their local structural similarities in the image space. Finally,
we use the 3D locations of the key-points (triangulated by the
leader robot) and their corresponding 2D projections (seen
by the follower robot) to formulate a PnP problem and solve
for the unknown pose of the follower robot relative to the
leader. We perform extensive experiments in terrestrial and
underwater environments to investigate the applicability of
the proposed relative pose estimation method; the experi-
mental results validate its effectiveness both for 2D and 3D
robots. We also discuss the relevant operational challenges
and propose efficient solutions to deal with them. In the
future,we seek to improve the end-to-end run-time of the pro-
posed system and plan to use it in practical applications such
as multi-robot convoying, cooperative source-to-destination
planning, etc. Additionally, we aim to investigate the appli-
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cability of DensePose (Alp Güler et al., 2018) in our work,
which can potentially provide significantly more key-point
correspondences per-person compared to OpenPose.
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