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Abstract
This work presents Object Landmarks, a new type of visual feature designed for visual localization over major changes
in distance and scale. An Object Landmark consists of a bounding box b defining an object, a descriptor q of that object
produced by a Convolutional Neural Network, and a set of classical point features within b. We evaluateObject Landmarks
on visual odometry and place-recognition tasks, and compare them against several modern approaches. We find that Object
Landmarks enable superior localization overmajor scale changes, reducing error by asmuch as 18%and increasing robustness
to failure by as much as 80% versus the state-of-the-art. They allow localization under scale change factors up to 6, where
state-of-the-art approaches break down at factors of 3 or more.

Keywords Visual features · Visual odometry · Place recognition · Robotic localization

1 Introduction

Visual localization is an important capability in mobile
robotics. In order for a robot to operate “in the wild” in
unstructured environments, it has to be able to perceive and
understand its surroundings. It must recognize previously-
visited locations under new conditions and perspectives, and
estimate its own position in the world. Vision sensing is a
modality well-suited to this task due to its low power require-
ments and richness of information. Much research (Brown
and Lowe 2002; Bay et al. 2008; Simo-Serra et al. 2015; Yi
et al. 2016 among others) has looked at how to make visual
localization and place recognition more robust to changes in
viewing angle and appearance, such as under variations in
lighting or weather. But comparably little attention has been
given to the problem of localizing under large differences
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in scale, when a scene is viewed from two (or more) very
different distances.

This problem can arise in numerous cases. One is that of
repeated missions carried out by aquatic robots over a coral
reef. A high-altitude robot might build a map of a reef, which
is then used by a low-altitude robot on a subsequent mission
to navigate in the reef. Another case is indoor navigation, in
which a robot may first see a location from far away, and then
later visit that location, viewing itmuchmore closely,without
having moved directly between those two views. The robot
must recognize that these two disparate viewpoints contain
the same scene, and determine the implied spatial relation-
ship between the two views.

As we will show in Sect. 4, state-of-the-art techniques
such as the Scale-Invariant Feature Transform (SIFT) have
poor robustness to scale changes greater than about 3×. By
contrast, humans can recognize known landmarks and accu-
rately estimate their own positions over a very wide range of
visual scales, and may possess this ability from as early as
three years of age (Spencer and Darvizeh 1981). This work
builds on the hypothesis that a key to human navigation over
large scale changes is the use of semantically-meaningful
objects as landmarks (Fig. 1).

In our prior work (Holliday and Dudek 2018), we pro-
posed an image feature we refer to as anObject Landmark.
Object Landmarks combine learned object features like
those used in Sünderhauf et al. (2015) with more traditional
point features. They are composed of “off-the-shelf” compo-
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Far Image Far mapped to
near

Near Image

Fig. 1 A homographic mapping between two images computed using
Object Landmarks, as described in Sect. 3.2. Despite a 6× difference
in visual scale, the highly-distinctive foreground object allows our sys-
tem to determine an accurate homography between the images. See also
Fig. 8

nents and require no environment-specific pre-training. We
demonstrated that by using matches between object features
to guide the search for point feature matches, accurate metric
pose estimation could be achieved on image pairs exhibiting
major scale changes.

The present work builds on Holliday and Dudek (2018)
in the following ways:

– We refine Object Landmarks by substituting new
object-proposal and object-description components that
improve speed and accuracy, and present new results
using these enhancements.

– We evaluate two recent learned feature point extractors
from the literature, Learned Invariant Feature Transform
(LIFT) and D2Net, and compare their performance with
Object Landmarks.

– We show that Object Landmarks can be used for long-
range place recognition, and report new results showing
that they improve on the state-of-the-art.

2 Background and related work

2.1 Classical visual features

Most classical methods for producing descriptors of image
content are based on image gradients and responses to engi-
neered filter functions. Most can be categorized as either
point-feature methods, where a set of keypoints in an image
are detected with associated descriptor vectors, or whole-
imagemethods,where a single vector is computed to describe
the entire image.

One notable point-feature method is SIFT, originally pro-
posed by Lowe (1999). As the name implies, SIFT features
are robust to some visual scale change. Their extraction is
based on the principles of scale-space theory (Lindeberg
1994). Keypoints are taken as the extrema of difference-of-
Gaussian functions applied at various scales to the image, and
descriptors are computed from image patches rotated and

scaled accordingly. Other widely-used point feature types
include Speeded-up Robust Features (SURF) (Bay et al.
2008) andOriented FAST and rotatedBRIEF (ORB) (Rublee
et al. 2011). Point features have the advantage of retaining
explicit geometric information about an image.

Whole-image methods include GIST (Oliva and Torralba
2001) and bag-of-words approaches, among others. GIST
describes an image based on its responses to a variety of
Gabor-wavelet filters. In bag-of-words, the vector space of
the descriptors of some point feature type, such as SIFT, is
discretized to form a dictionary of “visual words”. One then
extracts point features from an image, finds the nearest word
in the dictionary to each feature, and computes a histogram
of word frequencies to serve as a whole-image descriptor.

Classical visual feature methods like these tend to break
down under large changes in perspective and appearance,
since different perspectives on a scene can produce very dif-
ferent patterns of gradients in the image.Object Landmarks
address this weakness by basing descriptors of image com-
ponents on learned high-level abstractions.

A third category of classical methods partition an image
into components that can be interpreted as objects. Uijlings
et al. (2013) propose Selective Search, which hierarchically
groups pixels based on their low-level similarities. Zitnick
and Dollar (2014) propose Edge Boxes, which detects edges
in an image and outputs boxes that tightly enclose many
edges. Both approaches propose image regions to treat as
objects, but do not provide descriptors for those regions.
Object Landmarksmake use of Edge Box object proposals
as the first step in the process, and build representations of
these proposed objects that can be used for visual localiza-
tion.

2.2 Visual localization

As described in Dudek and Jenkin (2010), robotic localiza-
tion can broadly be divided into two problems. In “local
localization”, some prior on the robot’s pose estimate is
given, while in global localization, the robot’s position must
be estimated without any prior. Early work on these prob-
lems was carried out by Leonard and Durrant-Whyte (1991),
MacKenzie and Dudek (1994), and Fox et al. (1999), among
others. Most contemporary visual localization approaches
are based on classical low-level methods of image descrip-
tion, and they suffer from the deficiencies of these methods
described in Sect. 2.1.

Visual place recognition is a case of global localiza-
tion. In this problem, the environment is modeled as a set
of previously-observed scenes. New observations are deter-
mined either to match some previous scene, or to show a
new scene. Fast Appearance-Based Mapping, or FAB-MAP,
is a classic method proposed by Cummins and Newman
(2010). It uses a bag-of-words scene representation, build-
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ing a Bayesian model of visual-word occurrence in scenes.
It performs well only under very small changes in perspec-
tive between the query and its nearest match. More recent
systems, such as the Convolutional Autoencoder for Loop
Closure (CALC) of Merrill and Huang (2018) and Region-
VLAD of Khaliq et al. (2019), as well as the work of Chen
et al. (2018) and Garg et al. (2018), have used Convolutional
Neural Networks (CNNs) to improve on FAB-MAP’s per-
formance under appearance and perpsective change.

Visual odometry is a case of “local localization” in which
a robot attempts to estimate its trajectory from two or more
images captured by its camera(s). Given a pair of images
and certain other data, points or regions in one image can be
matched to the other, and the matches can be used to triangu-
late the relative camera poses. Most approaches to date have
established matches either using point-feature matching, as
in PTAM by Klein and Murray (2007) and ORB-SLAM
by Mur-Artal et al. (2015), or direct image alignment of
image intensities, as in LSD-SLAM by Engel et al. (2014).
Both such approaches are quite limited in their robustness
to changes in scale and perspective. Our proposed Object
Landmark feature is designed to provide much greater
robustness to scale change.

2.3 Learning visual features and localization

Much work has explored ways of learning to extract useful
localization features from images. Linegar et al. (2016) and
Li et al. (2015) propose similar approaches: both identify
distinctive image patches as “landmarks” over a traversal of
an environment, and train Support Vector Machines (SVMs)
to recognize each patch.

The notion of using semantically-based observables for
mapping or navigation can be traced to Kriegman et al.
(Dec 1989), and there are many examples of its use in
robotics, such as the Simultaneous Localization And Map-
ping (SLAM) system SLAM++ of Salas-Moreno et al.
(2013), and the work of Galindo et al. (2005). Bowman
et al. (2017) train Deformable Parts Models to detect several
known object types, such as doorways and office chairs, and
use these to propose semantic landmarks for use in SLAM,
demonstrating state-of-the-art performance on small office
environments. More recently, Li et al. (2019) use semantic
landmarks to localize over image pairs with very wide base-
lines, focusing on changes in perspective (front vs. side or
rear views) rather than changes in scale. All of these systems
rely on some form of pre-training, either on the environment
in question or on a known class of objects.

Kaeli et al. (2014) use the distinctiveness of low-level fea-
ture histograms to cluster images from a robotic traversal of
an environment, and their system requires no pre-training.
However, they explicitly limit observed scale changes to
2.67×, ignoring images outside that range.

Other approaches make use of the semantic capabilities
of Deep Neural Networks (DNNs) to provide visual descrip-
tors. Sünderhauf et al. (2015) use the intermediate activations
of an ImageNet-trained CNN (Russakovsky et al. 2015) as
whole-image descriptors to perform place recognition. In
their follow-up work (Sünderhauf et al. 2015), they use the
same CNN feature extractor on image patches proposed by
an object detector. They define a similarity score based on
matching objects between images.Using this for place recog-
nition, they report better precision and recall than FAB-MAP.

Simo-Serra et al. (2015) train a CNN to produce local
descriptors for keypoints from 64× 64-pixel patches around
those keypoints. By detecting SIFT keypoints and using
their CNN to generate the descriptors, they show improved
point-matching accuracy vs. plain SIFTunder large rotations,
lateral translations, and appearance changes. The LIFT of Yi
et al. (2016), SuperPoint of DeTone et al. (2018), and D2Net
of Dusmanu et al. (2019) all train CNNs that both detect
keypoints and compute descriptors, and demonstrate fur-
ther improvements over SIFT and Simo-Serra et al. (2015)’s
method. None of this work reports experiments involving
large scale changes, however.

Learning systems have also been trained to localize
directly from images. One of the earliest efforts was that
of Dudek and Zhang (1995, 1996) wherein a neural network
was used to map edge statistics directly to 3D pose in a small
indoor environment. Kendall and Cipolla (2016) train a CNN
to predict camera pose from an image of an outdoor environ-
ment. Mirowski et al. (2018) train a neural-network system
to navigate through the graph of a city extracted fromGoogle
Street View. Because this system operates only on the limited
set of viewpoints in the Street View graph, it is not suitable
for real-world deployment. Both this system and PoseNet
require a neural network to be trained from scratch for each
new environment in which they operate, making deployment
costly.

In all of thiswork, the proposed systems are either unsuited
by design to localizing across large scale changes, or their
evaluation does not include large scale changes, making their
performance in such cases unknown.

3 Proposed system

The core idea of this work is that objects can be used as
landmarks for coarse localization under major scale changes,
because their semantics are robust to such changes. But more
precise localization between viewpoints requires considera-
tion not just of the object, but of its parts. If enough points
on an object’s surface in one view can be matched to points
in the other, that one object can be enough to precisely local-
ize a robot from a new viewpoint, even over significant scale
change (Fig. 2).
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Fig. 2 A schematic of theObject Landmarks extraction process. Blue
boxes represent data, red boxes are operations. Bounding boxes b for
objects are detected. The image patches enclosed by these boxes are
passed through a CNN to get a descriptor q for each object, and a set
P of SIFT features are also extracted from each patch. The Object
Landmark feature consists of b, q, and P taken together

3.1 Object landmarks

We define an Object Landmark as a triplet, o = (b,q, P)

where:

– b = 〈xleft, ytop, w, h〉 is a 2D bounding box defining the
object’s location in the image,

– q is a quasi-semantic descriptor vector of dimension kq ,
– P is a set of point features inside b. Each point feature

p = (l, v) consists of a location l = 〈x, y〉 and a descrip-
tor vector v of dimension kv .

The Object Landmark extraction pipeline is as follows:
first, object-proposal bounding boxes are computed from an
image. The rectangular image patch corresponding to each
box b is extracted and resized to a fixed-size square. This dis-
torts the contents, but helps normalize for perspective change.
Each resized patch is passed through aCNN trained for image

classification on ImageNet, and the activation of an interme-
diate layer (flattened to a vector) is taken as the descriptor q
of the object. We refer to q as a “quasi-semantic” descriptor,
because it is a highly abstract representation of the image
used to construct the CNN’s semantic output, but lacks its
own semantic interpretation. We use ImageNet-trained CNN
features because they have been demonstrated to be useful for
localization tasks inworks such asSünderhauf et al. (2015, ?).

Point features are also extracted from the original image.
The set of point features inside anObject Landmark’s b are
designated the sub-features of the landmark, P .

3.1.1 Object proposals

In general, themore unique an object is, the better it will serve
as a localization landmark - but the less likely it is to belong
to any object class known in advance. For this reason, we
prefer an object-detection mechanism that is class-agnostic
and based on low-level image features, rather than a DNN-
based detection method that may be biased by the contents of
its training data. Selective Search (Uijlings et al. 2013) was
shown to be effective for robust scale-invariant localization
in Holliday and Dudek (2018), but in this work, we use Edge
Boxes (Zitnick andDollar 2014), whichwe found to be faster
and more accurate.

3.1.2 Object descriptors

Our prior work (Holliday and Dudek 2018) employed a
ResNet CNN (He et al. 2015) to extract q. We reported
results for a range of input sizes and network layers on
a held-out dataset. The best-performing descriptors ranged
from kq ≈ 32k to kq ≈ 100k. For the large-scale place-
recognition experiments in this work, we sought to reduce
kq , both to speed up the computation of distances between
different qs and to limit our memory footprint. Our final
choice and rationale are presented in Sect. 4.1.2.

3.1.3 Sub-features

We use SIFT for the landmark sub-features in our experi-
ments, because of theirwell-demonstrated robustness to scale
changes. We use the recommended SIFT configuration pro-
posed in Lowe (1999): 3 octave layers, σ = 1.6, contrast
threshold 0.04, and edge threshold 10.As the bounding boxes
of object proposals can overlap one another, we allow one
point feature to be associated with multiple Object Land-
marks.

3.2 Transform estimation

Transform estimation is a limiting case of visual odometry
with just two frames. Given a pair of images I1 and I2 of a
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scene, we use Object Landmarks to estimate the transform
between the camera poses as follows. After extracting land-
marks from both images, for every landmark i ∈ I1 and every
landmark j ∈ I2, we compute the cosine distance between
their qs:

di j = dcos(qi ,q j ) = 1 − qi · q j

‖qi‖
∥
∥q j

∥
∥

(1)

The matches are all pairs of landmarks (i, j) for which:

j = arg min
j ′

di j ′ (2)

i = arg min
i ′

di ′ j (3)

Once these matches are found, we match the sub-features
Pi , Pj of each match (i, j) in the same way, but using
Euclidean distance between SIFT vs instead of cosine dis-
tance. This produces a set of point matches of the form
(l1i,m, l2j,n) between sub-feature m ∈ Pi and n ∈ Pj . If no
sub-featurematches can be found for (i, j), the pair produces
a single point match between the centroids of bi and b j . The
point matches are then used to estimate either an essential
matrix E or a homography matrix H that relates the two
images. A homography H projects points from one 2D space
to another, and is used when we know that the scene being
viewed is roughly planar. Given four point matches, H is
computed via least-squares so as to minimize their reprojec-
tion error. If the scene is not expected to be planar, we instead
compute E via the five-point algorithm of Nistér (2004).
Faugeras et al. (2001) describes the meaning of homogra-
phies and essential matrices.

In either case, a Random Sample Consensus (RANSAC)
process is used that estimates matrices from many different
subsets of the point matches, and returns the matrix that is
consistent with the largest number of them.

Once H or E has been calculated, a set of possible trans-
forms consistent with the matrix can be derived. Cheirality
checking (Hartley 1993) is performed on each transform to
eliminate those that would place any matched points behind
either camera, leaving a single transform.

3.3 Place recognition

To perform place recognition using Object Landmarks,
we propose a modification of the technique of Sünderhauf
et al. (2015). This technique consists of matching theObject
Landmarks in a query image against those of each candi-
date in the map set, and computing a similarity score for each
candidate:

Sq,c = 1√
nqnc

∑

(i, j)

1 − (di j si j ) (4)

where q is the query, c is a candidate, nq and nc are the
number of Object Landmarks detected in q and c, and si j
is a shape similarity score for bi and b j . The match to the
query is arg max

c
Sq,c. In Sünderhauf et al. (2015), si j was

defined to reflect the difference in the size of the two boxes.
Under large scale changes, landmarks corresponding to the
same world object will have different sizes, so we instead
base si j on the difference in aspect ratios:

si j = exp

∣
∣
∣
wi
hi

− w j
h j

∣
∣
∣

max(wi
hi

,
w j
h j

)
(5)

The other significant modification we make is the addition
of a geometric-consistency check. This is done by attempt-
ing transform estimation between q and c as described in
Sect. 3.2: if this fails to estimate a valid transform, the can-
didate is rejected, and the candidate c′ with the next-highest
Sq,c′ is considered, and so on until a consistent match is
found or all possibilities are exhausted. The system reports
the matched candidate if one was found, as well as the esti-
mated transform.

4 Transform estimation experiments

In this section,weevaluate our transformestimation approach
against two datasets: the KITTI urban-driving dataset, and
the Montreal scale-change dataset published in Holliday and
Dudek (2018). The KITTI dataset consists of stereo image
pairs with precise ground truth poses, allowing a strict metric
evaluation of accuracy, but also contains considerable vari-
ation in viewing angle. The Montreal scale-change dataset
varies much less in viewing angle, allowing an analysis more
closely focused on scale, and its scene contents are very dif-
ferent from KITTI’s, captured by a pedestrian in a dense
urban environment.

4.1 KITTI odometry

The KITTI Odometry dataset (Geiger et al. 2012) consists
of data gathered during 22 traversals of urban and suburban
environments in the city of Karlsruhe, Germany, by a car
equipped with a sensor package. The data includes stereo
colour image pairs captured at a rapid rate, and the first eleven
traversals have ground-truth poses for every stereo pair. We
sample every fifth frame from the first eleven traversals to
reduce the scope of our experiments. For each frame in a
subsampled traversal, we estimate the transforms between
that frame and the next ten frames using the images from
the left-hand colour camera. Frame pairs in which the true
angle between gaze directions is greater than the camera’s
FOV are discarded, as such pairs rarely share any content.
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Fig. 3 Aset of images fromone of our the subsampledKITTI odometry
traversals. The second, third, and last images are from one, five, and ten
frames after the first. This gives a sense of the range of visual scale
changes that are present in our KITTI evaluation

The resulting frame pairs cover awide range of scale changes
and scene types (Fig. 3).

When estimating transforms frommonocular image pairs,
the translation’s magnitude cannot be determined. But the
stereo image pairs of each KITTI frame allow us to estimate
the magnitude. A disparity map D is computed for images
Ileft and Iright via the block-matching algorithm of Konolige
(1998), such that Dx,y is the distance (in pixel space) between
the pixel at location 〈x, y〉 in Ileft and its match in Iright. An
unscaled 3D world point L′ = 〈x ′, y′, z′〉 returned by our
transform-estimation algorithm is related to the true world
point L by a scale factor: L = L′s. Given the correspond-
ing pixel location lleft = 〈x, y〉 of L′ in Ileft, the baseline b
between the left and right cameras in meters, and the focal
length f of the left camera in pixels, we can compute s:

s = b f

z′Dx,y
(6)

In principle, s is the same for any L′ and L, and relates the
estimated unitless translation t′est to the scaled translation
test: test = t′ests. We estimate s separately using l1,lefti,m for

each point match (l1,lefti,m , l2,leftj,n ) produced by the transform-

estimation technique in question, and we compute test as:

test = t′est × mediank(sk) (7)

4.1.1 Error metrics

We examine two metrics of error in these experiments. The
first is the error in the estimated pose between the two cam-
eras 1 and 2, which we call the pose error:

terr = ||21test − 2
1tgt||2 (8)

rerr = dcos(12rest,
1
2rgt) (9)

pose error = terr + rerr ∗ ||21tgt||2 (10)

where i
j test,

i
j tgt, and

i
jrest,

i
jrgt are the estimated and true

positions and orientation quaternions of camera j in camera
i’s frame of reference. rerr is unitless and ranges from 0 to
2, while terr has units of meters. To compose a single error
metric, we scale rerr by the length of the ground-truth trans-
lation. Our rationale is that an error in estimated orientation
at the beginning of a motion will contribute to an error in
estimated translation at the end of the motion proportional to
the real distance travelled.

The second error metric is the localization failure rate.
Localization failure means that no transform could be esti-
mated for an image pair. This can occur when too few point
matches are discovered to estimate E or H , or when none
of the candidate transforms pass the cheirality check. Such
failure can be catastrophic in applications such as SLAM.
Depending on the robot’s sensors, no recovery may be pos-
sible, so failure rate is a very important metric.

4.1.2 Parameter search

Before evaluating our method, we performed a parameter-
tuning phase on a “tuning set” made from traversals 01,
06, and 07. This contained 4,055 frame pairs, about 11%
of the whole pose-annotated KITTI odometry dataset. The
first part was a search over network architectures and lay-
ers for a suitable extractor for q. We considered four
families of networks: AlexNet (Krizhevsky et al. 2012),
VGGNet (Simonyan and Zisserman 2014), ResNet (He et al.
2015), andDenseNet (Huang et al. 2017), testing several vari-
ants of each. To constrain kq and allow fastqmatching, inputs
to the networks were resized to 64 × 64 pixels, and we did
not consider any network layers with kq > 216. For all exper-
iments, we used the pre-trained ImageNet weights available
through the PyTorch deep learning framework (Paszke et al.
2017). The full details of this architecture search and analysis
of its results were presented in Holliday and Dudek (2020),
but are omitted here for brevity.
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Fig. 4 A schematic illustration of a DenseNet. The green block rep-
resents a composite dense-block. The contents of the first denseblock
are displayed in the insert; the circled ’C’ means concatenation of all
inputs along the channel dimension. This basic structure, in which each
layer’s input is the concatenated outputs of every previous layer, is com-
mon to all denseblocks, but they differ in their number of layers. Only
convolutional (blue) and pooling (red) layers are shown

We found that most layers provided comparable accu-
racy, but varied widely in kq . DenseNets produced much
smaller kq than other networks, while being among the most
accurate. We settled on an intermediate layer of a DenseNet
with 169 total layers, specifically the pooling layer labelled
“transition3” in Fig. 4, as the q extractor for all subsequent
experiments with Object Landmarks and object features.
It has kq = 2560. Its pose error on the tuning set was only
5% higher than the lowest-error layer, and its kq was 40%
smaller than the smallest layer with lower error.

We then ran a grid search over the parameters α and
β of Edge Boxes (Zitnick and Dollar 2014), as well as
the number of object proposals to use, n p, and an upper
limit on aspect ratio rmax, where the aspect ratio is defined
as r = max( h

w
, w
h ). Our best results were obtained with

α = 0.55, β = 0.55, and rmax = 6. Accuracy increased
monotonically with n p, but so did running time (since more
boxes needed to be matched for each image pair), and the
gains in accuracy diminished rapidly after n p = 500, so 500
was settled on.

Each sub-feature p may be associated with multiple land-
marks, so the final set of point matches used to estimate H or
E may include matches of one point in I1 to multiple points
in I2, or may include multiple instances of the same point
match. We tested three approaches to handling this on our
tuning set:

1. Score match (p1, p2) as 1/d(v1, v2), and keep only the
highest-score match for each p1,

2. Score match (p1, p2) as n/d(v1, v2), where n is the
number of times that match occurs, and keep only the
highest-score match for each p,

3. Simply keep all matches to each point.

Table 1 This table summarizes the performance of the five methods
being evaluated on the KITTI odometry set

Feature Type Mean pose error (m) # failures

Object Landmarks 40.402 1

Plain object features 67.918 94

SIFT 127.062 56

LIFT 104.279 105

D2Net 16.578 5

Object Landmarks are by far the best. They outperform the next-best
method by 68% on pose error, and result in only one localization failure,
while the next-best method results in 56

Approach 3 outperformed 1 and 2 by 18% and 9% on pose
error, respectively, and had no failures. We believe this is
because it preserves the most information from the matching
process. RANSAC handles this naturally: if some p1 ∈ I 1

has multiple matches in I 2, RANSAC finds which match
is most consistent with other matches. If (p1, p2) occurs
multiple times, this suggests the system has more confidence
in the match. It will be countedmultiply by RANSAC, which
has the effect of “up-weighting” the pair in proportion to the
system’s confidence.

In all of our KITTI experiments, a RANSAC threshold of
6 was used to estimate the essential matrix E .

4.1.3 Final evaluation

The final evaluation set consists of 35, 744 frame pairs taken
from traversals 00, 02 to 05, and 08 to 10. We evaluate the
following approaches: SIFT feature matching alone;Object
Landmarkmatching as described in Sect. 4; and plain object
feature matching, where we use the same set of bs and qs
as Object Landmark matching, but ignore P , using the
centroids of matched objects as point matches. As the object-
feature and SIFT approaches are components of Object
Landmarks, comparing them toObject Landmarks serves
as an ablation analysis.

To provide a comparison with contemporary learned
image features, we also evaluate LIFT (Yi et al. 2016) and
D2Net (Dusmanu et al. 2019) feature matching, the latter
of which was published as this work was in the final stages
of preparation. LIFT features were extracted with the net-
work models trained with rotation augmentation. The D2Net
weights used were those trained only on D2Net’s authors’
“MegaDepth” dataset, andD2Netwas run in pyramidalmode
to extract features at multiple scales. Only the 3500 highest-
score D2Net features on an image were used, since this was
roughly the average number of SIFT features detected in each
KITTI image. Table 1 summarizes the performance of each
approach.
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(a)

(b)

Fig. 5 Comparison of pose error (a) and failure rates (b) on image pairs,
clustered by the true distance between the images.Upper and lower error
bars indicate the mean of only the errors above and below the whole
cluster’smean error, respectively. Image pairs forwhich failure occurred
under some method are not included when computing the mean pose
error for that method on that cluster

As Fig. 5a shows, for frame separation dsep > 20m, trans-
forms estimated fromObject Landmarks are 50–70%more
accurate than SIFT features alone. Plain object features give
lower errors than SIFT at dsep ≥ 30 m, but their error is con-
sistently greater than complete Object Landmarks when
dsep ≥ 20m, and the difference grows with dsep. This shows
that the quasi-semantic descriptors provided by the CNN are
much more robust to changes in scale than are SIFT descrip-
tors. Figure 5b reveals a greater disparity: the failure rate
of plain object features is about double that of SIFT fea-
tures at separations greater than 10 m, while over the 35, 744
frame pairs, just one failure occurs withObject Landmarks.
This shows that the more numerous and precise matches pro-
videdbyObjectLandmarks’ sub-features are key to reliable

Fig. 6 Examples from the Montreal scale-change dataset. Each row
depicts all images of one scene, ordered from far to near

transform estimation, and the use of q descriptors to guide
SIFT matching greatly improves accuracy.

At all dsep, LIFT feature matching is notably less accurate
than Object Landmarks, and has the highest failure rate
of any evaluated method. D2Net features show 59% better
accuracy than Object Landmarks on this evaluation, con-
centrated at small values of dsep. But they fail 5 times as often
as Object Landmarks, a crucial fact for some applications.
In light of the results in Sect. 4.2, it appears D2Net’s reduced
error is mostly due to better robustness to viewing angle.

4.2 Montreal scale-change dataset

Collected from aroundMcGill University’s campus in down-
town Montreal, this dataset is designed to capture large,
nearly uniform changes in visual scale in real-world environ-
ments. The dataset consists of 31 image pairs formed from
two to three images of 11 diverse scenes. Each scene contains
a central subject chosen to be both approximately planar and
visually rich. Each pair of images has ground truth in the
form of ten manually-annotated point matches (gnear, gfar),
where g = 〈xgt, ygt〉. We have made the dataset available
online1. Figure 6 displays some examples.

We evaluate the same five feature types as on KITTI:
SIFT, plain object features, Object Landmarks, LIFT, and
D2Net. Since these scenes are roughly planar, we use the
point matches from each method to compute a homography
H , which projects points from one image into the space of
the other. For each image pair, we project each gnear to the
far image, and vice-versa, and compute the sum of the dis-
tance of each projected point to its true match. This is the

1 http://www.cim.mcgill.ca/~mrl/montreal_scale_pairs/.
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Fig. 7 Logarithmic STE of the homographies computed using each
method on each image pair over the Montreal dataset. Best-fit lines to
the results are plotted for each feature type. The black horizontal line
indicates 107, the STE value that was substituted when no transform
could be estimated. Points lying on this line indicate that the method in
question failed to estimate a transform for this image pair

symmetric transfer error:

STE =
N

∑

i

||gfari − Hgneari ||2 + ||gneari − H−1gfari ||2 (11)

If no valid H was found (localization failure), we used a
fixed error value of 107, which was approximately double
the maximum error we observed on any image pair for any
method giving a valid H .We define the scale change between
a pair of ground-truth point matches i, j as:

scale changei, j = ||gneari − gnearj ||2
||gfari − gfarj ||2

(12)

For each image pair, we plot the median scale change over
all pairs of ground-truth point matches versus the logarithmic
STE in Fig. 7. Because Edge Boxes is a stochastic algorithm,
and because we are here dealing with a very small dataset,
we ran both object-based methods ten times on the dataset,
and plotted the mean of the ten trials.

All input images were resized to 900×1200 pixels before
being processed. The parameters for SIFT, Edge Boxes,
LIFT, and D2Net were those described in Sect. 4.1. A
RANSAC threshold of 75 was used for plain object features,
as it was found to give better performance, while a threshold
of 6 was used for all other methods. Table 2 summarizes the
performance of each method.

Figure 7 shows thatObject Landmarks consistently out-
perform SIFT, LIFT, and D2Net features at scale changes
greater than 2.5×. Both SIFT and LIFT provide wildly inac-
curate estimates, or fail outright, on all but one image pair

Table 2 This table summarizes the performance of the five methods on
the Montreal dataset

Feature Type Mean log STE # failures

Object Landmarks 3.767 0

Plain object features 4.061 0

SIFT 4.641 8

LIFT 4.934 10

D2Net 4.523 4

Object Landmarks here have the lowest errors, and again show far
fewer total failures than any other method

with scale change above 4×. D2Net fares better but, surpris-
ingly in light of the results in Sect. 4.1.3, still has 17% greater
logarithmic STE than Object Landmarks, and fails on four
instances. Object Landmarks also outperform plain object
features. The difference is greatest at small scale changes,
where SIFT on its own performs well. This is expected, as
plain object features lack spatial precision, and their more
scale-robust descriptors make little difference to matching
accuracy under small scale changes.

A homography H can also be used to map a whole image
into the space of another. When this is done with the H
matrices computed for these image pairs, they ought to trans-
form the farther image of the pair into a “zoomed-in” image
that resembles the nearer image. This allows a qualitative
assessment of the results of these experiments. Some exam-
ple homographies for a large-scale-change pair are displayed
in Fig. 8. The improvement of Object Landmarks over
other methods is especially striking in this assessment. Due
to space constraints, we provide the whole set as supplemen-
tary material.

5 Place recognition experiments

For each place-recognition experiment, we use images with
ground truth camera poses captured over a trajectory by a
sensor-equipped vehicle. We sample the images from the
vehicle’s trajectory such that every consecutive pair of frames
are separated by either some minimum distance, dmin, or a
minimum angle between gaze directions, θmin. These form
the sampled set T . We then treat each image in T as a query
q against a “map” set M = T \{q}. The method under eval-
uation is used to find a match m ∈ M .

We repeat this process over a range of different values
of dmin; larger values of dmin require a place-recognition
method to recognize scenes across greater scale changes. For
each value of dmin, we performmultiple subsamplings so that
similar numbers of queries are performed for each value of
dmin. θmin is set to the horizontal field-of-view (FOV) of the
dataset’s images.
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Far Image Near Image

SIFT LIFT D2Net

Failure

Object
Landmarks

Object features
w/o sub-features

Fig. 8 Homographies computed by each of the methods for an image
pair with 6× scale change. SIFT failed to produce any valid homogra-
phy, so is not displayed here

In a place-recognition context, localization across large
changes in scale canmean that multiplemap images are “cor-
rect” matches to a query, if they view parts of the same scene.
Evaluating place recognition by counting correct and incor-
rect matches, or computing precision and recall, is therefore
inappropriate. Instead,where possible,we perform transform
estimation between q and m as described in Sect. 3.2, and
compute the error in the resulting pose estimate of q. This
is more relevant to real robotic localization than a simple
correct-incorrect tally: what matters is that the robot have an
accurate estimate of its pose, not which specific image from
its database it used to estimate that pose.

In these experiments, we evaluate the place recognition
method described in Sect. 3.3. We use the same Object
Landmark configuration as in the transform estimation
experiments, except that we set n p = 250 for Edge Boxes,
to reduce the computational burden of matching queries over
a dataset.

We compare this method against FAB-MAP 2.0 (Cum-
mins andNewman2011), using the open-source implementa-
tion openFABMAP (Glover et al. 2011) with SURF features,
as they were used in the original work on FAB-MAP 2.0. We
tested using FAB-MAP2.0with SIFT features, but found this
had reduced accuracy vs. SURF.We also evaluate two recent
CNN-based place recognition schemes: CALC (Merrill and
Huang 2018), and Region-VLAD (Khaliq et al. 2019). In
fairness, we modify the CALC by concatenating the descrip-

tors produced for each colour channel instead of using only
the descriptor of a grayscale image. This improves its perfor-
mance slightly. For allmethods, the transformestimation step
is performedusingObjectLandmarks, so that differences in
accuracywill be dueonly to the place recognitionmethod.We
perform these experiments on the KITTI odometry bench-
mark, as well as on a subset of the COLD Saarbrucken
dataset (Pronobis and Caputo 2009).

5.1 Outdoor: KITTI odometry

Our primary place-recognition experimentwas performed on
traversal 02 from the KITTI odometry benchmark (Geiger
et al. 2012). It is one of the longest traversals and has very
little self-overlap. FAB-MAP 2.0 was pre-trained on images
sampledwith aminimumseparation of 30meters fromKITTI
odometry traversals 01, 04, 05, 06, 08, 09, and 10 (none of
which overlap with 02). The other methods required no pre-
training.

We conducted experiments with dmin values of 2, 5, 10,
20, 40, and 80 meters. To more evenly compare FAB-MAP
2.0 with the other methods, which cannot declare the query
to be a new location, the most probable match reported by
FAB-MAP 2.0 was used, regardless of whether it indicated
the query was more likely a new location. The metric of
main interest is the pose error defined in Eq. 8. The results
are summarized in the “KITTI” section of Table 3, showing
that Object Landmarks outperform other methods signifi-
cantly. terr and rerr are also presented to show howmuch each
contributes to the pose error: for all methods, about 74−79%
of error is translational, and both components show the same
relationship between the methods as the mean pose error.

As shown in Fig. 9, our method substantially outperforms
FAB-MAPandCALC from dmin = 5 to 40m.Region-VLAD
is more competitive with our method, but is still substantially
outperformed from dmin = 10 to 40m: at dmin = 40, our
method’s first error quartile is the lower thanRegion-VLAD’s
by a factor of 2. The difference is most pronounced at dmin =
20m, while by dmin = 80m all methods perform very poorly;
mean errors are not much better than randommatches for any
method, suggesting that all methods give mostly incorrect
matches.

This experiment assumes that all queries have a correct
match in the map. But a robot may also need to consider
whether it is visiting an entirely new location. FAB-MAP
2.0 outputs a probability that q represents a new location
along with its match probability for each c ∈ M . Our place-
recognition scheme can accomplish the same by establishing
a threshold on the similarity score.

Table 4 and Fig. 10 illustrate the trade-offs of different
settings of the similarity threshold, and the distances at which
this place-recognition method performs well. A threshold of
0.1, which would make the “new” rate about equal to that of
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Table 3 This table summarizes the results from the place-recognition experiments

KITTI COLD
Method Mean pose error (m) Mean terr(m) Mean rerr # failures Mean dist. to match (m) Failure rate (%)

OL 128.9 101.8 0.077 0 5.796 2.43

FAB-MAP 2.0 279.2 208.2 0.169 0 6.565 1.42

CALC 238.8 189.7 0.132 2 7.168 18.33

Region-VLAD 156.2 123.8 0.097 0 6.392 1.55

Failures are queries where no spatially-consistent match was found. Object Landmarks have the best accuracy on both the KITTI and COLD
experiments, although on COLD, both FAB-MAP 2.0 and Region-VLAD have a lower failure rate. This is because the COLD trajectory that we
use has some segments where the robot sees only untextured wall, a case to which the Object Landmark method is brittle, since it cannot detect
any objects

Fig. 9 Pose errors on the KITTI Odometry place-recognition experi-
ments, separated by step distance dmin. The y-axis is log-scaled. Each
box shows the quartiles of errors for one method at one dmin value.
The whiskers indicate the minimum and maximum errors observed.
Results from matching queries randomly are included as a baseline.
Object Landmarks achieves much lower median error than both FAB-
MAP and CALC at dmin values from 5 to 40m, and notably outperforms
Region-VLAD at dmin = 10 and 20m. Nomethod performsmuch better
than chance at dmin = 80

Table 4 Statistics of Sq,m
scores for each dmin in the
KITTI experiments

dmin Mean Sq,m SD

2 0.34 0.044

5 0.25 0.052

10 0.19 0.068

20 0.14 0.068

40 0.13 0.061

80 0.11 0.025

The scores decline with dmin

FAB-MAP 2.0, would cut off about half of the dmin = 80m
and 40m queries. A threshold of 0.16 gives a mean error
very close to 0m, but a “new” rate of about 50% - at this
threshold, most of the queries in the dmin = 20, 40, and

Fig. 10 Impact of a range of Sq,m thresholds. At each threshold, queries
with no match above the threshold are considered new locations. FAB-
MAP2.0 does not dependon a threshold, so its values are constant. FAB-
MAP’s mean error is much higher than our system’s at any threshold.
Even at a threshold that produces the samenumber of “new”declarations
from both systems, FAB-MAP’s mean pose error is 223% greater than
that of our system

80m experiments are cut off, as are approximately half of the
queries in the dmin = 10m experiments.

It should be noted that in these experiments, we do not
exploit any priors on robotic motion. Such priors could
greatly constrain the search space for matches and thus
increase the robustness of localizing over large distances,
allowing higher thresholds to be used while maintaining a
desired accuracy. Ultimately, the choice of threshold must
depend on the application, balancing tolerable error against
feasible loop-closure distance and map size.

5.2 Indoor: COLD Saarbrucken

To evaluate the performance of our method on an indoor
environment, we conducted place-recognition experiments
on the COsy Localization Database (COLD) produced by
Pronobis and Caputo (2009). COLD is an indoor navigation
dataset consisting of sensor data collected over traversals of
various university buildings. The datawas gathered by a robot
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Fig. 11 Box plots of ground-truth distances between queries and
matches proposed by each method, for each value of dmin. At dmin = 8
m, FAB-MAP 2.0’s second quartile is almost equal to the third quartile,
and at dmin = 8, the second is almost equal to the first, making it hard
to discern in each case

equipped with a forward-facing monocular camera, and has
precise ground truth poses associated with each image, as
well as annotations indicating which room in the building
the robot is in at each frame.

For COLD, we ran experiments with dmin values of 0.1,
2, 4, 6, 8, and 10 meters. These values were chosen because
of the small size of these traversals, and because changes in
visual scale observed under a given motion in the z direc-
tion will tend to be larger in an enclosed indoor space than
outdoors.

The monocular images in COLD are unrectified, and the
intrinsic parameters of the cameras used are not available, so
we cannot accurately estimate camera poses, though geomet-
ric consistency checking via the cheirality check can still be
performed by assuming arbitrary camera parameters. For this
reason, in our experiments on COLDwe consider the ground
truth distance of q from proposed match m as our metric of
interest. By construction, this cannot be less than dmin for
a given experiment, but it is a useful proxy for the “cor-
rectness” of the pose estimate, as smaller baselines between
image pairs make transform estimation more accurate, as
shown in our other experiments. The results are summarized
in the “COLD” section of Table 3.

Figure 11 shows that Object Landmarks usually outper-
forms the other methods at dmin ≥ 2m. At dmin = 4 and 6m,
Region-Vlad has a slightly lower second quartile, but a much
higher third quartile, than Object Landmarks, and FAB-
MAP 2.0 and CALC are strictly dominated. Region-VLAD’s
performance degrades at dmin = 8 m, while FAB-MAP
2.0 and CALC anomalously perform as well or better than
Object Landmarks. At dmin ≥ 10 m, where the most
extreme scale changes are experienced,Object Landmarks

dominate all other methods. It is notable that of the methods
other thanObject Landmarks, the only one that operates by
detecting andmatching object-like regions between images is
Region-VLAD, which has the best performance of the three.

6 Conclusions

We have proposed Object Landmarks, a new feature type
for visual localization. An Object Landmark consists of
an object detection with a quasi-semantic descriptor from
intermediate activations of a CNN, as well as a set of point
features such as SIFT on the object. This design is motivated
by a holistic philosophy of image processing, which consid-
ers that information at both high and low levels of abstraction
from the raw image data are important to the task. We have
demonstrated thatObject Landmarks offer major improve-
ments over the state of the art when used to localize over
changes in visual scale greater than 3×. These results are sup-
portive of our holistic approach, and we believe that future
work on visual localization, and on image processing more
broadly, may benefit from taking such an approach.

Our experimental evaluation did not investigate the robust-
ness of Object Landmarks to large changes in viewing
angle and scene appearance, both of which are of consid-
erable importance in visual localization. In future work, we
would like to investigate these aspects of the feature’s per-
formance in more detail.

The off-the-shelf construction of Object Landmarks has
the advantage that they do not require any re-training to apply
them to new environments. Nonetheless, one direction for
future research would be to attempt to train a neural network
to replace some or all of the stages of this pipeline. For such
a system to perform reliably over large scale changes would
require training data exhibiting such changes over a wide
variety of types of environment, which may be difficult to
obtain. Nonetheless, this could provide gains in accuracy and
speed, andwould remove the need for some of the parameter-
tuning associated with components like Edge Boxes.

Acknowledgements This work was conducted at the SamsungAI Cen-
ter Montreal.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Autonomous Robots (2021) 45:407–420 419

References

Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up
robust features (surf).Computer Vision and Image Understanding,
110(3), 346–359. https://doi.org/10.1016/j.cviu.2007.09.014.

Bowman, S. L., Atanasov, N., Daniilidis, K., & Pappas, G. J. (2017).
Probabilistic data association for semantic slam. In: 2017 IEEE
international conference on robotics and automation (ICRA), pp.
1722–1729.

Brown,M., & Lowe, D. G. (2002). Invariant features from interest point
groups. In: BMVC, Vol. 4.

Chen, Z., Liu, L., Sa, I., Ge, Z., & Chli, M. (2018). Learning context
flexible attention model for long-term visual place recognition.
IEEE Robotics and Automation Letters, 3(4), 4015–4022.

Cummins, M., & Newman, P. (2010) Invited Applications Paper FAB-
MAP: Appearance-based place recognition and mapping using a
learned visual vocabularymodel. In: 27th International conference
on machine learning (ICML2010).

Cummins, M., & Newman, P. (2011). Appearance-only slam at
large scale with fab-map 20. The International Journal of
Robotics Research, 30(9), 1100–1123. https://doi.org/10.1177/
0278364910385483.

DeTone, D., Malisiewicz, T., & Rabinovich, A. (2018). Superpoint:
Self-supervised interest point detection and description. In: Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition workshops, pp. 224–236.

Dudek, G., & Jenkin, M. (2010). Computational principles of mobile
robotics. Cambridge: Cambridge University Press.

Dudek, G., & Zhang, C. (1995). Pose estimation from image data with-
out explicit object models. In: Research in computer and robot
vision. World Scientific, pp. 19–35.

Dudek, G., & Zhang, C. (1996). Vision-based robot localization with-
out explicit object models. In: IEEE International conference on
robotics and automation, Vol. 1. IEEE, pp. 76–82.

Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J., Torii, A.,
& Sattler, T. (2019). D2-Net: A Trainable CNN for joint detec-
tion and description of local features. In: Proceedings of the 2019
IEEE/CVF conference on computer vision and pattern recognition

Engel, J., Schöps, T., & Cremers, D. (2014). Lsd-slam: Large-scale
direct monocular slam. In: European conference on computer
vision. Springer, pp. 834–849.

Faugeras, O., Luong, Q.-T., & Papadopoulo, T. (2001). The geometry
of multiple images: The laws that govern the formation of multiple
images of a scene and some of their applications. MIT press

Fox, D., Burgard, W., & Thrun, S. (1999). Markov localization for
mobile robots in dynamic environments. Journal of Artificial Intel-
ligence Research, 11, 391–427.

Galindo, C., Saffiotti, A., Coradeschi, S., Buschka, P., Fernandez-
Madrigal, J.A.,&Gonzalez, J. (2005).Multi-hierarchical semantic
maps for mobile robotics. In: 2005 IEEE/RSJ international con-
ference on intelligent robots and systems, pp. 2278–2283.

Garg, S., Suenderhauf, N., & Milford, M. (2018). Lost? appearance-
invariant place recognition for opposite viewpoints using visual
semantics. arXiv preprint arXiv:1804.05526.

Geiger,A., Lenz, P.,&Urtasun,R. (2012).Arewe ready for autonomous
driving? the kitti vision benchmark suite. In: Conference on com-
puter vision and pattern recognition (CVPR)

Glover, A., Maddern, W., Warren, M., Reid, S., Milford, M., & Wyeth,
G. (2011). Openfabmap: An open source toolbox for appearance-
based loop closure detection. In: The international conference on
robotics and automation. St Paul, Minnesota: IEEE.

Hartley, R. I. (1993). Cheirality invariants. In: Proceedings of DARPA
image understanding workshop, pp. 745–753.

He, K., Zhang, X., Ren, S., & Sun, J. (2015) Deep residual learning for
image recognition. arXiv preprint arXiv:1512.03385

Holliday, A., & Dudek, G. (2018). Scale-robust localization using gen-
eral object landmarks. In: 2018 IEEE/RSJ international conference
on intelligent robots and systems (IROS), pp. 1688–1694

Holliday, A., & Dudek, G. (2020). Pre-trained cnns as visual feature
extractors: A broad evaluation. In: 2020 17th conference on com-
puter and robot vision (CRV). IEEE, pp. 78–84.

Huang, G., Liu, Z., Maaten, L. v. d., & Weinberger, K. Q. (2017).
Densely connected convolutional networks. In: 2017 IEEE con-
ference on computer vision and pattern recognition (CVPR), pp.
2261–2269.

Kaeli, J. W., Leonard, J. J., & Singh, H. (2014). Visual summaries for
low-bandwidth semantic mapping with autonomous underwater
vehicles. In: 2014 IEEE/OES Autonomous underwater vehicles
(AUV), pp. 1–7.

Kendall, A., & Cipolla, R. (2016). Modelling uncertainty in deep learn-
ing for camera relocalization. In: Proceedings of the international
conference on robotics and automation (ICRA)

Khaliq, A., Ehsan, S., Chen, Z., Milford, M., & McDonald-Maier,
K. (2019). A holistic visual place recognition approach using
lightweight cnns for significant viewpoint and appearance changes.
IEEE Transactions on Robotics, pp. 1–9.

Klein, G., & Murray, D. (2007). Parallel tracking and mapping for
small ar workspaces. In: Proceedings of the 2007 6th IEEE and
ACM international symposium on mixed and augmented reality,
ser. ISMAR ’07. Washington, DC: IEEE Computer Society, pp.
1–10. https://doi.org/10.1109/ISMAR.2007.4538852

Konolige, K. (1998). Small vision systems: Hardware and implemen-
tation. Robotics Research. Springer, pp. 203–212.

Kriegman, D. J., Triendl, E., & Binford, T. O. (1989). Stereo vision and
navigation in buildings for mobile robots. IEEE Transactions on
Robotics and Automation, 5(6), 792–803.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classi-
fication with deep convolutional neural networks. In F. Pereira, C.
J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in
neural information processing systems (Vol. 25, pp. 1097–1105).
Curran Associates Inc.

Leonard, J. J., &Durrant-Whyte, H. F. (1991).Mobile robot localization
by tracking geometric beacons. IEEE Transactions on Robotics
and Automation, 7(3), 376–382.

Li, J., Eustice,R.M.,& Johnson-Roberson,M. (2015).High-level visual
features for underwater place recognition.

Li, J., Meger, D., Dudek, G. (2019). Semantic mapping for view-
invariant relocalization. In: Proceedings of the. (2019). IEEE
international conference on robotics and automation (ICRA 19),
Montreal, Canada

Lindeberg, T. (1994). Scale-space theory: a basic tool for analyzing
structures at different scales. Journal of Applied Statistics, 21(1–
2), 225–270. https://doi.org/10.1080/757582976.

Linegar, C., Churchill, W., Newman, P. (2016). Made to measure:
Bespoke landmarks for 24-hour, all-weather localisation with a
camera. In: 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 787–794.

Lowe, D. G. (1999). Object recognition from local scale-invariant fea-
tures. In: Proceedings of the international conference on computer
vision-volume 2, ser. ICCV ’99. IEEEComputer Society,Washing-
ton, pp. 1150, http://dl.acm.org/citation.cfm?id=850924.851523

MacKenzie, P., & Dudek, G. (1994). Precise positioning using model-
based maps. In: 1994 IEEE international conference on robotics
and automation. IEEE, pp. 1615–1621.

Merrill, N., & Huang, G. (2018). Lightweight unsupervised deep loop
closure. In: Proceedings of robotics: science and systems (RSS),
Pittsburgh

Mirowski, P., Grimes, M. Koichi, Malinowski, M., Moritz Hermann,
K., Anderson, K., Teplyashin, D., Simonyan, K., Kavukcuoglu, K.
Zisserman, A., &Hadsell, R. (2018). Learning to navigate in cities
without a map, 03.

123

https://doi.org/10.1016/j.cviu.2007.09.014
https://doi.org/10.1177/0278364910385483
https://doi.org/10.1177/0278364910385483
http://arxiv.org/abs/1804.05526
http://arxiv.org/abs/1512.03385
https://doi.org/10.1109/ISMAR.2007.4538852
https://doi.org/10.1080/757582976
http://dl.acm.org/citation.cfm?id=850924.851523


420 Autonomous Robots (2021) 45:407–420

Mur-Artal, R., Montiel, J. M. M., & Tardós, J. D. (2015). Orb-slam: A
versatile and accurate monocular slam system. CoRR

Nistér, D. (2004). An efficient solution to the five-point relative
pose problem. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(6), 756–777. https://doi.org/10.1109/
TPAMI.2004.17.

Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A
holistic representation of the spatial envelope. International Jour-
nal of Computer Vision, 42(3), 145–175. https://doi.org/10.1023/
A:1011139631724.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z.,
Lin, Z., Desmaison, A., Antiga, L., & Lerer, A. (2017). Automatic
differentiation in PyTorch. In: NIPS Autodiff workshop

Pronobis, A., & Caputo, B. (2009). COLD: COsy localization
database. The International Journal of Robotics Research
(IJRR), 28(5):588–594 http://www.pronobis.pro/publications/
pronobis2009ijrr

Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). Orb: An
efficient alternative to sift or surf. In: proceedings of the 2011
international conference on computer vision, ser. ICCV ’11.Wash-
ington, DC: IEEE Computer Society, pp. 2564–2571. https://doi.
org/10.1109/ICCV.2011.6126544

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
et al. (2015). ImageNet large scale visual recognition challenge.
International Journal of Computer Vision (IJCV), 115(3), 211–
252.

Salas-Moreno, R. F., Newcombe, R. A., Strasdat, H., Kelly, P. H., &
Davison, A. J. (2013). Slam++: Simultaneous localisation and
mapping at the level of objects. In:Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 1352–1359.

Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., & Moreno-
Noguer, F. (2015). Discriminative learning of deep convolutional
feature point descriptors. In: 2015 IEEE international conference
on computer vision (ICCV), pp. 118–126.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional net-
works for large-scale image recognition. CoRR, abs/1409.1556,
arXiv:1409.1556

Spencer, C., &Darvizeh, Z. (1981). The case for developing a cognitive
environmental psychology that does not underestimate the abilities
of young children. Journal of Environmental Psychology, 1(1), 21–
31.

Sünderhauf, N., Dayoub, F., Shirazi, S., Upcroft, B., & Milford, M.
(2015). On the performance of convnet features for place recogni-
tion. CoRR, arXiv:1501.04158

Sünderhauf, N., Shirazi, S., Jacobson, A., Dayoub, F., Pepperell, E.,
Upcroft, B., &Milford, M. (2015). Place recognition with convnet
landmarks: Viewpoint-robust, condition-robust, training-free. In:
Proceedings of robotics: science and systems (RSS)

Uijlings, J. R. R., van de Sande, K. E. A., Gevers, T., & Smeulders,
A. W. M. (2013) Selective search for object recognition. Inter-
national Journal of Computer Vision, 104(2):154–171, https://ivi.
fnwi.uva.nl/isis/publications/2013/UijlingsIJCV2013

Yi,K.M., Trulls, E., Lepetit, V.,&Fua, P. (2016). Lift: Learned invariant
feature transform. In: European conference on computer vision
(ECCV), pp. 467–483.

Zitnick, L., & Dollar, P. (2014) Edge boxes: Locating object
proposals from edges. In: ECCV: European conference
on computer vision, https://www.microsoft.com/en-us/research/
publication/edge-boxes-locating-object-proposals-from-edges/

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Andrew Holliday is a PhD candi-
date at the Mobile Robotics Lab-
oratory of McGill University. He
is interested in visual navigation,
neural representations for com-
puter vision, and applying machine
learning to combinatorial optimiza-
tion problems.

Gregory Dudek does research
on sensing for mobile robotics
including vision, robot pose esti-
mation (position estimation), recog-
nition, path planning. He is also
looking into a few non-robotic
problems such as those related to
recommender systems.

123

https://doi.org/10.1109/TPAMI.2004.17
https://doi.org/10.1109/TPAMI.2004.17
https://doi.org/10.1023/A:1011139631724
https://doi.org/10.1023/A:1011139631724
http://www.pronobis.pro/publications/pronobis2009ijrr
http://www.pronobis.pro/publications/pronobis2009ijrr
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1501.04158
https://ivi.fnwi.uva.nl/isis/publications/2013/UijlingsIJCV2013
https://ivi.fnwi.uva.nl/isis/publications/2013/UijlingsIJCV2013
https://www.microsoft.com/en-us/research/publication/edge-boxes-locating-object-proposals-from-edges/
https://www.microsoft.com/en-us/research/publication/edge-boxes-locating-object-proposals-from-edges/

	Scale-invariant localization using quasi-semantic object landmarks
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Classical visual features
	2.2 Visual localization
	2.3 Learning visual features and localization

	3 Proposed system
	3.1 Object landmarks
	3.1.1 Object proposals
	3.1.2 Object descriptors
	3.1.3 Sub-features

	3.2 Transform estimation
	3.3 Place recognition

	4 Transform estimation experiments
	4.1 KITTI odometry
	4.1.1 Error metrics
	4.1.2 Parameter search
	4.1.3 Final evaluation

	4.2 Montreal scale-change dataset

	5 Place recognition experiments
	5.1 Outdoor: KITTI odometry
	5.2 Indoor: COLD Saarbrucken

	6 Conclusions
	Acknowledgements
	References




