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Abstract
The goal of this paper is to describe a vision system for humanoid robot soccer players that does not use any color information,
and whose object detectors are based on the use of convolutional neural networks. The main features of this system are the
following: (i) real-time operation in computationally constrained humanoid robots, and (ii) the ability to detect the ball, the
pose of the robot players, as well as the goals, lines and other key field features robustly. The proposed vision system is
validated in the RoboCup Standard Platform League, where humanoid NAO robots are used. Tests are carried out under
realistic and highly demanding game conditions, where very high performance is obtained: a robot detection accuracy of
94.90%, a ball detection accuracy of 97.10%, and a correct determination of the robot orientation 99.88% of the times when
the observed robot is static, and 95.52% when the robot is moving.

Keywords Soccer robotics · Deep learning · Convolutional neural networks · Robot detection · Ball detection · Robot
orientation determination

1 Introduction

Robotic soccer promotes robotics and artificial intelligence
research by offering a formidable challenge: “By the mid-
dle of the twenty-first century, a team of fully autonomous
humanoid robot soccer players shall win a soccer game, com-
plying with the official rules of FIFA, against the winner
of the most recent World Cup” (RoboCup 2020a). Soccer
is a real-time, distributed decision-making problem, where
players need to perceive and understand the environment,
make collective decisions, and execute these decisions with
the final objective of winning the match; i.e. scoring goals
against the opponent team and avoiding goals from it.

The perception of the environment is one of the key abili-
ties for playing soccer; without an adequate vision system it
is not possible to determine robustly the position of the ball
and the pose of the other players, to identify key field fea-
tures (e.g. goals and field lines) and to self-localize, which
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are essential abilities to play properly. Given that the soccer
environment has a predefined physical setup, and that robots
used in RoboCup soccer leagues normally have limited pro-
cessing capabilities, most of the current vision systems used
in soccer robotics are based on the use of color information.
However, the use of color information has some drawbacks
such as (i) the need for calibration of the camera and tuning
of the color-segmentation’ parameters to achieve a properly
color segmented image and/or the calibration of perception
algorithms employed due to the fact that color perception
depends on the environmental illumination, and (ii) the need
of a soccer field with predefined colors (e.g. lines need to be
white, field/carpet needs to be green).

Currently, there are different robot soccer leagues, which
use different kinds of real or simulated mobile robots
(RoboCup 2020a). In this work we are interested in playing
soccer with real humanoid robots. We choose to work in the
RoboCup Standard Platform League (SPL) given that it uses
a standard platform, the NAO humanoid robot (RoboCup
2020b), which allows to compare and share developments
with other teams, and to focus on the cognitive aspects of the
problem.

The RoboCup SPL started in 2008, and the first vision
systems used by the competing teams were based on those
developed in the former Four-Legged League, which used
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SONY-AIBO four-legged robots as its standard platform.
In both leagues, the first generation of vision systems was
based on the segmentation, detection, and analysis of col-
ored objects of interest: the ball, lines, beacons, goals, players
and the field/carpet. Year by year, the restriction of having
colored objects in the field was relaxed: (i) the number of
colored beacons (used for the robot’s self-localization) was
first reduced from six to four, then to two, and then beacons
were removed in 2008, (ii) the goals were first colored and
solid, then composed by three colored cylinders (goalposts
and crossbar) and a white net, and finally composed by three
white cylinders (goalposts and crossbar) and a white, gray or
black net (since 2015), (iii) the ball used to be orange, and
since 2016, black and white. However, still most of the teams
use color information to detect some field features (the lines,
goal posts and penalty marks), the players, and the ball.

Recently, Convolutional Neural Networks (CNNs) have
been used for detecting the robots and/or the ball (Albani
et al. 2017; Speck et al. 2017, 2019; Cruz et al. 2018; Javadi
et al. 2018; Menashe et al. 2018; Gabel et al. 2019; Fel-
binger et al. 2019; Kukleva et al. 2019; Poppinga and Laue
2019; Teimouri et al. 2019).Most of these CNN-based detec-
tors require object proposals, which are currently obtained
using color information of the field/carpet (green) and the
lines (white). There have also been efforts to use end-to-end
trained CNNs to detect all field’s objects without relying on
object proposals (Szemenyei and Estivill-Castro 2019a, b).
However, considering the limited processing capabilities of
the NAO’s CPUs (the NAO v4 and v5 models are powered
with anATOMZ530 1.6GHzCPU), these vision systems are
still unable to run in real-time while playing soccer, and, at
the same time, to obtain the required performance for highly
competitive matches.

Therefore, to the best of our knowledge, color-free vision
systems have not been used in real robot soccer games, at
least not in the SPL. Some of the main reasons underlying
this are the following: (i) the challenge of achieving real-time
operation when using limited computational resources, (ii)
the problem of training deep detectors without having very
large databases, which are difficult to create when real-world
soccer conditions are taken into account, and (iii) the chal-
lenge of developing efficient and reliable color-free object
proposal generators.

We believe that using color-free vision systems in soccer
robotics is relevant, because this eliminates the constraint
of having objects on the field with specific colors (e.g. the
lines), and because it eliminates the need for calibration of
the vision systems (before and/or during the games), making
it possible to play soccer under variable lightning conditions
(e.g. indoors near big windows or outdoors).

The goal of this paper is to propose a color-free vision sys-
tem for humanoid soccer robotics, which will be validated in
the SPL. The main features of this system are (i) real-time

operation in humanoid robots (specifically in the NAO v5
robots that are part of the official platform for the SPL), and
(ii) the ability to detect the ball position, the robots’ pose, the
lines, and key field features very robustly. In fact, as it will be
shown in Sect. 5, the proposed ball, robots and robots’ ori-
entation detectors are highly performant; they achieve very
high detection rates, measured under realistic RoboCup SPL
game conditions.

To the best of our knowledge, the proposed system is the
first color-free vision system for humanoid soccer robotics
that is able to run in real-time, with a performance that allows
its use in robotics world championships. It is very important
to stress this point, because in images acquired under real-
world conditions, the objects are much difficult to detect than
in standard databases. For instance, ball perception is prone
to have image blurring produced by the fast movement of
the ball and the unstable walking of the robots. The pro-
posed vision system was used by our team, UChileRT, in the
RoboCup 2018 Word Competition, and its robot detector in
the RoboCup 2017 Word Competition.

The main technical contributions of this paper are the
following: (i) the proposal of a vision framework that com-
bines concepts of deep learning and cascade classification to
obtain, at the same time, high detection rates and fast process-
ing, (ii) the use of a training methodology based on bootstrap
and active learning, and (iii) the proposal of a method that is
able to accurately determine the orientation of an opponent
humanoid robot player by using a combination of heuristics
and CNNs.

A preliminary version of this work was presented in
Leiva et al. (2019). In this extended version a much deeper
explanation of the proposed color-free vision system and its
main modules is provided, as well as a better description
of the design and training of the CNN-based detectors. The
structure of all of the proposed CNN detectors is explicitly
described, as well as new detection results in real soccer
fields. In addition, in this extended version the proposed
framework is also validated in a different domain (detec-
tion of human soccer players in thermal images) to show its
applicability beyond soccer robotics.

The paper is organized as follows: related work is pre-
sented in Sect. 2; the proposed color-free vision system is
described in Sect. 3. Section 4 describes the design and train-
ing of the proposed CNN-based detectors. The experimental
validation and results are shown in Sect. 5; and finally, con-
clusions and suggestions for future work are presented in
Sect. 6.

2 Related work

Since 2016, CNNs have been used for detecting the robots
and/or the ball in the SPL and humanoid RoboCup leagues
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(Albani et al. 2017; Speck et al. 2017, 2019; Cruz et al. 2018;
Javadi et al. 2018; Menashe et al. 2018; Gabel et al. 2019;
Felbinger et al. 2019;Kukleva et al. 2019; Poppinga andLaue
2019; Teimouri et al. 2019).

In Albani et al. (2017), the first CNN-based robot detector
for the SPL league was proposed. In this system, robot pro-
posals are first computed by using color-segmentation based
techniques, and then, a CNN is used for validating the robot
detections. Different architectures with three, four, and five
layers are explored. In the reported experiments, the 5-layer
architecture was able to obtain 100% accuracy in the SPQR
NAO image data set, also proposed in Albani et al. (2017).
However, evaluating a detector using this dataset is differ-
ent from evaluating it in real game conditions, which have
much harder requirements. The detector was able to run at
11–19 fps on a NAO robot when all non-related processes
(such as self-localization, decision-making, and body con-
trol) were disabled. Because of the latter, this detector could
not be used to play soccer in real soccer games.

In Javadi et al. (2018), the performance of three well-
known CNN architectures (namely LeNet, GoogLeNet, and
SqueezeNet) was analyzed in the task of detecting humanoid
robots. In this study, however, no real-world deployment was
presented.

In Poppinga and Laue (2019), a proposal-free robot detec-
tor based on CNNswas presented. The proposed network has
an adaptable architecture, it ismulti-scale, and uses separable
convolutional blocks (Howard et al. 2017). The authors also
proposed a novel training procedure inspired in the generator-
discriminator adversarial learning paradigm, which allowed
training the networks using real and simulated images at the
same time. The trained detectors were able to detect robots
under realistic conditions, and the obtained detection time
was 9.0ms for a single image. In case that a similar approach
is used to detect other objects (e.g. the ball), it is not clear
that those detectors would be able to run simultaneously in
real-time.

In Cruz et al. (2018), we presented a CNN-based robot
detector, capable of operating in real-time. The system was
based on the classification of color-based robot proposals
generated by B-Human’s robot perceptor (Röfer et al. 2017).
This was modeled as a binary classification problem, where
proposals could be labeled as robots or non-robots. The
system processed robot proposals in ∼1ms while playing
soccer, with an average accuracy of ∼97%. Although this
detector achieved a very high performance, it possessed some
drawbacks. While the CNN classifier was robust to noise
and variations of the illumination, the same did not apply
to the color-based robot proposal generator. Adverse envi-
ronmental conditions could lead the algorithm to produce
an excessive amount of object hypotheses, or none at all.
The second drawback derived from the CNN ∼1ms infer-
ence time. While such a network is deployable on a NAO

robot, it is much slower than alternative algorithms based on
heuristics or shallowclassifiers, and can be prohibitively slow
when too many robot proposals are generated. In this paper
we address both problems by changing the robot proposals
generation approach, and by further reducing the inference
times while maintaining the detection accuracy.

In Speck et al. (2017), the first CNN-based ball detec-
tor for the RoboCup humanoid league was proposed. The
detector used two CNNs, which were able to obtain a local-
ization probability distribution for the ball over the horizontal
and vertical image axes, respectively. Several non-linearities
were tested, with the soft-sign activation function generat-
ing the best results. Processing times in the robot platforms
were not reported in that work, and the obtained accuracy
was about 80%.

In Teimouri et al. (2019), a CNN-based ball detector for
the humanoid league was presented. The proposed architec-
ture is multi-scale and uses separable convolutional blocks
(Howard et al. 2017). The detector is not color-free, because
the ball proposals are generated considering the white and
green patterns of the soccer field. The obtained performance
of the detector is 70.9%, and it decreases with variable light-
ing conditions and blurred images.

In Menashe et al. (2018), ball detection using different
machine learningmethods is analyzed. The system considers
several heuristic stages used for generating the ball proposals,
and a final classification stage implemented using either a
SVM or a CNN based classifier. The performance of both
systems is analyzed, but the analysis was focused on the
transferability between different soccer environments.

In Felbinger et al. (2019), a genetic design approach for
optimizing the hyper-parameters of aCNNdesigned to detect
the ball is presented. The focus is not on the real-world
deployment, but on the genetic based design of the network.
Nevertheless, an average runtime of 8ms was obtained in the
NAO robots.

Some other authors have proposed CNN based ball detec-
tors that requires a GPU for running in real-time (Gabel et al.
2019; Speck et al. 2019; Kukleva et al. 2019). Obviously,
these detectors cannot be used in robots that just rely on
CPU-based processing (such as the NAO robots).

In a different research line, some authors have proposed
end-to-end trained CNNs to detect all field’s objects with-
out using object proposals (Szemenyei and Estivill-Castro
2019a, b). In Szemenyei and Estivill-Castro (2019a), the use
of twonetworks, one to performsemantic segmentation of the
images, and a second one to propagate class labels between
consecutive frames, is proposed. Authors reported that the
fully neural vision pipeline runs at 6 frames per second,
which from our point of view is not enough for playing soc-
cer at a competitive level. In Szemenyei and Estivill-Castro
(2019b), ROBO, a new CNN model inspired in the popular
TinyYOLO(Redmon andFarhadi 2017), is proposed.ROBO
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is able to detect all relevant objects in the soccer field. The
processing time of the different versions of the CNN, which
consider different levels of pruning, range from 2.3 frames
per second to 13 frames per second, which obtains a Mean
Average Precision (mAP) of about 83%.

We believe that the limited processing capabilities of
humanoid robots currently used in robotic soccer, are not
sufficient to use end-to-end trained CNNs to reliably detect
all field objects in real time while playing soccer.

3 Playing soccer without color information

In this section we describe the proposed vision system. Sec-
tion 3.1 broadly explains the general characteristics and
functioning of the vision framework, while Sects. 3.2–3.9
describe the operation of each of its main modules.

3.1 The general framework

As already mentioned, the main feature of the proposed
vision system is that it manages to detect the ball, the robot
players, their orientations, and key features of the field with-
out using any color information, i.e. the whole processing is
performed using grayscale images rather than on a color seg-
mented image. Removing the color segmentation step from
the pipeline offers several advantages such as reduced oper-
ation times, reduced points of failure for the vision modules,
easier pre-game calibration, and larger range of valid camera
parameters since our object and field feature detectors are
more resilient to changes in illumination than color-based
approaches.

The key design components that allow the robust detection
of all these objects in real-time (using robots with processing
limitations) are the following: (i) custom-made object pro-
posals generators for each kind of object, which are based on
the characteristics of the soccer problem, (ii) CNN-based
object detectors using a light CNN architecture specially
designed for this application (Cruz et al. 2018), (iii) a cas-
cade classification methodology inspired in Viola and Jones
(2001),which implements the detection of someobjects (e.g.,
the ball) using a two-stage classification cascade of CNN-
based detectors, where the first stage discards, very quickly,
non-objects that are very different from the objects being
detected, and the second stage performs the final classifi-
cation, and (iv) the use of the detection results of some
object detectors for constraining the search of the others.
In summary, we follow a pragmatic approach that combines
classical algorithms widely used in robot vision with modern
CNN-based classifiers.

The proposed vision framework is illustrated in Fig. 1.
While the detection of lines and field features is done by
using a set of rules and heuristics commonly employed in

the SPL community (modules in yellow), the detection of the
ball, the robot players and their orientation is done by means
of object proposals (modules in green) and their subsequent
classification using CNNs (modules in blue). The ball and
robot orientation detectors are implemented as a two-stage
cascade of classifiers.

3.2 High contrast regions detection

Given the environmental conditions in which RoboCup
soccer matches take place (soccer field and players’ char-
acteristics), an appropriate heuristic to speed up the process
of finding the soccer ball and other players is to search for
them in high contrast regions of the images. Accordingly,
the grayscale input images are scanned using 16x16 pixels
windows to find those regions. Any window laying outside
the field boundary (determined using a priori knowledge of
the field dimensions and the pose of the robot’s camera)
is automatically discarded. Windows containing body-parts
of the observer robot are also discarded. Over each of the
remaining windows, a threshold for binarization is estimated
using Otsu’s method (Otsu 1979). Only windows with a
corresponding binarization threshold that is greater than a
predefined value are considered to have high-contrast prop-
erties. Since the value utilized to select those windows may
leave out image regions containing objects of interest, a dila-
tion operation is applied on the selected windows. That is,
all adjacent windows to any window considered to have high
contrast properties, according to its binarization threshold, is
also considered to have high contrast.

3.3 Robot proposals generator

The robot proposal generation applies vertical scan lines (y
direction) over all the image’s x-coordinates where high con-
trast regions were detected. The scan lines search for vertical
abrupt contrast changes. Depending on the y coordinate of
contrast changes found by the scan lines, a check is per-
formed to see if enough of these detections have roughly
the same y coordinate across the x-direction. If this is the
case, the midpoints (in image coordinates) of all the sets of
detections that fulfill this condition are considered to be the
midpoints of the bottom segments of the bounding boxes
containing the observed robot players. Then, by perform-
ing geometric sanity checks using a priori information of
the other robot players (such as their height), the proposal
generator provides a set of bounding boxes which may con-
tain other robots’ bodies. These sanity checks are similar to
some of the rules used in Röfer et al. (2017), but adapted
to be applied on a grayscale image. Moreover, all the rules
that only rely on color information (such as checking for a
player’s jersey color, or counting colored pixels to get spe-
cific features) are not utilized. This approach is more robust
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Fig. 1 Block diagram of the proposed vision system

to changes in lighting conditions, since it relies on local con-
trast information rather than on heuristic color segmentation.
However, it may produce amuch larger set of proposals since
it has less filtering steps than the original pipeline proposed
in Röfer et al. (2017).

3.4 Deep robot detector

The obtained robot proposals are then fed to a CNN that
classifies the proposals as robots or non-robots. This CNN
is based on the architecture proposed in Cruz et al. (2018),
which will be described in Sect. 4.1. Using grayscale image
regions allows the network to process in real-time a large
number of robot proposals, since the reduction of input chan-
nels from 3 (color space) to 1 (grayscale) greatly reduces the
CNN’s inference time. The trained robot detection CNNwill
be calledRobotNet in the experiments reported inSect. 5. The
team of each robot in the image is determined by analysing
the region corresponding to the robot’s shirt, which can be
estimated given that the robot’s position in the image is
known, and using bounds over the standard RGB image to
determine the color of the shirt. This approach works well
since the shirts have a very high color saturation following
the official rules of the SPL. It is important to note that this
analysis does not require the color segmented image and
its computational cost is very small given that only a small
region of the image is analysed. The robot detection pipeline
provides the estimation of the observed robots’ positions and
the team towhich they belong. This information is latter com-
bined, viawireless network,with the information gathered by
the other teammates. This allows for an accurate estimation
of the players’ positions in the field, while also accounting for
misdetections that single observers may be prone to commit.

Fig. 2 Major and minor lines depiction

3.5 Lower-leg region proposals generator

Inspired on the work presented in Mühlenbrock and Laue
(2018), we propose an improved orientation determination
method, which makes use of CNNs in order to achieve much
better prediction accuracy than the original approach. The
proposed method uses the bounding boxes of the detected
robots as inputs, finds the regions that contain the lower-legs
of each detected robot, and determines the body orientation
of each robot by analyzing each lower-leg region. The lower-
leg of each robot is characterized by two lines: the so-called
major andminor lines. “The major line is defined from toe to
toe and from heel to heel, while the minor line is defined as a
side line of a foot” (Mühlenbrock and Laue 2018). Examples
of both lines in different robot poses are shown in Fig. 2.

As a first step, the set of points that compose the robots’
lower silhouette is calculated (Mühlenbrock and Laue 2018).
Then, a region corresponding to the robot’s feet is extracted
and its Contrast-Normalized Sobel (CNS) image (Müller
et al. 2012) is analyzed by using vertical scan lines. Over
each scan line pixel, a horizontal median filter is applied and
its response is compared to a threshold. Pixels with a filter
response below the threshold are considered as part of the
lower silhouette. Then, by iterating for each scan line, the
subset of points that make up a closed convex region can be
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Fig. 3 Lower-leg proposals and labels depiction

obtained by using Andrew’s convex hulls algorithm (Andrew
1979). For each consecutive pair of points of the convex set, a
line model in field coordinates is calculated. Each line model
is then validated with the set of points of the lower silhouette,
by using a voting methodology akin to the RANSAC algo-
rithm (Fischler and Bolles 1981). The line with the highest
number of votes is selected as the major line. Once the linear
model has been chosen, the minor line may be generated by
iterating over the remaining pairs of convex points. This line
must fulfill a series of conditions such as a minimum and
maximum length, and to be approximately orthogonal to the
major line in order to be accepted as valid. Finally, the so-
called “lower-leg” proposal is built based on the major and
minor lines.

3.6 Deep robot orientation detector

While the major and minor lines can be used to calculate a
rotation, the uncertainty on the direction of the robot means
that there could be an error of 180◦ in the orientation estima-
tion. Indeed, a major or minor line can correspond to both
the front or the back of the robot. To solve this problem,
the robot orientation is determined using a two-stage clas-
sification cascade of CNNs, where the first CNN discards
low-quality lower-leg regions, and the second CNN deter-
mines the robot orientation.

Thus, for each lower-leg proposal, a CNN that measures
its quality, OriBoostNet, is first applied. Proposals with too
much motion blur or that do not correspond to the robots’
feet are discarded. This results in a reduction on the num-
ber of wrong orientation estimations, since outliers’ region
proposals are discarded.

If a proposal is not discarded in the first stage of the cas-
cade, it is then analyzed by a second CNN, OriNet, which
classifies the lower-leg proposal as a side, front or back
region. Examples of the proposed regions and their labels
are shown in Fig. 3.

After the lower-leg proposals are classified, a consistency
check is carried out by imposing that nomore than one region
of each class must exist for any given robot. This further
reduces the number of incorrect orientation estimations. The
rotation determination is performed by applying the inverse

tangent from two points belonging to the major or minor
lines. Then, by using the classes (side, front, back) assigned
to each line, the direction of the line can be determined in
order to tackle the symmetry problem and to estimate the
correct robot orientation.

Finally, the temporal consistencyof theorientation estima-
tion is verified; the resulting orientation is added to a buffer
that stores the last 11 estimations, and a circular median filter
is applied over it. Moreover, in order to avoid invalid results,
we consider that the orientation estimation as valid only for
a small period of time if no new samples are added to the
buffer.

3.7 Ball proposals generator

Our ball proposal generator is inspired on the hypotheses
generator proposed in HTWK (2018). The main differences
between both approaches are the following: (i) we only use
grayscale images, (ii) we use a different method to estimate
high contrast regions (see Sect. 3.2), and (iii) we use the robot
detections to improve the generation of proposals.

The proposal generator uses both the detected high con-
trast regions and the detected robots’ bounding boxes to
generate ball hypotheses. The high contrast image regions
are utilized because of the soccer ball’s high contrast prop-
erties (black and white pattern), whilst the robot detections
are utilized to discard some of the regions in which a ball
detection would be highly unlikely. This way, the detected
robot’s bounding boxes are used to filter out any high con-
trast region that would lie on a detected robot’s body, keeping
those regions lying on the robot’s feet.

The filtered image regions are then scanned in a pixel-
wise fashion, and the radius that the soccer ball would have
for all of the traversed image coordinates is calculated (con-
sidering prior knowledge of the field, the ball size, and the
robot’s camera pose). These radii are used to set the support
region of Difference of Gaussians (DoG) filters, which are
constructed and applied for every image coordinate where a
ball radius was calculated. Only the highest filter responses
are considered as a ball proposal. This process follows the
same principles that the blob search performed to find key-
points in the SIFT algorithm (Lowe 2004).

3.8 Deep ball detector

The ball detection is carried out using a two-stage cascade of
CNNs-based classifiers, where the first CNN discards region
containing objects that are very different from balls, and the
second CNN takes the final decision.

In order to speed up the detection process, the number
of detected balls by the first CNN, BoostBallNet, is limited
to a maximum of five, and then, they are sorted based on
their confidence. Then, the second CNN, BallNet, analyzes
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the sorted ball hypotheses to detect the ball. Once the second
CNN detects a ball, the remaining hypotheses are discarded.

3.9 Field lines and special features detection

The field lines and features detection is based on the algo-
rithm proposed in Röfer et al. (2017). The main difference
with respect to the original approach, is that in the proposed
framework no color information is used. To do this, a set of
vertical and horizontal scan lines are used, which save transi-
tions from high-to-low and low-to-high pixel’s values. This
allows the detection of a set of points which are then fed to
the algorithm described in Röfer et al. (2017), in order to
associate them with lines and other field features, such as the
middle circle, the corners, and line intersections.More details
about the algorithm can be found in Röfer et al. (2017).

4 Design and training of the CNN-based
detectors

In this section we describe the design and training method-
ologies used to obtain the CNN based classifiers used in the
proposed vision framework. Section 4.1 presents the net-
work architecture of the classifiers, and Sect. 4.2 describes
the active learning procedure used to train them.

4.1 Base CNN

The proposed vision system is composed of several statisti-
cal classifiers. Each of these classifiers, RobotNet, the robot
detector, BoostBallNet and BallNet, the two cascade-stages
of the ball detector, and OriBoostNet and OriNet, the two
cascade-stages of the robot orientation estimation network–
uses as base the same CNN architecture. The preliminary
version of this architecture (miniSqueezeNet) was described
in Cruz et al. (2018), while in this work slight variations
are incorporated to achieve higher processing speeds, while
maintaining accuracy.

The main component of miniSqueezeNet is the extended
Fire module, which was proposed in Cruz et al. (2018),
inspired by the original Fire module (Iandola et al. 2016)
and on GoogleNet’s inception module. This module uses a
1×1 filter placed at the beginning of each extended Firemod-
ule to compress the size of the representation into a feature
tensor with less channels. This compressed representation is
then fed to filters of different sizes; small filters are used to
extract spatially local information, while bigger filters obtain
global information which is more spatially spread out. The
features obtained from these filters are then combined into
a single tensor by means of channel wise concatenation and
then fed to the next layer. Following this approach allows the
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Fig. 4 Modified MiniSqueezeNet network structure

training of performant models whose use is computationally
inexpensive.

In Cruz et al. (2018) guidelines for designing CNN archi-
tectures to be used in embedded systems with low processing
capabilities are proposed. The main design variables are the
depth of the network and the number of filters in each layer.
In addition, it is proposed to use max-pooling operations
implemented using non-overlapping windows to reduce the
inference time. Following these guidelines and using the
extended Fire module, the so-called miniSqueezeNet was
designed for the detection of robots in real-timewhile playing
soccer (Cruz et al. 2018).

In thiswork theminiSqueezeNet is further improved. First,
grayscale images instead of color images are used as inputs,
which reduces the number of input channels from three to
one, andmodifies thewhole structure of the network. Second,
leaky ReLU (Maas et al. 2013) instead of ReLU is used as
activation function. Previously,weusedReLU inmost layers,
however, this sometimes resulted in the “dying ReLU” prob-
lem while training (no gradients flow backward through the
neurons). The use of leaky ReLU solves this, while incurring
in no accuracy losses. Further fine-tuning was performed on
the networks’ structure in order to estimate the correct input
size and the required number of parameters. This was done
by manually modifying the number of filters in accordance
with the requirements of the problem.

A diagram of the new base CNN structure is presented
in Fig. 4. All CNN based classifiers were developed using
the Darknet library (Redmon 2013), and trained according
to the methodology described in the next section. Taking
into account the specific needs of the problem, variations
on the number of convolutional filters were used for each
of the CNN classifiers. The exact parameters used for each
convolutional and maxpooling layer of the trained CNNs can
be found in Table 1. Each one of this layers is then followed
by batch-normalization and a leakyReLu activation function.

4.2 Active learning trainingmethodology

The use of an appropriate methodology for the training of the
classifiers, which considers realistic game conditions, is cru-
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Table 1 Structure of the trained
CNNs

Layer RobotNet BoostBallNet BallNet OriBoostNet OriNet

Conv 3×3

Size 3×3 3×3 3×3 3 × 3 3×3

Filters 12 4 10 4 12

Stride 2 2 2 2 2

Max Pool

Size 3×3 3 × 3 3×3 3 × 3 3×3

Stride 2 2 2 2 2

Squeeze 1 × 1

Size 1 × 1 1×1 1 × 1 1×1 1 × 1

Filters 6 2 4 4 6

Stride 1 1 1 1 1

Expand 1 × 1

Size 1 × 1 1×1 1 × 1 1×1 1 × 1

Filters 6 2 4 4 6

Stride 1 1 1 1 1

Expand 3 × 3

Size 3×3 3 × 3 3×3 3 × 3 3×3

Filters 3 3 2 4 3

Stride 1 1 1 1 1

Expand 5 × 5

Size 5×5 – 5×5 – 5×5

Filters 3 – 2 – 3

Stride 1 – 1 – 1

Max Pool

Size 3×3 3 × 3 3×3 3 × 3 3×3

Stride 2 2 2 2 2

Conv 1 × 1

Size 1 × 1 1×1 1 × 1 1×1 1 × 1

Filters 2 2 2 2 3

Stride 1 1 1 1 1

Avg Pool

Size Global Global Global Global Global

cial to obtain high performant classifiers. We implemented
an active learning procedure that selects and annotates unla-
beled data obtained under realistic conditions. The training
process has several stages which are described in the follow-
ing paragraphs.

As a first step, the different CNNs are trained using
publicly available soccer-robotics datasets, e.g., the SPQR
dataset (Albani et al. 2017).However,when the trainedCNNs
are used for processing images obtainedunder realistic soccer
conditions, the classifiers will likely behave poorly because
there is a distribution mismatch between this kind of images
and the samples present in the public datasets.

To address this problem, the classifiers must be fine-tuned
using the same kind of samples that would actually reach the
networks during games. Examples of such images are shown

in Fig. 5. To accomplish this, the vision system is deployed
on the NAO robot and data is collected using the objects pro-
posal algorithms. Each obtained proposal is classified and
stored in the robot’s memory with its corresponding label.
To get uncorrelated data, we set a constraint for the object’s
hypotheses to be saved: for the robot proposals and lower-leg
proposals for orientation determination, data is acquired peri-
odically in accordance to a predefined time step; for the ball
proposals, samples can only be saved if no other proposals
with the same position and estimated radius were previously
collected. The next stage consists of actively checking the
data saved by the observer robot, and manually annotat-
ing only the samples that were incorrectly labeled. We then
aggregate this data to the original data set and re-train the
models.
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Fig. 5 First row: robot samples, second row: ball samples, third row:
feet side samples

The above process is repeated until each CNN reaches a
high performance. By doing this, we are progressively aggre-
gating correctly labeled samples to acquire enough training
data for robust feature learning, but we are also aggregating
sampleswhich themodels fail to correctly infer, to encourage
changes in the decision boundaries of the classifiers.

After we obtain proficient models by following the
described methodology, we further enhance them by switch-
ing to a bootstrap procedure. To do this, we add confidence-
based constrains to collect new training data in environments
where the objects we want to detect are absent. For instance,
if we are getting false positives from the ball detector, we
would set the NAO robot to collect data in environments
were no balls are present, and we would store every high
confidence detection, relabelling them afterwards as non-
balls. The samples collected would then be used to re-train
the ball classifiers. Likewise, if the orientation detector is
labeling a front region as a back region, generating a false
positive, we would set the NAO robot to collect data in an
environment where only back lower-leg regions are visible
to re-train the classifier. Notice that the fine tuning proce-
dure is applied over the detector, which means that when a
cascade of CNNs is utilized, a sample is stored based on the
compound performance of the CNNs, being the confidence
constrain only considered for the last network involved in
the classification. This active learning-bootstrap procedure
results in a dramatic improvement in the performance of the
classifiers after only a few iterations, and also allows the
fine tuning of the CNN parameters by means of using data
aggregation when an abrupt domain change occurs. Since the
inputs to our models have relatively low dimensionality, the
space used in the NAO memory during the data collection
process is very small, for instance, 1000 robot proposal sam-
ples weight about 3MB. This procedure, combined with the

semi-supervised selection and labeling of the new samples,
makes the training process extremely time-wise efficient.

5 Results

5.1 CNN classification

All classifiers were trained using the methodology described
in the previous section. Table 2 shows the obtained model
complexity (number of CNN parameters), average inference
time (on the NAO robot), and accuracy calculated over a
balanced database with a 50% of positive and 50% negative
samples for each developed CNN.

Results show that the classifiers achieve very high perfor-
mance while maintaining low inference times, which proves
that their use is suitable for real time applications, such as
robotic soccer. This also validates the effectiveness of the
proposed methodology for the design and training of the
classifiers. Finally, this also shows that the use of color infor-
mation is not necessary to detect robots or balls when using
classifiers such as CNNs. In fact, the CNN used in the robot
detector achieves a similar accuracy rate that the model pro-
posed in Cruz et al. (2018), while being approximately 2.75
times faster.

5.2 Robots, ball and field features detection systems

In order to evaluate the designed robot/ball proposal gen-
erators and classifiers, we acquire about 600 frames by a
humanoid robot player under typical and challenging game
conditions. Several lighting conditions were imposed while
collecting these frames in order to test the robustness and reli-
ability of our modules. Some examples of the cropped sam-
ples obtained from these frames can be found in Fig. 6. The
testing database can be found at https://drive.google.com/
file/d/1qAoQVU3H7JUuzAeNob2Sa6Qy7x62xZ7o/view?
usp=sharing. The analysis of these frames allowed the extrac-
tion of empirical results in relation to the performance of the
proposals generators and the CNN based classifiers, which
are shown in Table 3. Examples of robot and ball detections
can be found in Figs. 7 and 8.

Results show that the robots and ball proposals genera-
tors achieve high recall rates, while producing an average
number of proposals per frame that can be processed in real
time by the subsequent classifiers. Given the recall rate of the
ball proposals module and the percentage of true positives of
the boosting stage, the overall detection module has a very
high detection rate. In fact, our ball detector outperforms B-
Human’s implementation proposed in Röfer et al. (2017),
which achieves an overall accuracy rate of 0.697 when test-
ing it under the same conditions. One of the main advantages
of our ball detector is that it can identify balls at large dis-
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Table 2 Performance of the
developed CNNs (Leiva et al.
2019)

Model RobotNet BoostBallNet BallNet OriBoostNet OriNet

Input size 24 × 24 × 1 12 × 12 × 1 26 × 26 × 1 12 × 12 × 1 24 × 24 × 1

No. of parameters 884 125 444 246 657

Inference time (ms) 0.382 0.043 0.343 0.059 0.329

Accuracy 0.969 0.965 0.984 0.962 0.984

Fig. 6 Example images from our dataset. First row: robot samples,
second row: ball samples

Table 3 Performance of the robots and ball detection systems (Leiva
et al. 2019)

Module Robot detector Ball detector

Proposals per frame 3.05 10.3

Proposals recall 0.972 0.993

Overall accuracy 0.949 0.971

tances since it does not rely on low resolution scanlines. The
proposed approach generates consistent detections with an
accuracy rate above 0.9 within a 4.5m range which is enough
to generate a reliablemodel of the ball. From this point detec-
tions decay rapidly, with some detections still possible at a
range of 6 meters to the ball. This is useful since even spo-
radic detections are enough to give an approximate location
of the ball.

Similarly, the robot detector achieves high recall for the
proposal generation and an overall very high accuracy.

Finally, the field lines and features detector was tested
by comparing the difference between the real and the esti-
mated robot pose. The estimation was obtained by using the
field lines and features detected by our module. By using this
approach we calculated a mean squared error of 40.07 mm,
which indicates a suitable accuracy and reliability.

5.3 Robot orientation determination

The proposed robot orientation determination system is com-
paredwith the oneproposed inMühlenbrock andLaue (2018)
(BH: B-Human), which is the only orientation determina-
tion system for NAO robots reported in the literature. We
analyzed two flavors of our system: the proposed base ori-
entation determination system (UCh), and its output after
applying a circular median filtering (UChF). Some examples

Fig. 7 Examples of robot detections, showing robots’ bounding boxes

Fig. 8 Examples of ball detections, showing ball bounding boxes and
confidence estimations

of the detected rotations as well as the corresponding major
and minor lines are shown in Fig. 9.

In the first experiment (static robot), whose results are
shown in Fig. 10, the observer and the observed robot are
static and placed at a distance of 120cm from each other.
For each measurement the observed robot was rotated 22.5◦
around its axis. As in Mühlenbrock and Laue (2018), we
define a false positive as any estimation that deviates more
than a tolerance angle of 11.25◦ from the ground-truth. The
orientation is classified as semi perceived when the rotation
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Fig. 9 Top number: confidence minor line. Middle number: estimated
rotation. Bottom number: confidence mayor line

can be determined but the facing direction is unknown. The
class not perceived corresponds to any framewhere the orien-
tation could not be calculated,while an orientation estimation
is perceived if it does not deviate more than a tolerance angle
of 11.25◦ from the ground-truth orientation.

In the second experiment (moving robot), whose results
are shown in Fig. 11, the observed robot is moving at a speed
of 12.0cm/s, while the observer remains static. The observed
robot is rotated in 45◦ around its axis for each measurement.
We define the same classes for the orientation estimations as
in the static experiment, but using a tolerance angle of 22.5◦.

As shown in Figs. 10 and in 11, the proposed method out-
performs the baseline system (Mühlenbrock and Laue 2018).
The orientation estimation is completely perceived 99.88%
of the time in static conditions, and 95.52% of the time in the
dynamic experiment. It is clear that the algorithm proposed
is better at determining the facing direction of the observed
robots. This results in an increased number of completely per-
ceived orientations while sharply decreasing the number of
semi perceived orientations. Also, noise filtering techniques
such as the median filter and RANSAC algorithm, combined
with the utilization of a CNN contribute to lowering the num-
ber of false positive estimations. Finally, the integration of
the circular median filter further reduces the number of false
positives.

5.4 Profiling

Table 4 shows the maximum and average execution times for
the differentmodules of the proposed vision frameworkwhen
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Fig. 10 Results obtained for the first experiment. Graph shows a performance comparison between raw (UCh) and filtered (UChF) estimations for
our orientation detector and a B-Human system replication (BH) (Leiva et al. 2019)
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Fig. 11 Dynamic experiment results.Graph shows a performance comparison between raw (UCh) andfiltered (UChF) estimations for our orientation
detector (Leiva et al. 2019)

Table 4 Vision framework profiling. Maximum (Max.) and Average
(Avg.) processing time in a NAO v5 platform (Leiva et al. 2019)

Module Max. (ms) Avg. (ms)

High contrast regions detector 2.755 1.478

Field lines and features detector 2.909 1.300

Robot proposals generator 2.692 1.083

Robot detector 2.417 0.939

Robot orientation detector 4.537 1.366

Ball proposals generator 2.506 1.132

Ball detector 6.959 2.452

deployed on theNAOv5 platform. The results obtained show
that the proposed color-free vision system is deployable on
platforms with limited processing capacity (such as the NAO
robot). In addition, they prove the importance of the dimen-
sionality reduction of CNN-based classifier inputs, and how
this design decision impacts the performance of the system
from a time-efficiency point of view.

5.5 Approach comparison

To further validate our approach, we compare the proposed
detectors to those included in the latest release of the B-
Human soccer code (Röfer et al. 2019). The comparison is
performed on a realistic simulator (Cruz and Ruiz-del Solar
2020) able to produce images that closely match reality by
using a generative model, trained with images collected from
real soccer environments. Samples from the realistic simu-
lator are show in Fig. 12. The simulator is able to randomly
shift the pose of the robot in the field as well as the pose of
all the other objects in the scene (opponent robots and ball).
Moreover, the simulator is also able to provide ground truth
information to calculate precise statistics.

We use this simulator to evaluate the performance of the
proposed ball and robot detector systems as well as the per-
formance of the robot (Javadi et al. 2018) and ball detectors
systems of the B-Human team. Given that teams use differ-
ent pipelines to detect objects, we define a detection system
as the combination of modules that are used to detect an
object in the scene. For our framework thismeans a combina-
tion of the region proposal extractor and the region classifier.
Other teams use different approaches such as B-Human’s
robot detector system which is composed of an end-to-end
detection model.

All four systemswere trained using a data set composed of
real samples. In the case of our ball and robot detectorswe use
the exact same models that were used to achieve the results
presented in Table 2. Table 5 presents the metrics collected
for both robot detectors systems, while Table 6 presents the
results of the ball detector systems. The reported recall and
precision metrics correspond to the detection system as a
whole, in accordance to how results are presented in Javadi
et al. (2018). The module’s average times are measured on a
NAO v5 robot.

From Table 5 it can be seen that our method offers bet-
ter recall than its B-Human counterpart. We found that this
difference is the result of a better detection rate of robots
facing sideways to the camera. Furthermore, our proposed
methodology is less computationally expensive when tested
on a NAO v5 robot, running at more than double the average
speed when compared to the B-Human approach, as reported
in Javadi et al. (2018). We attribute this to the simplicity of
our CNNmodel, which achieves state of the art performance
with fewer computations.

Table 6 shows the correspondingmetrics for the ball detec-
tor systems. Both approaches are very similar and consist on
a region proposal extractor followed by a CNN classifier that
takes as input the proposed region in gray scale and outputs
the probability that the sample corresponds to a ball. This is
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Fig. 12 Image samples generated by the realistic simulator and used to estimate performance metrics

Table 5 Performance of the robots detection systems

Robot detector system Ours B-Human

Detector recall 0.847 0.702

Detector precision 0.985 0.962

Average time (ms) 2.0 4.5

Table 6 Performance of the ball detection systems

Ball detector system Ours B-Human

Detector recall 0.806 0.831

Detector precision 0.987 0.986

Average time (ms) 3.4 –

then followed by an estimation of the ball’s position in the
image. Given the similarity of the approaches, it is not sur-
prising that both methods achieve very similar performances
in terms of recall and precision. We report the average time
of our proposed methodology on a NAO V5, however the
average time in a NAO V5 for the B-Human detector is not
reported in the literature.

The above results show that the proposed vision frame-
work is competitive with the ones of other teams that
consistently reach top spots on the SPL, such as B-Human.
This speaks to the overall quality of the proposed system.

5.6 Applicability in other domains

We hypothesize that the effectiveness of a vision system built
using the proposed approach in a different domain, would
depend on the availability of exploitable patterns and regular-
ities in that domain. Furthermore, for such system to function
in real-time, its applicability would be restricted to domains
inwhich hand-engineering computationally inexpensive pro-
posal generators is feasible.

Such domains correspond, for instance, to structured envi-
ronments in which the lighting conditions and the overall
geometrical layout of the scene are stable over time. This

kind of environments usually corresponds to some indoor
spaces, such as industrial plants, and warehouses. Stores and
hotels are also viable candidates for this kind of approach. In
recent years, robots have begun to become more ubiquitous
in this kind of working environments to offload some work
from human operators by performing tasks such as greet-
ing costumers, and delivering room service. Since these kind
of robots are often low cost, they usually have low com-
putational capacity, which renders them an ideal target to
implement vision systems similar to those proposed on this
paper.

Unstructured environments may also be approachable
when using images that contain information regarding their
state that simplify their complexity. For instance, the prob-
lem of generating proposals for object detection in a complex
indoor scene may be simplified if depth or thermal informa-
tion is available, and the target objects have a known shape
and size.

As a proof of concept of these ideas, we implemented
a detector for human soccer players as observed by thermal
cameras (seeFig. 13). Thedetector consists of a proposal gen-
erator similar to that described in Sect. 3.7, and a CNN-based
classifier that has the RobotNet architecture (see Table 1).

For training and evaluating this detector, the data set pre-
sented in Gade and Moeslund (2018) was utilized. This
data set is constructed by stitching three simultaneously
obtained thermal images from an AXIS Q1922 thermal cam-
era, resulting in 1920×480 pixels images. These images
contain between six to eight soccer players in and indoor
field (Gade and Moeslund 2018).

As a proposal generator of the human players, the ball
proposal generator described in Sect. 3.7 was modified so
that the support region of the DoG filters applied would
coarsely match the silhouette of the players. Moreover, these
non-square filters were applied using two different scales.
Contrary to the approach adopted for ball detection, the pro-
posal generator this time was applied over the entire image.
The produced proposals are resized to 32×32 pixels, and
fed to a CNN-based classifier that was trained using labeled
proposals from a fraction of the data set.
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Fig. 13 Human soccer players’ detection in thermal cameras. a Cor-
rectly detected players, b a false negative detection, and two players
incorrectly grouped as one

Table 7 Performance of the human soccer players detector

Module Detector

Proposals per frame 15.2

Detector system recall 0.806

Detector system precision 0.935

Figure 13 shows the results provided by the detector over
two image samples. The performance metrics for the detec-
tor are displayed in Table 7. The performance of the detector
could be further improved using tracking, which integrates
information over time and thus reduces the number of false
negatives by propagating information between consecutive
frames, as proposed in Gade and Moeslund (2018). Includ-
ing more heuristics to the region proposal generator could
also improve the overall detector’s performance. However
this falls outside the scope of this paper. Overall, these results
support our hypothesis regarding the applicability of the pro-
posed approach to domains beyond the RoboCup SPL, as
suitable solutions can be obtained by constructing systems
based on some of the processing pipelines of our detectors
and their CNN-based classifiers.

6 Conclusions

This paper describes a new vision framework that does not
use any color information. This is a novel approach for vision
systems designed for the RoboCup SPL, achieving very high
performance while being computationally inexpensive.

The proposed vision system we present introduces four
new modules: a redesigned robot detector, a visual robot ori-
entation estimator, a brand new ball detector, and finally, a
color-freefield lines and features detector.Allmodules devel-
oped for this paper are able to run simultaneously in real-time
when deployed on a NAO robot playing soccer.

Moreover, we demonstrate that CNN-based classifiers are
a useful tool to solve most of the perception requirements of
humanoid soccer robotics, and generally translate in an over-
all better performance of the corresponding modules when
coupled with good region proposal algorithms, and a proper
use of design and training techniques.

Furthermore, the proposed framework is successfully val-
idated in a different domain, where human soccer players are
detected using thermal images. This shows the applicability
of the proposed framework beyond soccer robotics.
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