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Abstract
This paper focuses on the design of robust control laws for a heterogeneous multi-agent system composed of omnidirectional
and differential-drive mobile robots under the leader–follower scheme and considering the distance and orientation measure-
ments. It is assume that the agent leader is an omnidirectional mobile robot moving freely in the plane while the rest of the
agents are the followers. The control laws are designed by means of the Backstepping approach. It is proved that, although the
control laws do not need information about the velocity of the leader, the followers will circumnavigate the leader. Numerical
simulations and real-time experiments exhibit the performance of the proposed control strategy.
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1 Introduction

In the last decade, the research on multi-agent systems has
increased due to the improvement in efficiency, scope and
robustness in its objectives.Within the different topologies in
the literature, the leader–follower scheme is the mainly used
to model the flow of information from one agent to another.
The most basic configuration consists of two agents, where
one of them is the leader who follows a trajectory, while the
follower must satisfy a relative posture with respect to the
leader. In that sense, different communities have developed
special emphasis on circumnavigation. This means that the
follower agents move in a circular trajectory, surrounding
the leader (or target agent), which can be static or in constant
motion. This technique is commonly applied in missions of
security and surveillance in robotics applications to detect,
locate and follow targets. These problems have been stud-
ied by different researchers, proposing distinct hypotheses,
topologies and approaches.

In Deghat et al. (2014), Shames et al. (2012), Shao and
Tian (2017) and Zhong et al. (2019) can be found works
related with the leader–follower formation control of first or
second order agents. Specifically, in Deghat et al. (2014), an
estimator is proposed to locate the target and a robust control
law is designed allowing to the agent to maintain a distance
and circumnavigate the target. It is assumed that the target
moves slowly with an unknown speed and the agent can only
measure the angle towards the target. In a similiar manner, in
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Shames et al. (2012) a control law is designed such that an
agent keeps a desired distance with respect to a target while
circumnavigate him. This approach is not robust with respect
to the measurement noise. Furthermore, unlike the velocity
of the objective is unknown, it has to be very small. It is
worth mentioning that in Deghat et al. (2014) and Shames
et al. (2012), even though the control strategy is robust, there
are oscillations between the distance of the agent and the
target. On the other hand, if there is noise in the measure-
ment, the distance between the agent and the target starts to
oscillate. In Shao and Tian (2017), an estimator is designed
in order to know the position of the targets, and therefore,
each agent circumnavigate them. The problem of progres-
sively deploying a set of robots to a formation defined as
a point cloud, in a decentralized manner, is described in Li
et al. (2018), where the authors have proved that for a 2D
shape it is sufficient for a free robot to compute its distance
from two robots in the formation to achieve this objective.
Furthermore, a distributed control is designed in Bechliouli
et al. (2018) for uncertain homogeneous Lagrangian non-
linear multi-agent systems in a leader–follower scheme, that
achieves andmaintains a rigid formation. In Lopez-Gonzalez
et al. (2016) a formation scheme, usingLyapunov techniques,
and considering that the local controllers of the agents can
be equipped with distance and orientation sensors, is pro-
posed. Finally, in Zhong et al. (2019), a control law, based
on gradients, is proposed to avoid inter-robot collisions and
circumnavigate a dynamic target. The consensus problem of
Lipschitz non-linear multi-agent systems with higher-order
dynamics has been addressed in Li et al. (2020), where the
Backstepping method, feedback domination technique and
sliding-mode control approach were used to design a control
strategy that guarantees that the leader–follower multi-agent
systems reach global consensus asymptotically.

The works Boccia et al. (2017), DongBin et al. (2014),
Zhao et al. (2019) and Zheng et al. (2013), address the prob-
lem of leader–follower formation control for differential-
drive robots. Particularly, in Boccia et al. (2017), is proposed
a control in which the follower agents circumnavigate an
objective with bounded velocity while in Zheng et al. (2013),
a proportional control is designed to circumnavigate a static
objective. In DongBin et al. (2014), the formation control
problem is addressed considering two differential mobile
robotswithout directmeasurement of the leader robot’s linear
velocity. The nonlinear strategies are based on the adaptive
dynamic feedback and Immersion and Invariance estimation
based second order slidingmode control technologies, which
are continuous and robust against unknown bounded uncer-
tainties. However, the main disadvantages are that the linear
velocity of the leader has to be constant and the distance and
formation angle are constants. In a similar way, in Zhao et al.
(2019), a control strategy is proposed by means of a kine-
matic controller based on Lyapunov theory with dynamic

controller using the Sliding Mode technique. As well as in
the previous case, the linear velocity of the leader has to be
constant. Finally, in Robin and Lacroix (2016), the authors
analyse the different approaches that are recurrent through
the target detection and tracking for multi-agent systems.

It is worth pointing out that most of the works, consider
only two agents with the same dynamic model. Furthermore,
in Shao and Tian (2017) and Zheng et al. (2013) the target
does notmove anddonot consider perturbations.On the other
hand, in Boccia et al. (2017), Deghat et al. (2014), DongBin
et al. (2014), Shames et al. (2012) and Zhao et al. (2019) it
is assumed that the target’s velocity is constant or it moves
with a slow velocity.

Motivated by the aforementioned drawbacks and inspired
by the works (Deghat et al. 2014; Shames et al. 2012), the
main contributions of this work are:

1. A group of heterogeneous multi-agent system composed
by differential-drive and omnidirectional mobile robots is
considered to perform the circumnavigation task.

2. Different communication topologies can be used in the
proposed approach, i.e., leader-follower, leader centered,
or considering a spanning tree with root in the leader
agent.

3. Unlike theworks (Deghat et al. 2014; Shames et al. 2012),
the circumnavigation velocity of the follower agent can
be determined in the proposed approach.

4. It is proved that the distance between the follower and
the leader has oscillations of smaller amplitude than the
works (Deghat et al. 2014; Shames et al. 2012).

5. The leader’s velocity can be either constant or time-
varying.

6. The control strategy does not need information of the
leader’s velocity.

The outline of this work is as follows. The problem
statement and the kinematic model, based on distance and
orientation between agents, is described in Sect. 2. Section 3
presents the main contribution of this work related to the cir-
cumnavigation control problem, while Sect. 4 illustrates the
numerical simulations and real-time experiments. Finally, the
conclusions are presented in Sect. 5.

2 Problem statement

– Let N = NO∪ND = {R1, ..., Rn} be a group of nmobile
robots where NO ⊂ N is the group of all the omnidirec-
tional mobile robots while ND ⊂ N is the set of all the
differential-drive robots, and assume that the agent Rn is
the target which is going to be circumnavigated by the
follower agents R1, ..., Rn−1.
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– Let Ni ⊂ N be the set of those agents that can be detected
by Ri , i = 1, ..., n − 1, and there exists a spanning
directed tree with root in Rn , i.e. Ni = {∀R j | j > i

}
.

– The leader agent Rn is an omnidirectional mobile robot
moving freely in the plane while the followers can be
either differential or omnidirectional robots.

– The follower agents do not have information about the
velocity of Rn .

– It is assumed that the maximum velocity of the leader is
less or equal than themaximum velocity of the followers.

The objective is to design a robust control law such that
the followers keep a certain distance and orientation with
respect to their own leader while circumnavigating the agent
Rn . Furthermore, due to the capability of omnidirectional
mobile robots to orientate, the omnidirectional mobile robots
will keep looking straight at Rn , i.e. the formation angle is
zero.

2.1 Kinematic model

The kinematic model for the omnidirectional mobile robot is
given as

ξ̇ p = R(θp)up, (1)

for all p ∈ NO, where R(θp) is the rotation matrix defined
as

R(θp) =
⎡

⎣
cos θp − sin θp 0
sin θp cos θp 0
0 0 1

⎤

⎦ ,

ξ p = [
xp yp θp

]� ∈ R
3 is the state vector with xp, yp ∈ R

as the position in the plane of each agent, θp ∈ R is the
orientation with respect to the horizontal axis X and up =
[
vxp vyp wp

]� ∈ R
3 is the input control with vxp ∈ R as the

linear velocity, vyp ∈ R is the lateral velocity and wp ∈ R is
the angular velocity.

Note that if the lateral velocity is cancelled, i.e., vyp =
0, then, it is possible to obtain the kinematic model of the
differential-drive mobile robot, given by

ẋ� = vx�
cos θ�, (2a)

ẏ� = vx�
sin θ�, (2b)

θ̇� = w�, (2c)

for all � ∈ ND. It is worth mentioning that system (2)
is underactuated and satisfies the following non-holonomic
restriction ẋ� sin θ� − ẏ� cos θ� = 0.

Fig. 1 Leader–follower scheme

2.2 Kinematic model based on distance and
orientation between agents

Let us recall the dynamic model, based on distance and ori-
entation, between two mobile robots (González-Sierra et al.
2018; Paniagua-Contro et al. 2019), defined as (Fig. 1)

η̇ j i = fη j i (η j i )u j + gη j i (η j i )ui , i �= j, i, j ∈ N , (3)

where η j i = [
d ji α j i θi

]� ∈ R
3 is the state vector, d ji ∈ R+

is the distancemeasured from the geometrical center of agent
R j to the geometrical center of the agent Ri , with R+ as the
set of all positive real numbers, d ji x and d ji y ∈ R+ are the
components of the distance vectord j i with respect to a global
frame and α j i ∈ R is the formation angle measured from the
distance vector d j i to a local frame attached to the agent Ri .
The functions fη j i and gη j i are determined depending on the
type of robot which is being used. Specifically, in Paniagua-
Contro et al. (2019) four dynamic models are proposed

– O–O Leader–follower scheme,
– D–O Leader–follower scheme,
– D–D Leader–follower scheme,
– O–D Leader–follower scheme,

where O means an omnidirectional robot while D is a dif-
ferential robot.

2.3 O–O leader–follower scheme

In this scheme, both agents R j and Ri are omnidirectional
mobile robots, hence (3) is rewritten as

η̇ j iOO = f j iOO (η j iOO )u jO + g jiOO (η j iOO )uiO , (4)

where

f j iOO =
⎡

⎢
⎣

cos(θ j − θi + α j i ) − sin(θ j − θi + α j i ) 0

− sin(θ j−θi+α j i )

d ji
− cos(θ j−θi+α j i )

d ji
0

0 0 0

⎤

⎥
⎦ ,

(5a)
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g jiOO =
⎡

⎢
⎣

− cosα j i sin α j i 0
sin α j i
d ji

cosα j i
d ji

1

0 0 1

⎤

⎥
⎦ , (5b)

while the vector control inputs are defined as u jO =
[
vx j vy j w j

]� ∈ R
3 and uiO = [

vxi vyi wi
]� ∈ R

3.
Note that uiO refers to the control inputs for the omnidi-
rectional robot while uiD refers to the control inputs for the
differential-drive robots.

2.4 D–O leader–follower scheme

In this scheme, agent R j is a differential-drive robot while
agent Ri is an omnidirectional mobile robot. In this sense,
(3) is rewritten as

η̇ j iDO = f j iDO (η j iDO )u jD + g jiDO (η j iDO )uiO , (6)

where u jD = [
vx j w j

]� ∈ R
2, g jiDO = g jiOO , while

f j iDO =
⎡

⎢
⎣

cos(θ j − θi + α j i ) 0

− sin(θ j−θi+α j i )

d ji
0

0 0

⎤

⎥
⎦ . (7)

2.5 D–D leader–follower scheme

Both agents are differential-drive mobile robots, therefore,
(3) is rewritten as

η̇ j iDD = f j iDD (η j iDD )u jD + g jiDD (η j iDD )uiD , (8)

where f j iDD = f j iDO , while

g jiDD =
⎡

⎢
⎣

− cosα j i 0
sin α j i
d ji

1

0 1

⎤

⎥
⎦ . (9)

Considering the output function h j iDD = [
d ji α j i

]�
,

then, the dynamics of this output is simply given as

ḣ j iDD = f̄ j iDD (h j iDD , θ j , θi )u jD + ḡ j iDD (h j iDD )uiD ,

(10)

where

f̄ j iDD =
[
cos(θ j − θi + α j i ) 0

− sin(θ j−θi+α j i )

d ji
0

]

,

ḡ j iDD =
[− cosα j i 0

sin α j i
d ji

1

]

.

2.6 O–D leader–follower scheme

Finally, in this scheme, agent R j is an omnidirectionalmobile
robot while Ri is a differential-drive robot, thus, (3) is rewrit-
ten as

η̇ j iOD = f j iOD (η j iOD )u jO + g jiOD (η j iOD )uiD , (11)

where f j iOD = f j iOO , g jiOD = g jiDD . Taking into account

the output function h j iOD = [
d ji α j i

]�
, then, the dynamics

of this output is simply given as

ḣ j iOD = f̄ j iOD (h j iOD , θ j , θi )u jO + ḡ j iOD (h j iOD )uiD ,

(12)

where

f̄ j iOD =
[
cos(θ j − θi + α j i ) − sin(θ j − θi + α j i ) 0

− sin(θ j−θi+α j i )

d ji
− cos(θ j−θi+α j i )

d ji
0

]

,

ḡ j iOD =
[− cosα j i 0

sin α j i
d ji

1

]

.

2.7 Complete model

Without loss of generality, take into account that the agents
are arrange as follows N = {N1,N2, ...,Nq

}
, where

Nr = {O,D,D,O}, for r = 1, ..., q − 1 and Nq =
{O,D,D,O,O}. Assume that the agents are under the
directed open-chain formation, then, the complete dynamic
model is given as

ζ̇ = A(ζ )U, (13)

where

ζ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

η21DO
h32DD
h43OD
η54OO

...

η(n−3)(n−4)DD
h(n−2)(n−3)DD
h(n−1)(n−2)OD
ηN (n−1)OO

ξn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, U =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

u1O
u2D
u3D
u4O
u5O

...

un−4O
un−3D
un−2D
un−1O
unO

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,
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A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

g21DO f21DO 03×2 03×3 03×3 ... 03×3 03×2 03×2 03×3 03×3

02×3 ḡ32DD f̄32DD 02×3 02×3 ... 02×3 02×2 02×2 02×3 02×3

02×3 02×2 ḡ43OD f̄43OD 02×3 ... 02×3 02×2 02×2 02×3 02×3

03×3 03×2 03×2 g54OO f54OO ... 03×3 03×2 03×2 03×3 03×3
...

. . .
...

03×3 03×2 03×2 03×3 03×3 ... g(n−3)(n−4)DO f(n−3)(n−4)DO 03×2 03×3 03×3

02×3 02×2 02×2 02×3 02×3 ... 02×3 ḡ(n−2)(n−3)DD f̄(n−2)(n−3)DD 02×3 02×3

02×3 02×2 02×2 02×3 02×3 ... 02×3 02×2 ḡ(n−1)(n−2)OD f̄(n−1)(n−2)OD 02×3

03×3 03×2 03×2 03×3 03×3 ... 03×3 03×2 03×2 gn(n−1)OO fn(n−1)OO
03×3 03×2 03×2 03×3 03×3 ... 03×3 03×2 03×2 03×3 R(θn)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

with 0a×b as an a × b zero matrix.

Remark 1 Because the leader agent is moving freely in the
plane, therefore a control law is not needed. Furthermore, it
is considered that the velocities of the leader act as a pertur-
bation.

3 Control strategy

In this section, a control strategy, based on the Backstepping
approach (Khalil 2002), is used to solve the circumnavigation
problem.

3.1 Heading angle control

For the heading angle control, only the omnidirectional
mobile robots will be taken into account.

Remark 2 Note that the omnidirectional robot model is fully
actuated, therefore, it is possible to design a control law for
its orientation angle. Contrary to the differential-drive robot,
where it has 3 outputs and only two control inputs.

Recall that NO ⊂ N , then, one can define SO =
card(NO). In this sense, let us define the orientation error
as

eθ = θ − θ∗ + ς(t), ēθ =
∫ t

0
eθ (τ )dτ. (14)

where ς ∈ R
SO is a time-varying disturbances vector which

is bounded, eθ = [
eθ1 eθ4 ... eθn−4 eθn−1

]� ∈ R
SO is the ori-

entation error vector, the vector θ = [
θ1 θ4 ... θn−4 θn−1

]� ∈
R

SO while the desired orientation vector is given by θ∗ =
[
θ∗
1 θ∗

4 ... θ∗
n−4 θ∗

n−1

]� ∈ R
SO . Based on (13), the dynamics

of (14) is given by

˙̄eθ = eθ , (15a)

ėθ = w − θ̇
∗ + δθ (eθ ), (15b)

where δθ = [
δθ1 δθ4 ... δθn−4 δθn−1

]� ∈ R
SO is the time-

derivative of ς which satisfies one of the following restric-
tions

‖δθ‖ ≤ αθ‖eθ‖, (16a)

‖δθ‖ ≤ Δθ, (16b)

with αθ , Δθ > 0. Using the backstepping approach, one
proceeds to stabilize system (15a) with function φ(ēθ ), i.e.,
system (15a) is rewritten as

˙̄eθ = φ(ēθ ). (17)

Let us propose the following Lyapunov candidate func-
tion Vθ1 = 1

2 ē
�
θ ēθ . Calculating the time-derivative along the

trajectories (17) with φ(ēθ ) = −Kθ1 ēθ and Kθ1 ∈ R
SO×SO

is a positive definite matrix, one has

V̇θ1 = −ē�
θ Kθ1 ēθ ,

and, applying (16a), hence, V̇θ1 , has an upper bound given
by

V̇θ1 ≤ −λmin(Kθ1)‖ēθ‖2,

which is negative definite, with λmin(Kθ1) > 0. Now, defin-
ing a new variable zθ = eθ − φ(ēθ ), the system (15) is
rewritten as

˙̄eθ = zθ − Kθ1 ēθ , (18a)

żθ = w − θ̇
∗ + Kθ1(zθ − Kθ1 ēθ ) + δθ . (18b)

Proposing the following Lyapunov candidate function

Vθ2 = Vθ1 + 1

2
z�
θ zθ , (19)

and, calculating the time-derivative along the trajectories
(18), one has

V̇θ2 = V̇θ1 + z�
θ żθ = ē�

θ
˙̄eθ + z�

θ żθ ,

123



270 Autonomous Robots (2021) 45:265–281

= ē�
θ

(
zθ − Kθ1 ēθ

)

+z�
θ

[
w − θ̇

∗ + Kθ1(zθ − Kθ1 ēθ ) + δθ

]
,

= z�
θ

[
ēθ + w − θ̇

∗ + Kθ1(zθ − Kθ1 ēθ ) + δθ

]

−ē�
θ Kθ1 ēθ .

If the control input is defined as

w = θ̇
∗ − ēθ − Kθ1(zθ − Kθ1 ēθ ) − Kθ2zθ , (20)

with Kθ2 ∈ R
SO×SO as a positive definite matrix, then, V̇θ2

simplifies to

V̇θ2 = −ē�
θ Kθ1 ēθ − z�

θ Kθ2zθ + z�
θ δθ ,

V̇θ2 ≤ −λmin(Kθ1)‖ēθ‖2 − [
λmin(Kθ2) − αθ

] ‖zθ‖2
+2λmax(Kθ1)‖zθ‖‖ēθ‖αθ ,

V̇θ2 ≤ − [‖ēθ‖ ‖zθ‖
]
Qθ

[‖ēθ‖
‖zθ‖

]
,

where

Qθ =
[

λmin(Kθ1) −λmax(Kθ1)αθ

−λmax(Kθ1)αθ λmin(Kθ2) − αθ

]
,

therefore V̇θ2 has an upper bound given by

V̇θ2 ≤ −σθ

[
‖ēθ‖2 + ‖zθ‖2

]
, (21)

withσθ > 0.Due toλmin(Kθ1) > 0, and,with the assumption

λmin(Kθ2) ≥ (λmax(Kθ1 )αθ )2

λmin(Kθ1 )
+ αθ , guarantees that matrix Qθ

is definite positive. Based on this, the following Proposition
is stated.

Proposition 1 Let the system (18) with the control law (20)
and consider that the perturbation satisfies the restriction
(16a), then, if the design parameters satisfy

λmin(Kθ1) > 0,

λmin(Kθ2) ≥
[
λmax(Kθ1)αθ

]2

λmin(Kθ1)
+ αθ ,

then, the orientation error will converge asymptotically to
zero, i.e., lim

t→∞ ēθ = lim
t→∞ eθ = 0.

Proof It becomes evident that (21) is definite negative, hence
lim
t→∞ ēθ = lim

t→∞ zθ = 0. Because zθ = eθ + Kθ1 ēθ and

lim
t→∞ ēθ = 0, then lim

t→∞ zθ = lim
t→∞ eθ = 0.

�

Proposition 2 Let the system (18) with the control law (20)
and consider that δθ is a non-vanishing perturbation with the
upper bound given in (16b), then, if the design parameters
satisfy

λmin(Kθ1) > 0,

λmin(Kθ2) ≥
[
λmax(Kθ1)

]2

λmin(Kθ1)
,

hence, system (18) is input-to-state stable with respect to the
perturbation δθ .

Proof Considering the same Lyapunov candidate function
Vθ2 given in (19), therefore, its time-derivative along the tra-
jectories (18) with control (20) is reduced to

V̇θ2 = −ē�
θ Kθ1 ēθ − z�

θ Kθ2zθ + z�
θ δθ ,

V̇θ2 ≤ −λmin(Kθ1)‖ēθ‖2 − λmin(Kθ2)‖zθ‖2
+2λmax(Kθ1)‖zθ‖‖ēθ‖ + ‖δθ‖(‖zθ‖ + ‖ēθ‖),

V̇θ2 ≤ − [‖ēθ‖ ‖zθ‖
]
Q̄θ

[‖ēθ‖
‖zθ‖

]
+ [‖ēθ‖ ‖zθ‖

]
Δ,

where Δ = [‖δθ‖ ‖δθ‖
]�

and

Q̄θ =
[

λmin(Kθ1) −λmax(Kθ1)

−λmax(Kθ1) λmin(Kθ2)

]
,

where Kθ1 , Kθ2 , Q̄θ are positive definite matrices. Now,

defining ε = [‖ēθ‖ ‖zθ‖
]�

, one has

V̇θ2 ≤ −(1 − κ)λmin(Q̄θ )‖ε‖2 + √
2‖δθ‖‖ε‖

−κλmin(Q̄θ )‖ε‖2 (22)

with κ ∈ (0, 1). Note that V̇θ2 will be definite negative if√
2δθ‖‖ε‖ − κλmin(Q̄θ )‖ε‖2 ≤ 0, therefore it is possible to

define the following region

‖ε‖ ≥
√
2‖δθ‖

κλmin(Q̄θ )
.

Finally, one has

V̇2 ≤ −(1 − κ)λmin(Q̄θ )‖ε‖2, ∀‖ε‖ ≥
√
2‖δθ‖

κλmin(Q̄θ )
,

and one can conclude that system (18) is input-to-state stable
with respect to the perturbation δθ . ��
Remark 3 It isworthmentioning that Proposition 1 states that
the orientation errors will converge asymptotically to zero,
while Proposition 2 states that system (18) is input-to-state
stable with respect to the perturbation δθ .
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3.2 Distance and formation angle control

In a similar manner, let us define the distance error and the
formation angle error vector as

edα = [
ed21 eα21 ... edn(n−1) eαn(n−1)

]� ∈ R
2(n−1), (23a)

ēdα = [
ēd21 ēα21 ... ēdn(n−1) ēαn(n−1)

]� ∈ R
2(n−1), (23b)

where ed ji = d ji −d∗
j i is the distance error, eα j i = α j i −α∗

j i

is the formation angle error, ēd ji = ∫ t
0 ed ji (τ )dτ , ēα j i =

∫ t
0 eα j i (τ )dτ , with d∗

j i (t) as the desired time-varying distance
between agent R j and Ri ; and α∗

j i (t) as the desired time-
varying formation angle between agent R j and Ri . From
(13), the dynamics of (23) is given as follows

˙̄edα = edα, (24a)

ėdα = L(edα)vF + p∗(ḋ∗
j i , α̇

∗
j i ,w)

+δe(edα, eθ , vxn , vyn ), (24b)

where vF = [
vx1 vy1 vx2 w2 vx3 w3 ... vxn−1 vyn−1

]� ∈
R
2(n−1) is the vector control input;

p∗ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−ḋ∗
21

w1 − α̇∗
21

−ḋ∗
32

−α̇∗
32

−ḋ∗
43

−α̇∗
43

−ḋ∗
54

w4 − α̇∗
54

...

−ḋ∗
(n−1)(n−2)

−α̇∗
(n−1)(n−2)

−ḋ∗
n(n−1)

wn−1 − α̇∗
n(n−1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

is a vector that contains the desired time-varying distances
and formation angles as well as the angular velocity of those
agents that are omnidirectional mobile robots; matrix L is
similar to (14) and is given as follows

L =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

G21DO F21DO 03×2 03×3 03×3 ... 03×3 03×2 03×2 03×3

02×3 ḡ32DD f̄32DD 02×3 02×3 ... 02×3 02×2 02×2 02×3

02×3 02×2 ḡ43OD f̄43OD 02×3 ... 02×3 02×2 02×2 02×3

03×3 03×2 03×2 G54OO F54OO ... 03×3 03×2 03×2 03×3
...

. . .
...

03×3 03×2 03×2 03×3 03×3 ... G(n−3)(n−4)DO F(n−3)(n−4)DO 03×2 03×3

02×3 02×2 02×2 02×3 02×3 ... 02×3 ḡ(n−2)(n−3)DD f̄(n−2)(n−3)DD 02×3

02×3 02×2 02×2 02×3 02×3 ... 02×3 02×2 ḡ(n−1)(n−2)OD f̄(n−1)(n−2)OD
03×3 03×2 03×2 03×3 03×3 ... 03×3 03×2 03×2 Gn(n−1)OO

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

where

G j iDO = G j iOO =
⎡

⎣
− cos(eα j i + α∗

j i ) sin(eα j i + α∗
j i )

sin(eα j i +α∗
j i )

ed ji +d∗
j i

cos(eα j i +α∗
j i )

ed ji +d∗
j i

⎤

⎦ ,

F j iDO =
[− cosβ j i 0

− sin β j i
ed ji +d∗

j i
0

]

,

F j iOO =
[

cosβ j i − sin β j i

− sin β j i
ed ji +d∗

j i
− cosβ j i

ed ji +d∗
j i

]

,

with β j i = eθ j +θ∗
j −eθi −θ∗

i +eα j i +α∗
j i and δe is a vector

that contains the lineal and lateral velocities of the leader
agent, i.e.,

δe =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0
0
...

0
vxn cos γ − vyn sin γ

−vxn
sin γ

edn(n−1)+d∗
n(n−1)

− vyn
cos γ

edn(n−1)+d∗
n(n−1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

with γ = θn − eθn−1 − θ∗
n−1 + eαn(n−1) + α∗

n(n−1).

Remark 4 It is assume that the information of vector δe is
unknown and acts as a perturbation for the system (24). How-
ever, it is possible to show that δe satisfies the following
bounds

‖δe‖ ≤ Δe, (25)

with Δe = max
(√

v2xn + v2yn

)
max

(
1, 1

dn(n−1)

)
. In this

sense, the maximum velocity of the leader agent is boun-
ded.

Proposition 3 Consider that δe is a non-vanishing perturba-
tion of system (24b), thus, δe has the following upper bound

‖δe‖ ≤ Δe,

with Δe = max
(√

v2xn + v2yn

)
max

(
1, 1

dn(n−1)

)
.
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Proof Applying the norm operator to δe one has

‖δe‖ =
∥∥∥∥∥

[
cos γ − sin γ

− sin γ
dn(n−1)

− cos γ
dn(n−1)

] [
vxn
vyn

]∥∥∥∥∥
,

≤ ‖Γ ‖
√

v2xn + v2yn .

The norm of Γ is given by ‖Γ ‖ = √
λmax(Γ �Γ ). Simple

calculations show that ‖Γ ‖ = max(1, 1
d ). Finally, one has

‖δe‖ ≤ Δe,

where Δe = max
(√

v2xn + v2yn

)
max

(
1, 1

dn(n−1)

)
. ��

From the Backstepping approach, one proceeds to stabi-
lize system (24a) with function φ(ēdα), i.e., system (24a) is
rewritten as

˙̄edα = φ(ēdα). (26)

Let us propose the followingLyapunov candidate function
Vdα1 = 1

2 ē
�
dα ēdα and, calculating the time-derivative along

the trajectories (26) with φ(ēdα) = −Kdα1 ēdα and Kdα1 ∈
R
2(n−1)×2(n−1) is a positive definite matrix, one has

V̇dα1 ≤ −λmin
{
Kdα1

} ‖ēdα‖2,

which is negative definite if λmin
{
Kdα1

}
> 0. Now, propos-

ing a new variable zdα = edα − φ(ēdα), system (24) is
rewritten as

˙̄edα = zdα − Kdα1 ēdα, (27a)

żdα = LvF + δe + p∗ + Kdα1(zdα − Kdα1 ēdα). (27b)

Defining the Lyapunov candidate function Vdα2 = Vdα1 +
1
2z

�
dαzdα , and, calculating the time-derivative along the tra-

jectories (27), one has

V̇dα2 = z�
dα

[
ēdα + LvF + δe + p∗ + Kdα1edα

]

−ē�
dαKdα1 ēdα.

If the control input is defined as

vF = L−1 [−Kdα1edα − ēdα − Kdα2zdα − p∗] , (28)

with Kdα2 ∈ R
2(n−1)×2(n−1) as a positive definite matrix.

Before proceeding, the following Lemma is defined

Lemma 1 Matrix L is always invertible for all α j i �= ±π
2

and j �= i .

Proof Since matrix L is an upper triangular block matrix,
hence, the determinant is given by the product of the deter-
minants of the diagonal matrices. Specifically, for n = 2, the
determinant of matrix L is defined as

det(L) = 1

d21
,

while for n ≥ 3, the determinant of matrix L is obtained as

det(L) = r
n∏

p,q

cosαq(q−1)

dp(p−1)
,

where p = 2, 5, 6, 9, 10..., n, q = 3, 4, 7, 8, 11..., n and

r =
{

−1, if n = 3, 7, 11, ...

1, otherwise.

��
Remark 5 Recall that the angle α j i is the angle measured
from the distance vector d j i to a local frame attached to the
agent Ri . In this sense, an angle α j i = ±π

2 means that the
component of the velocity perpendicular to the wheels of
the differential-drive mobile robots is aligned to the distance
vector d j i , and, due to the nonholonomic restriction of this
kind of vehicles, given by ẋi sin θi − ẏi cos θi = 0, then the
motion, perpendicular to the linear velocity, is zero. There-
fore, the restriction of α j i = ±π

2 implies the nonholonomic
restriction of the differential-drive mobile robots.

Substituting (28) into V̇dα2 , one has

V̇dα2 = −ē�
dαKdα1 ēdα − z�

dαKdα2zdα + z�
dαδe,

V̇dα2 ≤ −λmin(Kdα1)‖ēdα‖2 − λmin(Kdα2)‖zdα‖2
+2λmax(Kdα1)‖ēdα‖‖zdα‖
+‖δe‖(‖zdα‖ + ‖ēdα‖),

V̇dα2 ≤ − [‖ēdα‖ ‖zdα‖] Qdα

[‖ēdα‖
‖zdα‖

]

+ [‖ēdα‖ ‖zdα‖]
[‖δe‖
‖δe‖

]

where

Qdα =
[

λmin(Kdα1) −λmax(Kdα1)

−λmax(Kdα1) λmin(Kdα2)

]
.

Defining εdα = [‖ēdα‖ ‖zdα‖]�, one has

V̇dα2 ≤ −(1 − κ)λmin(Qdα)‖εdα‖2 + √
2‖δe‖‖εdα‖

−κλmin(Qdα)‖εdα‖2, (29)
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Table 1 Initial conditions for
the agents Agent

[
xi (0) yi (0) θi (0)

]�

O1
[−2.3 0 π/30

]�

O2
[−2 0 π/15

]�

D3
[−1.8 0 0

]�

D4
[−1.6 0 0

]�

O5
[−1.4 0 −π/10

]�

O6
[−1.2 0 −π/20

]�

D7
[−1 0.2 0

]�

D8
[−0.8 −0.2 0

]�

O9
[−0.65 0 π/10

]�

O10
[
0 0 π/6

]�

with κ ∈ (0, 1). Note that V̇dα2 will be definite negative
if

√
2‖δe‖‖εdα‖ − κλmin(Qdα)‖εdα‖2 ≤ 0, therefore it is

possible to define the following region given by

‖εdα‖ ≥
√
2‖δe‖

κλmin(Qdα)
.

Finally, one has

V̇dα2 ≤ −(1 − κ)λmin(Qdα)‖εdα‖2, (30a)

∀‖εdα‖ ≥
√
2‖δe‖

κλmin(Qdα)
, (30b)

and, one can conclude that system (27) is input-to-state sta-
ble with respect to the perturbation δe. Based on this, the
following Proposition is stated.

Proposition 4 Let the system (27) with the control law (28),
and consider that δe is a non-vanishing perturbation with
the upper bound given in (25), then, if the design parameters
satisfy

λmin(Kdα1) > 0,

λmin(Kdα2) ≥
[
λmax(Kdα1)

]2

λmin(Kdα1)
,

thus, system (27) is input-to-state stable with respect to the
perturbation δe.

Note that if the leader’s velocity is greater than the follow-
ers’ velocity, then, the region given by (30b) will increase
and, therefore, the distance and formation angle errors will
also increase. In this sense, it is considered that the difference
between the norm of the maximum velocity of the followers
vmaxi , for i = 1, ..., n − 1, and the maximum velocity of
the leader vn must be bounded and this bound must be small
enough, i.e. ‖vmaxi − vn‖ ≤ ν, where ν ≥ 0. This means

that even though we do not explicitly know the velocity of
the leader, it is known that the difference between the norm
of the maximum velocity of the followers and the maximum
velocity of the leader is bounded.

4 Numerical simulations and real-time
experiments

4.1 Numerical simulations

For the first numerical simulation, it is considered that the
set NO is given by NO = {O1,O2,O5,O6,O9,O10}, while
the set ND is given by ND = {D3,D4,D7,D8, } and N =
NO ∪ ND. For this case, the leader–follower scheme is used,
in this sense, N1 = {O2}, N2 = {D3}, N3 = {D4}, N4 =
{O5}, N5 = {O6}, N6 = {D7}, N7 = {D8}, N8 = {O9}
and N9 = {O10}. The motion of the leader is given by the
following equations

⎡

⎣
vx10
vy10
w10

⎤

⎦ = R−1(θ10)

⎡

⎣
ẋd
ẏd
θ̇d

⎤

⎦ ,

where ẋd = 0.5, ẏd = 0.5 cos(0.5t) + 0.5 and θd =
tan−1 ẏd

ẏd
. The initial conditions for the agents are given in

Table 1. The desired distances between agents are given
by d∗

109 = 3[m], d∗
98 = 0.5 [m], d∗

87 = 0.6 [m], d∗
76 =

0.52[m], d∗
65 = 0.55 [m], d∗

54 = 0.7 [m], d∗
43 = 0.58[m],

d∗
32 = 0.65 [m] and d∗

21 = 0.53 [m]; while the desired for-
mation angles are α∗

109 = α∗
98 = α∗

87 = α∗
76 = α∗

65 =
α∗
54 = α∗

43 = α∗
32 = α∗

21 = 0; the desired orientations for
the omnidirectional mobile robots are θ∗

1 = θ2, θ∗
2 = θ3,

θ∗
5 = θ6, θ∗

6 = θ7 and θ∗
9 = −2.535t , and the time-

varying disturbance vector ς is given by the Band-Limited
White Noise block form Simulink/Matlab with noise power
of 0.00001. The design parameters are given by Kdα1 =
diag{4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2}, Kdα2 =
8Kdα1 , Kθ1 = diag{1, 2, 1, 2, 1} and Kθ2 = 21.2Kθ1 .

For the first simulation, Fig. 2 describes the trajectory
in the plane of the agents for different time instants, using
control law (20) and (28), where the follower agents are cir-
cumnavigating the leader. The distance among the agents is
shown in Fig. 3. Note that the distances d98, d87, d76, d65,
d54, d43, d32 and d21 converge to the desired distance, while
the distance d109 is oscillating around 3[m]. This is because
agent O9 is the only agent that it is being perturbed by the
velocities of the leader. Therefore, based on Proposition 4,
the distance error is input-to-state stable with respect to the
perturbation δe. The formation angle and the orientation error
are shown in Fig. 4, where the formation angle α109 is oscil-
lating around zero while α98, α87, α76, α65, α54, α43, α32 and
α21 converge to zero. Again, this is because agent O9 is the
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(a) t = 10 seconds.

(b) t = 24 seconds.

(c) t = 40 seconds.

Fig. 2 Trajectory in the plane of the multi-agent system for different
time instants where Op is the omnidirectional robot while D� is the
differential-drive robot

Fig. 3 Distance between the leader and the follower agents

(a)

(b)

Fig. 4 Formation angle and orientation error

only agent that it is being perturbed by the velocities of the
leader. On the other hand, the orientation errors eθ9 , eθ6 , eθ5 ,
eθ2 and eθ1 are also oscillating around zero. Figure 5 presents
the control inputs for the follower agents, the linear veloc-
ity, the lateral velocity and the angular velocity, respectively.
Finally, Fig. 6, displays the magnitude of the velocity of each
agent. It becomes evident that, to accomplish the circumnav-
igation task, the followers’ velocity has to be greater than the
leaders’ velocity.

For the second simulation, a comparison is made among
the proposed Backstepping approach and the approach given
by Deghat et al. (2014) and the approach given by Shames
et al. (2012). For this case, it is considered that N =
{O1,O2}. The motion of the leader is the same as in the pre-
vious simulation, while the desired distance is d∗

21 = 2[m],
the desired formation angle is α∗

21 = 0 and the desired orien-
tation θ∗

2 = −2.535t . Furthermore, the initial conditions for
the leader is the same as in the previous case and for the fol-

lower are
[
x1(0) y1(0) θ1(0)

]� = [−0.65 0 0
]�

. Figure 7
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(a)

(b)

(c)

Fig. 5 Control inputs for the followers

Fig. 6 Magnitude of the velocity of each agent

displays the trajectory in the plane of the follower agent cir-
cumnavigating the leader agent in different time instants for
the three approaches. Note that, while the leader is mov-
ing, the follower circumnavigates him. Furthermore, it is
important to point out that, when using the Backstepping
approach, the follower keeps facing the leader. On the other
hand, Fig. 8 illustrates the distance between the leader and the
follower using the three approaches. It becomes evident that,

when using the proposed Backstepping approach, the dis-
tance between agents has oscillations of smaller amplitude
compared to the other two approaches. This comes from the
fact that when the velocity of the leader increases, the Deghat
and Shames approaches failed. Figure 9 shows the orienta-
tion error which converge to zero while the formation angle
is oscillating around zero as it is stated in Proposition 4. On
the other hand, Fig. 10 depicts a comparison of the control
inputs for each approach. Finally, Fig. 11 displays the aver-
age RMS value of the distance error between the follower
and the leader over a suitable receding-horizon time interval
of finite length, i.e.

eRMS(t) =
(

1

ΔT

∫ t

t−ΔT
‖ed(τ )‖2dτ

) 1
2

,

where ΔT = 2 is a time window width in which the corre-
sponding signal is evaluated. It becomes clear that the error
index for the proposed Backstepping approach decreases to
zero faster than the Deghat and Shames approaches.

Based on the previous simulations, it is worth mentioning
the following aspects:

– Using the proposed approach, it is easy to add or subtract
agents (differential or omnidirectional mobile robots).

– Different communication topologies can be used, i.e.
leader–follower, leader centered, or considering a span-
ning directed tree with root in Rn , for all j > i .

– Unlike Shames and Deghat approaches, the circumnavi-
gation velocity of the follower agent can be determined
in the proposed approach.

– It becomes evident that, when using the proposed
approach, the distance between the follower and the
leader has oscillations of smaller amplitude than the
Deghat and Shames approaches.

– Theomnidirectional follower agent keeps looking straight
at the leader while circumnavigating him.

4.2 Real-time experiments

4.2.1 Experimental set-up

The approach is tested using two omnidirectional robots with
three omnidirectional wheels and one omnidirectional robot
acting as as a differential-drive robot (Fig. 12). The robots are
actuated by servomotors Dynamixel® AX − 12W, and con-
trolled by a microcontroller NXP® model LPC 1768 with
Bluetooth communication to a PC computer using the mod-
ule HC − 05. In a first step, the position and orientation of
the robots are measured by a Vicon® motion capture sys-
tem composed by 6 cameras model Bonita® and 4 cameras
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(a)

(b)

(c)

Fig. 7 Trajectory in the plane for different time instants

Fig. 8 Distance between the leader and the follower agent

Fig. 9 Orientation error and formation angle

model Vero®. The motion capture measures within an avail-
able workspace area of 8×8 [m]. The control algorithm runs
at 117 ms rate with a resolution of ±0.5 [mm].

4.2.2 Leader’s circular trajectory

For the first experiment, a group of three agents is considered,
where the leader and the first follower are omnidirectional
robots, i.e. O3 and O2, respectively, while the second fol-
lower is a differential-drive robot D1. The leader is moving
in a circular trajectory with radius of 0.5 [m]. On the other
hand, the desired distance between the leader O3 and the
follower O2 is d∗

32 = 0.5 [m], the desired distance between
the follower O2 and the follower O1 is d∗

21 = 0.3 [m]; the
desired formation angles are α∗

32 = α∗
21 = 0 and the desired

orientation is θ∗
1 = −t . The initial conditions for the follow-

ers are
[
x1(0) y1(0) θ1(0)

]� = [−0.32 0.74 −1.42
]�

and
[
x2(0) y2(0) θ2(0)

]� = [−0.06 0.87 2.44
]�

. The design
parameters are given by Kθ1 = 50, Kθ2 = 0.3, Kdα1 =
diag{50, 40, 50, 40} and Kdα2 = diag{0.5, 0.4, 0.5, 0.4}.
The trajectory in the plane of the agents, at different time
instants, is described in Fig. 13 where the followers are cir-
cumnavigating the leader and taking into account that the
followers do not know the leader’s velocities. It is worth
mentioning that the transient response from Fig. 13a is omit-
ted to a better visualization of the trajectory. One can watch
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(a)

(b)

(c)

Fig. 10 Control inputs for the follower

Fig. 11 Error index performance

the video1 corresponding to this experiment in the link given
below. The video shows the performance of two follower
robots circumnavigating a leader. The three agents are omni-
directional robots, however, the second follower behaves as
a differential-drive robot by cancelling the lateral veloc-

1 https://www.dropbox.com/s/az3wed1tevq8i0k/
Circumnavigation3agents.mp4?dl=0.

Fig. 12 Omnidirectional robots

ity (Paniagua-Contro et al. 2019). At the beginning, the
transient-response becomes evident, nevertheless, the fol-
lowers are able to reach the steady-state and achieve the
circumnavigation task. From Fig. 14 it can be noticed that
the distance between O3 and O2, and the distance between
O2 and D1 is oscillating around 0.5[m] and 0.3[m], respec-
tively, as expected by Proposition 4. Furthermore, Fig. 15
displays the formation angles α32 and α31 as well as the ori-
entation error eθ , which are oscillating around zero. Finally,
the control inputs for the followers are presented in Fig. 16.
It becomes evident that in the transient response the control
inputs have a high amplitude. Nevertheless, after 40 seconds
the system reaches the steady-state.

4.2.3 Leader’s free trajectory

In order to prove the effectiveness of our approach, for the
second experiment, the leader is moving in a free and random

trajectory. The initial conditions are
[
x1(0) y1(0) θ1(0)

]� =
[−2.35 −0.23 −1.51

]�
. The desired distance, the desired

formation angle, the desired orientation and the design
parameters are the same as in the previous case. The tra-
jectory in the plane of the agents is shown in Fig. 17. Note
that while the leader is moving, the follower is circumnavi-
gating it taking into account that the follower does not know
the leader’s velocities. From Fig. 18 it worth noting that the
distance between the agents is oscillating around 0.5 [m] as
expected by Proposition 4. On the other hand, Fig. 19 illus-
trates the formation angle and the orientation error which
are oscillating around zero. Finally, the control inputs for the
follower are presented in Fig. 20.

Remark 6 Recall that there is a singularity when α j i = ±π
2 .

This singularity is avoided in the initial conditions for each
robot. However, during the course of the experiment it may
pass through that point, but do not stay there.
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(a)

(b)

(c)

Fig. 13 Trajectory in the plane of the multi-agent system for different
time instants

Fig. 14 Distance between the leader and the follower agent

Fig. 15 Formation angle and orientation error

(a)

(b)

Fig. 16 Control inputs for the followers
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(a)

(b)

(c)

Fig. 17 Trajectory in the plane of the multi-agent system for different
time instants

Fig. 18 Distance between the leader and the follower agent

Fig. 19 Formation angle and orientation error

(a)

(b)

Fig. 20 Control inputs for the followers
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5 Conclusions

This work contributes with the design of a robust control
strategy to solve the circumnavigation problem for a hetero-
geneous multi-agent system composed by omnidirectional
and differential-drive mobile robots. The control strategy is
designed by means of the Backstepping approach and the
kinematic model based on distance and orientation angle
between agents. Furthermore, it is worth mentioning the fol-
lowing aspects

1. It was proved that the orientation error is input-to-state
stable with respect some bounded perturbations.

2. The distance error and the formation angle error are also
input-to-state stable with respect to the leader’s velocities.

3. The proposed control strategy was compared with other
similar approaches through numerical simulations. In this
sense it is important pointing out the following aspects

– Using the proposed approach, it is easy to add or sub-
tract agents due to the mathematical analysis is based
on matrices.

– Different communication topologies can be used i.e.,
leader–follower, leader centered, or considering a
spanning tree with root in the leader agent.

– The circumnavigation velocity of the follower agent
can be determined.

– It is proved that when the velocity of the leader
increases, the distance between the follower(s) and
the leader has oscillations of smaller amplitude than
the Shames and Deghat approaches.

4. Real-time experiments, taking into account both omni-
directional and differential-drive robots, exhibit the per-
formance of the proposed approach considering that the
leader is moving in a circular trajectory and, then, that is
moving in a free random trajectory.

For future work, an observer will be designed to estimate
some states of the system as well as implement sensors into
the mobile robots. Furthermore, the collision avoidance with
Repulsive Vector Fields approach is being studied as well
as a control strategy law that switches to avoid singularity
α j i = ±π

2 .
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