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Abstract
Social robot capabilities, such as talking gestures, are best produced using data driven approaches to avoid being repetitive and
to show trustworthiness. However, there is a lack of robust quantitative methods that allow to compare such methods beyond
visual evaluation. In this paper a quantitative analysis is performed that compares two Generative Adversarial Networks based
gesture generation approaches. The aim is tomeasure characteristics such as fidelity to the original training data, but at the same
time keep track of the degree of originality of the produced gestures. Principal Coordinate Analysis and procrustes statistics
are performed and a new Fréchet Gesture Distance is proposed by adapting the Fréchet Inception Distance to gestures. These
three techniques are taken together to asses the fidelity/originality of the generated gestures.

Keywords Social robots · Motion capturing and imitation · Generative adversarial networks · Gesture generation · Principal
coordinate analysis · Procrustes statistics · FID

1 Introduction

Advances in social robots are widespread in robotic con-
ferences and newspapers. Robots for entertainment and
care need to show socially acceptable behavior and, at the
same time, must act in a non repetitive/boring manner and
show trustworthiness.An effective social interaction between
humans and robots requires these robots follow the social
rules and expectations of human users. That effectiveness
largely depends on the non-verbal capabilities the robot is
able to show during such interaction and it can be crucial
for the social connection with humans as it allows a more
intuitive communication Cerrato and Campbell (2017). Ges-
tures (head, arms and hands movements) are used both to
reinforce the meaning of the words and to express feelings
through non-verbal signs. Gestures can be produced using
a variety of approaches. They (a) can be “manually pro-
duced” by manually editing trajectories, (b) can be learned
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by demonstration or (c) data driven generative approaches
can be used Beck et al. (2017). However, there is a lack of a
standardized method and quantitative metric for evaluating
that social feature of a robot. How do we evaluate the gen-
erated gestures? How do we compare different approaches?
Often authors make use of questionnaires that may help to
validate the acceptability of a robot behavior out of the labo-
ratory. Indeed, we think that visual validation is the first tool
every robot behavior developer uses, but it is far from being
a neutral quantitative method. Besides, motion analysis can
help to detect jerkymovements. But none of these give us two
properties that are desirable specially when using generative
models for gesture generation: the fidelity with respect to the
original data used for acquiring the model and the degree of
novelty/originality the obtained model offers.

In this paper we want to present a quantitative analysis of
generated gestures according to several measures. It is not
our goal to define a thorough methodology, but to give the
researcher some tools, based in tested approaches, to help
her with the always difficult and presumably impossible task
of assessing the quality of generated gestures in an objec-
tive manner. In the experiment that is described in this paper
we use Generative Adversarial Networks (GAN) to gener-
ate talking beat gestures from a set of captured samples for
the Softbank’s robot Pepper1, where two variables have to
be taken into account: the capture method (MoCap) and the

1 https://www.softbankrobotics.com/us/pepper.
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length of the unit of movements (UM, a parameter intrinsic
to our system that will be defined later). The goal is to test if
the generated gestures are similar to the original ones, but at
the same time possess some degree of originality. As it can
be inferred, these two goals are contradictory, so a trade-off
is needed. Tomeasure the fidelity of the generated samples to
the original ones we performed a Principal Coordinate Anal-
ysis (PCoA) over the original and generated samples for the
two types of MoCap and different length of units of move-
ments. To measure the originality, we calculated procrustes
statistics. Finally,wehave defined aFréchetGestureDistance
(FGD) which is inspired in the Fréchet Inception Distance
(FID). Assuming that the balance between fidelity and orig-
inality comes with the smaller FGD measure, this allows us
to select the most appropriate value for the parameter being
analysed.

Thus, the contribution of the paper is as follows:

– Principal Coordinate Analysis (PCoA): a statistical tool
for exploring the structure of high dimensional data. We
propose this analysis to measure the degree of fidelity
with respect to the training data.

– Procrustes statistics is applied to ensure that the model is
able to offer some originality to the gestures generated.
The adequateness of the new movements is corroborated
by motion measures such as jerk and path lenghts.

– A new Fréchet Gesture Distance (FGD) is defined by
adapting the Fréchet Inception Distance (FID) to the
problem of GAN generated gestures.

The rest of the paper is structured as follows: Sect. 2 intro-
duces the need for robot gesticulation and summarizes the
different social skills evaluation alternatives found in the lit-
erature. Section 3 describes the experimental baseline, the
two GAN based gesture generation approaches that will be
quantitatively analysed later on. The fidelity analysis is per-
formed in Sect. 4 while the originality analysis is described
in Sect. 5. The definition of the FGDmeasure is introduced in
Sect. 6 and this section also shows how the trade off has been
conducted by calculating the distance between the generated
gestures and the Gaussian Mixture Model (GMM) generated
from a set of synthetic gestures created using Choregraphe, a
software that allows to create robot animations. A qualitative
visual evaluation is provided in Sect. 7. Finally, Sect. 8 is
dedicated to the conclusions and to outline further work.

2 Robot gesticulation: evaluation
alternatives

Talking involves spontaneous gesticulation; postures and
movements are relevant for social interactions even if they are
subjective and culture dependent. As co-thought (movements

related to thinking activity) supports complex problem solv-
ing, co-speech implies communication Eielts et al. (2020).
Lhommet and Marsella (2015) discuss body expression
in terms of postures, movements and gestures. Gestures,
defined as movements that convey information intentionally
or not, are categorised as emblems, illustrators and adaptors.
Emblems are gestures deliberately performed by the speaker
that convey meaning by themselves and are again culture
dependent. Illustrators are gestures accompanying speech,
that may (emblems, deictic, iconic and metaphoric) or may
not (beats) be related to the semantics of the speech McNeill
(1992). Lastly, adaptors or manipulators belong to the ges-
ture class that does not aid in understanding what is being
said, such as ticks or restless movements. Aiming at building
trust and making people feel confident when interacting with
them, socially acting humanoid robots should show human-
like talking gesticulation.

Problems arise when it comes to evaluate the behavior or
a particular skill, e.g., the gesticulation ability, of a social
robot. Usually robot behaviour is qualitatively evaluated.
Often questionnaires are defined so that participants can rank
several aspects of the robot’s performance. There seems to
be a consensus in presenting the questions using Likert scale
and analyzing the obtained responses using some statisti-
cal test like analysis of variance, chi-square and so on. For
instance, in Velner et al. (2020) social engagement with a
robot can be evaluated by observing expressed emotions
during the conversation. Humans participate in conversa-
tions with a NAO robot in different intonation conditions.
As objective measures they use number of turns between
actors, number of re-prompts, number of interruptions and
the average silence length between turns. Thesemeasures are
complemented with other subjective data such as the con-
versational naturalness, measured using questionnaires. In
Suguitan et al. (2020) authors propose a method for modify-
ing affective robot movements using neural networks. Again,
the approach is evaluated using an online survey and Two
one-sided tests (TOST). Kucherenko et al. (2019) replicate
the evaluation approach in Hasegawa et al. (2018) and assess
the naturalness, semantic consistency and time consistencyof
the gestures generated by a speech driven encoder-decoder
DNN performing a user-study. Once more, Becker-Asano
and Ishiguro (2011) use questionnaires to investigate if facial
displays of emotions with Geminoid F can be recognized and
to find intercultural differences in the perception of those
facial displays. Confusion matrices of the recognition rates
are shown as measure.

Carpinella et al. (2017) go one step further by develop-
ing a 18-item scale (based on psychological literature on
social perception) tomeasure people’s judgment of the social
attributes of robots. This scale is also used in Pan et al. (2018)
to examine how human collaborators perceive their robotic
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counterparts from a social perspective during object han-
dovers.

When it comes to compare different approaches, data
driven approaches are confronted to the original data that was
used to learn the model and ranked results are then compared
using some statistical tests. For instance, in Wolfert et al.
(2019) generated beat gestures are compared with designed
beat gestures, timed beat gestures and noisy gestures using
such approach.

Qualitative methods are essential but are difficult to per-
form because a large number of evaluators is required and
their subjective perceptions might be different. Moreover,
when a large number of gesturesmust be evaluated the human
eye becomes used to what is observing and it gets hard to
remark the differences. Thus, such methods are prone to
result in subjective evaluation. Besides, the evaluation is cul-
tural dependent.

On the contrary, quantitative methods can handle a huge
number of data as input, what makes them more appro-
priate to evaluate the robustness of a feature. However,
subtle and subjective propertiesmight not be easilymeasured
with numerical methods. They cannot answer questions like
”whichonedoyou like itmore?” neither can take into account
the impact or effect a gesture systemmight have on a specific
target audience. Both evaluation methods have strengths and
weaknesses and are complementary.

Rare are the references that use quantitative evaluation
methods. In Rodriguez et al. (2019) gestures generated by
a GAN network are compared with gestures obtained by
GMM,HiddenMarkovModel (HMM) and gestures obtained
by randomly ordering the training data. Principal coordi-
nates analysis was used to extract the similarities between
the generated gestures and the original ones. Other features
such as 3D space coverage, path length and motion jerk were
also used for evaluation purposes. Similar motion statistics
were used in Kucherenko et al. (2020). More specifically, the
average values of the root-mean-square error and speed his-
tograms of the produced motion are shown as newmeasures.

Social behavior must be socially acceptable above all and
questionnaires are very valuable tools that need to be con-
sidered. But when it comes to compare several approaches
objective tools are needed. We have focused on three charac-
teristics (from the seven ones stated in Borji 2019) as desir-
able when using a data-driven gesture generation approach:

– Ability to generate high fidelity samples
– Ability to generate diverse samples
– Agreementwith human perceptual judgments and human
rankings of models

These characteristics could be in contradiction among
them, particularly the fidelity and diversity constraints. We

have tried our best to try to reconcile them and after the quan-
titative analysis we have returned the human to the loop for
the test of the third condition: human judgement. Therefore,
in the research described in this paper we perform an analy-
sis based on several methods for quantitativelymeasuring the
degree of fidelity as well as originality a gesture generation
method offers with respect to the properties of the data used
for training the system.

3 Experimental baseline

In this section the two GAN based gesture generation meth-
ods thatwill be quantitatively analysed later on are explained.
Bothmethods can generate human-likemotion in a humanoid
robot that includes arms, head and hands motion mapping
(upper-body part) since legs are not involved in talking beats,
and only differ in the 3D MoCap system (OpenNI vs Open-
PoseCao et al. (2018)) being used to capture human motion
and create the databases for acquiring the generative mod-
els. The motion capturing alternative over already existing
robot animation software clearly allows to better capture the
nature of the talking movements we do, but it requires the
capability to (1) Capture good features of themotion (2)Map
those captured features into the robot joints Poubel (2013).
This mapping process can be done by inverse kinematics
Alibeigi et al. (2017), calculating the necessary joint posi-
tions given a desired end effector’s pose as in Mukherjee
et al. (2015). Alternatively, we adopt the direct kinematics
option that straightforwardly adapts the captured arms and
head angles to the robot joints Zhang et al. (2019) Rodriguez
et al. (2014).

The mapping process leads to the capability of human
motion imitation as depicted in Fig. 1.

3.1 Mapping human joints to robot joints: OpenNI vs
OpenPose

As mentioned before, arms, head and hands are involved in
the gesture generation process. The MoCap systems being
used show different features and limitations and thus, the
mapping process differs from one to the other in some joints.
More specifically, head and hands need to be differently
mapped. Figure 2 reflects the main differences between these
two systems. OpenNI can only detect 15 keypoints while
OpenPose detects 25 for the body plus the 42 hands’ key-
points (hands are not displayed in the figure aforementioned).
The following subsections detail how those elements are
translated from human captured 3D cartesian coordinates to
the joints of Softbank’s robot Pepper.

Arms mapping The literature reveals different approaches
to calculate the robot arm joint positions Zhang et al. (2019)
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Fig. 1 Human motion imitation
process

(a) (b)

Fig. 2 OpenNI and OpenPose skeleton models

Kofinas et al. (2015). Thismapping process depends upon the
robot’s degrees of freedom and joints range. For the Pepper
robot armswe are dealingwith, someupper-body link vectors
are built through the skeleton points in the human skeleton
model, and joint angles are afterwards extracted from the
calculation of the angles between those vectors (see Fig. 3).
For the sake of simplicity, since the calculation of the angles is
similar for both approaches, the complete formulas involved
in that process will not be described here (see Zabala et al.
2019 for more detailed information).

Head mapping The OpenNI skeleton tracking program
employed for head mapping gives us the neck and head 3D
poses. The approach taken for mapping the yaw angle to the
robot’s head consists of applying a gain K1 to the human’s
yaw value, once transformed into the robot space by a −π

2
rotation (Eq. 1).

Hrobot
γ = K1 × Hβ (1)

In order to approximate head’s pitch angle, the head to
neck vector (HN ) is calculated and rotated −π

2 and then, its
angle is obtained (Eq. 2).Note that robot’s head is an ellipsoid
instead of an sphere. To avoid unwanted head movements a
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Fig. 3 Left arm joints and angle limits

lineal gain is applied to the final value.

Hrobot
β = arctan

(
rotate

(
HN ,−π

2

))
+ |K2 ∗ Hγ | (2)

On the contrary,OpenPose detects basic face features such
as the nose, the eyes and the ears (see Fig. 2b) and thus,
allows for a more realistic tracking of the robot head (Fig. 3).
To map humans head position into the robot, we use the nose
position as reference.Head’s pitch (Hrobot

φ ) is proportional to
the distance between the nose and the neck joint (see Eq. 4).
Instead, the yaw orientation of the head itself (Hrobot

ψ ) can be
calculated bymeasuring the angle between the vector joining
the nose and the neck, and the vertical axis (see Eq. 4).

NN = dist(Nose, Neck)

Hrobot
φ = rangeConv(NN , robot Range) (3)

Hrobot
ψ = rangeConv(− arcsin (NNx ), robot Range) (4)

Hands mapping The OpenNI skeleton tracking program
used for hands mapping can not detect the operator’s hands’
yawmotion and thus, LWγ joints cannot be reproduced using
the skeleton information. The developed solution forces the
user to wear coloured gloves to detect the hand orientation.
In our implementation, the gloves are green in the palm of
the hand and red in the back. While the human talks, hands
coordinates are tracked and those positions are mapped into

the image space and a subimage is obtained for each hand.
Angular information is afterwards calculated by measuring
the number of pixels (max) of the outstanding color in a
subimage. Eq. 5 shows the procedure for the left hand. N is
a normalizing constant andmaxWγ stands for the maximum
wrist yaw angle of the robot.

{
LWrobot

γ = max/N × maxWγ ifmax is palm
LWrobot

γ = max−N
N × maxWγ otherwise

(5)

In addition, LEγ is modified when humans palms are up
to ease the movement of the robot.

Regarding the fingers, as they cannot be tracked, their
position is randomly set at each skeleton frame to make the
movement more realistic.

Alternatively, OpenPose differentiates left and right sides
without any calibration and gives 21 keypoints per hand, four
per finger plus wrist (see Fig. 4).

To determine if the hand shows the palm or the back
the angle between the horizontal line and the line joining
the thumb and the pinky fingertips (keypoints 4 and 20) is
required. This calculation is expressed in Eq. 6, where FT
stands for fingertip and OFT represents the new origin of a
fingertip. Afterwards, the fingers’ points are rotated in such
a way that the pinky lies at the right of the thumb and the
number of fingers over the Y = 0 line is calculated (Eq. 7).
For the right hand, at least two fingers should lie over that
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Fig. 4 OpenPose hand model (21 keypoints)

line to consider the palm is being showed as shown if Eq. 8
(the opposite condition for the left hand).

∀i FT i OFT i
x,y = FT i

x,y − Thumbx,y

α = arctan(OFT pinky
y , OFT pinky

x ) (6)

∀i FT ′i
x = OFT i

x ∗ cos (−α) − OFT i
y ∗ sin (−α)

∀i FT ′i
y = OFT i

x ∗ sin (−α) − OFT i
y ∗ cos (−α) (7)

HandSide =
{
Back

((∑3
i=1FT

′i
y

)
> 0

)
≥ 2

Palm otherwise
(8)

In addition, each hand’s yaw angle (Hψ) must be calcu-
lated by measuring the distance between the thumb and the
pinky fingertips (Eq. 9). The minimum and maximum val-
ues are adjusted according to the wrist’s height so to avoid
collisions with the touch screen on the chest of the robot.

T P = dist(FT ′Thumb, FT ′Pinky)
Hψ = rangeConv(T P, robot Range)

(9)

Finally, the hand’s opening/closing is defined as a func-
tion of the distance between wrist (keypoint 0) and middle

fingertip (keypoint 12) as in Eq. 10.

MW = dist(FT Middle,Wrist)

ClosedOpen = rangeConv(MW , [0.0 − 1.0]) (10)

3.2 GAN based gesture generation

GANnetworks are composedby twodifferent interconnected
networks. The Generator (G) network generates possible
candidates so that they are as similar as possible to the train-
ing set. The second network, known as the Discriminator
(D), judges the output of the first network to discriminate
whether its input data are “real”, namely equal to the input
data set, or if they are “fake”, that is, generated to trick with
false data.

As we are interested in generating movements, i.e., a
sequence of poses, the input to the learning process to
any generative model has to take into account the temporal
sequence of poses. The training dataset given to the D net-
work contains K unit of movements (UM), being each UM
a sequence of μ consecutive poses, and each pose 14 float
numbers corresponding to joint values (Ji ) of head, arms,
wrists (yaw angle) and hands (finger opening value).

Table 1 describesmore in detail the aspect of a single entry
of the database for the case of μ = 4. These samples were
recorded by using two different MoCap systems and by reg-
istering 10 different person talking about 18 minutes overall.
Therefore, two datasets have been obtained: OpenNI DB is
built from a recording about nine minutes long and contains
five people’s skeleton data captured using OpenNI asMoCap
system, while OpenPose DB is built from another recording
also about nine minutes long that contains other different
five people’s skeleton data captured using OpenPose. After
sampling with a frequency of 4 Hz, two datasets of a slightly
different number of poses are created. The shorter one has
2018 poses, and the last poses of the longer one have been
deleted to make their lengths match.

The D network is thus trained using that data to learn
its distribution space; its input dimension is μ ∗ 14. On the
other hand, the G network is seeded through a random input
with a uniform distribution in the range [−1, 1] and with
a dimension of 100. The G network intends to produce as
output gestures that belong to the real data distribution and
that the D network would not be able to correctly pick out as
generated.

4 Fidelity analysis

Dimension Reduction techniques are very widely used in
very different areas, such as in genomics, image classifi-
cation or in natural language processing tasks. The most
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Table 1 Characterization of a unit of movement for μ = 4 consecutive poses. Δt depends of the data sampling frequency

J1(t) · · · J14(t), J1(t + Δt) · · · J14(t + Δt), J1(t + 2Δt) · · · J14(t + 2Δt), J1(t + 3Δt) · · · J14(t + 3Δt)

well known is the Principal Component Analysis (PCA)
Hotelling (1993) and it can help to explore the structure
of high dimensional data. It is a technique that displays the
structure of complex data in a high dimensional space into
a lower dimensional space without too much loss of infor-
mation. In robotics, particularly when studying motions or
movements, PCAhas also extensively been applied. Park and
Konno (2015) used PCA to build motions within an imitation
learning framework;Wood et al. (2018) used PCA to increase
the interpretability of upper limb’s movements registered by
a robotic technology for different tasks; and in Jarque-Bou
et al. (2019) data acquired with a dataglove was summarized
with PCA to extract the coordination patterns available for
handgrasps. Principal Coordinates Analysis Gower (1966)
(PCoA), also known as Classical Multidimensional Scaling,
is an extension of the PCA and therefore it allows to explore
and visualize similarities or dissimilarities of data. Given n
units and distances di j between each pair of units i and j , all
the distances are gathered in a n × n distance matrix D. The
PCoA builds a new matrix Y containing the coordinates of
the n units in l dimensions such that the Euclidean distance
between the i-th and j-th units is equal to di j for all i and j .
The columns ofmatrixY are given basically by the eigenvec-
tors of the inner product matrix (I− 1 · 1′/n)D̃(I− 1 · 1′/n),
where D̃ is the matrix with value (di j )2 in position (i, j),
1 = (1, . . . , 1)′ and I is the identitymatrix. The related eigen-
values show the variability decomposition in the original
data. When the distance matrix D is the Euclidean distance
built on the original features, PCoA and PCA give the same
results. In summary, the columns of matrix Y along with
the eigenvalues allow to analyse the internal structure of the
original high dimensional data.

4.1 Measuring similarity with PCoA

LetOpenNIDBandOpenNI+GANbe thedatabases captured
and generated respectively with the OpenNI capture method.
The same holds for OpenPose DB and OpenPose+GAN.
The databases OpenNI DB, OpenNI+GAN, OpenPose DB,
OpenPose+GAN were calculated for different length of UM
(μ = 4, 6, 8). This gives a N × (14×μ) datamatrix for each
method where columns represent the positions of the joints
along the sequence ofμ consecutive poses (Ji (t+kΔt) , i =
1, . . . , 14, k = 0, . . . μ − 1, μ = 4, 6, 8). The struc-
ture underlying themovements was analyzed considering the
relationship between the joints. First, correlation distances
Gower (1985) between joints were calculated. In order to get
comparable results the distance matrices were scaled so that

their geometric variability were equal to 1. Then, a Princi-
pal Coordinates Analysis was carried out on each distance
matrix. In order to assess whether the underlying structures
of original movements and generated movements are simi-
lar, the corresponding eigenvalues were compared. Figure 5
shows the decomposition of the variance (first 28 dimen-
sions) for different lengths of UM and different methods
of data acquisition. It can be seen that, in general terms,
the structure of the original movements are preserved by
the GAN generated samples, independently of the MoCap
system being used. Furthermore, in order to assess quan-
titatively the fidelity between GAN generated samples and
its originals, the principal coordinates YO of the originals
and the principal coordinates YG of the GAN generated
samples were compared. Particularly, we measured the abil-
ity to recover each of the first 10 principal coordinates
YO = [y1 O , . . . , y10 O ] from the first 10 principal coordi-
nates YG based on linear regression models. We considered
the linear regression model for the j th principal coordinate
of the originals based on the 10 principal coordinates of GAN
generated samples (y j O = β0+∑10

i=1 βiyiG , j = 1, . . . , 10)
and calculated the explained variance by the coefficient of
determination R2 (see Fig. 6). Broadly, very high values of
R2 are obtained assessing the fidelity of GANmodels in con-
cordance with what the eigenvalue decompositions showed.
Nevertheless, we gained some insight and it can be observed
that the recovery of the originals is bigger with OpenPose as
MoCap. Furthermore, the recovery for 8 UM is the poorer. It
can be seen that first 6 and 7 principal coordinates of Open-
Pose DB can be recovered by the GAN principal coordinates
(R2 ≥ 0.85) for μ 4 and 6, respectively.

5 Originality analysis

Nothing has been said about the degree of originality of the
generated motion. As mentioned in the introduction, robot
gesticulation should not result repetitive/boring.

In order to analyze it, we considered Procrustes Analy-
sis. Procrustes methods analyze the matching between two
or more configurations. That is, given some units measured
in different contexts or by different features, the main aim
of procrustes methods Gower et al. (2004) is to measure
the degree of similarity among the configurations. Procrustes
methods are widely applied. For instance, in Makondo et al.
(2015) the authors extend procrustes statistic to get transfer
learning techniques to learn robot kinematic and dynamic
models; in Gao et al. (2016) applied procrustes techniques
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Fig. 5 Decomposition of the variance for different length of units and different systems of movement (λOl , λGl , l = 1 . . . , 28). The columns are
ordered by length of UM (μ = 4, 6, 8). The first and second rows correspond with data acquisition by OpenNI and OpenPose, respectively

as an effective robot base frame calibration; more recently,
Maset et al. (2020) proposed a method to increase efficiency
and to identify potential issues of the assembly process in
robotized assembly as a variation of the classical procrustes
analysis.

5.1 Measuring originality with procrustes statistic

In our particular context, we considered pairs of configura-
tions given by the first 10 principal coordinates YO of the
originals and the 10 principal coordinates YG of the GAN
generated samples for each combination of MoCap and UM.
The rows of those matrices represent the joints along the unit
of movement and the matrices can be considered as con-

figurations for the joints. Based on the percentage of the
explained variances (see Table 2) the aforementioned config-
urations are capturing the essence of the joints along the units
of movement. The classical orthogonal procrustes statistic
(ss) between configurations YO (DB) and YG (GAN) is the
residual sum of squares between both configurations, once
a scaling factor and rotation movement are allowed. That is,
ss = ||YO − sQYG ||2, where s is a scaling factor and Q is a
rotation matrix that minimize the sum of squares. The under-
lying idea is to considerYO as the target configuration and to
scale and rotate the second configuration YG so that it is as
similar as possible to the target configuration. The remaining
residuals build the procrustes statistic ss. The bigger is ss the
more different are the joints along the units of movements,
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Fig. 6 Determination coefficients (R2) for lineal models y j O = β0 + ∑10
i=1 βiyiG , j = 1, . . . , 10. The columns are ordered by length of UM

(μ = 4, 6, 8). The first and second rows correspond with data acquisition by OpenNI and OpenPose, respectively

or in our context, the bigger is the originality of the move-
ments. Since ss depends on the number of rows,wenormalize
it so that we obtain a commeasurable statistics for different
length of UM. Taking into account Table 2, in terms of origi-
nality it seems that MoCap OpenPose obtains slightly bigger
values.

The originality should not come at the cost of rough or
uneven movements. Tables 3, 4 and 5 show the mean val-
ues of the norm of jerk Calinon et al. (2004) (Eq. 11) and the
length of the path (described as the increment in the positions
over time in Eq. 12) for 1000 generated movements. Head
position does not shift in the space, and thus only jerk values
are calculated. Overall, motion analysis shows that Open-
Pose based gesture generation is smoother than the OpenNI

Table 2 Explained variance along the first 10 dimensions for different
length of UM and different systems of movement

μ Explained variance (%) ss/(14 × μ)

Original OpenNi

4 81.3 85.6 0.0857

6 75.0 83.7 0.1723

8 70.1 82.9 0.1932

μ Original OpenPose

4 83.2 86.2 0.1054

6 77.6 83.8 0.1307

8 74.4 83.4 0.2369

Differences between joints along UMmeasured by the commeasurable
procrustes statistic ss/(14μ)
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Table 3 Mean values for each measure (φ: pitch, ψ : yaw) μ = 4

OpenPose based OpenNI based

Lhand E jerk 0.0266 0.0232

Elpath 25.8314 21.7854

Rhand E jerk 0.0232 0.0231

Elpath 23.4980 21.2495

Lelbow E jerk 0.0108 0.0118

Elpath 10.8245 11.9210

Relbow E jerk 0.0086 0.0110

Elpath 9.1785 10.6696

Head Eψ
jerk 0.0428 0.0334

Eφ
jerk 0.0201 0.0153

Table 4 Mean values for each measure (φ: pitch, ψ : yaw) μ = 6

OpenPose based OpenNI based

Lhand E jerk 0.0240 0.0285

Elpath 22.4936 25.0769

Rhand E jerk 0.0220 0.0273

Elpath 22.7787 26.0431

Lelbow E jerk 0.0094 0.0132

Elpath 9.5669 11.6939

Relbow E jerk 0.0083 0.0142

Elpath 9.1389 13.2678

Head Eψ
jerk 0.0389 0.0436

Eφ
jerk 0.0198 0.0131

based one, independent of the length of the unit of movement
selected.

jerk = 1

T

T∑
t=1

|| ˙accelt || (11)

lpath =
T∑
t=2

||xt − xt−1|| (12)

6 Trade off between fidelity and originality

As mentioned in the introduction, the fidelity and the origi-
nality features are contradictory and a trade-off is desirable.
Looking for that balance, we have defined a Fréchet Gesture
Distance, inspired by the Fréchet Inception Distance, a dis-
tance widely used in the area of image generation to measure
the similarity between original images and GAN generated
images.

Table 5 Mean values for each measure (φ: pitch, ψ : yaw) μ = 8

OpenPose based OpenNI based

Lhand E jerk 0.0244 0.0286

Elpath 24.2394 25.4619

Rhand E jerk 0.0282 0.0374

Elpath 29.2930 33.4755

Lelbow E jerk 0.0109 0.0145

Elpath 11.3923 13.7295

Relbow E jerk 0.0131 0.0190

Elpath 13.7552 17.2916

Head Eψ
jerk 0.0513 0.0527

Eφ
jerk 0.0267 0.0122

6.1 GAN performancemetrics

Evaluation of the performance of GAN networks is not a
straightforward process. Several approaches have been pro-
posed, among them average log-likelihood Theis and Bethge
(2015), Parzen window estimates Breuleux et al. (2010) or
visual fidelity of samples Goodfellow et al. (2014) when suit-
able. In Theis et al. (2015) the authors show that these three
criteria are largely independent of each other when the data is
high-dimensional. In particular, they state that average like-
lihood is not a good measure.

In the field of image generating GANs, some more
recently defined measures are the Inception Score (IS) Sali-
mans et al. (2016) and the Fréchet Inception Distance (FID)
Heusel et al. (2017). Both approaches measure the distance
between the original and the generated images. The Inception
Score is computed as exp(ExKL(p(y|x) ‖ p(y))), where
the Inception model Szegedy et al. (2015) is applied to every
image to get the conditional label distribution p(y|x). Images
that contain meaningful objects are expected to have a con-
ditional label distribution p(y|x) with low entropy. On the
other hand, it is expected that the images generated by the
model have a degree of variation among them, so themarginal∫
p(y|x = G(z))dz should have high entropy. The Inception

score is obtained from the combination of these two require-
ments, where the results are exponentiated so the values are
easier to compare. KL stands for Kullback-Leibler diver-
gence Kullback (1997). The Fréchet Inception Distance is
computed as d2((Mr ,Σr ), (Mg,Σg)) = ||Mr − −Mg||2 +
Tr(Σr + Σg − 2(ΣrΣg)

1
2 ), where (Mr ,Σr ) and (Mg,Σg)

are the mean vectors and covariance matrices of the feature
vectors for real and generated images, respectively. The fea-
ture vectors are computed as the values of the activation layer
of the Inception model.

In layperson’s terms, given two sets of images IA and
IB , the FID measures the similarity of the predictions of the
Inception model over Ia and Ib. FID is widely used as a
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performance measure in the image generation community,
as in Park et al. (2019) Wu et al. (2019) Zhang et al. (2018)
Nazeri et al. (2019).

In Borji (2019) the author analyzes the pros and cons of
several GAN performance measures. His work is focused on
GAN applied to images, and arrives to the conclusion that
FID score looks more plausible than others. Although it has
its drawbacks, as to rely onpre-trained networks,which could
pose problemswhen translated to other domains.However, as
it is pointed out in a recent article Barratt and Sharma (2018),
“there are no universally agreed-upon performance metrics
for unsupervised learning, and people have already pointed
out many shortcomings of these Inception-based methods.
Until something better comes along though, they’re going to
show up in every paper so it’s worth knowing what they are.”

Taken into account the relative quality of the FID score
when applied to the image domain, one of the goals of this
research is to find a way of adapting that score, based in a
pre-trained model over a set of images, to sets of gestures.

6.2 Applying Fréchet Gesture Distance to the
baseline

When trying to adapt the FID for gestures, the first problem
is that, to the best of our knowledge, there is no model that
could play the role of the Inception model. Let us remem-
ber that the Inceptionmodel has been created by a supervised
deep learning algorithm and, when presented an input image,
it outputs a set of probabilities of that image belonging to
any of a thousand possible classes. For gestures, there is
no such model. A possible approach could be to manually
label a set of gestures, apply a supervised model over it,
and then use it with the same role than the Inception model.
As in our domain there is not a clear-cut classification of
the gestures generated by the robot, we have chosen another
alternative: to build a Gaussian Mixture Model (GMM) in
an unsupervised fashion from a set of synthetic gestures cre-
ated by Choregraphe,2 a software designed to create robot
animations. It includes different type of predefined anima-
tions, such us body talk gestures, reactions and emotions,
that are used to bring the robot to life. In a previous work
Rodriguez et al. (2019), we chose a set of animations from
original Choregraphe’s animation library that could be used
as beat gestures, and we created a database with those anima-
tions. After sampling selected animations with a frequency
of 4 Hz we obtained a database built up from 1502 poses.
From now on we will refer to this database as Choregraphe
gestures database (ChDB). In this approach, Choregraphe
gestures play a similar role as the data from which the Incep-
tion model was created. As in the image domain a model
independent from the analyzed data was created (Inception),

2 http://doc.aldebaran.com/2-5/software/choregraphe/index.html.

Table 6 FGD values for the different comparisons

UM OpenNI GAN OpenPose GAN

μ = 4 E 0.1309 0.1231

σ 0.0117 0.0108

μ = 6 E 0.2452 0.1773

σ 0.0154 0.0131

μ = 8 E 0.5425 0.2399

σ 0.0209 0.01457

in the gesture domain we create a model independent from
the analyzed data (Choregraphe-based GMM). The data used
by the GAN for training is different from Choregraphe data,
as it is captured by a MoCap system.

The GMM election is supported by previous motion work
by the authors Rodriguez et al. (2019), where they show
that this model ranks second after GANs in the quality of
generated gestures, when used as generative models. When
evaluating the quality of the gestures created by theGAN, the
computed GMMmodel can be used to classify new gestures,
and thus return the set of probabilities needed to compute the
FID.

The process to define the Fréchet Gesture Distance (FGD)
between two sets of gestures GA and GB is the following:

– Create a database GM from Choregraphe gestures.
– Build a GMM from GM .
– Compute the probabilities P(GA) and P(GB) returned
by that GMM over GA and GB , respectively.

– Compute the Fréchet distance over P(GA) and P(GB).

The GMM has been built with 24 components sharing the
same covariance matrix. After a initial Choregraphe gestures
database (ChDB) of K = 1502 poses is built, it needs to
be adapted for the different sizes of the unit of movement.
Whenμ = 1 the length of the pose and the unit of movement
are the same, and the Choregraphe gestures database can be
used without further processing. Therefore, if we denote as
ChDB-n the Choregraphe database used when μ = n, we
find that ChDB-1 and ChDB are the same. But, in the general
case, with an arbitrary value of μ = n, the dimensionality
of ChDB-n is 14 × n. To achieve this, n consecutive poses
are joined together in ChDB-n, thus bringing the number of
units of movement in ChDB-n to K/n. Therefore, the GMM
is trained with the Chdb-μ associated to each value of the μ

parameter.
Table 6 shows the FGD distance values for the different μ

values. According to these values μ = 4 shows the shortest
distance and thus it seems the most adequate value.
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Fig. 7 Reproduction of poses in
the simulated robot

(a)

(b)

7 Visual evaluation of the behavior

Visual inspection of the robot behavior can be somewhat
subjective, speciallywhen variations are subtle. However, the
robot behavior must be perceived as acceptable by humans
in any circumstance. The two approaches compared in this
work are very similar in nature, the only difference being the
MoCap system used to generate the learning data. The main
differences between them were the difficulties to accurately
track the head and hands positions with OpenNI. Figure 7
shows those differences. The reader is invited to pay attention
to how the head and hand positions differ.

These difficulties are therefore reflected in the generated
gestures, as can be appreciated in this video3. The executions
of both systems correspond to the models trained to gener-
ate movements using μ=4 as unit of movement. Notice that
the temporal length of the audio intended to be pronounced
by the robot determines the number of UM required to the
generative model. Thus, the execution of those UMs, one
after the other, defines the whole movement displayed by
the robot. On the one hand, head information provided by
the OpenNI skeleton tracking package was not enough for

3 https://www.youtube.com/watch?v=h9wpMEH8JQc.

preserving head movements and thus, the resulting motion
was poor. On the other hand, the tracker only offered wrist
positions and as a consequence, a vision based alternative
was developed by segmenting red/green colors of the gloves
wore by the speaker for tracking palms and backs of both
hands. The opening/closing of the fingers was made at ran-
dom for each generated movement. Lastly, the robot elbows
tended to be too separated from the body and raised up. At
a glance, it can be seen that the OpenPose based approach
overcomes these three main drawbacks.

8 Discussion and further work

In this paper an approach to quantitativelymeasure the degree
of fidelity/originality of a gesture generating method is
presented. Two beat gestures generation approaches are com-
pared:OpenNI basedGANmodel andOpenPose basedGAN
model. These two systems basically differ in theMoCap sys-
tem being used for acquiring the database used for learning
the generative model.

To measure the fidelity of the generated samples to the
original ones we performed a PCoA over the original and
generated samples for the two types of MoCap and different
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length of units of movements. The visual analysis, as well
as the decomposition of the variances in this step support
the hypothesis that the generated gestures indeed are similar
to the original ones. We also discovered that the explained
variances by the regression models to recover the original
units are bigger in OpenPose, which could point to bigger
fidelity to the original. In the same vein UM 4 and 6 appear
to have higher degree of fidelity. To measure the originality,
we calculated procrustes statistics and we observed that in
general terms, the originality seems bigger in OpenPose and
at the same time this approach generates smoother move-
ments according to two motion measures: jerk and length
path.

Finally, we have defined a Fréchet Gesture Distance
(FGD) which is inspired in the Fréchet Inception Distance
(FID) to be able to see how far are the generated gestures
from the original ones. The Fréchet distance is a measure of
the similarity between two distributions and in our context
those two distributions are the probabilities assigned by a
classifier over all the possible classes when presented a new
instance. Therefore, FGD is generator-agnostic, in the sense
that it is irrelevant how the objects have been created, only
their predicted probabilities when applying some model (as
with Inception in the case of FID) are taken into account.

Let us remember that we want the generated gestures to
be similar, but not too much. We could wonder if, given the
data collected so far (PCoA, jerk), the similarity constraint
has been already fulfilled (let us remember that the difference
in variance composition tips the balance in the other direc-
tion), and the FGDwill be bigger (more different). To pursue
this analysis, we have computed FGD for the two MoCaps
(OpenNI and OpenPose) and three types of number of units
of movements (4, 6 and 8). We see that FGD for OpenPose
is smaller than for OpenNI, so it seems reasonable to sup-
pose that in the balance between similarity and originality,
the smaller the FGD measure the better. This leads us also to
the conclusion that 4 units of movements are better than 6 or
8.

Visual inspection reflected that although subtle the dif-
ficulties to track hands and head positions were translated
to the GAN generated gestures. And subtle are also the dif-
ferences among the measured values, probably because the
two systems being compared are equal in nature. Thus, as
further work we plan to repeat the analysis to observe if the
results of these different quantitative techniques are translat-
able when comparing, for instance, GAN based approaches
to other motion generation approaches such as variational
autoencoders.
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