Autonomous Robots (2021) 45:119-134
https://doi.org/10.1007/s10514-020-09951-8

®

Check for
updates

Deep reinforcement learning for quadrotor path following with

adaptive velocity

Bartomeu Rubi'® - Bernardo Morcego' - Ramon Pérez!

Received: 12 March 2020 / Accepted: 14 October 2020 / Published online: 24 October 2020

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

This paper proposes a solution for the path following problem of a quadrotor vehicle based on deep reinforcement learning
theory. Three different approaches implementing the Deep Deterministic Policy Gradient algorithm are presented. Each
approach emerges as an improved version of the preceding one. The first approach uses only instantaneous information of the
path for solving the problem. The second approach includes a structure that allows the agent to anticipate to the curves. The
third agent is capable to compute the optimal velocity according to the path’s shape. A training framework that combines the
tensorflow-python environment with Gazebo-ROS using the RotorS simulator is built. The three agents are tested in RotorS
and experimentally with the Asctec Hummingbird quadrotor. Experimental results prove the validity of the agents, which are
able to achieve a generalized solution for the path following problem.

Keywords Unmanned aerial vehicles - Trajectory control - Path following - Deep reinforcement learning - Deep deterministic

policy gradient - Quadrotor

1 Introduction

It is well known that unmanned aerial vehicles (UAV) are
prepared to undertake a large number of applications in the
upcoming future (eg., transportation, surveillance, mapping,
exploration, search & rescue, maintenance, filming). It is for
this reason that the research on these vehicles is constantly
growing and keeps developing and implementing the most

This work has been partially funded by the Spanish State Research
Agency (AEI) and the European Regional Development Fund (ERDF)
through the SCAV Project (Ref. MINECO DPI2017-88403-R), and by
SMART Project (Ref. EFA 153/16 Interreg Cooperation Program
POCTEFA 2014-2020). Bartomeu Rubif is also supported by the
Secretaria d’Universitats i Recerca de la Generalitat de Catalunya, the
European Social Fund (ESF) and AGAUR under a FI Grant (Ref.
2017F1_B_00212).

B<I Bartomeu Rubi
tomeu.rubi@upc.edu

Bernardo Morcego
bernardo.morcego @upc.edu

Ramon Pérez
ramon.perez@upc.edu

Research Center for Supervision, Safety and Automatic
Control (CS2AC), Universitat Politeécnica de Catalunya
(UPC), Rbla Sant Nebridi 22, Terrassa, Spain

innovative solutions of control theory, computer vision and
artificial intelligence. To accomplish the final applications,
the research on UAVs tackles several different problems
which derive in diverse research fields, such as the stabi-
lization control, trajectory control, obstacle detection and
avoidance, path planning, mission control, fault tolerant con-
trol, formation control and many more.

In the last few years the authors of this paper focused
their effort on the path following problem, studying and
developing the latest techniques to solve this problem. Path
following (PF) is a control approach to solve the trajectory
control problem that removes the time dependence from the
problem resulting in many advantages over the standard tra-
jectory tracking approach (Aguiar et al. 2008; Kaminer et al.
2006). In Rubf et al. (2019) a survey of quadrotor path fol-
lowing algorithms is presented. Several control-oriented and
geometric algorithms are reviewed and compared. The most
prominent are implemented in a realistic quadrotor model.
Conclusions reveal that, in spite of its slightly worse perfor-
mance in comparison with the control-oriented algorithms,
geometrical algorithms are easier to implement, require less
state information and result in a lower computational and
control effort. Therefore, they become a wise solution for
the PF problem. Nevertheless, the main problem of geo-
metric PF algorithms is that tuning their control parameters,

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-020-09951-8&domain=pdf
http://orcid.org/0000-0002-8822-2681

120

Autonomous Robots (2021) 45:119-134

which define their performance and stability, depends on fac-
tors such as the velocity of the vehicle and the path’s shape
(Sujit et al. 2014; Heredia and Ollero 2007). Thus, those
parameters need to be retuned when experimental conditions
change.

Machine learning is an interesting research field to address
the mentioned problem of geometric algorithms. Its appli-
cation would aim to achieve an adaptive and tuning-less
approach while preserving the control structure and the
advantages of the geometrical algorithms. Amongst the
diverse machine learning techniques the emerging deep rein-
forcement learning theory appeared as a promising option
to accomplish those objectives. In recent years, a signifi-
cant progress has been made in the fields of reinforcement
learning (RL) and deep learning. Thus, now RL is no longer
constrained to discrete and small environments. Deep Q-
Network (DQN) (Mnih et al. 2015) and Deep Deterministic
Policy Gradient (DDPG) (Lillicrap et al. 2016) are two of
the most popular deep RL algorithms. In DON the inputs of
the agent are images, while DDPG is especially designed
for continuous state-action spaces. Both algorithms have
been used to solve diverse computer science and engineer-
ing problems (Caicedo and Lazebnik 2015; Silver et al.
2016; Yu et al. 2017; Tuyen and Chung 2017; Li et al.
2016). DDPG has been also implemented on a quadro-
tor vehicle to solve the landing problem (Rodriguez-Ramos
et al. 2019) with successful results. Other quadrotor appli-
cations of deep reinforcement learning can also be found
in the literature (Kang et al. 2019; Koch et al. 2019;
Lambert et al. 2019; Mittall et al. 2018; Polvara et al.
2018).

The authors implemented the standard DDPG algorithm
to solve the path following problem in a quadrotor simulation
environment in Rub{ et al. (2020). That approach imple-
mented the same structure and concept of the geometrical
algorithms. The agent was trained in the Gazebo-RotorS
environment in ROS. Simulation results in ideal condi-
tions (without wind and noise) confirmed the potential
of the DRL agent. The present paper continues with this
research. The contributions of this paper are: (i) the previous
approach is improved to deal with noisy sensor measure-
ments and it is trained to perform well when the vehicle
is far from the reference path; (i) a new improved ver-
sion of the agent, which is able to compute the optimal
velocity of the vehicle depending on the path’s shape, is
presented; (iii) the resulting agents are implemented and
validated in the experimental quadrotor platform; (iv) the
approach presented in this paper is a straightforward appli-
cation of the DDPG algorithm and the contribution relies
on the definition and formulation of the states, the actions,
the reward function and the agent structure and parame-
ters.

@ Springer

2 Problem statement

The aim of this paper is to develop a deep reinforcement
learning agent capable of solving the path following problem
for a quadrotor vehicle. Moreover, this agent must compute
the proper velocity of the vehicle which, according to the
defined reward, best adapts to the shape of the given path.
This agent will be implemented with the Deep Deterministic
Policy Gradient algorithm. It will be trained in a simulated
environment and tested experimentally.

2.1 Path following problem

Path following is an approach to solve the trajectory con-
trol problem. The objective of path following is to make the
vehicle follow a predefined path in space with no preassigned
time information. That is, contrarily to the trajectory control
approach, any time dependence of the problem is removed.
A formal definition of the path following problem (Aguiar
and Hespanha 2007; Cabecinhas et al. 2009; Kaminer et al.
2006) is given in Definition 1.

Definition 1 Path Following Problem: Let the desired path
be described by a curve in the three-dimensional space
Pa(¥) = [xa(¥), ya(¥), za(y)]", parametrized by the vir-
tual arc y € [0; yr], where y/ is the total virtual arc length.
The control objective is to ensure the convergence of the vehi-
cle’s position p(t) to the path p;(y) and p(ty) = pa(yy) for
a finite time 7.

In this paper, the path following problem is solved by
implementing a Separated Guidance and Control (SGC)
structure (Fig. 1). That is, a structure based on a separation
between translational dynamics and rigid-body rotational
dynamics. An inner controller, known as the autopilot, is
used to track the attitude, altitude and velocity commands.
The path following controller is in charge of computing the
altitude command (z¢q), the yaw angle command (Y¢pnq)
and the longitudinal and lateral velocity commands (vepg
and u¢,4). More information about quadrotor inputs, states
and dynamic equations in Sect. 3.1.

2.2 Deep deterministic policy gradient

Deep Deterministic Policy Gradient (Lillicrap et al. 2016) is
an actor-critic RL algorithm. It is off-policy since the policy
that is being improved is different from the policy that is used
to generate the action to compute the loss function. And it is
model-free because it makes no effort to learn the dynamics
of the environment. Instead, it estimates directly the optimal
policy and value function.

Figure. 2 shows a common structure of an actor-critic
agent, where the policy (actor) is represented independently

Autonomous Robots (2021) 45:119-134

121

Fig.1 Separate guidance and
control structure

pa(7) Path

Following |vemd

Algorithm

y yam

Zemd Zemd | frmm— u

wcmd d)cmd Altltude W
D — &

Demd . Ug Quadrotor

Ve]ocity P Attitude -

“emd) Controller |—<22y| Controller :
A A

bl
T

>P\

> Policy Action
Actor Environment
D
Value error
Function }«
Reward
Critic
State

Fig.2 Actor-critic agent structure

from the value function (critic). According to the learned pol-
icy function (u(s)), the actor computes the optimal action
depending on a state of the environment. The critic estimates
the value function (Q(s, a)) given the state and the action.
The value function gives us information of the expected
cumulated future reward for this state-action pair. The critic
is also in charge of calculating the temporal-difference error
(TD) (i.e. the loss function) that is used on the learning pro-
cess for both the critic and the actor. In deep reinforcement
learning the policy function and the value function, actor and
critic, are approximated by neural networks.

DDPG is an improvement of the standard Deterministic
Policy Gradient (Silver et al. 2014) algorithm including new
concepts of deep learning theory. One of its major advantages
is thatitis able to provide good performance in large and con-
tinuous state-action space environments, which motivated its
selection for the particular problem addressed in this paper.

DDPG uses two characteristic elements of Deep-Q-
Network (Mnih et al. 2015); the replay buffer and the target
networks, which are used to stabilize the learning of the Q-
function. A replay buffer is a finite sized memory that stores
the transition tuple at each step. This tuple is formed by the
current state (s;), the action (a;), the obtained reward (r;), the
next state (s;+1) and a boolean variable that indicates if the
next state is terminal or not (¢;). A terminal state is under-
stood as a state where the experiment ends. At each timestep
the critic and the actor are trained from a minibatch obtained
by sampling random tuples of the replay buffer. This way of
training reduces time correlation between learning samples
and facilitates convergence in the learning process.

On the other hand, a target network is a network used
during the training phase. This network is equivalent to the
original network being trained and it provides the target val-
ues used to compute the loss function. Once the original
network is trained with the set of tuples of the minibatch,
the trained network is copied to the target network. Never-
theless, in DDPG the target network is modified using a soft
update, rather than directly copying the network weights.
This means that the target weights are constrained to change
slowly. The use of target networks with soft update allows to
give consistent targets during the temporal-difference back-
ups and makes the learning process remain stable. Note that
DDPG requires four neural networks; the actor and the critic
and their respective target networks.

When the agent states or actions have different physi-
cal units it can be difficult for the neural networks to learn
properly and to generalize the solution of the problem. The
batch normalization technique (Ioffe and Szegedy 2015) is
included in the DDPG algorithm to avoid this issue. This
technique is widely used in deep learning and consists, essen-
tially, on normalizing each dimension of the samples in a
minibatch to have zero mean and unit variance.

Equations (1-2) show the gradient functions used to
update the weights of the critic and actor, respectively. ¢
are the set of weights of the critic network and 6 the weights
of the actor, 1y and ny are the learning rates of the critic
and actor, B represents the minibatch of transition tuples and
N its size. Target networks are represented with the prime
symbol. yx (Eq. 3) are the target Q-values (Not to be con-
fused with target networks) and are used to compute the loss
function. The weights of the critic are updated to minimize
this loss function. The discount factor, a value between 0 and
1 that tunes the importance of future rewards to the current
state, is represented by y. Note that the target Q-Values (Eq.
3) are obtained from the outputs of the actor and critic target
networks, following the target network concept.

Ap = ngVy (%Z(Q(s,-,ai 169) — y,-)z) (1
ieB

1
A6 =14V (N D0, pulsi 16" | ¢Q)))

ieB

@ Springer

122

Autonomous Robots (2021) 45:119-134

Fig.3 Asctec hummingbird quadrotor with the Odroid XU4Q on-board
PC (center bottom of the UAV)

vi=ri +vQ (siv1, 1 (sit1 | 6%) |9 3)

Equations (4-5) show the update of the weights of the
target networks from the trained networks. Parameter 7 indi-
cates how fast this update is carried on. This soft update is
made each step after training the main networks.

¢9 <« 12 + (1 - 1)p?)
oM «— 70" + (1 — 1) 5)

3 Agent environment

The environment of the agent includes the robot together
with the robot’s environment (Sutton and Barto 1992). In
this paper the robot is the Asctec Hummingbird quadrotor
vehicle (Fig. 3). This section gives details of the quadrotor
model and the simulation environment wherein the agent is
trained.

3.1 Quadrotor model

The quadrotor model has twelve states: the position on each
axis in the world frame (x, y and z), the Euler angles (¢-roll,
0-pitch and ¥ -yaw), the body velocities (#, v and w) and the
angular velocities (p, ¢ and r). It has four inputs, that are
related to the thrust force (u;) and torques on each axis (uy,
ug and uy). Axis labels and rotational conventions as well
as the defined frames of reference of the model are shown in
Fig. 4.

3.2 Training environment

First training steps of the agent are unpredictable and can
become unsafe for the real platform. That is why having a
simulated environment is very important in order to main-
tain the integrity of the experimental platform. Training the
agent in a realistic and complete simulated environment will
strengthen its effectiveness on real experiments.

@ Springer

motor 3

motor 2

Y

{W}

Fig.4 Axis labels and conventions

Table 1 Constants of tk}e PID Kp Ki Kd
controllers of the autopilot
u 0.32 - 0.1
v 0.32 — 0.1
¢ 4 22 24
0 4 22 24
v 8 1 7
z 4 22 6.6

In this work a simulation environment was built in the
Gazebo-ROS (Robot Operating System) platform, making
use of the RotorS simulator (Furrer et al. 2016). RotorS
is a multirotor simulator integrated in Gazebo-ROS which,
among the available multirotor models, has a model of the
Asctec Hummingbird quadrotor, the vehicle studied in this
work. Since certain modifications were made in the real Hum-
mingbird vehicle of our platform, some parameters of the
simulation model were updated too (some sensors, pc and
other items where placed on the vehicle in such a way that
inertias and mass changed). Furthermore, a model of the sen-
sors was included and adjusted to resemble the sensors of the
actual quadrotor platform. Nevertheless, simulations assum-
ing ground truth measurements (i.e. ideal sensors) can still
be made.

The autopilot was implemented as a package in ROS and
it is formed by a set of PID-based controllers. That is, three
controllers for the attitude (¢, 8 and 1), one for the altitude
(z) and two more to control the velocities on the x and y axis
(u and v). The parameters of these controllers are shown in
Table 1. This autopilot was already tested in real experiments
with success, and it presents a very similar response on the
RotorS simulated environment, thus proving the validity of
the model.

The DDPG agent was programmed in python 3.5, using
the tensorflow and tflearn libraries to generate and train the

Autonomous Robots (2021) 45:119-134

123

Python 3

[DDPG Agent] |

rospy .
library J [Autopllot] [RotorS]

Fig.5 Scheme of the training environment

neural networks. These libraries permit to save (and restore)
the trained nets in order to perform tests or retrain them. Since
ROS is only prepared for version 2 of python, the agent was
implemented as a regular python script and it communicates
with ROS (to subscribe and publish topics) by means of the
rospy library.

The scheme of the simulated environment is shown in
Fig. 5. The main advantage of building this environment in
ROS is that, since the real platform also runs under ROS,
the same code of the autopilot and the DDPG agent can be
transferred to the real quadrotor platform. Thus, the real envi-
ronment is equivalent to the one presented in Fig. 5, except
that RotorS simulator is substituted by the real vehicle and
Sensors.

4 DDPG for path following

This section presents the main characteristics of the DRL
agents that are developed in this paper. That is, states, actions
and rewards are defined. Other details regarding the structure
of the networks or the type of noise added to the actions are
introduced as well. Three different approaches are presented.
Each approach is an improved version of the preceding one
and is implemented using the Deep Deterministic Policy Gra-
dient algorithm.

4.1 First approach: two states

According to the structure of Fig. 1, the path following algo-
rithm must compute four control commands (Z¢md, Yemds
Uema and vey,q). Nevertheless, in this first approach the deep
reinforcement learning agent is only in charge of computing
the reference of the yaw angle (¥,4). Actually, the action
(a) produced by this agent is not directly the yaw command
but a desired correction (Y¢orr k given in rad/s) over the cur-
rent yaw angle. Equation (6) shows how the yaw reference at
step k is produced, where At is the time step. The reason to
use the angle correction and not the angle itself as the agent
action is to avoid undesired fast angle changes. Moreover,
note that the correction is made over the current value of
yaw and not over the last yaw reference, which would lead
to an incremental control action. Having an incremental con-
trol action is equivalent to adding a new integral to the plant,
which in this case results in an unstable behaviour. Hence, the

selected action achieves a smooth movement while keeping
the stability of the system.

Yemdk = ak At + Y | ax = Yeorr k (6)

The other commands defined by the path following con-
troller will depend on the path specifications; z.g is given
by the altitude of the path at the closest point to the vehicle
(hereafter named p,;, for cross track error point) and u,q is
set to the desired path’s velocity. Velocity on y axis (Vema),
as in most of the geometrical algorithms, is fixed to 0 7/s.

The basic structure of the DDPG algorithm determines
that, given a state of the environment, the agent will always
choose the best action according to the learned policy. This
may not lead to a proper exploration of the action space while
training the agent. To enhance the exploration of the agent
an Ornstein-Uhlenbeck noise (Eq. 7) is added to the action at
training time. ny is the value of the noise at the kth iteration,
6, is a parameter that defines the speed rate of mean reversion,
Wy is the drift term which affects the asymptotic mean, At
is the time of a step and d W, is the standard Wiener process
scaled by volatility o;,.

Yaw command (v¢,4) including the noise signal is com-
puted as shown in Eq. (8). The exploration rate decreases
continuously with the number of training episodes (j) in
such a way that a smooth transition between exploration
and exploitation is achieved while the agent keeps learning.
Parameter « indicates the speed of this transition.

ng = ng—1 + 0p (n — nk—1) At + 0,dW,; @)

nk
(ak+j/K+1)Ar+wk ®)

In this first approach, the state vector (s) is formed by two
states (Eq. 9); the distance error (e4) and the angle error (ey,),
both with respect to p.; (Fig. 6). Subscript T is referred to
the tangential frame of reference {7’} that is placed on p.;
with x pointing to the path’s tangential direction, z pointing
up and y pointing to the resultant direction of x x z.

lﬁcmd,k =

s={eq. ey} | ea=yr, ey = Y7 9)

The reward defined for this agent is shown in Eq. (10).
This is the reward function that achieves the best perfor-
mance and fastest convergence among the numerous types
of rewards that were evaluated (i.e. continuous or discrete,
penalizing bad behaviour or rewarding good path following
performance, and mixed strategies). The term —k1 |e;| penal-
izes the cross-track error (e4). The term kovr gives positive
reward when the vehicle is moving forward on the path and
negative otherwise, where v is the velocity of the vehicle
projected in the x axis of the tangential frame of reference.
k1 and kp are constants that define the importance of each

@ Springer

124

Autonomous Robots (2021) 45:119-134

Fig.6 States of the agent are with respect of the tangential frame {7}

of the two terms. In this approach these constants take the
values of 20 and 10, respectively. Being those the best values
amongst several that were evaluated.

r = —kileq| + kavr (10)

The structures of the actor and critic neural networks con-
sist on four layered feed forward networks with 400 neurons
in the first hidden layer and 300 neurons in the second one.
However, while in the actor’s network both the state and the
action vectors are connected to the first hidden layer, in the
critic networks the action vector is connected directly to the
second hidden layer, following the structure of the original
algorithm (Lillicrap et al. 2016). Making the actions to skip
the first layer improves the stability and performance. The
neurons of both networks are rectified linear units (ReLU).
Batch normalisation technique is used in the two layers of
the actor nets, while it is only used in the state input layer in
the critic networks.

Table 2 presents the relevant parameters and their values
of this first proposed DDPG agent.

The agent proposed in this subsection can solve the path
following problem properly (see Sect. 6). In fact, it is the
best agent setup in terms of PF performance that we were
able to obtain among numerous and diverse agent setups that
were tested with only two states. However, notice that these
two states of the agent (Eq. 9) only provide instantaneous

Table 2 Parameters of the DDPG agent

Symbol Description Value

i) Learning rate of actor network 0.0001

ur Learning rate of critic network 0.001

T Soft target update parameter 0.001

y Discount factor for critic updates 0.99

- Replay buffer size 1,000,000
N Minibatch size 64

- Maximum steps of one episode 300

At Agent time step 0.1s

K Ratio of exploration-exploitation transition 200

@ Springer

Fig.7 States of the second approach; angle error with respect forward
tangential frame {73}

information about the path. In other words, states are com-
puted only from the point p,; in the path and they provide
no information about the path shape to come. Therefore, it is
not possible for the agent to anticipate the curves of the path.
Next subsection presents an improvement over this approach
that handles this issue.

4.2 Second approach: anticipation state

To deal with the anticipation, the issue mentioned in the pre-
vious subsection, a new form of the state vector is proposed.
The rest of the parameters and structure of the agent of the
first approach are maintained. In addition to the two states
defined in Eq. (9), another state is included (Y7,). This state
is an angle error between the vehicle’s yaw angle and the
path’s tangential angle. However, in this case the angle error
is not computed from the point p., but in a point that is for-
ward on the path, as represented in Fig. 6. This new state
gives information about future orientation of the path with
respect to the vehicle and makes it possible for the agent to
anticipate curves to come, improving substantially its path
following performance (see Sect. 6). The state vector of this
approach is presented in Eq. (11), where 7> subscript indi-
cates that the state is computed from the tangential frame on
a point that is forward on the path (Fig. 7).

s={yr, ¥r., ¥n,} (11)

The distance at which the second tangential frame, {7>},
is placed on the path is named anticipation distance and it is
represented by d,. To obtain the best possible performance
of the agent, it is necessary to choose a proper anticipation
distance. From different tests, it was proven that d, depends
on the velocity of the vehicle on the path. That is, with higher
velocities itis necessary to have a larger anticipation distance.
For instance, the optimal anticipation distance (according to
the obtained PF performance) at a velocity of 1 m/s is 0.6m.

Autonomous Robots (2021) 45:119-134

125

4.3 Third approach: adaptive velocity

The main drawback of the previous approaches is that, with
the defined structure, the agent can only learn to solve the
problem at one specific velocity. That is, if during the training
process the velocity of the vehicle is changed every episode,
convergence cannot be achieved. In other words, the policy
depends on the vehicle’s velocity. This subsection presents
an improvement that permits the agent to work at different
velocities and also makes it capable of computing at each
step the velocity of the vehicle that best adapts to the shape
of the path according to the defined reward.

In order to have an agent that is resilient to different veloc-
ities and path’s shapes, the first step is to include the velocity
of the vehicle (]|v]|) as a state of the agent. Nevertheless,
this modification is not sufficient to accomplish our goal. In
DDPG it is necessary to define a state vector that fulfils the
deterministic property. This means that, knowing the cur-
rent state vector and action the next state can be estimated.
Therefore, since the velocity of the vehicle is an exogenous
variable of the system (defined by the user) it is not possible
to predict its value, and thus, it is not a deterministic state.
To make it deterministic, the action vector must act on the
velocity state.

In this third approach, in addition to the yaw correction
action defined in Eq. (6), a new action that computes a veloc-
ity correction (u¢orr k) Over the current velocity of the vehicle
is included. Equation (12) shows how the velocity command
on the x axis is produced from this action (including explo-
ration noise of Eq. 7, only used during the training phase).
Again, with the aim of avoiding fast changes on the velocity
and to assure the stability of the system, a correction action
has been used rather than a velocity action or an incremental
action of the command.

Ucmd,k = (ucarr,k +) At + uy (12)

n
Il +1

Introducing this new state (||v||) and new action (ucorr k)
to the agent may seem to be enough to solve the problem.
However, as mentioned in Sect. 4.2, notice that the path’s
position where the future angle error state (Y7,) is computed
depends on the velocity of the vehicle. Therefore, having
only this state computed with a fixed anticipation distance
(d,) does not provide enough information to solve the path
following problem at different velocities. Rather than that,
two solutions were considered: Adding more future angle
error states at different anticipation distances or modifying
at each step the anticipation distance at which the angle error
is computed in function of the vehicle’s velocity.

Including several future angle states at different distances
resulted disadvantageous for two reasons: first, having more
states makes the training process much slower; second, since

at a given velocity only the information of 1 or 2 future angle
states is exploited, the remaining states become irrelevant.
Having many states that do not provide significant informa-
tion to solve the problem leads the agent to lose effectiveness.
For this reason, in this approach the mentioned issue is solved
by having only one future angle state (Y,), which is com-
puted with an anticipation distance adapted according to the
vehicle’s velocity.

Several tests at different velocities were performed in
order to find the relation between the velocity of the vehi-
cle and the optimal anticipation distance (dg,op,). Optimal in
the sense of being the distance that provides more informa-
tion, and thus, results in a higher performance of the agent.
The results obtained from these tests were approximated by
the linear piecewise function shown in Eq. (13). This func-
tion computes the optimal anticipation distance as a function
of the current velocity of the vehicle.

vl —0.3 if vl =1
da,opt = (13)
0.6]v]l +0.1 else

Summarizing, in this approach the velocity of the vehicle
is added as part of the state vector and the future angle state
is computed with an adaptive anticipation distance (dq,opr)-
A velocity correction is included in the action vector. Eqs.
14 and 15 present the state and action vectors, respectively.
The agent computes the velocity command on the x axis
in such a way that it adapts to the path’s shape. Velocity
on the y axis is still fixed to 0. The reward function of the
first approach (Eq. 10) is also maintained. Weights of the
reward (k1 and k) acquire a significant role in this approach,
since they define the priority of the trade-off between having
small path distance error or travelling at high velocities. All
parameters of Table 2 are preserved except for the ratio of the
exploration-exploitation transition (), which is set to 1000.
This is because the training process of this approach is slower.

s = {yr, Y1, V1, (da,ops)s IVIl} (14)
a= {Ilfcorr,ks ucorr,k} (15)

The ingredients that make the agent capable of follow-
ing a trajectory in space with adaptive velocity have been
defined. Nevertheless, it is of utmost importance to design a
rich training environment that allows the agent to converge
to an efficient and robust solution. Details of this training
process are given in Sect. 5.

5 Training process

The training process of the agents has been performed in
the training environment detailed in Sect. 3.2. This training

@ Springer

126

Autonomous Robots (2021) 45:119-134

environment is integrated in a linux Xubuntu virtual machine
with adedication of § GB RAM and four 1.80 GHz processors
(i7-8550U CPU). The training process is performed in real
time.

5.1 Training of 1st and 2nd approaches

The first and second approaches followed the same structure
in the training phase. That is, the vehicle is required to fol-
low a half lemniscate (8-shaped) path at a constant velocity
of 1 m/s in the x body axis (#¢mnq). This path is defined in
Eq. (16), where A is the radius of one of the circumferences
of the path, fixed to 4m, and y,, is the virtual arc, which ranges
from O to 27 rad. The path is discretized with a precision of
0.01m between each path point.

Xd (y,,) = 2Acos (yp)

. (16)
va (vp) = Asin (2y)

Both agents were trained following the specified path in
ideal conditions, meaning that the system uses ground truth
measurements and the vehicle starts each episode at the initial
position of the path with the yaw angle oriented tangen-
tially to it. As denoted in Table 2, each episode has 300 steps
of 0.1s. The learning evolution of the first and the second
approaches are shown in Figs. 8 and 9, respectively. These
figures show. for each episode, the average path distance error
(m) and the accumulated reward (3 r) in all the steps of
the episode. As the agents keep training the average error
decreases and the accumulated reward grows until training
converges.

It is important to mention that, as the training process
is stochastic, even if the same parameters and structure are
maintained, the performance of the trained agents can vary.
The agents presented in this paper are the ones that achieve
the best performance, in terms of path distance error, among a
set of different trained agents that were obtained. In this par-
ticular case, the 1st approach converged around the 120th
episode while the 2nd approach did it approximately at
episode 90.

The resulting agents were tested in the RotorS simulation
platform (see Sect. 6.1). They proved to perform well with
ground truth measurements. However, if a model of the sen-
sors is added, the agents present some difficulties to follow
the path properly. Particularly, when the vehicle moves far
from the path (due to drift or jumps on sensor measurements)
and needs to converge back, the vehicle can start loitering
around the path without being able to converge to it.

The solution to the mentioned problem could be to train
the agent with the model with sensors. However, to cap-
ture the dynamics of the system with noisy measurements
becomes challenging for the agent and, sometimes, train-
ing does not converge in these conditions. Alternatively, this

@ Springer

E

0 50 100 150

0 50 100 150
episodes

Fig.8 Average distance error and accumulated reward on each episode
during training phase of 15" approach agent (2 states)

8 T T T T

0 20 40 60 80 100

episodes

Fig.9 Average distance error and accumulated reward on each episode
during training phase of 2"¢ approach agent (3 states)

issue is tackled by retraining the agents to learn the policy
when the vehicle is far from the path. To do so, the agents are
first trained as explained before, and then, they are retrained
following the same path but starting at random positions and
orientations different from the initial point of the path. In this
way, the agents learn how to behave out of the path. Thus, if
the vehicle occasionally moves out of the path because of the
noisy sensor measurements, the agent will be able of driving
the vehicle back to the path.

Both agents (1st and 2nd approaches) were trained 100
more episodes following the specified lemniscate path (Eq.
16) with random initial conditions. That is, in each episode
of this training phase the starting position of the vehicle is
set at a distance of —2m to 2m from the initial position of
the path, and the initial orientation is incremented an angle
between —7/2 to 7/2 from the initial path tangential angle.
The initial position and angle are selected randomly with a
uniform probability distribution in the defined intervals.

Figure 10 shows the learning evolution of the 2nd
approach with the 100 new training episodes. Since the initial
position and orientation change randomly in each episode,
the obtained average distance error and accumulated reward

Autonomous Robots (2021) 45:119-134

127

(m)

>r

u (m/s)

-2000 4

-4000 H =

episodes

Fig. 10 Average distance error and accumulated reward on each
episode during training phase with non-ideal initial conditions of 2"¢
approach agent; gray dashed lines are real values and black lines are a
20-episodes moving average

also vary arbitrarily. For this reason, to show better the pro-
gression of this learning phase, a 20-values moving average
is presented in both plots. That is, episode values are rep-
resented with gray dashed lines, while the moving average
is represented with solid black lines in Fig. 10. The learn-
ing results show how this training phase permits the agent
to learn to perform better in diverse initial conditions. This
acquired knowledge will notably improve the performance
in real experiments, as revealed in Sect. 6.

5.2 Training of 3rd approach

The 3rd DDPG approach developed in this paper requires
training in a richer environment than the previous versions.
That is because the agent needs to train with different curves
in order to learn the optimal vehicle’s velocity and the yaw
angle’s policy according to the path radius.

In the training process of this agent the vehicle will be
required to follow an asymmetrical half lemniscate path. This
is an 8-shaped path where each circle has a different radius.
This path is defined in Eq. (17), where A} and A, are the
radius of each circumference of the path, respectively. The
value of this radius is changed every episode, taking a random
value between 0.5m and 10m with a uniform probability dis-
tribution. Again, the virtual arc parameter (y,) ranges from
0 to 7/2 rads, and the path is discretized with a precision of
0.01m.

xd (vp) = 241 c0s (vp) if 0=<yp=7/a

2A2¢08 (vp) if T/ <yp <72 (17
va (vp) = Arsin (2yp) if 0=y, <7/4

Aysin (2y,) if T4 <yp <72

0 200 400 600 800 1000

0 200 400 600 800 1000
5000 T T T T 1
0+
«
AN
-5000 |+
-10000 ! ! ! !
0 200 400 600 800 1000

episodes

Fig. 11 Average distance error, average velocity and accumulated
reward on each episode during training phase of 3" approach agent;
gray dashed lines are real values and black lines are a 50-episodes mov-
ing average

The first training attempts of the agent with the stated
environment resulted to be quite unfruitful. Concretely, after
hundreds of episodes, the agent just learned that the best way
of maximizing the reward (reward function in Sect. 4) was to
keep the vehicle static. The reason for this strange behaviour
can be explained as follows: since turning around arbitrarily
is not penalized when, due to the lack of exploration the
policy is not defined yet, whenever the agent starts moving
the vehicle forward, as it is rotating, it ends up moving in
the opposite direction of the path, receiving a penalty for that
policy; therefore the best action is to keep u¢,qg = 0.

A simple but effective solution for such issue is proposed
in this paper. It consists on forcing the vehicle to move con-
stantly by establishing a minimum velocity of 0.1 m/s. Even
if this condition initially produces negative rewards, it ends
up promoting the agent to learn the policy of the yaw action.
At the same time, as soon as the velocity vector of the vehicle
starts to be parallel to the path, the agent can start learning that
higher velocities lead to greater rewards. Hence, a successful
learning process is achieved.

The training results of this agent are shown in Fig. 11.
This figure shows the average distance error (|d|), the average
velocity on the x axis () and the accumulated reward (3_ r)
on each episode. A 50-episodes moving average is applied
to episode values to help the interpretation of each of the
three plots. Again, gray dashed lines represent episode values
while black lines show the moving average.

It may seem that training converged around episode 400.
However, even the average error or reward appear to be
constant, evaluating the trained agents with simulation tests

@ Springer

128

Autonomous Robots (2021) 45:119-134

Table 3 Results for one lap of the lemniscate path, simulations with
ground truth measurements

d (m) Time (s) VI (m/s)
Agent 1 0.1041 67.10 0.8707
Agent 2 0.0398 54.79 0.8780
Agent 3 0.0671 39.81 1.2276
Agent 3 (Umax = 1) 0.0669 56.10 0.8696

showed that they kept learning and improving their perfor-
mance until around episode 1000. The reason for that is
because training more episodes permits to learn the policy
on unusual states.

Such long and complex training process allows the agent
to learn the policy out of the path. Thus, unlike the 1°" and
24 approaches, this approach does not need any additional
training with diverse initial conditions to improve its perfor-
mance on experimental results.

6 Results

This section presents the results obtained with the three
trained agents while following a path in different conditions.
The agents were tested in simulation and experimentally with
the Asctec Hummingbird platform.

6.1 Simulation

The simulations presented in this paper were performed in
the same framework where the agents were trained. That is,
the RotorS simulator integrated in the ROS-Gazebo platform.

First, the three approaches were tested following a lemnis-
cate path (Eq. 16), the same path used in the training phase.
Again, the radius of the path is A = 4m. However, this time
the vehicle was required to follow a full lemniscate, with the
virtual arc parameter, y,, ranging from O to 47 rads. The
vehicle started at the initial point on the path with the yaw
angle oriented tangentially to it.

Table 3 shows the results obtained while following this
path with ground truth measurements. That is, in the same
conditions used for training. This table shows the average
cross-track error (3), the average velocity (IIvID and the total
time taken to perform a full lap of the path by each agent.
Also, to evaluate the 3" approach agent in the same condi-
tions of the two other agents, another simulation was made
with this agent limiting its maximum velocity to 1 m/s. Note
that 15" approach is denoted as Agent I in the table, 2"¢
approach is Agent 2 and so on. This nomenclature is main-
tained hereafter in this section.

The results performing a full lap of the lemniscate path
while using the sensor measurements instead of ground truth

@ Springer

Table 4 Results for one lap on the lemniscate path, simulations with
sensor models

d (m) Time (s) VIl m/s)
Agent 1 0.1123 54.79 0.9476
Agent 2 0.0895 51.70 0.9484
Agent 3 0.0968 40.00 1.2338
Agent 3 (Upax = 1) 0.0816 54.41 0.9111

-10 -8 -6 -4 -2 0 2 4 6 8 10

Fig. 12 Trajectories on xy of lemniscate path, simulation with sensor
models: Agent I in green (dotted line), Agent 2 in blue (dash-dotted
line) and Agent 3 (dashed line) in red (Color figure online)

values, are shown in Table 4. Same parameters and agents of
Table 3 are evaluated. The trajectory on the xy plane followed
by these agents is shown in Fig. 12. Figure 13 shows the
references of yaw angle ({¥;,4) and velocity in the x axis
(4emq) computed by the Agent 3 and the values of the angle
Y and the velocity u in the same simulation.

As observed in the simulation results following the lem-
niscate path, the Agent 2 appears to be the one that obtains
the best results in terms of cross-track error. However, it is
important to recall that this agent was only trained to per-
form well at the particular velocity of 1 7/s. On the other
hand, Agent 3 achieved a similar performance while reduc-
ing considerably the time taken to perform a full lap of the
lemniscate. That is, this agent computes the optimal velocity
at each part of the path, which allows the vehicle to accel-
erate in the straight lines, arriving at a maximum velocity of
1.82 m/s. Thus, it was able to increase the average velocity
while maintaining almost the same error.

To analyse the performance of the agents while following
a different path from the one that was used to train them,
a new path was defined. This new path is a spiral, stated
in Eq. (18). This time, parameter A determined the rate at
which the radius of the spiral grows and takes a value of
1.25. The virtual arc (y,,) ranges from O to 277 . Table 5 shows
the simulation results obtained while following the spiral
path with ground truth measures, while Table 6 presents the
results of the agents following the same path with sensors

Autonomous Robots (2021) 45:119-134

129

0 5 10 15 20 25 30 35

t (s)

Fig. 13 Actions of Agent 3 following a lemniscate path, simulations
with sensor models: references computed by agent (angle and velocity)
in red and real values in blue (dashed line) (Color figure online)

Table 5 Results for one lap of the spiral path, simulations with ground
truth measurements

y (m)

Fig. 14 Trajectories on xy of spiral path, simulations with sensor mod-
els: Agent I in green (dotted line), Agent 2 in blue (dash-dotted line)
and Agent 3 (dashed line) in red (Color figure online)

d (m) Time (s) vl (m/s)
Agent 1 0.2907 34.30 0.8860
Agent 2 0.1840 32.43 0.8872
Agent 3 0.1418 23.52 1.2119
Agent 3 (Upax = 1) 0.0759 32.10 0.8530

Table 6 Results for one lap on the spiral path, simulations with sensor

Yema (rad)
i
/4

Uemd (m/3)

0 5 10 15

t(s)

20

models

d (m) Time (s) IV (n/s)
Agent 1 0.3035 32.86 0.9448
Agent 2 0.2540 31.18 0.9366
Agent 3 0.1677 22.62 1.2262
Agent 3 (Vpax = 1) 0.0987 30.59 0.8830
measurements.
Xqg = —Aypcos(y

Ya = Aypsin (Vp)

The trajectories in the xy plane of the three agents fol-
lowing the spiral path with sensor measures are shown in
Fig. 14. These results correspond to the simulations presented
in Table 6. Figure 15 shows the angle and velocity references
obtained by the Agent 3 and their respective real values dur-
ing that simulation. In that case the vehicle reached a maxim
velocity of 1.71 m/s.

Fig. 15 Actions of Agent 3 following a spiral path, simulations with
sensor models: references computed by agent (angle and velocity) in
red and real values in blue (dashed line) (Color figure online)

In the simulation results following the spiral path, the per-
formance obtained by each agent varies more than in the
results following the lemniscate path. With these results it is
clear that, at least in simulation, the Agent 3 is able to outper-
form the other agents, reducing the average cross-track error
while travelling at higher velocities.

The simulations results show how the agents, even though
having been trained with ground truth measurements fol-
lowing a lemniscate path, can also solve the path following
problem with sensor measurements and follow other paths

@ Springer

130

Autonomous Robots (2021) 45:119-134

Fig. 16 Outdoors experimental platform

such as the stated spiral path. Next, the agents are tested in
the real experimental platform.

6.2 Experimental

The results shown in this section were obtained with real
experiments in different sessions during a week. Results were
obtained with similar wind (aprox. 5-10 m/s) and GPS cover-
age (8—10 satellites) conditions. The experimental platform is
the Asctec Hummingbird vehicle with a supplementary on-
board PC (Odroid XU4Q) with ROS framework installed.
Figure 16 shows an image of the experimental platform. As
can be observed, it is a an outdoors platform. The vehicle
is equipped with an IMU sensor which, among other val-
ues, provides an estimation of the orientation of the vehicle,
with a pressure sensor that provides the altitude measure
and with a GPS that provides the position and an estima-
tion of the vehicle’s velocity on the xy plane. In this paper,
the states are obtained from the raw sensor measurements,
without the use of any additional filter. Therefore, the imple-
mented controllers must deal with noisy measures, specially
the ones provided by the low-cost GPS sensor, which presents
drifts and sometimes jumps in the position measurements.
The autopilot ROS package is implemented in the on-board
PC (attitude controller runs at 100 Hz, velocity controller at
50Hz and altitude controller at 20 Hz).

Since tensorflow library is required to operate at 64 bits
and Odroid XU4Q works at 32 bits, the DDPG python agent
cannot run in this PC. Instead, this program is executed in a
laptop that communicates through Wi-Fi with the ROS mas-
ter in the on-board PC. The laptop runs with linux Ubuntu
with the 17-8550U intel processor and 16 GB RAM. The
DDPG python3 program runs at 10 Hz.

The three agents were tested with real experiments fol-
lowing the same paths as in Sect. 6.1. However, although the
three agents were able to solve the path following problem
correctly, the results were not as good as expected. That is,
the trajectory of the vehicle was slightly oscillating around
the path. After various tests the authors concluded that this

@ Springer

behaviour was due to a slight discrepancy between the sim-
ulation model and the real dynamics of the vehicle. Namely,
the rotational dynamics around the z axis were a little slower
in the real vehicle.

In order to improve the performance of the agents two
solutions were considered: the first one consists in training
the agents in the experimental platform; the second one is to
adjust the parameters of the agents to modify their dynam-
ics. Training the agents during real flights can be harmful
for the plant due to the unexpected behaviour of the vehi-
cle. Furthermore, it has been observed that training with
noisy measurements reduces the learning effectiveness. On
the other hand, apparently, it does not exist any methodol-
ogy for modifying the dynamics of the agents by changing
some of their parameters. Indeed, out of the set of design and
training parameters, involved only in the training phase, the
DDPG algorithm does not have any other parameter to tune.
However, in this paper we propose a form of modifying the
control dynamics of the agent by adding a new parameter that
will scale the output of the agent. That is, since the outputs
of the agent are corrections (angle and velocity corrections),
this parameter will regulate the speed at which the correction
is made, and thus, it ends up regulating the dynamics of the
angle and/or velocity reference too.

Since the discrepancy between the two models affects
the yaw dynamics, only the angle action was scaled with
the mentioned parameter. This new parameter, known as the
angle correction constant (k,), is apparent in Eq. (19) and it
is set experimentally, k, = 2; the value that provided the best
performance from the different values that were tested exper-
imentally. This correction constant was included in the three
agents that were used to obtain all the experimental results
that are presented in this paper. It is important to remember
that this constant was just used in the experimental phase to
improve the performance of the agents.

wcmd,k = kqar At + Y (19)

Next, the agents were tested with the same lemniscate of
Sect. 6.1 (Eq. 16) with A = 4 and y), ranging from 0 to 47.
The results of the three agents performing a full lap of this
path are shown in Table 7. The results of the Agent 3 with the
maximum velocity limited to 1 7/s are also included. Again,

Table 7 Experimental results for one lap on the lemniscate path

d (m) Time (s) VI /)
Agent 1 0.1739 55.90 0.8859
Agent 2 0.1140 55.01 0.9141
Agent 3 0.1682 39.39 1.6311
Agent 3 (Upax = 1) 0.2275 59.50 0.8829

Autonomous Robots (2021) 45:119-134

131

-10 -8 -6 -4 -2 0 2 4 6 8 10

Fig. 17 Trajectories on xy of lemniscate path, experimental results:
Agent 1 in green (dotted line), Agent 2 in blue (dash-dotted line) and
Agent 3 (dashed line) in red (Color figure online)

Yema (rad)

Uema (m/8)

0 5 10 15 20 25 30

t (s)

Fig. 18 Actions of Agent 3 following a lemniscate path, experimental
results: references computed by agent (angle and velocity) in red and
real values in blue (dashed line) (Color figure online)

the table shows the average cross-track error (d), the total
time and the average velocity of the vehicle (|[v|)). Figure 17
presents the trajectory on the xy plane of the agents while
following this path. Furthermore, Figure 18 shows the angle
and velocity references computed by the Agent 3 while fol-
lowing this lemniscate path, where references are shown in
red and real values in blue dashed lines.

The experimental results following the lemniscate reveal
a behaviour that is very similar to the simulation results. The
Agent 2 displays again the best performance in terms of cross-
track error, but the Agent 3 achieves a similar distance error
while increasing the average velocity, arriving at a maximum
velocity of 2.49 m/.

Table 8 Experimental results for one lap on the spiral path

d(m) Time (s) vl ns)
Agent 1 0.2848 28.81 1.0503
Agent 2 0.2503 27.79 1.0460
Agent 3 0.2257 18.59 1.5844
Agent 3 (Vypax = 1) 0.2342 33.10 0.8826

Another important remark from these experimental results
is found in the last curve of the trajectory performed by
the Agent 3 (bottom-right curve in Fig. 17), a curve that
the agent should clearly undertake better. This behaviour in
the fast counter-clockwise curves appeared in all the exper-
iments that we performed with this agent, and was even
more evident in the counter-clockwise spiral paths. The cause
of that strange pattern was found in the designed training
framework. Although the agent was trained with asymmetri-
cal lemniscates with diverse radius, this training framework
resulted to be incomplete. The reason is that the agent was
trained with a half lemniscate beginning with a counter-
clockwise curve and ending in a clockwise curve. This way,
the first curve is always slower than the second one and
the agent learned to perform fast clockwise curves and slow
counter-clockwise curves. Consequently, it resulted in a bad
behaviour while following counter-clockwise curves at high
velocities. The solution to address this problem consists in
changing the training framework of this 3" agent to have
both types of curves at slow and fast velocities. It could be
done, for instance, with full asymmetrical lemniscates.

Finally, the agents were tested with the spiral path defined
in Eq. (18), with A = 2.5 and y,, ranging from 0 to 4.
Table 8 presents the results of the three agents plus the Agent
3 with limited velocity, just as in Table 7. The trajectories of
the agents following this spiral path are shown in Figs. 19
and 20 shows the angle and velocity references computed
from the actions of the Agent 3.

In the experimental results following the spiral path, the
Agent 3 outperforms the other agents by exhibiting a lower
cross-track error with higher velocity. Specifically, this agent
arrives at a maximum velocity of 2.52 m/s.

The initial trajectory of the agents when following the spi-
ral path (Fig. 19) evidences a difference of behaviour between
each of the three approaches presented in this paper. That is,
the Agent I is required to travel at a constant speed of 1 7/s
and only has information of the instantaneous distance and
orientation error. Thus, due to the lack of anticipation, in the
initial part of the path it starts going forward, moving out
of the path. The Agent 2 moves also at a constant velocity.
However, this agent has information about the upcoming ori-
entation of the path, which allows it to anticipate the curve.
Hence, in the initial part of the path, this agent starts moving

@ Springer

132

Autonomous Robots (2021) 45:119-134

4t

Fig. 19 Trajectories on xy of spiral path, experimental results: DDPG
v1 in green (dotted line), DDPG v2 in blue (dash-dotted line) and Agent
3 (dashed line) in red (Color figure online)

0

Yema (rad)

Uema (m/S)

Fig.20 Actions of Agent 3 following a spiral path, experimental results:
references computed by agent (angle and velocity) in red and real values
in blue (dashed line) (Color figure online)

towards the curve. Finally, the Agent 3 knows the evolution
of the path’s curvature in advance and it is able to modify the
longitudinal speed. That allows it to command slower speeds
at the beginning of the path and turn towards the curve to fol-
low the path as accurately as possible and then, when it is
correctly oriented, start increasing the velocity.

7 Conclusions

In this paper, a deep reinforcement learning algorithm, the
Deep Deterministic Policy Gradient, has been proposed to

@ Springer

solve the path following problem in a quadrotor vehicle. The
path following control computes the references for the veloc-
ity, the altitude and the angle in the 7 axis that are then tracked
by the autopilot controller. Three different DDPG approaches
with different behaviours are presented. The first approach
solves the PF problem only with information about the instan-
taneous position and angle errors. The second approach adds
information about the upcoming path. Both approaches work
at constant velocity. The third approach permits the agent to
compute the optimal vehicle’s velocity that adapts better to
the shape of the path, according to the defined agent reward.

Each of the proposed agents arises as an improved version
of the previous one, that is one of the main strengths of the
methodology used in this work. The main structure, com-
mon in the three approaches, permits the incorporation of
new functionalities (such as having anticipation to curves or
adapting the vehicle’s velocity) without changing the core
of the agent. This is very promising since it means that
new functionalities (e.g. wind disturbance rejection) could
be straightforwardly integrated to the agent without altering
the rest of the functionalities.

The agents were programmed in python using the tensor-
flow library. The designed training framework integrates the
python script with Gazebo-ROS and uses RotorS, a the real-
istic multirotor simulator. This simulator includes a model of
the Asctec Hummingbird, the quadrotor used in the experi-
mental platform. Models of the real sensors of our platform
were included in the simulator. The first and second agents
were trained with lemniscate paths of fixed radius. They were
also trained with different initial conditions to improve their
performance in the experimental results. In order to learn
the policy of the velocity action with different path’s radius,
the third agent was trained with asymmetrical lemniscates
and changing the radius on each episode. The three agents
were trained assuming ground truth measurements. The main
advantage of training the agents in ROS is that it facilitates
the transition from the simulator to the real plant. Further-
more, since ROS is a standard platform in the robotics field,
it is supported by a large community, which can be very use-
ful. The only concern to consider when training in ROS is
that, since simulations are made real-time, it may become a
time-consuming process.

The three agents were tested in simulations in the RotorS
environment with realistic models of the sensors. They were
evaluated with a lemniscate path and with a spiral path.
Then, the agents were also tested in real experiments with the
Asctec Hummingbird quadrotor following the same paths as
in simulation. Even thought the agents were able to follow
the pre-established paths correctly in the first experiments
that were carried out, they performed worse than expected.
The authors concluded that this behaviour was due to the
small errors of the simulated model, which affected mainly
to the yaw dynamics. To improve the performance of the

Autonomous Robots (2021) 45:119-134

133

agents a new parameter (angle correction constant, k;) was
included. This parameter scales the yaw action of the agent.
And permits to modify the dynamics of the agent to cope with
the model’s discrepancy. Training the agents experimentally
was dismissed since it can be harmful for the plant due to
the unexpected behaviour of the vehicle. Furthermore, it was
observed that training with noisy signals was unfruitful.

The agents were tested experimentally including the angle
correction constant, which improved significantly their per-
formance. In the lemniscate path, the Agent 2 achieved
the best performance in terms of average cross-track error
(0.114m), but the Agent 3 exhibited a similar distance error
(0.168m) while being able to significantly increase the vehi-
cle’s velocity. In the spiral path, the Agent 3 stands out over
the other approaches by achieving the lowest average cross-
track error (0.223) while travelling at higher velocities. In
conclusion, the experimental results show how the agents
are able to successfully follow the spiral path, a different
path from the one that they were trained with. And thus, it
is proved that the proposed approach is able to find a gener-
alized solution for the path following problem with adaptive
velocity.

Nevertheless, a strange pattern was observed in the Agent
3 while performing counter-clockwise curves at high veloci-
ties (Fig. 17). This behaviour was attributed to the design of
the training environment. That is, since the agent was trained
with half asymmetrical lemniscates, the first curve of the
path (counter-clockwise) is followed in the transient part of
the experiment (velocity is still increasing). Therefore, the
agent ended up training the clockwise curves at faster veloc-
ities than the counter-clockwise ones. This fact highlights
the importance of having not only a proper structure and
parametrization of the agent, but also a rich, complete and
adequate training framework. The solution to this issue would
be to train with a different path that permits the agent to learn
both curves at different velocities.

Future work is to study the effect of the trained path in
the performance of the agent and to find the best training
environment to exploit the benefits of the agent. Other future
work is to improve the presented agent to make it capable of
solving other challenging problems such as wind disturbance
rejection or reactive obstacle avoidance.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

Aguiar, A. P., & Hespanha, J. P. (2007). Trajectory-tracking and path-
following of underactuated autonomous vehicles with parametric

modeling uncertainty. /[EEE Transactions on Automatic Control,
52(8), 1362-1379.

Aguiar, A. P, Hespanha, J. P., & Kokotovic, P. V. (2008). Performance
limitations in reference tracking and path following for nonlinear
systems. Automatica, 44(3), 598-610.

Cabecinhas, D., Cunha, R., & Silvestre, C. (2009). Rotorcraft path
following control for extended flight envelope coverage. In Pro-
ceedings of the 48th IEEE conference on decision and control,
held jointly with the 28th Chinese control conference (CDC/CCC),
pp- 3460-3465.

Caicedo, J. C., & Lazebnik, S. (2015). Active object localization with
deep reinforcement learning. In 2015 IEEE international confer-
ence on computer vision (ICCV), pp. 2488-2496, 12.

Furrer, F., Burri, M., Achtelik, M., & Siegwart, R. (2016). RotorS—
A Modular Gazebo MAV Simulator Framework (pp. 595-625).
Cham: Springer International Publishing.

Heredia, G., & Ollero, A. (2007). Stability of autonomous vehicle path
tracking with pure delays in the control loop. Advanced Robotics,
21(1-2), 23-50.

Ioffe, S., and Szegedy, C. (2015). Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv,
vol. arXiv:1502.03167.

Kaminer, I., Yakimenko, O., Pascoal, A., and Ghabcheloo, R. (2006).
Path generation, path following and coordinated control for time-
critical missions of multiple UAVs. In 2006 American control
conference, vol. 1-12, pp. 4906.

Kang, K., Belkhale, S., Kahn, G., Abbeel, P., and Levine, S. (2019).
Generalization through simulation: Integrating simulated and real
data into deep reinforcement learning for vision-based autonomous
flight. In 2019 international conference on robotics and automa-
tion (ICRA).

Koch, W., Mancuso, R., West, R., & Bestavros, A. (2019). Rein-
forcement learning for uav attitude control. ACM Transaction on
Cyber-Physical Systems, 3(2), 1-21.

Lambert, N. O., Drew, D. S., Yaconelli, J., Calandra, R., Levine, S., &
Pister, K. S.J. (2019). Low level control of a quadrotor with deep
model-based reinforcement learning. /EEE Robotics and Auto-
matic Letters, 4(4), 4224-4230.

Lillicrap, T. P, Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y.,
Silver, D., Wierstra, D. (2016). Continuous control with deep rein-
forcement learning. In 2016 International conference on learning
representations (ICLR).

Li, L., Lv, Y., & Wang, F. (2016). Traffic signal timing via deep rein-
forcement learning. /[EEE/CAA Journal of Automatica Sinica, 3,
247-254,17.

Mittall, D., Kumar, K., Hashmi, S. N., Kumar, P.,, Nanda, A., and
Chandra, S. (2018). Performance comparison of deep and shallow
network for quadcopter automation. In 2018 IEEE 13th interna-
tional conference on industrial and information systems (ICIIS),
pp. 143-147.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Belle-
mare, M. G., et al. (2015). Human-level control through deep
reinforcement learning. Nature, 518, 529-533.

Polvara, R., Patacchiola, M., Sharma, S., Wan, J., Manning, A., Sut-
ton, R., and Cangelosi, A. (2018). Toward end-to-end control for
uav autonomous landing via deep reinforcement learning. In 2078
International conference on unmanned aircraft systems (ICUAS),
pp. 115-123.

Rodriguez-Ramos, A., Sampedro, C., Bavle, H., de la Puente, P, &
Campoy, P. (2019). A deep reinforcement learning strategy for uav
autonomous landing on a moving platform. Journal of Intelligent
and Robotic Systems, 93, 351-366, 2.

Rubi, B., Morcego, B., and Pérez, R. (2020). A Deep Reinforcement
Learning Approach for Path Following on a Quadrotor. In 2020
European control conference.

@ Springer

http://arxiv.org/abs/1502.03167

134

Autonomous Robots (2021) 45:119-134

Rubi, B., Pérez, R., & Morcego, B. (2019). A survey of path follow-
ing control strategies for UAVs focused on quadrotors. Journal of
Intelligent and Robotic Systems, 98, 241-265.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Ried-
miller, M. (2014). Deterministic policy gradient algorithms. In
Proceedings of the 3l1st international conference on interna-
tional conference on machine learning-volume 32, pp. 1387-1395,
JMLR.org.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den
Driessche, G., et al. (2016). Mastering the game of go with deep
neural networks and tree search. Nature, 529, 484—489.

Sujit, P. B., Saripalli, S., & Sousa, J. B. (2014). Unmanned aerial vehicle
path following: A survey and analysis of algorithms for fixed-wing
unmanned aerial vehicless. IEEE Control Systems, 34(1), 42-59.

Sutton, R. S., & Barto, A. (1992). Reinforcement Learning: An Intro-
duction. Cambridge: The MIT Press.

Tuyen, L. P., and Chung, T. (2017). Controlling bicycle using deep
deterministic policy gradient algorithm. In 2017 14th international
conference on ubiquitous robots and ambient intelligence (URAI),
pp- 413-417, 6.

Yu, R., Shi, Z., Huang, C., Li, T., and Ma, Q. (2017). Deep rein-
forcement learning based optimal trajectory tracking control of
autonomous underwater vehicle. In 2017 36th Chinese control
conference (CCC), pp. 4958-4965, 7.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Bartomeu Rubi received the M.S.
degree in Automatic Systems and
Industrial Electronics Engineering
from the Universitat Politecnica
de Catalunya (UPC) in 2015.
Before that he received the B.S.
degree in Industrial Electronics
Engineering from the Universitat
de les Illes Balears in 2013. Cur-
rently, he is working towards the
Ph.D. degree at the Research Cen-
ter for Supervision, Safety and
Automatic Control, UPC. The
main research topic is focused on
automatic control and machine

learning applied on UAV.

@ Springer

vision applications.

Bernardo Morcego is an Asso-
ciate Professor at the Universitat
Politecnica de Catalunya (UPC).
He received a Ph.D. degree in
Computer Science from the UPC
in 2000. He has been teaching
several subjects in the area of
automatic control in the schools
of Engineering and Aeronautics
in Terrassa and Barcelona. He is
a member of the Research Cen-
ter for Supervision, Safety and
Automatic Control of UPC. His
research interests include UAV
control systems and computer

Ramon Pérez degree and Ph.D. in
Physical Sciences by the Univer-
sitat de Barcelona (UB) in 1993
and Universitat Politecnica de
Catalunya (UPC) in 2003 respec-
tively. He has been lecturing in
UPC since 1994. He has long
experience in teaching modelling
and control of dynamic systems.
His research has been focussed
on modelling, simulating, control
and supervising water systems and
UAV.

	Deep reinforcement learning for quadrotor path following with adaptive velocity
	Abstract
	1 Introduction
	2 Problem statement
	2.1 Path following problem
	2.2 Deep deterministic policy gradient

	3 Agent environment
	3.1 Quadrotor model
	3.2 Training environment

	4 DDPG for path following
	4.1 First approach: two states
	4.2 Second approach: anticipation state
	4.3 Third approach: adaptive velocity

	5 Training process
	5.1 Training of 1st and 2nd approaches
	5.2 Training of 3rd approach

	6 Results
	6.1 Simulation
	6.2 Experimental

	7 Conclusions
	References

