Autonomous Robots (2021) 45:77-98
https://doi.org/10.1007/s10514-020-09948-3

f')

Check for
updates

S4-SLAM: A real-time 3D LIDAR SLAM system for ground/watersurface
multi-scene outdoor applications

Bo Zhou' - Yi He' - Kun Qian' - Xudong Ma’ - Xiaomao Li?

Received: 23 March 2019 / Accepted: 11 September 2020 / Published online: 9 October 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

For outdoor ground/watersurface multi-scene applications with sparse feature points, high moving speed and high dynamic
noises, a real-time 3D LIDAR SLAM system (S4-SLAM) for unmanned vehicles/ships is proposed in this paper, which is
composed of the odometry function in front-end and the loop closure function in back-end. Firstly, linear interpolation is used
to eliminate the motion distortion caused by robot motions in the data pre-processing step. Two nodes are constructed in the
odometry function: the localization node combines the improved Super4PCS with the standard ICP to realize a coarse-to-fine
scan matching and outputs the location information of the robot at a high frequency (5 Hz); the correction node introduces
a local map with dynamic voxel grid storage structure, which can accelerate the NDT(Normal Distributions Transform)
matching process between key-frames and the local map, and then corrects the localization node at a low frequency (1 Hz) to
obtain more accurate location information. In the loop closure function, a location-based loop detection approach is introduced
and the overlap rate of point clouds is used to verify the loops, so that the global optimization can be carried out to obtain
high-precision trajectory and map estimates. The proposed method has been extensively evaluated on the KITTI odometry
benchmark and also tested in real-life campus and harbor environments. The results show that our method has low dependence
on GPS/INS, high positioning accuracy (with the global drift under 1%) and good environmental robustness.

Keywords Multi-scene mapping - LIDAR odometry - SLAM - Loop detection - Scan matching

1 Introduction

With the development of unmanned driving, real-time local-
ization and navigation research for outdoor mobile robots or
unmanned vehicles are receiving more and more attentions.
The common solution for navigation tasks of unmanned vehi-
cles at present is heavily relied on high-precision maps and
GPS/INS information. However, when GPS data and high-
precision maps are not available, SLAM (Simultaneously
Localization and Mapping) is thought to be a good substi-
tute to solve the above problems. Visual SLAM and LIDAR

< Xiaomao Li
lixiaomaosia@ 163.com

Bo Zhou
zhoubo @seu.edu.cn

School of Automation, Southeast University, Nanjing
210096, People’s Republic of China

School of Mechatronic Engineering and Automation,
Shanghai University, Shanghai 200000, People’s Republic of
China

SLAM are two commonly used outdoor SLAM approaches.
While visual SLAM algorithms are greatly influenced by
the intensity of light, the optical structure and the texture
features of environments, the robustness of the system is
often challenged, especially for long-term large-scale scenes
applications. In contrast, the principle of LIDAR SLAM
algorithms is to match point clouds obtained by LIDAR sen-
sors, which mainly depends on the geometric information
of the environment. Benefited by wide measurement range,
high accuracy and good robustness, LIDAR SLAM has been
widely used in unmanned robots or vehicles, and is often
considered as the real key to solve autonomous navigation
problem such as “unmanned driving”.

Generally speaking, LIDAR SLAM approaches for on-
road applications are relatively mature, but there is no
satisfactory solution for complicated, unconstructed, multi-
scene environments, such as ground/watersurface composite
environments (harbors, dams, bridges, islands, etc.) dealt in
this paper. Ground/watersurface composite environments are
very different from ground-only environments: first, there are
fewer laser points or sparser features on the water due to laser

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-020-09948-3&domain=pdf

78

Autonomous Robots (2021) 45:77-98

rays’ inability to be reflected, so approaches depending on
traditional geometric features (lines, corners, edges, and so
on) or global/local descriptors (B-shot, FPFH, VFH, and so
on) extraction may fail; second, unmanned ships are vulner-
able to the influence of wind and waves on the water so that
the motion is unstable, which may produce distortions of 3D
point cloud images; finally, there will be a lot of dynamic
noises on the water in perception process, which may greatly
affect the matching results if not processed effectively. Due
to above reasons, traditional LIDAR SLAM methods for
ground-only environments have poor robustness and perfor-
mances when applied to complex multi-scene environments
with a lot of water. In addition, shortcomings such as the fail-
ure of matching in high-speed motion and great dependence
on GPS/INS information may also lead to the difficulties in
the practical application of traditional SLAM approaches in
unmanned navigation systems.

In this paper, the SLAM problem of outdoor robots such as
UGYV or USV in outdoor multi-scene environments is studied.
In view of the above mentioned shortcomings, approaches
with traditional geometric features or descriptors extracted
from point clouds is not considered here, because under such
challenging environments less features can be extracted for
most of scans, which may makes the algorithm unstable and
time-consuming, especially in low-lapping, high-speed, high
dynamic scenes. Instead, the Super4PCS algorithm with only
co-planar 4-point extraction is adopted for initial transforma-
tion estimation in scan matching for ease of use, better robust-
ness and real-time property even in low-lapping multi-scene
applications. Moreover, two other classical iterative point-to-
point based scan matching approaches, ICP(Iterative Closest
Point) and NDT (Normal Distributions Transform), are also
introduced and combined to construct the final comprehen-
sive coarse-to-fine LIDAR SLAM system (S4-SLAM) to
achieve a good balance between accuracy (under 1% global
drift) and real-time property (5 Hz for localization output,
1 Hz correction and mapping output), which makes it can
keep high accuracy and real-time property in both UGV and
USV applications.

The main contributions and the innovations of our method
are as follows:

1. Traditional SLAM approaches are mainly designed and
used in ground-only environments. Their performances
will degraded heavily (sometimes the matching may
even fail) when used in ground/watersurface compos-
ite environments with poor robustness. By introducing
the Super4PCS algorithm in which only four co-planar
points are needed for scan matching, our method can pro-
vide better environmental adaptability to deal with sparse
point clouds or feature points, high speed movements,
and high noise levels. Furthermore, several modifica-

@ Springer

tions are made on the original SuperdPCS algorithm
to improve the real-time performance and reduce the
mismatch rate, so that it can be applied effectively to
complicated multi-scene environments.

2. In this paper the mainstream framework of existing
SLAM approaches are adopted and greatly improved.
By extending the traditional single localization node into
the new two-node localization-correction structure in the
front-end, an effective combination or good trade-off
among scan matching algorithms such as Super4PCS,
ICP, and NDT can be achieved. For example, Super4PCS
is used to provide rapidly an initial iteration value for
ICP to realize a coarse-to-fine positioning process in
the localization node at a high frequency, and NDT is
speeded up by introducing a dynamic voxel map to cor-
rect the localization node at a lower frequency. Finally, a
real-time LIDAR SLAM system with good robustness is
constructed;

3. Compared to other SLAM approaches, the proposed S4-
SLAM method has lower dependence on GPS/INS data,
and can be applied to GPS-loss/GPS-denied environ-
ments. Extensive experiments have been carried out on
KITTI dataset, campus and harbor environments, and
the results show that our method can produce high-
frequency and high-precision positioning and mapping
outputs when unmanned vehicles/ships moves at a high
speed.

2 Related work

LIDAR sensors are becoming more and more popular in
mobile robots and unmanned vehicles applications, and up
to now a large number of LIDAR SLAM approaches have
been proposed accordingly. In this section only 6-Dof LIDAR
SLAM approaches with 3D point cloud registration/mapping
based on scan matching algorithms are discussed. The ear-
liest and best established algorithm for solving the point
cloud matching problem is ICP (Besl and McKay 1992).
However, the standard ICP algorithm need a good initial iter-
ation value, otherwise the final iteration result may fall into
a local optimum (Pottmann et al. 2006; Bae 2009). Many
researchers have proposed modified versions of the original
ICP algorithm. Bouaziz et al. (2013) proposed the Sparse
ICP algorithm that uses sparse norm to replace the 2-norm
and achieves better registration results. But this improved
ICP is still a local optimization algorithm, and cannot guar-
antee the convergence to the global optimal solution. Yang
et al. (2016) proposed the GO-ICP algorithm that tries to
avoid the local minima problem and ensures global conver-
gence, but it requires a larger overlap of two point clouds.
A widely used yet effective global solution is to roughly
align two point clouds manually or with some pre-processing

Autonomous Robots (2021) 45:77-98

79

techniques to get a coarse initial pose estimation and then
use ICP iteration steps to achieve fine registration, but this
coarse-to-fine method is generally more complex and diffi-
cult to apply in real-time. Biber and Straer (2003) proposed
the so-called NDT(Normal Distributions Transform) algo-
rithm based on a completely probabilistic model description,
and Magnusson (2009) generalized the NDT method to 3D,
but the performance is sensitive to the selection of the grid-
cell size. Irani and Raghavan (1999) proposed the RANSAC
algorithm, which randomly selects three pairs of correspond-
ing points from two point clouds, and calculates the rigid
transformation between these two point clouds iteratively.
However, this algorithm is still not applicable to large-scale
point clouds. Aiger et al. (2008) proposed the 4PCS algo-
rithm as a variant of the RANSAC algorithm. A coplanar
4-point set is extracted from two point clouds to get the
rigid transformation with the minimum registration error as
the final registration result, which makes 4PCS an excellent
global registration algorithm. Furthermore, Mellado et al.
(2014) proposed the SuperdPCS algorithm with improve-
ments based on the 4PCS algorithm. It can greatly reduce
the complexity of the original 4PCS and moreover can handle
larger displacement and low overlap between point clouds.
Experiment results of this paper also shows the Super4PCS
algorithm has good robustness to keep the performance
in ground/watersurface multi-scene environments applica-
tions that has fewer data and much sparser features. The
SuperdPCS can be used to find a coarse approximation of
the global optimum, and then combined with a local algo-
rithm (e.g., ICP or NDT) to refine the transformation.

ICP based LIDAR SLAM approaches can be used effec-
tively when the vehicle moves slowly or the scanning rate
is set to high. In this case, the two adjacent frames of point
clouds have a large overlap and can be registered and aligned
in a good manner. Almeida and Santos (2013) use the ICP
algorithm to match the two adjacent frames and obtain the
corresponding position transformation relations, but their
method may possibly fall into local optimum when the over-
lap between frames is small. Besides, this method is difficult
to meet the requirements of real-time. Viejo and Cazorla
(2014) extract scene vertices and plane features from point
clouds to complete matching and positioning. Moosmann
and Stiller (2011) proposed a 3D LIDAR SLAM which takes
into account the motion distortion caused by the rotation of
the LIDAR and used an interpolation strategy to remove the
distortion, and then a 3D grid map with small surfaces is con-
structed. After that the constraint relationship between points
and surfaces is used to calculate the transformation matrix.
Ceriani et al. (2015) construct a sparse grid map and use a
generalized ICP method to accomplish the positioning task.
Dubé et al. (2018) proposed a 3D LIDAR SLAM framework
based on segment matching, in which the region growing
idea is adopted to segment a point cloud and track each seg-

ment after segmentation. Finally, the transformation matrix
is obtained by the verification of geometric consistency. Fur-
thermore, Dubé et al. (2017) added a loop detection method
based on point cloud to their SLAM algorithm. Their method
extracts multiple features of each segment, and uses the ran-
dom forest to complete segment classification and matching.
The geometric consistency of the segments is verified to
detect a true loop. Zhang and Singh (2014) put forward a
method of real-time LIDAR odometry (LOAM), it estimates
the velocity of LIDAR and continuously modifies LIDAR
pose by matching edge and planar feature points extracted
from the scanned data. Zhang and Singh (2015) put forward
a method combining visual odometry and LIDAR odome-
try (V-LOAM). Their experiments proved that this method is
insensitive to the surrounding light condition, and show satis-
factory accuracy and robustness even when the robot moves
at high speed. Shan and Englot (2018) proposed LeGO-
LOAM which improves the LOAM algorithm by extracting
flat features on the ground and sharp features off the ground,
and then matched the features by two-steps L-M optimiza-
tion, but this algorithm needs to assume that the ground
exists. Koide et al. (2018) proposed a real-time SLAM algo-
rithm that constructs the ground constraints by extracting
the ground plane and uses the graph optimization to build
the map. However, this algorithm still needs to assume that
the ground exists, and cannot operate in other non-ground
environments. Deschaud (2018) proposed a SLAM method
based on Implicit Moving Least Squares surface represen-
tation (IMLS-SLAM). The method extracts sampling points
with strongest observability to pose parameters, and then uses
the constraint relationship between the sample points and
the implicit surfaces to complete the scan-to-model registra-
tion. Their algorithm can finally achieve similar precision as
LOAM, but cannot be used in real-time. Ji et al. (2018) pro-
pose the CPFG-SLAM algorithm which combines NDT and
ICP to perform better than LOAM in open field with fewer
feature points, however the computation complexity is high
and can not be used in real-time too. Behley and Stachniss
(2018) use the Surfel map in the 3D LIDAR SLAM of out-
door large scene which map the point clouds obtained by the
rotating laser to 2D planes in order to constructed the Surfel
map, but the accuracy and real-time property are still lower
than LOAM.

Most above mentioned LIDAR SLAM approaches are
designed for ground environments with rich features, and
highly depend on ground points or need to treat the ground as
an important constraints, which limits their application per-
formances and robustness in more challenging multi-scene
environments. By now few related studies on LIDAR SLAM
is reported to be used in ground/watersurface composite envi-
ronments. Most existing algorithms can be find it difficult to
achieve good results in this different kind of environments.
As far as the authors know, our paper is the first one to carry

@ Springer

80

Autonomous Robots (2021) 45:77-98

Fig. 1 Block diagram of the
S4-SLAM system

lidar frame

5Hz Transform

Updata

< Trajectory Fusion <

trajectory
output

out LIDAR SLAM research and experimental verification on
both unmanned ground vehicles and ships simultaneously.
Three existing mainstream matching methods (Super4dPCS,
ICP, NDT) are fused to improve the standard SLAM frame-
work. Finally a high-precision SLAM system with good
robustness and real-time is constructed in order to be applied
in complex multi-scene environments.

3 System overview

Figure 1 shows the diagram of the proposed S4-SLAM sys-
tem. Our SLAM system is composed of two functions: the
odometry as the front-end and loop closure optimization
as the back-end. In odometry the classic SLAM frame-
work is improved and extended from the traditional single
localization node into a new two-node structure including a
localization node and a correction node, where the localiza-
tion node outputs the location information at a high frequency
and the correction node corrects the localization node at a
lower frequency.

Considering the trade-off between real-time performance
and localization accuracy, a coarse-to-fine scan matching
method is used by combining the Super4PCS algorithm with
the ICP algorithm in the localization node. In view of short-
comings of the SuperdPCS algorithm, a filter is proposed to

@ Springer

S4-SLAM

Remove Movement
Distortion

Data
lPreprocessing

l

; Filter Out.Grou.nd and New Keyframe Decision
; Dynamic Objects
3
E" Super4PCS Coarse NDT Matching
. >
E’- Matching SHz
z Tﬁnzz(:am Updata Local Map
& ICP Fine Matching &

| Odometry
l‘ Pose Correction +

Loop Dectection

<

Optimize Pose
Graph

Loop closure

roughly filter out the ground and the dynamic objects, and
a heuristic iterative strategy based on the overlap rate eval-
uation is introduced to select the four coplanar points. All
these improvements can accelerate the matching speed of the
original Super4PCS algorithm. After that, the standard ICP
matching method is used in fine matching. Since the coarse
matching step can provide a good initial value for ICP, an
accurate pose estimation between frames could be calculated
quickly with less ICP iterations after down-sampling. More-
over, because motion drifts and noises are inevitable in the
matching of two adjacent frames, it is necessary to correct
the odometry periodically to ensure the localization accuracy.
In the correction node a fixed-size dynamic voxel grid local
sub-map is built and the odometry is corrected by matching
the current key-frame with the sub-map. In the loop closure
function our system introduces a location-based loop detec-
tion approach and verifies the loops with the overlap rate to
reduce the probability of false positives. The trajectory output
node integrates the pose message of the odometry function
and the loop closure function, and finally outputs the pose
message of the vehicle.

Autonomous Robots (2021) 45:77-98

81

4 Data preprocessing

LIDAR devices acquires laser points by rotating laser rays.
During scanning, the point cloud acquired from a scan would
have motion distortion due to the motion of the vehicle, so a
data preprocessing step should be carried out to eliminate it
in advance before registration.

In this paper, coordination frames and symbols are defined
as follows. The LIDAR coordinate system is expressed as { L}
with the origin located at the geometric center of the LIDAR,
and the x-axis pointing to the forward, the y-axis pointing left,
the z-axis is pointing upward. The world coordinate system
{W} is set to coincide with {L} at the initial position for
convenience. Let k be the k-th scan of the LIDAR, P is the
point cloud obtained from the kth scan, P is the point cloud
obtained after removing the ground and the dynamic objects
of Py, and Py is the point cloud obtained after downsampling
of f’k. A point i,i € Py is denoted as Xé’i) in {L}, and X(v,‘(’,l.)
in {W}, where the right uppercase superscription to indicate
the coordinate systems.

Let the start time of the kth scan be 7 and the end time be
tr+1, the motion of the vehicle during [#4, fx+1] is expressed
as:

As(k,k+1) = [AO,, Aeyv AO;, Apy, Apy, A[)z]T’ ()

where A0y, Ay, A0, are rotation angles around the
x-, y-, and z-axis, and Ap,, Apy, Ap, are displacements
along the x-, y-, and z-axis respectively. For a laser point
X (Lk,i) at tik € [fx, tx+1], the linear interpolation strategy can
be used to eliminate the influence of motion distortion, that is,
the current motion of the vehicle relative to the initial time #;
can be calculated as ¢ - As k+1), where ¢ = (tl.k — 1%)/tscan 18
a defined scalar, and f4can represents the period time required
for a scan. However, it is difficult to obtain the time inter-
val tl-k — t; accurately in real-life application. Instead the
scanning angle of the laser ray is adopted to calculate ¢ as
c= (af — a)/360, where otf and o, are the horizontal rota-
tion angle of the laser ray at the current and the initial time
respectively. Then X (kai) is projected to the coordinate system
of the initial time:

L 1 5L
Xty = R Xiiy = Tty (2

where T ;) = c-[Apx, Apy, Ap. 1T represents the displace-
ment matrix and R,iy = Ry,i)Ry(k,i)Rx(k,i) represents the
rotation matrix, and X (Lk’l.) represents the point after elimi-
nating the motion distortion.

If the vehicle has an inertial navigation system such as
an IMU device, As k+1) can be obtained directly from the
device. Otherwise, the constant-velocity motion model can
be used to solve the problem approximately, which assumes
that the motion of the current frame is equal to that of the

_la=d|_Jg=¢]

K= - . |
bl -2

Fig.2 The cross ratios of line segments remain invariant under affine
transformations and rigid motion

previous frame, As k+1) = ASk—1,k). Through the above
process, the motion distortion is eliminated.

5 LIDAR odometry

The LIDAR odometry is improved and extended from tradi-
tional single localization node into a new two-node structure,
that is, it consists of a localization node and a correction
node. The localization node realizes a coarse-to-fine match-
ing process by combining Super4PCS with ICP to output
pose message at a high frequency. The correction node uses
the NDT method to match the key-frame with the dynamic
local sub-map, and corrects the localization node at a lower
frequency.

5.1 The localization node
5.1.1 Review of Super4PCS

The standard 4PCS algorithm solves the global 3D registra-
tion problem by using co-planar sets of four points. Figure 2
shows the principle of the algorithm. According to the prin-
ciple of geometry, the cross ratios of line segments remain
invariant under affine transformations and rigid motions.
Suppose four points in a set B = {a, b, c, d} selected from
a point cloud P are co-planar, the line segments ab and cd
intersect at point e, and the cross ratios of the two line seg-
ments are: r; = ||la — el|/d1, 2 = |lc — e||/da, where dy, d3
are the lengths of two line segments: di = |la — b||, d» =
llc —d||. According to the invariance of cross ratios ry, r2,
all corresponding 4-points sets U = {Uy, U, ..., Uy} can
be found in the point cloud Q. Foreach U;,i = 1,2,...,v,
compute the optimal rigid transformation matrix between
B and U;. The solution with largest overlap ratio between
P and Q is selected as the true corresponding 4-points set
B ={d, b, c, d}.

In view of the slow registration speed of 4PCS algorithm,
Mellado et al. proposed SuperdPCS algorithm, which uses
intelligent index to reduce the computational complexity of
4PCS algorithm significantly. The time complexity of the

@ Springer

82

Autonomous Robots (2021) 45:77-98

Fig. 3 Itis possible to find wrong point sets in the point cloud with large
planes, {ay, by, c1, d; } is the right point set corresponding to {a, b, c,
d}, and {ay, b2, c2, d1} is the wrong candidate point set

4PCS algorithm is On? + k), where n is the number of
points contained in the point cloud Q, k is the number of
candidate congruent point sets. The Super4PCS algorithm
has made two improvements compared to the 4PCS: (1) The
process of searching matching point pairs based on distance
is accelerated by rasterizing point clouds; (2) A smart index
is proposed to filter out all pairs of redundant points. Through
the above two improvements, the time complexity of the algo-
rithm is reduced to linear complexity O(n +k1 +k3), where n
is the number of points in the target point cloud Q, ki is the
number of point pairs with distance d, and k» is the number
of congruent sets obtained after filtering.

However, when using the original Super4PCS algorithm
for point cloud matching, there are still following disadvan-
tages existed:

1. Firstly, the 4PCS and the Super4PCS may find wrong
corresponding point pairs in the point cloud with large
plane, which results in the failures of matching. As shown
in Fig. 3, the four points a, b, ¢, d on the plane S are co-
planar, and many corresponding co-planar point sets such
as{ay,b1,c1,d1},{az,br,c2,d»}, ... canbe found on the
plane S». In fact, the wrong point sets exist in large num-
bers because all points in this plane is co-planar. To find
the correct set and exclude other wrong sets in these sets
is very time-consuming. One feasible solution is to filter
out these large planes in the point cloud before match-
ing to avoid the unnecessary calculation and improve the
efficiency of the algorithm;

2. Secondly, dynamic objects in the environment also affect
the registration. It will be difficult to find a 4-points set
in point cloud Q that is truly equal with B if one point in
the co-planar 4-points set B is on a dynamic object, and it
will waste a lot of time to verify these wrong point sets.
Therefore, the dynamic objects in point clouds should
be removed before registration in order to improve the
efficiency and accuracy of registration;

3. Finally, the Super4PCS algorithm may not find the cor-
rect corresponding point set if the selected point is not

@ Springer

in the overlapping area. The Super4PCS algorithm first
randomly selects three points in the point cloud Q, and
then selects the fourth point to make these four points co-
planar and the distances between each other are as large
as possible. When the overlap rate of two point clouds is
high, this strategy can find the best match quickly, how-
ever it may not find the best match when the overlap rate
is low.

5.1.2 Coarse matching based on improved Super4PCS

In view of the above mentioned disadvantages of the orig-
inal Super4PCS algorithm, several improvements are made
in this paper to enhance the performance of this registra-
tion approach. For disadvantage (1), a ground filter based
on elevation differences is proposed to filter out the ground
points in order to avoid a large number of wrong matchings
and meanwhile improve the real-time property by reducing
the amount of potential matching pairs. For disadvantage (2),
small dynamic objects are clustered and filtered out with a 2D
binary image projection of the grid map to speed up the clus-
ter process. For disadvantage (3), a heuristic iterative strategy
based on the calculation of the overlap rate between two point
sets is proposed to optimize the selection of co-planar four
points, in order to reduce the amount of candidate points
and the noise interference, which is especially useful when
the overlap rate is low. All above strategies are integrated
to improve the performance of the original Super4PCS by
carefully balancing the registration accuracy and real-time
property. The details of these improvements are given as fol-
lows.

As seen in real-life experiments, points from flat ground
terrain usually form the largest plane in the point cloud,
which may leads to wrong matchings. So the ground points
should be filtered out firstly to improve the efficiency of
matching. Considering real-time performance, the concept of
elevation differences is used to roughly filter out the ground
points without accurately extracting the ground and obsta-
cles (Kammel et al. 2008). As shown in Fig. 4, a local grid
map is built with the origin located at the geometric center
of the LIDAR. The size of each voxel is set to 30 cm*30 cm,
and the actual size of the map is consistent to the scan-
ning range of our LIDAR. Each laser point X(Lk’l.) will be
mapped onto a single corresponding grid cell ¢ n), and all
points in ¢y n) constitute the point set Ppy. For Py, find the
maximum elevation different Ahpy,. If Ahy, 1 less than a
pre-determined threshold Ay, the cell ¢(m) will be consid-
ered a ground cell. After traversing all cells by above steps
and removing detected ground cells, the point cloud Py with-
out ground points can be obtained. Figure 5a shows the point
cloud before ground filtering, Fig. 5b shows the point cloud
after ground filtering.

Autonomous Robots (2021) 45:77-98

83

As for the removal of dynamic objects, in our paper small
dynamic objects instead of dynamic objects are considered
and filtered out, that is, dynamic objects are replaced with
small objects based on the observation that dynamic objects
in real world are usually small in size. Moreover, the grid map
is mapped to 2D image in order to speed up the clustering

Ah = hmax - hmin process greatly. The 2D image is represented by a binary

image, as shown in Fig. 5c, in which black points represents

Fig.4 Setup alocal grid map and detect ground points according to the objects above the ground.

maximum elevation differences

Fig.5 The process of filtering
out ground and dynamic objects:
a shows the point cloud before
ground filtering, b shows the
ground detection results, where
red points are detected as from
ground and should be filtered
out later, and green points are
from buildings and other objects
that should be remained,

¢ shows the binary image which
is mapped from the grid map,

d is the image that after be
eroded, e shows the result after
the clustering process, f shows
the result after filtering out the
dynamic objects, where the blue
point cloud is the possible
dynamic object, the red point
cloud is the ground we detected

Because objects in real world may be occluded, they
may become discontinuous if clustered directly on the orig-

@ Springer

84

Autonomous Robots (2021) 45:77-98

inal image. In view of that the image erosion operator is
used before clustering, as shown in Fig. 5d. After that, the
region labeling algorithm is introduced to cluster the point
cloud as following steps: (1) traverse the image from rows
and columns respectively; (2) if the current pixel value is 0
(black), check whether the two pixel values on the left and
on the top are 0; (3) if not, merge them and mark them with a
label as a new cluster. Through above labeling steps all pixels
with a same label are considered to be in the same cluster, and
their rectangular bounding box can be calculated, as shown in
Fig. Se. Those clusters with areas less than a pre-determined
threshold s, will be filtered out. Finally, the point cloud after
filtering ground and dynamic objects are recovered from the
grid map, are shown in Fig. 5f, where the green point cloud
is the original point cloud, the blue is the possible dynamic
object, and the red is classified as the ground.

As for the selection of co-planar four points, a heuris-
tic iterative strategy is proposed in this paper according to
the concept of LCP(Largest Common Pointset) based on
the calculation of the overlap rate, and determines the maxi-
mum range in which the selected points should lie. Suppose
there are two point clouds P and Q, find a subset Ppax of P,
Vpi € Pmax, 3g; € Q such that |T(pi) —gqill <6, >0
with the maximum overlap ratio calculated by the following
formula (da Silva et al. 2011):

| Pmax |

Amax = TP

3

which means the maximum overlap under the admissible
error §; the operator |-| stands for the number of all points in
a point set. The biggest overlap ratio Apyax Will correspond to
the maximum range for selecting points.

The initial overlap rate can be roughly estimated based
on the motion of two adjacent frames. As shown in Fig. 6,
since point clouds are acquired by LIDAR scanning, two
adjacent frames of point clouds can be approximated to two
circles, and the overlap rate of the two frames can be esti-
mated approximately according to the overlap area of the two
circles, the area s. of the shadow in Fig. 6 is:

l 1
se = 2r? arccos(f) —lipy /1% — lezz, 4)

where r is the scanning range of the LIDAR; /; is the dis-
tance between centers of these two circles, which can be
obtained from the motion of the vehicle. So the estimated
initial overlap ratio is:

KR
)hinit = C27 (5)
r

The specific algorithm flow for computing the overlap
ratio A iteratively is as Algorithm 1.

@ Springer

Fig.6 The overlap rate can be roughly estimated by using the intersect-
ing parts of two circles: overlap rate = shaded area/circle area

Algorithm 1: The registration optimization with overlap ratio

Input : Point cloud P, Q, Parameter o (0.5<a<1)

Output : Best transformation matrix Tacq

1 Estimate the overlap rate of the two frames according to the
overlap area of the two circles (see Equation (4)(5));

2 Set initial parameters A, = 4. = 4., 4, =|0|/4;

3 fork=1to Ndo

4 A = (/1 +A4,)/2;

5 Select co-planar four-points set B from P by using 4, ;

6 Search for U ={U,,U,,...,U,} corresponding to B from Q;
7 for all candidate U, e U do

8 Calculate 7, and the overlap ratio 4, of Band U, ;
9 if 4 >4, then

10 Ay =2 Ty =T

11 end if

12 end for

13 if 4, >4 then

14 Ain = g5

15 A =min(1,24,.) 5

16 elseif v>u, then

17 Hy=0-V;

18 A =04 +A-a)A,, ;

19 elseif v<u then

20 Uy=Q2-0a)v;

21 A == A, + O
22 endif

23 end for

24 Return TM ;

In order to reduce the computing time, a threshold Ay is
set in advance so that the iteration will be terminated when

Autonomous Robots (2021) 45:77-98

85

Fig.7 The matching result of
the localization algorithm. The
blue point cloud is the source
point cloud, the red point cloud
is the target point cloud, and the
green point cloud is the resulting
point cloud. Coarse matching
roughly aligns two frame point
clouds, and fine matching aligns
the point clouds precisely (Color
figure online)

A > Ahe. The maximum translation distance dmax and the
maximum rotation angle amax of the vehicle should also be set
previously so that movements larger than these two threshold
will be excluded to accelerate the iteration.

5.1.3 Fine matching based on ICP

After coarse matching, ICP is used to accomplish fine match-
ing between two point clouds. The standard ICP matching
algorithm was firstly proposed by Besl and McKay (1992)
with complexity O(Np, Ng), where Np and N represent
numbers of points contained in these two point clouds respec-
tively. In our paper, the ICP algorithm with a 3D-Kdtree
structure is used to reduce the time complexity to O(Np
logN). However, when there are a large number of points in
the point cloud, the algorithm can be still time-consuming.
Therefore, downsampling is carried out before matching by
using voxel grids to compress the points, while maintain-
ing the shape characteristics of the point cloud. The number
of points can be greatly reduced. As well as a good initial
transformation matrix obtained by the coarse matching step,
the matching speed of ICP is greatly accelerated. One of the
main contributions of this paper is the use of coarse-to-fine
matching methods to form the front-end node of our SLAM
system, by combining several mainstream registration tech-
nologies to achieve good trade-off between the accuracy and
the real-time performance.

5.1.4 Summary of the localization algorithm

The task of the localization node is to obtain the motion trans-
formation matrix of two adjacent frames of point clouds.
The whole iterative steps are summarized in Algorithm
2. It takes Py_1(the last scan), Py(the current scan), and
ﬁk_ 1,13k_ 1,Tk“:1(the outputs from the last recursion) as the
inputs. Finally, the algorithm outputs Py ,ﬁk,fkw for the next
recursion.

Figure 7 shows final matching results of the localiza-
tion algorithm. Figure 7a shows the matching result of the
Super4PCS coarse matching method, and Fig. 7b shows the
matching result of the ICP fine matching method.

(a) Coarse matching

(b) Fine matching

Algorithm 2: The Coarse-to-Fine Localization

5 =
Input: B.F_ . P .F. T,
Output : 131(, 13‘ , 7:,(”';

1 Tt

(k-1 € I

2 Obtain the point cloud f’k after removing the ground and dynamic
objects of B ;
3 Calculate 4

init

of f’k and IBH;
4if A, <A,

init

5 Match 1'5A and PH by Super4PCS coarse matching to get the

. . L
transformation matrix 7j, , 5

6 end if

7 Downsample f’, to get P,(;

8 Match Pk with PH by ICP fine matching to obtain 7,

L .
(k1) with

Y . . L
initial transformation matrix 7;A i1

=W =W L
9 I < T Ty
10 Return P, 13,(N fAW ;

k>

5.2 The correction node

The localization algorithm by matching two adjacent frames
may inevitably produce cumulative errors, which will grow
over gradually with time. In view of that, to make the
algorithm effective for long-term navigation tasks, the so-
called correction node is introduced in this paper in order
to correct the location information periodically with selected
key-frames using NDT matching. By doing so, the traditional
single localization-node in odometry part of SLAM system
is extended to a new two-node structure consist of both local-
ization and correction node, which can further improve the
accuracy of the odometry. Furthermore, a dynamic voxel grid
map is proposed to speed up the matching process of the NDT
algorithm and make it more suitable for real-time localization
applications.

In the correction node, key frames are decided in a very
simple but yet effective way. That is, a key frame is selected
every five frames. No other sophisticated approach such
as calculating displacements or over-lapping ratio between
frames is used. The reason is given as below. Because the
localization node is updated at 5 Hz, the key frame in the cor-

@ Springer

86

Autonomous Robots (2021) 45:77-98

rection node is selected nearly at 1 Hz. Noted that a LIDAR
sensor mounted on an unmanned vehicle is often omnidirec-
tional with a wide range of over 100 meters, the displacement
between two adjacent key frames is less than 30 meters even
if the vehicle travels at a very high speed 100 km/h. That
means key frames are not far from each other so that the
registration accuracy can be guaranteed even in real-time
applications. For other scenes with different LIDARS or vehi-
cle speeds, similar strategy on how to select key-frames can
also be made.

When a key-frame is selected, the correction node uses
NDT to match the key-frame with the dynamic local sub-
map, and the output of the localization node is thus corrected
by directly replaced by the resulting transformation. Magnus-
son et al. (2009) proved that NDT is better than ICP on both
robustness and accuracy with a large number of experiments.
In addition, the NDT algorithm has a good performance of
real-time and stability, and has a good adaptability to different
environments. Therefore, NDT is adopted in the correction
node to match the current key-frame with the local sub-map.

The NDT algorithm divides the space occupied by refer-
ence point cloud into voxel grid. Then the probability density
function (PDF) describing the voxel is calculated according
to the distribution of scan data dropped in each voxel. In this
paper a dynamic voxel grid map is introduced, which can
be updated dynamically with newly upcoming points. The
map supports dynamic insertion and deletion of points with
a HashMap storage structure of voxels. Each voxel contains
several attributions including index, centroid (mean), covari-
ance matrix, points and the number of points. Only voxels
contain more than a certain number of points are considered
as active and used in our correction algorithm. In order to
prevent collision, the voxel index /(q) in which a point g lies
in is calculated as:

I(q) = lt.x] + [1.y] << hpirs + [1.2] << 2hpiss, (6

where « represents the left shift operator; t = Tnjgl -q - re_sl,

T'mg represents the transformation from the current coordi-
nate system to the map coordinate system; r., represents the
grid resolution. The index I(g) is used as the key-value of
the HashMap and all points are stored in their corresponding
HashMap. So that only the mean and covariance matrix of
the voxels with newly inserted points need to be recalculated
in each iteration. When n points ¢;(i= 1,2,...,n) are inserted
into a voxel already having m points, the mean value p of the
voxel will be updated as:

n
1
M<_<m.u+zqi>-n+m, m<—n+m, @)

i=1

@ Springer

and the covariance matrix is recalculated as:
=L Y i =g — " ®)
m— 1 : 1 1 £
1

As the vehicle moves, the dynamic grid map will delete
voxels which are outside the radius of the map to reduce the
storage memory. Moreover, the eliminated points of ground
planes as above mentioned are restored to compensate the
accumulated error of the odometer in height. The correction
algorithm is concluded as Algorithm 3.

Algorithm 3: The Mapping Algorithm

input: P, M, T, T
output: M, T ,T,W
1 P« F;

2 Downsample P, to get 13, ;
3 Match 13/ with /\/1'/71 by NDT matching method to obtain T/W , and
fkw is the initial transformation matrix;

4 Use 13, to update the dynamic local map M, ;
5 Return M ., TAW,T v,

In the above table, the letter j is used to represent the j-th
update of the keyframes, M; is the local sub-map after the
Jj-th update. The inputs of the algorithm are the current frame
of point cloud Py, the current local sub-map M1, the pose
transformation of the last key-frame ijzl, and the current
output of the localization node Tkw. The algorithm collects
key-frames at the frequency of 1 Hz, and 13]- is obtained
by down-sampling the current key-frame P;. Then the cur-
rent key-frame is matched with the local sub-map using
NDT algorithm to obtain TjW with initial transformation ka
from the localization node. After that, the algorithm updates
the local sub-map with 13j, and maintains a fixed-size local
dynamic voxel grid map. Finally, the algorithm outputs M ;,
TkW and TjW for the next iteration.

Figure 8 shows the process of the correction. Suppose in
the k-th scan we got the point cloud Pj (colored in red),
the local map M; (colored in black). Our goal is to find the
transformation 7, , and to complete the matching of Py and
M;. The matching result is the green part in Fig. 8.

It is should be noted that when a key-frame M; is selected
and corrected by NDT matching with the previous key-frame
M;_1, the normal frames between these two key-frames are
no need to be corrected with linear interpolation techniques,
because our algorithm is used for real-time applications so
that only the key-frame should be corrected and updated.

Autonomous Robots (2021) 45:77-98

87

W
Pk #M}

Fig.8 The correction node uses NDT to match the current key-frame
with the local sub-map. The black is the built local map, the red is the
source point cloud, and the green is the resulting point cloud (Color
figure online)

6 Loop closure

For loop closure in back end, a heuristic location-based
detection method is introduced in this paper, that is, using
a 3D-Kdtree to save historical locations(namely poses here),
and then searching for neighbor historical locations in the
Kdtree for currently estimated localization, so that a loop
candidate is thought to be detected if the distance between
these two locations is less than a threshold ry,. It should
be noted that though the measures used here is simple (yet
effective) and mainly constructed to keep the loop closure
node consistent with the proposed two-node localization-
correction odometry module, they are more like realization
(or tricks) rather than theoretical contributions. However, the
implementation of the loop closure is of great significance
to the integrity and practical application of the proposed S4-
SLAM algorithm, and given as follows in details.

The process is shown in Fig. 9. Considering the real-time
performance, the difference of frame indexes between the
selected historical location and the currently estimated local-
ization should be greater than a threshold ng,, which can
avoid a large number of unnecessary verification processes.
The historical location satisfying the above conditions will
be marked as a candidate loop.

Moreover, the overlap rate (namely LCP) is used to verify
candidate loops, which can improve the accuracy and recall
rate of the algorithm, and reduces the probability of false
positives. The Super4PCS algorithm is used to match two
frames under a candidate loop in turn. When the overlap rate
is greater than a threshold Ajoop_th, the candidate loop will
be determined to be a real loop. Finally the ICP algorithm is
used to match the loops and terminate the iteration.

Our method can still achieve good results in the case of
large displacements and low-overlap of point clouds because
the Super4PCS algorithm is a global matching algorithm,
and the verification process can reduce the probability of

Fig.9 Loop detection on the pose graph via a location-based strategy.
For example, the current frame index is k, and r is the radius to search
for the historical locations. Three frames with index k-i-5, k-i-4, k-i-3
are candidate loops, while the frame with index k-1 should be excluded

false positives. It could work well when the accumulative
drift is less than rgy,, but the performance depends heavily
on the selection of ry,. If ry, is too large, many unnecessary
verifications may be carried out, else if r, is too small, it may
not be able to detect a real loop. After a lot of experiments,
our paper takes rg, = 20 m. If GPS data is available, it could
be useful to assist the above process in a more effective way.

Based on the pose graph, an optimization step is carried
out to close the detected loop in a similar way to Latif et al.
(2013). Nodes are set to poses of key-frames, and an edge
is the motion estimation between two nodes. The optimiza-
tion problem is transformed into a least squares problem as
follows:

1 _
min 5 Doeh D i ©)

i,jee

where ¢ is the set of all edges; & is the optimization variable
(the poses of all nodes); e;; is the error function of poses; and
Zi;l is the information matrix.

It should also be noted that the loop closure algorithm only
optimizes the key-frames, and normal frames between key-
frames do not participate in the optimization process. In this
paper, the linear interpolation technique is used to obtain the
pose information of the normal frames between two adjacent
key-frames. The interpolation scaling can be calculated as
the scaling of current pose estimations between these frames
with the output of the localization node and the correction
node, or simply set to the equal values.

@ Springer

88

Autonomous Robots (2021) 45:77-98

Fig. 10 The KITTI platform is
equipped with a Velodyne
HDL-64E LIDAR, two stereo
cameras, and a high-precision
GPS/INS for ground truth
acquisition

Point Gray Flea
Video Cameras

7 Experimental results

In this section, our proposed S4-SLAM method is tested
extensively on KITTI dataset, and real-life outdoor exper-
iments like campus and harbor with a ground mobile robot
and an unmanned surface vehicle respectively. All algorithms
are realized in the ROS(Robot Operation System) environ-
ment on a PC platform with Intel (R) Core (TM) i5-3210
3.0 GHz dual-core CPU and 16GDDRIII RAM. In experi-
ments, we use the same criterion namely the drift ratio as the
KITTTI server, which is calculated as following steps: (1) Cal-
culate drifts every 10 frames, and find frames that are 100 m,
200 m,..., 800 m away from the current frame according
to ground truth; (2) Find the same numbered frames in the
test dataset, and calculate pose transformations between these
frames and the current frame; (3) Compare these transforma-
tion to true pose transformations to obtain the translational
error t,(xe¢, Ye, Z¢). The drift ratio can be calculated as:

f
Drift = 1]

x 100%, (10)

where L is the displacement distance of the vehicle.

7.1 Tests on the KITTI datasets

The KITTI dataset was established by the German Karlsruhe
Institute of Technology and the United States Institute of
Technical Research (Geiger et al. 2012; Geiger et al. 2013).
It is currently the largest computer vision algorithm evalu-
ation dataset for automatic driving in the world. The data
collection platform for the KITTI dataset is assembled with
2 grayscale cameras, 2 color cameras, a Velodyne HDL-
64E LIDAR, 4 optical lenses, and a GPS/INS navigation
system (See Fig. 10). Our method uses data from the Velo-
dyne LIDAR only. The LIDAR runs at 10 Hz frequency and
has 360° horizontal view field, 26.8° vertical view field and
120 m measuring range. The ground truth used in the exper-
iment is obtained by a high-precision GPS/INS navigation
system with drift less than 10 cm. The odometry benchmark

@ Springer

Velodyne HDL-64E Laserscanner

Table 1 Effects of ground and dynamic objects removal

Ground and dynamic objects removal Drift (%)
With 0.93
Without 1.56

consists of 22 sequences of data which contain grayscale
images, color images, and laser point cloud data. For the
sake of fairness, only Sequence 00-10 were provided ground
truth, and Sequence 11-21 without ground truth were used for
the website to evaluate algorithms. From all test sequences,
the evaluation of the website computes translational and rota-
tional errors for all possible subsequences of length (100,...,
800) meters, and the server ranks algorithms according to the
results of the evaluation. The average drift of our algorithm
is under 1%.

7.1.1 Verification for our improved Super4PCS

In experiments, Sequences 00-10 of KITTI dataset are used
to test our improved SuperdPCS algorithm on both accuracy
and real-time performances.

Table 1 shows the accuracy improvement by filtering out
ground and dynamic objects. It can be seen that the new
algorithm can reduce the drift from 1.56 to 0.93%, that means
over 40% promotion on accuracy.

As shown in Table 2, the matching speeds, translation
errors and rotation errors between the improved Super4PCS
algorithm and the original Super4PCS algorithm are com-
pared with Sequences 01, 03,05, 07 and 09. The average time
consumed by the improved Super4PCS is about 0.1 s, which
is over 60% faster than the original Super4PCS algorithm.
For accuracy comparison, according to KITTI’s suggestion,
the translation error and the rotation error are calculated every
two frames (the actual driving distance is about 3 m) on
each sequence, and the average is finally taken. For each two
frames Frame(i) and Frame(i+ 3), calculate the translation
matrix between two algorithm results as 7, that is, Frame(i +

Autonomous Robots (2021) 45:77-98

89

Table 2 Comparison of time

costs, translation and rotation Sequence Number of Frames Time Cost (ms) Translation Error (m) Rotation Error (rad)
errors between the in}p.r oved Original Improved Original Improved Original Improved
Super4pcs and the original
Superdpcs 01 1101 390 92 0.83 0.55 0.029 0.023

03 801 302 105 0.65 0.43 0.051 0.036

05 2761 346 101 0.76 0.36 0.021 0.016

07 1101 384 95 0.74 0.42 0.029 0.021

09 1591 376 98 0.81 0.46 0.067 0.047

Better results among the comparision of different methods are given in bold

3) = T*Frame(i). Set the true transformation as Ty, we can
have

dx

dy

dz
1

T7'T, = (11)

* ¥ ¥ Q
* % S %
* O ¥ %

The translation error and the rotation error between two
frames are then calculated as

Etranslation = \/dx? +dy? +dz?
—1 . fa+b+c—1
Erotation = COS max | min — 1), -1

(13)

12)

In Table 2 the translation errors of the improved
Super4PCS are over 30% smaller than the original error,
while the rotation errors are over 15% smaller. It can be
concluded that the improvements of Super4PCS not only
speed up the matching process, but also improve the pre-
cision, which enable the algorithm to run in scenes with high
real-time and accuracy requirements.

7.1.2 Positioning and mapping experiments on the KITTI
dataset

Table 3 shows the average time-consuming of each algorithm
(including ground and dynamic objects filtering, Super4PCS,
ICP, NDT) used in the S4-SLAM system. The point cloud
data in KITTI dataset was de-skewed with an external odom-
etry, so we don’t need to consider the effects of motion
distortion. Finally, the system outputs positioning informa-
tion at a frequency of about 5 Hz, and outputs mapping
information at a frequency of about 1 Hz. Since the oper-
ating frequency of the LIDAR in the KITTI dataset is 10 Hz,
therefore, our system runs at half the original frequency.
The KITTI datasets mainly contain three types of environ-
ments: “urban” with buildings around, “country” on small
roads with vegetations in the scene, and “highway” where
roads are wide and the surrounding environment is relatively

Table 3 Time-consuming results of the algorithms in S4-SLAM system

Algorithm Time Cost (ms)
Ground and dynamic objects filtering 26
Super4PCS 102
ICP 78
NDT 155

clean. Among them, the KITTI data acquisition platform has
aslower speed in urban and country environments and a faster
speed on in highway (the highest moving speed is 85 km/h)
environments. In order to test the performance of S4-SLAM
under different environments and conditions, especially with
high speed, large displacement and low overlapping of point
clouds, the above datasets are sampled for test at intervals of
2,3 and 4 frames respectively. Table 4 shows the drift and the
time cost of the algorithm, and the average drifts are sepa-
rately 1.03%, 1.31%, and 1.43%, which is a little larger than
the original result 0.93% in Table 2. Moreover, time costs for
each frame are separately 233 ms, 245 ms, 269 ms, which
can basically meet the requirements of real-time applications.
It can be concluded that our S4-SLAM can maintain good
robustness in cases of high speeds, large displacements and
low overlapping of point clouds.

Figure 11 shows the trajectory comparison between our
algorithm and the ground truth in sequence 00, 05, 06, 07,
08, 09, it can be seen that all trajectories can basically coin-
cides with the ground truth, which proves that the S4-SLAM
system can meet the crucial requirement of long-distance
accurate localization for outdoor vehicles.

Figure 12 shows mapping results of S4-SLAM with
datasets collected from different on-road ground environ-
ments. Among them, Fig. 12a shows the map built in a city
block, Fig. 12b shows the map that is built on a country road,
and Fig. 12c¢ shows the map that is built on a field high-
way road. From the above results, it can be seen that the
established 3D point cloud map is consistent with the actual
environment.

The localization and mapping experiments from Figs. 11
to 12 show that the proposed S4-SLAM algorithm has
good environmental adaptability and can basically meets the

@ Springer

90

Autonomous Robots (2021) 45:77-98

Table 4 Time cost and drift of

our method Sequence 2 Frames interval 3 Frames interval 4 Frames interval
Drift (%) Time cost (ms) Drift (%) Time cost (ms) Drift (%) Time Cost (ms)
00-10 1.03 233 1.31 245 1.43 269
o — | w e —1 [‘ ‘ e —
500 SequencoSian o Sequencesan = M Seaencesmn
w | - ol
o0 |
w0 |
w0
E E E
N N N
w0 |
wo |
o
™
0
a0l
o
U
L L L L L L 100 | L L L L 1 L L L L
2 S 0 o o 2 E 20 00 o 0 £ ES w0 > w 2
x[m) x[m] x[m]
(a) Sequence 00 (b) Sequence 05 (¢) Sequence 06
o’ Gamarran GaaTan
ooy — wo | oy — | Ul ooy —
Saeds B wl Eefre
100
w0
w |
w |
50
w00 |
0 |
E E o | E
w N N
o w0 |
o |
° 100 |
0
00
o
20
2o 0 0 S o w0 e aw o w0 wo 20 0 o prs 20 0o w
x[m) x[m) x[m]
(d) Sequence 07 (e) Sequence 08 (f) Sequence 09

Fig. 11 The trajectory comparison between the results of our algorithm
and the groundtruth on the KITTI training dataset. The red trajectory is
the groundtruth and the green trajectory is our results, we successfully

requirements of real-time location and mapping for outdoor
ground vehicles even with high driving speed.

Furthermore, our method is also compared with the top
rank LOAM algorithm on KITTI, as Table 5 shows, in
which results of LOAM are directly adopted from (Zhang
and Singh 2017). LOAM has been extensively recognized
as the state-of-the-art LIDAR-only outdoor SLAM approach
in the KITTI benchmark, which makes it suitable and typi-
cal for comparison with important reference significance. It
can be seen that our algorithm outperform LOAM in some
sequences such as 00, 01, 03, 05 and 07. The results show
that the performance of S4-SLAM is generally comparable
to LOAM, though there are still some differences between

@ Springer

detect the real loops in sequence 00, 05, 06, 07, 09, but fail in sequence
08, because the cumulative drift is greater than the detection radius ry,
in sequence 08 (Color figure online)

them. In constructed environments like urban and highway,
as buildings often produce less noises and outliers, S4-SLAM
performs even better that LOAM. On the other hand, as for
country environments with many trees and brushes which
may produce more noises and outliers, S4-SLAM is affected
somehow and performs not as well as LOAM. It also shows
that a good pre-processing filter to remove noises and out-
liers is important for S4-SLAM, because less mismatch can
be achieved.

As for real-time property, the updating frequency of
LOAM is 10 Hz, while S4-SLAM is 5 Hz. How-
ever, though slower than LOAM, S4-SLAM can still
keep effective in more challenging environments, such as

Autonomous Robots (2021) 45:77-98

Fig. 12 The mapping results for
different scenarios in KITTI
datasets, a is in a city block
(Sequence 07), b is on a small
road with many vegetations
(Sequence 09), and c ison a
highway (Sequence 01)

@ Springer

92

Autonomous Robots (2021) 45:77-98

Table 5 Comparison of drift between our SLAM method and LOAM

Sequence Environment Drift (%)
Our SLAM LOAM

00 Urban 0.62 0.78
01 Highway 111 1.43
02 Urban + Country 1.63 0.92
03 Country 0.82 0.86
04 Country 0.95 0.71
05 Urban 0.50 0.57
06 Urban 0.65 0.65
07 Urban 0.60 0.63
08 Urban + Country 1.33 1.12
09 Urban + Country 1.05 0.77
10 Urban + Country 0.96 0.79

Better results among the comparision of different methods are given in
bold

ground/watersurface multi-scene applications, as the latter
experimental results in a harbor shows, which indicates S4-
SLAM has better robustness compared to LOAM.

7.2 Outdoor tests

In order to test the proposed S4-SLAM method with real-
life applications, a ground wheeled mobile robot (namely a
UGYV) and an unmanned surface vehicle (namely a USV)
are used respectively for experiments in a campus off-road
ground environment and a ground/watersurface combined
harbor environment without GPS or IMU informations. Both
the UGV and USV platforms are equipped with a Hesai Pan-
dar40 LIDAR for acquiring point cloud data by perceptions
of environments. The Hesai Pandar40 is a hybrid solid-state
LIDAR sensor with 40 scanning lines, 10 Hz scanning fre-
quency and 150 m scanning range.

7.2.1 SEU(Southeast University) campus tests

Firstly an outdoor off-road ground experiment in the campus
of Southeast University is carried out. The UGV platform
used in this experiment is shown in Fig. 13a. It is equipped
with a high-precision IMU, a differential GPS and a Hesai
Pandar40 LIDAR. However, only LIDAR data is used in S4-
SLAM, while the differential GPS and the IMU data can
be used to provide the ground truth. Our aim is to test the
LIDAR-only S4-SLAM algorithm in GPS-denied environ-
ments. Figure 13b shows the traveling trajectory of the robot.
The end of the trajectory is set to the start point, so that the
final trajectory forms a loop. The average moving speed of
the mobile robot is about 3 m/s, and the total trajectory length
is approximately 0.6 km. Figure 13c shows the actual scene
of the SEU campus. There are a great number of structured

@ Springer

and unstructured features in the environment such as trees,
buildings, pedestrians, vehicles and a big fountain filled in
waters, which make it really a complicated environment. As
shown in Fig. 13d, the drift of the front-end LIDAR odometry
without loop closing is 0.89%, while the average drift of S4-
SLAM with loop closure can be further reduced to 0.48%,
which means both the odometry function and the correction
function can output satisfactory localization result. The loop
closure is very effective and useful in promoting the localiza-
tion accuracy, though the real-time performance of the system
is slightly reduced. The above results indicate our S4-SLAM
algorithm can be used to meet different level of require-
ments in real-life applications. If high real-time performance
is crucial, only the odometry function can work very well.
Otherwise the S4-SLAM can provide more accurate outputs.
Figure 13e shows the mapping result of S4-SLAM. Build-
ings, trees, the big fountain and other objects in the scene can
be clearly seen in the figure. The established 3D point cloud
map is highly consistent with the actual environment. The
SEU campus test demonstrates the effectiveness and practi-
cability of S4-SLAM in complicated ground environments
with structured/unstructured terrains, as well as dynamic tar-
gets like fast moving pedestrians and vehicles.

7.3 Tests in harbor

In order to verify the robustness of the proposed method in
scenes with sparse feature points, high moving speed and
high dynamic noise, experiments are also carried out in a
harbor, which means a ground/watersurface composite envi-
ronment. In the experiment, the “Jinghai No. 3” unmanned
ship platform is used, as shown in Fig. 14a. The platform is
equipped with a high-precision IMU, a differential GPS, two
cameras and a Hesai Pandar40 LIDAR. Again only LIDAR
datais used in S4-SLLAM, and the ground truth is obtained by
the differential GPS and the high-precision IMU. Figure 14b,
c shows the photos of the harbor. The distance between the
unmanned ship and the shore is not more than 30 m. The
average speed of the unmanned ship is about 10 m/s in the
experiment, and the total length of the trajectory is about
3 km. Figure 14d shows the trajectory comparison of S4-
SLAM with the ground truth for the first test, where the red
line is the result of our algorithm, the blue line is the result
of LOAM, and the black line is the ground truth. It can be
seen that the two trajectories from S4-SLAM and LOAM are
nearly coincide with the drift of 0.83%, while the accuracy
of the LOAM degrades rapidly and produce large drift. Fig-
ure 14e shows the mapping results. The established 3D point
cloud map of S4-SLAM is also highly consistent with the
actual environment.

Moreover, other tests are carried out with different times
and driving trajectories to show the effectiveness of S4-
SLAM. Four of them are selected and illustrated in Fig. 15

Autonomous Robots (2021) 45:77-98

93

Hesai Pandar40
lidar

GPS antenna

WIFI

Robot chassis

(a)

140

——S4-SLAM
120 | |~ LIDAR Odometry
Ground Truth

y/m
3

20 N N N N
-80 -60 -40 -20 0 20 40 60

x/m

(d)

Fig. 13 Positioning and mapping experiments in campus, a is a photo
of the mobile robot, b is a photo of our experimental environment, c is
the aerial photo of the campus from Google Maps, d is the trajectory
comparison between S4-SLAM, LIDAR odometry and ground truth,
the trajectory of S4-SLAM and the ground truth are basically coinci-

and analyzed. The global drifts of S4-SLAM and LOAM for
these four sequences are compared as in Table 6. All param-
eters of LOAM are re-tuned in order to produce as good
result as it can. It can be seen clearly that LOAM’s drifts
increase with the traveling length, while S4-SLAM can track
the ground truth with better accuracy. By checking the frame-
to-frame registration results, it can be found out that not only
orientation but also translation errors are accumulated gradu-
ally as the vehicle travels. This may because the main idea of
LOAM is to extract both edge and plane points to finish scan
matching, which makes it works well in ground-only envi-
ronments. However, in harbor environments, the lack of data
on the watersurface makes plane features much less, so that
the algorithm may be unable to register two frames very well
with only edge points, as can be seen in Fig. 16a. It should also
be noted that the high speed movements and the high noise

dent, but the error of the LIDAR odometry is larger, and the trajectory
of the odometry does not form a loop, e is the mapping result of the
campus, and the map built by S4-SLAM are basically consistent with
the actual environment

levels in this challenging environment, the latter mostly risen
from the diffuse reflection on the watersurface, can lead to
bad features or wrong matchings and further weakened per-
formance of the LOAM algorithm. The registration results
of LOAM can be seen in Fig. 16b, which show registration
error clearly in top view, while Fig. 16¢ also shows a large
bending error in the front view. Sometimes LOAM may even
fail if its parameters are not tuned properly. However, the
proposed S4-SLAM algorithm still performs very well with
better registration results as well as much less drifts, as can be
seen in Fig. (d) and (e). Similar results can also be observed
under other frame-to-frame matchings in experiments.
From above experimental results it can be concluded that
the performance of LOAM highly depends on the type of
environment, and cannot be proved robust in different kinds
of applications, especially in multi-scene environments such

@ Springer

94

Autonomous Robots (2021) 45:77-98

)

Fig. 14 Positioning and mapping experiments in harbor for test 01, a is
a photo of the unmanned ship, b is a photo of our experimental envi-
ronment, c is the aerial photo of the harbor from Google Maps, d is the

as ground/watersurface composite environments discussed
in this paper. It works quite well in scenes with rich fea-
ture points and fewer disturbances or noises, but not as
satisfying in scenes with sparse feature points, high noise
levels that may lead to more registration errors or drifts. On
the other hands, in S4-SLAM several algorithms including
Super4PCS, ICP and NDT are incorporated so that a coarse-
to-fine registration process is created to keep the whole
framework stable and robust even in ground/watersurface
composite environments with the global drift under 1%. The
S4-SLAM method is proved to be an effective SLAM solu-
tion to more challenging environments. The core idea of
S4-SLAM is to integrate the existing mainstream registration
technologies (such as Super4PCS, ICP and NDT) to solve the

@ Springer

(e

trajectory comparison between our algorithm, LOAM and ground truth,
e is the mapping result of the harbor, the ship in the harbor is clearly
visible in the map built by the proposed method

problem of registration with sparse feature points and high
noise levels in challenging multi-scene environments men-
tioned above. In addition, improvements are also made to
the existing SLAM framework to achieve an effective com-
bination and hierarchical processing of different registration
algorithms. The SLAM system constructed in this paper is
accurate, robust to noises, and has balanced real-time perfor-
mance even in complicated multi-scene environments.

8 Conclusion and future work

In this paper, a novel real-time LIDAR SLAM system namely
S4-SLAM is constructed to solve the problem of long-
distance accurate localization and mapping of robots such as

Autonomous Robots (2021) 45:77-98

95

Fig. 15 Other four tests in the
harbor. a, b, ¢, d are the results
for test 02 to 05. The left figures
are the localization results,
where the black lines are the
ground truth, and the red lines
are the resulting trajectories of
S4-SLAM. The right figures are
the mapping results (Color
figure online)

or
[—sa-sam
50+ LOAM
GroundTruth |

4100 -

150 -

200 -

250 -

300 -

-350 |

-400 * - 2 p e > x =

-350 -300 -250 -200 -150 -100 -50 0
100 :
[——sa-stam
LOAM
or | GroundTruth |
4100 1
-200 1
-300 1
400 f
500" . . . " .
400 -300 -200 -100 0 100 200
(0

700 [

or

[——sa-stam
LOAM
Ground Truth J

-50 |

-100 |

350 -300 -250 -200 -150 -100 -50 0

[——sa-stam
LOAM
GroundTruth |

-200 -100 0 100 200 300 400 500

(d)

@ Springer

96

Autonomous Robots (2021) 45:77-98

Table 6 Drifts of S4-SLAM vs LOAM for harbor tests

Test number 02 03 04 05

Drift (%) S4-SLAM 0.54 0.49 0.76 0.93
LOAM 5.54 6.14 8.81 11.48

Better results among the comparision of different methods are given in
bold

UGVs or USVs in ground/watersurface multi-scene applica-
tions. The system is composed of LIDAR odometry function
and loop closure function. In the odometry function a new
correction node is added to the traditional localization node
so that pose outputs with different level of accuracy can be

Fig. 16 Comparative analysis of
LOAM and S4-SLAM. a shows
features points which are
extracted by LOAM from one
frame; b shows the registration
error of LOAM in top view;

¢ shows the registration error of
LOAM in front view; e shows
the registration result of
S4-SLAM in top view; e shows
the registration result of
S4-SLAM in front view

(b)

produced at different frequency, and in the loop closure func-
tion loops is detected to optimize the map. Our system works
well on both the KITTI datasets and real-life scenes including
a campus and a harbor. It is proved to achieve satisfactory
trade-off between real-time and accuracy, and keep robust
even in cases of few feature points, high moving speed and
high dynamic noises.

In our current system, the loop detection is a simple
process carried out by a heuristic location-based method.
Finding a real-time and more stable loop closure algorithm
will be the focus of our future work. Other works include
more water areas test including lakes, rivers and seaside, and
the fusion of GPS and IMU data to current system in order
to build a LIDAR SLAM system with better performances.

(@

@ Springer

(e)

Autonomous Robots (2021) 45:77-98

97

Acknowledgement This work is partly supported by the National Nat-
ural Science Foundation (NNSF) of China under the Grants Nos.
62073075, 61673254, U1613226, and 61573100.

References

Aiger, D., Mitra, N. J., & Cohen-Or, D. (2008). 4-points congruent
sets for robust pairwise surface registration. ACM Transactions
on Graphics (TOG), 27(3), 85.

Almeida, J., & Santos, V. M. (2013). Real time egomotion of a non-
holonomic vehicle using LIDAR measurements. Journal of Field
Robotics, 30(1), 129-141.

Bae, K. H. (2009). Evaluation of the convergence region of an auto-
mated registration method for 3D laser scanner point clouds.
Sensors, 9, 355-375.

Behley, J., & Stachniss, C. (2018). Efficient Surfel-based SLAM using
3D laser range data in urban environments. In Robotics: Science
and Systems.

Besl, P. J., & McKay, N. D. (1992). Method for registration of 3-D
shapes. Sensor Fusion 1V: Control Paradigms and Data Struc-
tures, 1611, 586—-607.

Biber, P, & Straer, W. (2003). The normal distributions transform:
A new approach to laser scan matching. In Proceedings 2003
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS 2003), Las Vegas, USA.

Bouaziz, S., Tagliasacchi, A., & Pauly, M. (2013). Sparse iterative
closest point. In Proceedings of the Eleventh Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing, Oxford, UK.

Ceriani, S., Sanchez, C., Taddei, P., Wolfart, E., & Sequeira, V. (2015).
Pose interpolation slam for large maps using moving 3d sensors.
In 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (pp. 750-757).

da Silva, J. P, Borges, D. L., & de Barros Vidal, F. (2011). A dynamic
approach for approximate pairwise alignment based on 4-points
congruence sets of 3D points. In 2011 18th IEEE International
Conference on Image Processing (pp. 889—-892).

Deschaud, J. E. (2018, May). IMLS-SLAM: scan-to-model matching
based on 3D data. In 2018 IEEE International Conference on
Robotics and Automation (ICRA) (pp. 2480-2485).

Dubé, R., Dugas, D., Stumm, E., Nieto, J., Siegwart, R., & Cadena, C.
(2017). Segmatch: Segment based place recognition in 3d point
clouds. In 2017 IEEE International Conference on Robotics and
Automation (ICRA) (pp. 5266-5272).

Dubé, R., Gollub, M. G., Sommer, H., Gilitschenski, 1., Siegwart, R.,
Cadena, C., et al. (2018). Incremental-segment-based localization
in 3-d point clouds. IEEE Robotics and Automation Letters, 3(3),
1832-1839.

Geiger, A., Lenz, P, Stiller, C., & Urtasun, R. (2013). Vision
meets robotics: The KITTI dataset. The International Journal of
Robotics Research, 32, 1229-1235.

Geiger, A., Lenz, P, & Urtasun, R. (2012). Are we ready for
autonomous driving? the kitti vision benchmark suite. In 2072
IEEE Conference on Computer Vision and Pattern Recognition
(pp. 3354-3361).

Irani, S., & Raghavan, P. (1999). Combinatorial and experimental
results for randomized point matching algorithms. Computational
Geometry, 12(1-2), 17-31.

Ji, K., Chen, H., Di, H., Gong, J., Xiong, G., Qi, J., & Yi, T. (2018).
CPFG-SLAM: a robust simultaneous localization and mapping
based on LIDAR in off-road environment. In 2018 IEEFE Intelli-
gent Vehicles Symposium (IV) (pp. 650-655).

Kammel, S., Ziegler, J., Pitzer, B., Werling, M., Gindele, T., Jagzent,
D., et al. (2008). Team AnnieWAY’s autonomous system for the

2007 DARPA Urban Challenge. Journal of Field Robotics, 25(9),
615-639.

Koide, K., Miura, J., & Menegatti, E. (2018). A Portable 3D LIDAR-
based system for long-term and wide-area people behavior mea-
surement. [EEE Transactions on Human-Machine Systems.

Latif, Y., Cadena, C., & Neira, J. (2013). Robust loop closing over
time for pose graph SLAM. The International Journal of Robotics
Research, 32(14), 1611-1626.

Magnusson, M. (2009). The Three-Dimensional Normal-Distributions
Transform: an Efficient Representation for Registration, Sur-
face Analysis, and Loop Detection. Renewable Energy, 28(4),
655-663.

Magnusson, M., Nuchter, A., Lorken, C., Lilienthal, A. J., & Hertzberg,
J. (2009). Evaluation of 3D registration reliability and speed-A
comparison of ICP and NDT. In 2009 IEEE International Con-
ference on Robotics and Automation (pp. 3907-3912).

Mellado, N., Aiger, D., & Mitra, N. J. (2014). Super 4pcs fast global
pointcloud registration via smart indexing. Computer Graphics
Forum, 33(5), 205-215.

Moosmann, F., & Stiller, C. (2011). Velodyne slam. In 2011 IEEE
Intelligent Vehicles Symposium (IV) (pp. 393-398).

Pottmann, H., Huang, Q. X., Yang, Y. L., & Hu, S. M. (2006). Geome-
try and convergence analysis of algorithms for registration of 3D
shapes. International Journal of Computer Vision, 67, 277-296.

Shan, T., & Englot, B. (2018). LeGO-LOAM: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain. In 2078
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS) (pp. 4758-4765).

Viegjo, D., & Cazorla, M. (2014). A robust and fast method for 6DoF
motion estimation from generalized 3D data. Autonomous Robots,
36(4), 295-308.

Yang, J., Li, H., Campbell, D., & Jia, Y. (2016). Go-ICP: A globally
optimal solution to 3D ICP point-set registration. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 38(11),
2241-2254.

Zhang, J., & Singh, S. (2014). LOAM: Lidar Odometry and Mapping
in Real-time. In Robotics: Science and Systems, 2(9).

Zhang, J., & Singh, S. (2015). Visual-lidar odometry and mapping:
Low-drift, robust, and fast. In 2015 IEEE International Confer-
ence on Robotics and Automation (ICRA) (pp. 2174-2181).

Zhang, J., & Singh, S. (2017). Low-drift and real-time lidar odometry
and mapping. Autonomous Robots, 41(2), 401-416.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Bo Zhou is an Associate Profes-
sor in the School of Automation,
Southeast University in China. He
has received the B.S. degree in the
School of Automation, University
of Science and Technology of
China, Hefei, China, in 2003,
and Ph.D. degree from Shenyang
Institute of Automation, Chinese
Academy of Sciences, Shenyang,
China, in 2009. His research
interests include autonomous and
semi-autonomous systems, with
a special emphasis on indoor
and field robotics, covering the
areas of sensor fusion, robot localization, environment perception and
mapping, path planning, motion decision modeling, and large scale
robotic applications.

-
7

@ Springer

98

Autonomous Robots (2021) 45:77-98

@ Springer

Yi He is a master student in the
School of Automation, Southeast
University in China. His research
interest is focused on robot local-
ization, environment perception
and mapping.

Kun Qian is an Associate Profes-
sor at the Institute of Intelligent
Robot and Intelligent Control,
School of Automation, South-
east University. He received his
Ph. D. degree from School of
Automation, Southeast Univer-
sity, Nanjing, China, in 2010. His
research interest covers intelli-
gent robot system and computer
vision.

Xudong Ma is a Professor at
the Institute of Intelligent Robot
and Intelligent Control, School
of Automation, Southeast Uni-
versity. He received his M.S.
degree from Tsinghua University,
Beijing, China, in 1988. His
research interest covers computer
control and management system,
intelligent robot control, embed-
ded controller and DSP system
application.

Xiaomao Li received the Ph.D.
degree in Pattern Recognition and
Intelligent System from Shenyang
Institute of Automation Chinese
Academy of Sciences, (Shenyang,
China), in 2008. He worked at
Nanjing Research Institute of
Electronic Technology doing
research on radar data processing
from 2008 until 2014(Nanjing,
China). Since 2015, he jointed
the Research Institute of USV
Engineering of Shanghai Univer-
sity(Shanghai, China).

	S4-SLAM: A real-time 3D LIDAR SLAM system for ground/watersurface multi-scene outdoor applications
	Abstract
	1 Introduction
	2 Related work
	3 System overview
	4 Data preprocessing
	5 LIDAR odometry
	5.1 The localization node
	5.1.1 Review of Super4PCS
	5.1.2 Coarse matching based on improved Super4PCS
	5.1.3 Fine matching based on ICP
	5.1.4 Summary of the localization algorithm

	5.2 The correction node

	6 Loop closure
	7 Experimental results
	7.1 Tests on the KITTI datasets
	7.1.1 Verification for our improved Super4PCS
	7.1.2 Positioning and mapping experiments on the KITTI dataset

	7.2 Outdoor tests
	7.2.1 SEU(Southeast University) campus tests

	7.3 Tests in harbor

	8 Conclusion and future work
	Acknowledgement
	References

