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Abstract
Mobile robot path planning in an unknown environment is a fundamental and challenging problem in the field of robotics.
Dynamic window approach (DWA) is an effective method of local path planning, however some of its evaluation functions
are inadequate and the algorithm for choosing the weights of these functions is lacking, which makes it highly dependent
on the global reference and prone to fail in an unknown environment. In this paper, an improved DWA based on Q-learning
is proposed. First, the original evaluation functions are modified and extended by adding two new evaluation functions to
enhance the performance of global navigation. Then, considering the balance of effectiveness and speed, we define the state
space, action space and reward function of the adopted Q-learning algorithm for the robot motion planning. After that, the
parameters of the proposed DWA are adaptively learned by Q-learning and a trained agent is obtained to adapt to the unknown
environment. At last, by a series of comparative simulations, the proposed method shows higher navigation efficiency and
successful rate in the complex unknown environment. The proposed method is also validated in experiments based on XQ-4
Pro robot to verify its navigation capability in both static and dynamic environment.
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1 Introduction

In the fields of industrial and agricultural production, intel-
ligent logistics, space exploration and emergency assis-
tance, the application of mobile robots has become more
widespread. Robots can carry different tools such as robotic
arms, rangefinders, fire extinguishers to accomplish different
tasks. The basis for completing the task is that the robot can
move autonomously and adaptively.

Path planning is one of the key technologies of mobile
robots (Durrant 1994), which is described as finding a
collision-free path connecting the starting point and the tar-
get in the working environment. The optimization indicator
of the path can be selected as shortest length, minimum
travel time, minimum collision probability, passing through
specific locations, and so on. According to the environment
awareness and planning scope, the path planning algorithms
can be divided into (1) global path planning, where the robot
finds a collision-free path connecting the starting point with
the target under the known global environment map, which is
usually conducted once and obtains a reference global path;
(2) local path planning, where the robot moves according to
the real-time information acquired by range sensors such as
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lidar (Zhang and Singh 2017), camera (Pinto et al. 2016),
ultrasonic (Kim and Kim 2010), which is generally applied
for obstacle avoidance and performed at each time step. In an
actual workspace, the surrounding environment of the robot
is relatively easy to bedetectedby these sensors. For example,
the lidar obtains the nearest obstacle distance in each direc-
tion, camera obtains the image of a certain angle of view, and
ultrasonic measures the obstacle speed. These information
will help to model the surrounding environment. However,
due to the lack of understanding of the whole workspace and
some ambiguous factors like moving objects or pedestrians,
the complete globalmap is difficult to be obtained. Therefore,
the global path planning is hard to conduct in an unknown
environment and the local path planning is a better method
to realize the mobile robot autonomous navigation based on
the surrounding environment.

To illustrate the application scenario of this paper, the
robot task in a warehouse is taken as a motivating exam-
ple. The warehouse robot needs to transport goods from the
warehouse entrance to a certain position in the warehouse
every day, but the distribution of other goods in the ware-
house is unknown. The robot can only perceive its location
in the warehouse, the position of the target and the surround-
ing obstacles (pedestrians or other goods) within perception
range. In such circumstances, only the static global map
acquired offline is known to the robot, and the robot moves
mainly base on the local information it perceives in real time.
Therefore, this paper aims to provide an effective local path
planning approach to solve the robot navigation problem in
unknown environments.

In recent years, machine learning (ML) techniques have
been extensively exploited in autonomous robots which are
endowedwith adaptive learning ability based on accumulated
knowledge. Reinforcement learning (RL) is an important
branch ofML, which continuously updates the agent’s action
policies according to the feedback from the environment by
trial-and-error. Benefiting from the development of simula-
tion technology and the accumulation of measured data, the
samples for training are increasingly available. RL is show-
ing promising results in the field of mobile robot navigation
for its powerful learning ability in complex environments.
The structure of path planning algorithms is refined and the
parameters of these algorithms are optimized by the richer
data. In addition, early studies also used ML to enhance the
awareness of the environment which is vast, dynamic or par-
tially non-structured (Das et al. 2016).

Focusing on the local path planning algorithm, this work
aims to improve the original dynamic window approach
(DWA) to enhance the global navigation capability, and
proposes a Q-learning based method to learn the opti-
mal parameter adaptation in DWA. Q-learning algorithm
(Watkins 1992) is one of the RL algorithms, which has
many features that makes it suitable for robot path planning.

Firstly, the Q-learning algorithm does not require any prior
information of the environment, but accumulates the aware-
ness of environment through interacting with it. Similarly,
the robot does not have any information of the global map,
but moves only based on the action policy and the real-time
perception of the surrounding environment. Secondly, as an
offline method, Q-learning algorithm makes past experience
reusable for non-real-time learning, and the action to update
the Q-table does not have to be taken. This learning method
can effectively save the training cost and improve the training
efficiency for mobile robots. Thirdly, the training data of Q-
learning is unlabeled and not every single action is given an
immediate reward from the environment. Most of the time,
the overall reward of an action sequence is obtained after a
complete interaction is finished. Similarly, the environment
may not tell the robot whether a single action is right, but
give a reward after each episode, that is, the end of each path
planning (arriving at target, colliding with obstacles, being
forced to stop or other termination conditions). Finally, the
main goal of Q-learning algorithm is to train a general model
for the same set of tasks. Similarly, the trained model (agent
Q) on a map containing complex conditions can also obtain
satisfactory planning results in other environments.

Our contribution in this paper is two-fold. Firstly, we
improve the three evaluation functions in DWA by modi-
fying the insufficiency of the original functions and adding
two new functions to take into account special situations.
These five evaluation functions enhance the efficiency of the
robot navigation to the target under normal conditions, and
solve the problem of local optimum caused by the lack of
the global information. Secondly, DWA parameters adaptive
tunning method based on Q-learning is proposed. To the best
of our knowledge, our work in this paper is the first work to
combine the DWAwith Q-learning and adjust the weights of
each evaluation function in DWA. Unlike other literatures (to
be discussed in Section 2) where the robot speed is directly
generated by Q-learning, in this paper, the Q-learning is used
to adjust the parameters in DWA and the speed taken by the
robot is still generated by DWA, which ensures the coher-
ence and realizability of the path. The parameters adjusted
dynamically are the weights of each evaluation function and
the forward simulation time, which constitutes the action
space of the agent Q. The state space and reward function are
designed based on the robot pose and its relationship between
the obstacle and target.

The rest of the paper is organized as follows. Section 2
introduces the related achievements on the common path
planning algorithms, and analyzes their merit and demerit.
Section 3 presents the definition and assumptions of the prob-
lem. Section 4 proposes the improved DWA by modifying
and adding its evaluation functions, and implements the sim-
ulation to verify its effectiveness. Section 5 discusses the
algorithm designed for parameter tunning in DWA based
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on Q-learning, demonstrates the training process and the
simulation results that shows the superiority of the trained
agent. Section 6 conducts the hardware experiments to vali-
date the navigation performance of the proposed method in
real unknown environments. Section 7 concludes this paper.

2 Related works

The content of this paper covers the path planning algorithm
of mobile robot and its combination with RL. A summary of
the relevant works and results in these areas are as follows.

Over the past few decades, the path planning technology
has been studied by many scholars. The methods based on
different ideals and map descriptions have been proposed,
such as potential field method (PFM), grid-based method,
sampling-based planning (SBP), intelligent algorithm,DWA,
RL, etc. In this section, we briefly introduce other kinds of
path planning algorithms, then focus on the DWA and RL
and analyses their shortcomings.

2.1 Overview of path planning algorithms

Grid-based method is a classic global path planning algo-
rithm that divides the map into the two-dimensional grids.
If there are obstacles close enough to a certain grid, this
gird is regarded as an unreachable grid. Otherwise, it is
a reachable grid. A path connecting the starting point and
the target will be found among the reachable grid. Repre-
sentative algorithms include A* (Hart et al. 1968), REA*
(Zhang et al. 2016), limited-damage A*(Bayili and Polat
2011), D*(González et al. 2017), D Lite (Likhachev et al.
2008), Focused D*(Stentz 1995), etc. Among them, the
A*algorithm and its improved methods are mainly used for
the shortest path calculation on the static map, while the
D* algorithm and its improved methods are for the situation
where the obstacle and target are alterable. The improvement
directions of the grid-based method generally are speeding
up the computation (Zhao et al. 2018), increasing the search-
ing direction to shorten the path (Xin et al. 2014) or ensuring
the safety and feasibility of the trajectory (Chang et al. 2019).
The grid-based method often depends on the known global
map and clear obstacle position, and the result of this method
is a reference path, which still remains the path tracking algo-
rithm to guide the robot motion.

PFM (Khatib 1986) can be used in both global and local
path planning. Its basic principle is to establish a virtual
potential field where the target establishes a gravitational
field while the obstacle establishes a repulsive one. The robot
moves along the negative gradient direction of the superim-
posed field until it reaches the target. An enhanced PFM
(Li and Chou 2016) combining with Levenberg-Marquardt
(LM) algorithm and k-trajectory algorithm was proposed

to overcome the inherent oscillation problem of the basic
PFM. In order to assist the human-robot interaction, an online
local PFMwas defined by adapting animal motion attributes,
where the improved potential field enabled the robot to move
along the edge of the obstacle (Bence et al. 2016). The local
optimum and the goal non-reachable with obstacles nearby
(GNRON) are common problems of PFM. To solve these
problems, a stronger attractive function was proposed to
ensure that the robot reaches the target successfully and a
rotational force was introduced to allow the robot to escape
from the deadlock positions (Azzabi and Nouri 2019). PFM
is proved to be an effective path planning algorithmwhere the
effect of the environment is expressed as the action of force,
and the desired velocity is calculated by the resultant force.
The velocity can serve as the command signal of the motor.
However, PFM requires the positions or velocities of all the
obstacles, which is hard to be detected in real time. Solu-
tions of the common problems like GNRON and trajectory
oscillation highly depend on the global map.

The biological or physical laws have been summarized
from the nature to serve various fields, which is called the
intelligent algorithm. Some latest research about the intel-
ligent algorithm applied in the robot path planning are as
bellow. A DEQPSO method combining with the differen-
tial evolution (DE) algorithm and quantum-behaved particle
swarm optimization (QP- SO) was proposed, and a safe and
flyable path was generated in the presence of different threat
environments for the unmanned aerial vehicle (UAV) by this
method (Fu et al. 2013). To reduce the time of reaching
the optimal path, a generalized intelligent water drops algo-
rithm (IWD)was proposed based on fuzzy local. Thismethod
divides the graph into equal sections, compares the paths on
themwith a fuzzy inference system and determines the worth
of each solution by the comparison (Monfared and Salman-
pour 2015). The self-organising map (SOM) algorithm was
proposed as a solution to the multi-robot path planning prob-
lem for active perception and data collection tasks. (Best et al.
2017). An evolutionary approach to solve the mobile robot
path planning problem was proposed, which combined the
artificial bee colony (ABC) algorithm as a local search pro-
cedure and the evolutionary programming (EP) algorithm to
refine the feasible path found by a set of local procedures
(Contreras-Cruz et al. 2015). An application of the bacterial
foraging optimization (BFO) to the problem of mobile robot
navigation was explored to determine the shortest feasible
path to move from any current position to the target position
in an unknown environment with moving obstacles (Hos-
sain and Ferdous 2015). Intelligent algorithms may obtain
the best result on a particular map by iterative processes and
complex calculations, but are hard to executewhen the global
map is unknown or dynamic. Besides this, Intelligent algo-
rithms usually only obtain reference paths.
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Sampling based planning (SBP) is unique in the fact
that planning occurs by sampling the configuration space
(C-space). In a sense SBP attempts to capture the con-
nectivity of the C-space by sampling it (Elbanhawi and
Simic 2014). The main SBP algorithm includes probabilis-
tic roadmap method (PRM), randomized potential plan-
ner (RPP), rapidly-exploring random trees (RRT), explor-
ing/exploiting tree (EET), expansive space trees (EST), etc.
The potential function based-RRT* incorporating the arti-
ficial potential field algorithm in RRT* was proposed to
decrease the iterations number, and then leaded to more
efficient memory utilization and an accelerated convergence
rate (Qureshi and Ayaz 2016). The notion of flexible PRM
was introduced to solve the problem of planning paths in
the workplaces containing obstacles and regions with pref-
erences expressed as degrees of desirability (Khaled et al.
2013). The EET planner deliberately trades probabilistic
completeness for computational efficiency. When the avail-
able information captures the structure, the planner became
increasingly exploitative. Otherwise, the planner increased
local configuration space exploration (Rickert et al. 2008).
Although some achievements have been made to solve
the uncertainty (Agha-Mohammadi et al. 2014) or kinody-
namic (Karaman and Frazzoli 2011) in active environments,
there is still much room for improvement of SBP algorithm
amongst moving uncontrollable obstacles and under stochas-
tic dynamic and sensing conditions.

2.2 Path planning with dynamic window approach

Local path planning and obstacle avoidance problem was
firstly formulated as constrained velocity space optimiza-
tion problem and was solved by curvature velocity method
(CVM) algorithm (Simmons 1996). On the basis of CVM,
the more complete dynamic window approach (DWA) was
proposed which considered the robot physical constraints,
environmental constraints and current speed (Foxet al. 2002).
DWA algorithm first obtains a sampling window of the speed
based on the kinematicsmodel and current speed of the robot,
then generates the trajectory for each set of speed within the
window, finally evaluates these trajectories by the evalua-
tion function to find the optimal speed at the next moment.
According to the sensor and robot pose information, the eval-
uation functions often consider three factors of speed, route
angle and distance form obstacle. This method can directly
obtain the desired linear and angular speed while consider-
ing the robot kinematics model, which makes the trajectory
smoother and suitable for robot motion. Viewing the DWA as
a model predictive control method, a version of DWA which
is tractable and convergent was proposed using the control
Lyapunov function (CLF) framework (Ogren and Leonard
2005). A method based on the integration of focused D* and
DWA with some adaptations providing efficient avoidance

of moving obstacles was proposed to enhance the naviga-
tion capability in partially unknown environments (Seder and
Petrović 2007). To improve the vulnerable performance of
DWA facing the trap situations, a global dynamic window
approach (GDWA) with a scalar-valued function represent-
ing the distance from the goal point was proposed. (Kiss
and Tevesz 2012; Maroti et al. 2013). An energy efficient
local path planner in dynamic environments was presented,
which extended theDWA to incorporate a cost function based
on energy consumption predicted using a linear regression
(LR) model (Henkel et al. 2016). To improve the accep-
tance of robot navigation and adapt the trajectory to mimic
human behavior, the biomimetical DWA (BDWA) was pro-
posed whose reward function was extracted from real traces
of different motor disabilities navigating in a hospital envi-
ronment (Ballesteros et al. 2017). A FGM-DWA algorithm
was proposed to achieve the safe, smooth and fast navigation
where the follow the gap method (FGM) was to guide the
robot globally through the optimum gap and the DWA was
to avoid the oscillations or collisions caused by the robot
dynamics (Aykut and Volkan 2018).

However, the existing DWA is still unideal in two aspects.
First, the mechanism of the existing evaluation function is
not reasonable enough, which may lead to a better trajec-
tory associated with a lower score. The number of evaluation
functions is inadequate to deal with some special situations
where the robot is very close to the target point or faces
the spiral obstacle distribution. Second, in the path planning
process, the degree of demand for each evaluation function is
time-varying, which changes with the positional relationship
between the robot, obstacle and target. However, the fixed
weights will not be able to adapt to the dynamic situation,
that is, the robot cannot decide which evaluation function
should be taken into special consideration under different
circumstances.

These two aspects may cause some unsatisfactory condi-
tions. For example, the speed of the robot is too low when
it is near the target, or the robot is too close to the obstacle
when avoiding it. When the obstacle is in the spiral distri-
bution, the robot may be trapped inside it and cannot escape
(called local minima problem).When facing dense obstacles,
the robot may not choose the shorter path between them but
bypasses these areas, which makes the overall path longer.

For the first aspect, GDWAwas proposed to eliminate the
previously mentioned local minima problem by defining a
navigation function (NF) (Brock and Oussama 1999). NF
is a scalar valued function defined on the reachable loca-
tion in global map and has exactly one minimum, namely
the target position. The NF values at each reachable position
were obtained by global path planning algorithm like wave-
front propagation (WP) (Kiss and Tevesz 2012) or Dijkstra
(Maroti et al. 2013). The evaluation function of GDWA is
designed based on the defined NF using its value and gra-
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dient, which is still a form of weighted summation. GDWA
eliminates the local minima problem in most cases, but may
fail to converge to the target position or still get trapped due to
the unreasonable weights or zero velocity. More importantly,
the definition of NF highly depends on the accurate global
map, and the ideal of GDWA is similar to functional opti-
mization. In this paper, we know less about the global map
or the obstacle in it, so there is no such NF to optimize. We
only use the real-time detection of the surrounding obstacle.

For the second aspect, a version of GDWA changed the
evaluation function into a no-weighted from. This function
only considers the position of the robot and the value of NF,
which makes it contain only one item (Kiss 2012). Another
kindofmethod is adjusting eachweight separately. For exam-
ple, the weight of evaluation subfunction considering the
velocity became adaptive according to the distance from the
obstacle (Wang et al. 2019), or the weight of one subfunc-
tion was adjusted when other weights were fixed (Xu 2017).
Without the global information or NF serving as the basis for
optimization, the existing optimization algorithms are hard
to apply. Adjusting weights separately splits the relationship
between them, which may miss the best weights combina-
tion. In contrast, our method adjusts all weights jointly and
choses different combinations for different conditions.

2.3 Path planning with reinforcement learning

One of the most interesting approaches applied in path plan-
ning is RL. In the process of RL, the robot learns the best
strategyof path planningby interactingwith the environment,
just like some living creatures. In the proposed approach, the
robot path planning was solved with Q-learning, which was
first introduced for learning with delayed rewards (Kröse
1995). One of the first application of Q-learning in robot
navigation utilized the example trajectories to bootstrap the
value function approximation and split the learning into two
phases (Smart and Kaelbling 2002). In order to improve the
hit rate and reduce the size of the Q-table, the number of
the states was limited based on a new definition for the states
space (Jaradat et al. 2011).Anewmethodologywas proposed
for Q-learning with improved particle swarm optimization
(IPSO) to reduce the complexity of the classical Q-learning
and the robot’s energy consumption by saving turning angles
and path length (Das et al. 2015).

In recent years, there has been a new trendof combiningQ-
learning with deep learning. Under the circumstance where
the global information is available, a new approach using
Q-learning and a neural network planner was proposed to
solve the problem of autonomous movement in environment
containing both static and dynamic obstacles (Duguleana
and Mogan 2016). A model-based path planning method
was proposed with Q-learning, whose Q-value was approx-
imated with a neural network named deep Q-learning and

the reward was calculated from the grid map (Sharma et al.
2017). A log-based reward function was introduced in deep
Q-learning to increase the success rate of obstacle avoid-
ance for the wheeled mobile robot (Mohanty et al. 2017).
Q-learning was also applied in collaborative path planning
system with holonic multi agent architecture (Lamini et al.
2015). Combining with Boltzmann policy to avoid trapping
in local optimum, Q-learning can remarkably improve the
efficiency of the multi-robot system, reducing the number of
explorations and converging the process (Wang et al. 2014).

In the aforementioned literatures that applied Q-learning
in the robot navigation, they optimized the generation mode
of Q-values or the selection of reward functions to reduce
the operating cost of programs and robots, or promoted its
application objects to multiple agents. However, the state
apace only considers the position relationship of robot with
the obstacle or target, but ignores the orientation and veloc-
ity of the robot, which may not fully describe the robot state.
In addition, the action apace is relatively simple, generally
are turning right or left, moving one step at several direc-
tions (especially in a grid map). These blunt actions tend to
make the path too incoherent to track and some better paths
be ignored. In contrast, Q-learning applied in our proposed
method is to enhance the performance of DWA, which pre-
serves the advantage of feasible and superior path of DWA.

2.4 Summary andmotivation

As mentioned, most of the existing path planning algorithms
rely heavily on known static global maps. If the map has
dynamic obstacles, their state (location, shape or velocity)
needs to be highly understood. Therefore, these algorithms
maynot performwell in the environmentwith unknown static
and dynamic obstacles. In addition, they often obtain the
reference path rather than velocity command, so more sen-
sors or methods should be adopted to track the path, which
increases the complexity of the navigation and computation
for the mobile robot.

In this paper, the navigation scenario contains only the
outline of the global map but not the obstacles in it, and the
obstacles are detected in real time by the sensors on the robot,
so the path planning algorithm can only use the information
of surrounding obstacles.Meanwhile, to simplify the naviga-
tion framework, the algorithm is better to obtain the desired
velocity directly instead of the desired path. Therefore, we
find that DWAmeets these requirements and is suitable as the
path planning algorithm. As for the two defects of DWA that
analyzed above, we correct them by enhancing the evaluation
functions and parameter self-adaption based on Q-learning.
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3 Problem definition and assumptions

Similar to the task in a warehouse above, we define the navi-
gation problem considered in this paper in general. The initial
position of the robot and target are preset, and the robot only
knows the outline of the global map (like the walls of the
warehouse), which means the obstacles inside the map is
completely unknown. The task of robot is to reach the target
while keeping the safe distance from the obstacles. The robot
can reach the target with any velocity and does not need to
stop at the target.

Beside the outline of the global map, all the information
the robot can get are obtained by the various sensors equipped
(gyroscope, lidar, encoder, etc.). At each time step, the infor-
mation required by the proposed algorithm can be obtained
based on these sensors. Concretely, we make the following
assumptions about the navigation problem.

Assumption 1 The location, orientation and velocity of the
robot in the global map are known at each time step.

Assumption 2 The position of the target in the global map is
known at each time step.

Assumption 3 The distance of the nearest obstacle in each
direction of a circle is known at each time step (realized by
the lidar on the robot). The structure of these data is expressed
as [Θ D], whereΘ = [θ1 θ2 · · · θn]T are angles in the range
[0, 2π) with a certain resolution; D = [d1 d2 · · · dn]T are
the distances of the nearest obstacle in the i th angle, di is not
greater than the detection range; n is the angle resolution of
the lidar, meaning that n data pairs of angle and distance will
be obtained after the lidar scanning a circle.

The robot in this paper is differential driven, and we only
consider its forward and rotational motion. The kinematics
model of the robot is shown in Eq. (1).

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

v̇ = a
ω̇ = α

(1)

where [x, y] is the position of the robot; θ is the orientation of
the robot; v andω are the linear velocity and angular velocity
of the robot; a and α are the linear acceleration and angular
acceleration of the robot.

4 Improved DWA algorithm

4.1 Basic DWA algorithm

DWA algorithm transforms the path planning problem into
the constrained optimization problem of the velocity space,

and controls the robot motion by outputting the real-time
optimal speed.

The speed set (v, ω) is restricted to the following restric-
tions:

(1) The velocity of robot cannot exceed the maximum.

{
0 ≤ vt ≤ vmax

−ωmax ≤ ωt ≤ ωmax
(2)

where vt and ωt are the linear speed and angular speed of the
robot at time t; vmax and ωmax are the maximum velocity.

(2) The acceleration of robot cannot exceed themaximum.

{
vt − amaxΔt ≤ vt+1 ≤ vt + amaxΔt
ωt − αmaxΔt ≤ ωt+1 ≤ ωt + αmaxΔt

(3)

where vt+1 and ωt+1 are the linear speed and angular speed
of the robot at time t+1; amax and αmax are the maximum
linear acceleration and angular acceleration of the robot; Δt
is the time step.

The feasible speed sets are obtained by sampling the
velocity space which matches the kinematics model, and the
predicted trajectories are generated by these speed sets and
the trajectory prediction time period T . These trajectories,
which will be some arcs, are scored by the evaluation func-
tion to find the best one and the corresponding speed set. The
original evaluation function is shown in Eq. (4).

J (v, ω) = σ [w1 · heading(v, ω) + w2 · obdist(v, ω)

+ w3 · veloci ty(v, ω)] (4)

Equation (4) contains three evaluation subfunctions and their
coefficients w1, w2, w3; σ denotes the normalization pro-
cess.

Concretely, function heading(v, ω) calculates the angle
θ between the orientation angle of the robot at the end of
the predicted trajectory and that of the robot position to the
target. This function evaluates the degree of the trajectory
being toward the target. The schematic diagram of angle θ

is shown in Fig. 1a. The smaller the angle is, the higher the
score will be.

Function obdist(v, ω) calculates the minimum distance
from each point of the predicted trajectory to the obstacle.
This function evaluates the degree of the trajectory being
away from the obstacle. The schematic diagram of finding
theminimumdistance is shown inFig. 1b. Taking three points
as an example, d2 is the minimum distance. The farther the
distance is, the higher the score will be. If the minimum
distance of a trajectory is less than the safe distance, this
trajectory will be discarded directly and removed from the
sampling space.

Function veloci ty(v, ω) evaluates the linear and angular
velocity of the robot, which favors fast and straight move-
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Fig. 1 Schematic diagram of a the angle θ , b the minimum distance d

ment. The higher the linear speed and the smaller the angular
velocity are, the higher the score will be.

4.2 Improved DWA algorithm

The basic DWA algorithm only contains three kinds of
evaluation functions, which is not adaptable to unknown
environments. The robot may hesitate in front of the obstacle
for a long time and be easy to fall into the spiral obstacle,
caused by the lack of the number of the existing evaluation
functions and the mechanism of these function being not
quite appropriate. In this section,wemodify the existing eval-
uation functions to improve the score of better trajectories in
each specific subfunction and add two new subfunctions to
consider more complex situations.

4.2.1 Modified subfunction heading′(v,!)

This modification is to reduce the negative effects that func-
tion heading(v, ω) may cause when the robot approaches
the target, whose method is changing the reference position
used to calculate the angle.

For the predicted trajectory to be prospective enough, the
trajectory prediction time period T is generally dozens of
times of the time step, that is, T = (10–30)Δt . Function
heading(v, ω) calculates the angle based on the final robot
position of the predicted trajectory, which is the position the
robot can reach by moving at the current speed for the whole
time period T . However, the speed will be re-selected after
Δt , which means that the robot will only move along a short
section of the whole predicted trajectory.

Figure 2 shows the comparison of the two predicted tra-
jectories. Obviously, trajectory A is more close to the ideal
one, which means the velocity corresponding to trajectory
A is better. So the score of trajectory A should be higher
than that of trajectory B. If the reference position is at the
end of the predicted trajectory, we can see from Fig. 2 that
θB,o < θA,o, which makes the trajectory A get the lower
score. If the reference position is set somewhere close to the
current position, we can see from Fig. 2 that θA,n < θB,n . It
means trajectory A will get the higher score, which makes
the robot turn to the target in time.

Fig. 2 Trajectory comparison for function heading(v, ω). Notations:
1) The black arc means the predicted trajectory. 2) The green arc means
the ideal trajectory. 3) The green star means the target. 4) The grey
rectangle (if there is) means the obstacle. 5) The ideal trajectory, target
and obstacle are the same in the comparison. These notations are also
applicative below (Color figure online)

The distance from the current position, which is called the
travelled distance, is directly determined by the number of
time steps. In practice, the travelled distance d should be set
first, and the time steps which are required to move such dis-
tance can be estimated by the current speed. Generally, when
d is short enough, the robot trajectory can be considered a
straight line, so the number of the time steps can be estimated
by Eq. (5).

nΔt = f i x(d/v) (5)

where v is the current linear speed; f i x(·) is the rounding
function.

When operating the function heading(v, ω), the refer-
ence position of the robot is the position after nΔt time steps
in the predicted trajectory.

Finally, function heading(v, ω) returns an angle between
the orientation of the new reference position and the line
pointing from the new reference position to the target.

4.2.2 Modified subfunction obsdist′(v,!)

This modification is to reduce the negative effects that func-
tion obsdist(v, ω) may cause in the environment with many
obstacles, whose method is similar to that described in Sec-
tion 4.2.1.

Figure 3 shows the comparison of two predicted trajecto-
ries. Obviously, trajectory A is more close to the ideal one,
which means the velocity corresponding to trajectory A is
better. In terms of the original function, as can be seen from
Fig. 3, trajectoryAwill be discarded sincedA,o is less than the
safe distance. Actually, all the trajectory similar to trajectory
A will suffer the risk of being discarded while the trajectory
similar to trajectory B can get a higher score, which makes
the navigation poor. Function obsdist(v, ω) has two effects:
trajectory scoring and discarding. The trajectory discarding
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Fig. 3 Trajectory comparison for function obsdist(v, ω)

part should be more cautious as it removes a possible speed
set directly which will not be evaluated by other subfunc-
tions, and the speed is re-selected at each time step. So the
trajectory similar to trajectory A that will not collide with the
obstacle temporarily should not be discarded. The trajectory
scoring part remains unchanged. When discarding the tra-
jectory, the minimum distance from the obstacle should be
calculated from the beginning of the trajectory to the posi-
tion after several time steps. As can be seen from Fig. 3, dA,n

is similar to dB,n , and both are more than the safe distance,
so that the two trajectories can be retained and evaluated by
other subfunctions.

The estimation of the number of time steps is similar to
the Eq. (5). Since the purpose of this function is to avoid
obstacles, the value of the travelled distance d should be
slightly larger than that of the function heading(v, ω).

Finally, function obsdist(v, ω) returns the shortest dis-
tance between the predicted trajectory and obstacles.

4.2.3 Modified subfunction velocity′(v,!)

This modification is to reduce the negative effects that func-
tion veloci ty(v, ω) may cause when the robot need to move
slowly and circuitously.

The score of this function is determined by the linear and
angular speed of the trajectory, which is to allow the robot
to move as fast as possible and avoid unnecessary turning.
Figure 4 shows the comparison of the two predicted trajec-
tories that share the same linear speed, while the angular
speed of trajectory A is greater than that of trajectory B.
Obviously, trajectory A is better, but trajectory B will get
the higher score using the original function where the scores
of the two speeds are independently calculated and simply
added. Under the same situation, the higher the linear speed
is, the faster the robot reaches the target. Therefore, the scor-
ing function of the linear speed does not need to change.
In the environment with many obstacles, it is more reason-
able to move circuitously with slower linear speed and larger
angular speed, and the larger angular speed will not increase
the risk of collision with obstacles too much when the linear

Fig. 4 Trajectory comparison for function veloci ty(v, ω)

Fig. 5 Schematic diagram of the minimum distance d

speed is slower. Therefore, we modify the scoring function
of the angular speed as Eq. (6).

ω′ = ωmax − k
v

vmax
ω (6)

where the term v
vmax

is added to measure the current linear
speed and k is a parameter.

Finally, function veloci ty(v, ω) returns the score of the
current speedwhich is calculated by Eq. (7), where σ denotes
the normalization of the two speeds.

veloci ty′(v, ω) = σ(ω′ + v) (7)

4.2.4 Added subfunction goaldist(v,!)

Function goaldist(v, ω) calculates the minimum distance
from each point of the predicted trajectory to the target. This
function is to evaluate the degree of the trajectory being close
to the target. Theweight of this function isw4. Figure 5 shows
themethod to find theminimumdistance. Taking three points
as an example, d2 is the minimum distance. The closer the
distance is, the higher the score will be.

This function is added to enhance themotion trend towards
the target point especially when there are obstacles around
it. Figure 6 shows the situation to compare the two predicted
trajectories. Obviously, trajectory A ismore close to the ideal
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Fig. 6 Trajectory comparison for function goaldist(v, ω)

one, which means the velocity corresponding to trajectory A
is better. In terms of the original evaluation functions, we can
see from Fig. 6 that θA < θB and dA,o < dB,o which results
in the scores of the two trajectories being almost the same
and it is hard to choose the better one. After adding function
goaldist(v, ω), we can find in Fig. 6 that dA,g < dB,g , which
helps trajectory A to get the higher score.

Note that the subfunction heading(v, ω) is also to make
the robot move toward the target, but keeping these two
subfunctions is still necessary as they have different effects
and applicable conditions. Though the reference position in
subfunction heading(v, ω) has been modified, it is still pos-
sible that this position in the trajectory overshoots the target,
especially when the robot is very close to the target, which
will adversely impact the navigation effect. At this time,
subfunction goaldist(v, ω) can help the robot turn to the
target with a steady speed. On the other hand, if the robot
is still far away from the target, the minimum distances
to the target of all the trajectories will be large and simi-
lar, which greatly limits the discrimination of subfunction
goaldist(v, ω). At this time, the robot mainly depend on the
subfunction heading(v, ω) to navigate to the target. Actu-
ally, the subfunction goaldist(v, ω) is designed only towork
when the minimum distance to the target is less than 2m. In
general, these two subfunctions contribute to the robot mov-
ing to the target from the viewof orientation and distance, and
work in different conditions, so they are both indispensable.

Finally, function goaldist(v, ω) returns the shortest dis-
tance between the predicted trajectory and the target.

4.2.5 Added subfunction oscillation(v,!)

Function oscillation(v, ω) is to evaluate the proximity of
the predicted trajectory and the historical trajectory. The
weight of this function is w5. We describe the map as a two-
dimensional cell group H with a certain resolution, which is
similar to the grid map, to store the information of historical

Fig. 7 Updating method of the cell cost

trajectory. Each cell has a cost to describe how close the his-
torical trajectory is to this cell. The higher the value of the
cell is, the easier it is for the robot to stagnate or wander near
this position. The cell group H is updated after each robot
movement. The cost of the cell on or near the robot position
will be updated with the method shown in Fig. 7, where P
is the robot position at time t and Rerc is the radius of the
circular area affected by the robot where cell cost should be
updated.

We establish the coordinate system ΩP with the origin
P , where di j means the distance from the cell with coordi-
nates (i, j) to the origin P and wi j means the cost should be
increased on the cell (i, j) at time t which is calculated by
Eq. (8).

wi j = (Rrec − di j )vt

Rrecvmax
(8)

Adding the speed term to the cost calculation can avoid a
rapid increase in the cost of the surrounding cell when the
robot speed is slower.

Figure 8a shows the trajectory of the robot obtained by
the improved evaluation function in the map with simple
obstacles, and the cell group H generated by this trajectory.
The color of each cell represents its cost, i.e. the darker the
color is, the higher the cost is. The score of the function
oscillation(v, ω) of a trajectory is the total cost of the cell
swept over by this trajectory. For example, as for the trajec-
tory shown in Fig. 8b, its score is the sum of the cost of all
the red cell.

This function is added to prevent the robot from returning
to the place travelled or going around in circle, which is espe-
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(b)(a)

Fig. 8 aTrajectory of the robotwith its cell group H ,bCells to calculate
the oscillation(v, ω) value

Fig. 9 Trajectory comparison for function oscillation(v, ω)

cially important when the obstacle is in spiral distribution.
Figure 9 shows the comparison of the two predicted trajec-
tories. Obviously, the robot should move along trajectory
A rather than trajectory B. In terms of the original evalua-
tion functions, we can see from Fig. 9 that θA < θB and
dA,o < dB,o, which results in the scores of the two trajecto-
ries being almost the same and it is hard to choose the better
one. After adding function oscillation(v, ω) we can find in
Fig. 9 that the gird cost in the red circle of trajectory B is
larger while trajectory A overlaps little with the historical
trajectory. This difference means the proximity of trajectory
B and historical trajectory is significantly higher than that of
trajectory A, which helps trajectory A to get the higher score.

Finally, function oscillation(v, ω) returns the total cost
of all the cell swept by the predicted trajectory.

After modifying and adding the evaluation subfunctions,
the improved evaluation function is shown in Eq. (9).

J ′(v, ω) = σ [w1 · heading′(v, ω) + w2 · obdist ′(v, ω)

+w3 · veloci ty′(v, ω) + w4 · goaldist(v, ω)

+w5 · oscillation(v, ω)] (9)

Table 1 Parameters of the robot

Parameter name Parameter value

Safety radius R 0.4 m

vmax 1 m/s

ωmax 2π rad/s

amax 0.5m/s2

αmax 6π rad/s2

Resolution of linear speed 0.01m/s

Resolution of angular speed π
36 rad/s

4.3 Simulation analysis

In this section, five simulations in different scenarios are car-
ried out to prove the effectiveness of the improved DWA
algorithm, and the performance is comparedwith the original
one. These simulations are implemented in smaller environ-
ments which are similar to the ones in Sect. 4.2 to show the
effect of the improved evaluation functions, and in larger
environments with discrete or spiral obstacle distributions to
show the overall performance of the proposed algorithm.

In order to make the simulation results more practical,
the kinematic model of the robot is set the same as the real
robot used in the hardware experiments. The resolution of
speed balances the navigation performance and computation
cost. Considering the real radius of the robot, the indicator
of reaching the target is the distance between the robot and
target being less than 0.05m. The speed and orientation of the
robot are set to zero at the beginning. The robot parameters
are shown in Table 1.

The parameters in the proposed algorithm are also set to
ensure the comparability, as are shown in Table 2.Weights of
the namesake evaluation subfunctions (w1, w2 and w3) are
the same. Some parameters in these subfunctions (travelled
distance in heading′(v, ω) and obsdist ′(v, ω)) and weights
of the added evaluation subfunctions (w4 andw5) are unique
to the improved DWA. Two travelled distances are chosen
according to the analysis in Sects. 4.2.1 and 4.2.2. Safety
is considered as the primary standard of robot motion, so
the weight of the obsdist(v, ω) (w2) is twice as much as
other evaluation functions, and weights of other evaluation
functions are the same. All the simulations in this subsection
share the same parameters.

4.3.1 Simulation scenario 1

The first simulation scenario is carried out in the environ-
ment similar to Fig. 3, which is to show the effect of the
modified subfunction obsdist ′(v, ω). The parameters of the
map are shown in Table 3. Figure 10a, b respectively shows
the trajectory of the original and improved DWA algorithm.
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Table 2 Parameters of DWA

Parameter name Parameter value

w1 1

w2 2

w3 1

w4 1

w5 1

Travelled distance in heading(v, ω) 0.5m

Travelled distance in obsdist(v, ω) 0.8m

Table 3 Parameters of simulation scenario 1

Parameter name Parameter value

Map size 9m × 6m

Starting position (1m, 1.5m)

Target position (8m, 5.5m)

Initial orientation 0 rad

(a) (b)

Fig. 10 Trajectory obtained by the a original DWA, b improved DWA
in simulation scenario 1

Obviously, the improved trajectory is better since the robot
moves through the obstacles and directly to the target. If there
are more obstacles under the target, the original trajectory
maybecome evenmore sub-optimal. Themain reason for this
is that the modified subfunction obsdist ′(v, ω) changes the
way of discarding the trajectory, so that trajectories through
the obstacles can be remained.

4.3.2 Simulation scenario 2

The second simulation scenario is carried out in the envi-
ronment similar to Fig. 4, which is to show the effect of
the modified subfunction veloci ty′(v, ω). The parameters
of the map are shown in Table 4. Figure 11a, b respectively
shows the trajectory of the original and improved DWA algo-
rithm. One can find that the improved trajectory go through
the obstacles with a shorter path and a faster speed. It is
mainly because of the modified subfunction obsdist ′(v, ω),
and the modified subfunction veloci ty′(v, ω) which enables
the robot to consider the linear and angular speed together.
Meanwhile, dangerous trajectories have been discarded by
subfunction obsdist ′(v, ω) so the safety is secured.

Table 4 Parameters of simulation scenario 2

Parameter name Parameter value

Map size 8m × 5m

Starting position (2m, 1.5m)

Target position (7.5m, 1m)

Initial orientation π/2 rad

(a) (b)

Fig. 11 Trajectory obtained by the a original DWA, b improved DWA
in simulation scenario 2

Table 5 Parameters of simulation scenario 3

Parameter name Parameter value

Map size 4m × 6m

Starting position (1m, 1m)

Target position (3.5m, 5.5m)

Initial orientation π/2 rad

4.3.3 Simulation scenario 3

The third simulation scenario is carried out in the environ-
ment similar to Fig 6, which is to show the effect of the
modified subfunction goaldist(v, ω). The parameters of the
map are shown in Table 5. Figure 12a, b respectively shows
the trajectory of the original and improved DWA algorithm.
It is obvious that the improved trajectory reaches the target
with a shorter length while ensures the safety margin. The
main reason is that the added subfunction goaldist(v, ω)

enhances the motion trend towards the target when there are
obstacles around it, while the safety is secured by subfunction
obsdist ′(v, ω).

4.3.4 Simulation scenario 4

The forth simulation scenario is carried out in the environ-
ment with discrete obstacles generated randomly at integer
coordinates within certain ranges, which is to show the over-
all performance of the proposed algorithm. The parameters
of the map are shown in Table 6.

Figure 13a, b respectively shows the trajectory of the orig-
inal and improved DWA algorithm. Obviously, the improved
trajectory is smoother. Figure 13c, d respectively shows the
linear speed curve of the original algorithm and the improved
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(a) (b)

Fig. 12 Trajectory obtained by the a original DWA, b improved DWA
in simulation scenario 3

algorithm. The improved DWA takes 19.65 s to reach the tar-
get while the original one takes 33.95 s, which proves that the
improved algorithm significantly shortens the moving time
and improves the traffic efficiency. According to Fig. 13c, it
can be found that the original algorithm has lower traffic effi-
ciency in the position near the obstacles or corners (around
9 s, 21 s and 27 s) and target (around 33 s).

Three reasons can account for the low traffic efficiency of
the original DWA. Firstly, the original obsdist(v, ω) func-
tion calculates theminimumdistance from the obstacle by the
whole trajectory, which causes the predicted trajectory with
larger linear speed to be more likely to collide with obstacle.
These trajectories will get low score or be discarded directly
when the robot is near the obstacle. Secondly, the trajecto-

Table 6 Parameters of simulation scenario 4

Parameter name Parameter value

Map size 14m × 14m

Starting position (1m, 1m)

Target position (13m, 13m)

Initial orientation 0 rad

ries with larger linear speed and slower angular speed will
get lower score using the original veloci ty(v, ω) function,
which reduces the traffic efficiency of the robot whenmoving
slowly and circuitously. Thirdly, the original heading(v, ω)

function calculates the orientation angle by the final position
of the trajectory, which causes the trajectory with larger lin-
ear speed to get lower score due to its end overshooting the
target when the robot is near the target. Also, it delays the
robot reaching to the targetwhich canbe found in the close-up
window of Fig. 13a. In contrast, the improved DWA avoids
these three problems and significantly improves the traffic
efficiency by enhancing the evaluation function.

4.3.5 Simulation scenario 5

The fifth simulation scenario is carried out in the envi-
ronment with spiral obstacle located at the center of the
map. This scenario is mainly to prove the effect of function
oscillation(v, ω). The parameters of the map are shown in
Table 7

Figure 14a, b respectively shows the trajectories of the
original and improved DWA algorithm. Note that the robot

(a) (b)

(c) (d)

Fig. 13 Results of in simulation scenario 4. a Trajectory obtained by the original DWA and its close-up window, b Trajectory obtained by the
improved DWA and its close-up window, c Linear speed obtained by the original DWA, d Linear speed obtained by the improved DWA
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Table 7 Parameters of simulation scenario 5

Parameter name Parameter value

Map size 11m × 11m

Starting position (1.5m, 1.5m)

Target position (10m, 10m)

Initial orientation 0 rad

(a) (b)

Fig. 14 Trajectory obtained by the a original DWA, b improved DWA
in simulation scenario 5

does not know the global distribution of obstacles, so it can-
not go around the obstacle area directly. It is obviously that
the improved trajectory escapes from the spiral obstacle and
successfully reaches the target, while the original trajectory
falls into local minima and keeps turning around. Note that
the function goaldist(v, ω) is designed to work only when
the minimum distance of all the predicted trajectories to tar-
get is less than 2 m, so it is function oscillation(v, ω) that
causes the different performance of the two trajectories.

ComparingFig. 14a, b, it can be found that the robotmoves
straight (see the initial section of the trajectory) when there
is no obstacle around, and the original or improved DWA
has the same effect on the trajectory generation. The snap-
shots of the positions when the two trajectories differ from
each other are shown in Figs. 15 and 16. The green arcs in
front of the robot are all the predicted trajectories in the sam-
pling window, and the trajectory marked with dotted red line
is the highest trajectory to be adopted at the current time.
In Fig. 16, the cell group H to record the historical trajec-
tory is shown with the similar method in Fig. 8. Observing
Figs. 15a and 16a, at this time, the historical trajectory and
all predicted trajectories of the robot are basically the same.
Owing to function oscillation(v, ω), the improved trajec-
tory avoids the predicted trajectories that are heavily biased
towards the historical trajectory. In contrast, the original tra-
jectory “forgets” the travelled position and always enters the
spiral obstacle. Observing the subfigures b, c and d of Figs.
15 and 16, the improved trajectory escapes from the spiral
obstacle and avoids the travelled position at all times, while
the original trajectory cannot escape.

(a) (b)

(c) (d)

Fig. 15 Snapshots of the position in the trajectory obtained by the
original DWA in simulation scenario 5. a–d Respectively shows the
robot position in chronological order

(c) (d)

(a) (b)

Fig. 16 Snapshots of the position in the trajectory obtained by the
improved DWA in simulation scenario 5. a–d Respectively shows the
robot position in chronological order

123



64 Autonomous Robots (2021) 45:51–76

From the comparison of the two methods in five simu-
lations, we can find that the improved DWA shortens the
trajectory length, improves the capability and efficiency of
reaching the target in different environments with complex
obstacles.

5 DWA parameter adaptive tunning
algorithm based on reinforcement
learning

The weight terms of each evaluation subfunction were con-
sidered difficult to choose (Kiss and Tevesz 2012). In this
section, we first analyze the parameters needed to be dynam-
ically adjusted in DWA, and propose an adaptive tunning
algorithm based on Q-learning to adjust them, finally con-
duct the simulation to verify the proposed method.

5.1 Parameter analysis in DWA

Because of the complex real working environment, the
demand for each evaluation function is time-varying. For
example, when the robot approaches the obstacle, it should
turnor decelerate at once, so the effect of functionobsdist(v, ω)

needs to increase while other functions decrease to prevent
collisions.When the robot approaches the target, it can arrive
quickly in any direction regardless of the approaching angle,
so the effect of function heading(v, ω) can decrease and
function goaldist(v, ω) increase. When the current direc-
tion deviates from the target severely, it is possible that the
robot avoids obstacles overly or goes around in circle, so
the effect of function heading(v, ω) and oscillation(v, ω)

should increase. It is hard to consider all situations only by
designing functions, so the weights of each function need to
be self-adaptive with the change of the surrounding environ-
ment and the robot state.

In addition, all evaluation functions will use the time
period T . Considering the situation in Fig. 17a, there is a
spiral obstacle near the target, and the robot is still away
from the obstacle in a certain distance. If T is shorter, all the
sampling trajectories will be shorter. In terms of the existing
five evaluation functions, trajectory A will get the highest
score. However, after the robot moves along the trajectory
for a while, all trajectories will collide with obstacles which
makes the robots stop and fail to navigate. In contrast, if T is
longer, the trajectory will be longer, so the further obstacle
can be perceived. Trajectory B may get the highest score,
so that the robot can adjust its heading in advance. How-
ever, considering the situation in Fig. 17b, there are many
small obstacles around the robot. A longer T results in a
longer predicted trajectory.Most trajectorieswill collidewith
obstacles, which reduces the discrimination of the function
obsdist(v, ω) and discards some feasible direction like tra-

Fig. 17 Trajectory analysis for time period T

jectory A. Meanwhile some trajectories may be toward the
target but too close to obstacles, which leads to misjudgment
of function goaldist(v, ω) like trajectoryB. These two kinds
of situations are both not ideal. Therefore, the time period T
should also be self-adaptive.

The timeperiod T essentially determines the distance trav-
eled from the original position. During the considerable time
period, the trajectory can no longer be seen as a straight line.
Once the travelled distance d is determined, we can obtain
the time period T by the geometric relationship in Fig. 18 and
Eq. (10). Concretely, if the maximum distance between the
trajectory and current position is larger than d, T is obtained
by the trajectory whose end position is d meters away from
the original position. Otherwise, T is set where the trajectory
moves half a cycle.

T =
{

2 arcsin
(

d
2r

)

ω
2r > d

π
ω

2r ≤ d
(10)

where r = v
ω
is the radius of the predicted trajectory; v and

ω are the linear and angular speed of the robot.
According to the analysis above, six parameters need to be

dynamically adjusted during the navigation process, which
are: the weights of each evaluation function w1–w5 and the
travelled distance d. The algorithm for parameter adaptation
is illustrated in Sect. 5.2.
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Fig. 18 Calculation method of time period T

5.2 Parameter adaptive algorithm in DWA based on
Q-learning

5.2.1 Application method of Q-learning in DWA

The tabular Q-learning establishes its agent as am×n matrix
Q where m is the state dimension and n is the action dimen-
sion. The agent executes an action A j at state Si , the reward
R from the environment will be superimposed on the posi-
tion (i, j) of the matrix Q. The action is selected according
to the current state, matrix Q and action selection strategy.
The updating rule of matrix Q is written by Eq. (11).

Q(s, a) = (1 − α)Q(s, a) + α[R(s, a) + γ Q(s̃, ã)] (11)

where α ∈ (0, 1) is the learning rate. The larger of α means
the faster learn and converge rate, but may lead to overfitting;
γ ∈ (0, 1) is the discount factor. The larger of γ means the
long-term interests is paid more attention while the smaller
means the current interests; R(s, a) is the reward from the
environment obtained by the current state and action; Q(s̃, ã)

is themaximumvalue of Q among all the actions that the next
state corresponds to.

With the fundamental framework of Q-learning, cus-
tomized algorithm design is needed for the application in
DWA,which includes: definition of the state space, the action
space and the reward function. The design of the Q-learning
based parameter learning algorithm is presented in subse-
quent subsections.

5.2.2 Definition of the state space

In the process of robot motion, the state information depends
on the heading and speed of the robot, the surrounding
obstacle and target. In order to apply the agent to different
environments, the state cannot represent the absolute coor-
dinates and orientation on a specific map. Therefore, some

Fig. 19 Dimension sketch of a s1, b s2

general and relative features need to be extracted from the
complex environment to constitute the state space, and each
state corresponds to a particular situation. The robot’s state
is uniquely described at any time in a given map. Also, the
state space should not be too large, otherwise it will lead to
“the curse of dimensionality”.

The score of the trajectory in the evaluation function deter-
mines the robot speed at the next time step, so the definition
of state space should be closely related to the evaluation func-
tion. Form the previous analysis for the evaluation function,
we can find that some particular features are frequently con-
sidered as the scoring basis, such as: the distance between the
robot and target, the speed and orientation of the robot and
the surrounding obstacle, which means that these features
play a pivotal role in the operation of DWA. Therefore, we
use these features to constitute the dimensions of state space
S as Eq. (12).

S = [s1 s2 s3 s4]T (12)

where s1–s4 respectively are the various dimensions in S to
be explained in detail below.

(1) Dimension s1 is to represent whether the robot is very
close to the target whose value is designed as Eq. (13) and
dimension sketch is shown in Fig. 19a.

s1 =
{
1 d < 3R
2 d ≥ 3R

(13)

where d is the distance between robot and target; R is the
safety radius of the robot.

(2) Dimension s2 is used to represent whether the robot
is moving towards the target and the approximate deviation.
The value of dimension s2 is designed as Eq. (14) and dimen-
sion sketch is shown in Fig. 19b.

s2 =
⎧
⎨

⎩

1 θr ,g ∈ [
0, π

3

)

2 θr ,g ∈ [−π
3 , 0

)

3 θr ,g ∈ else
(14)

where θr ,g is the angle between the orientation of the robot
and the line pointing from the robot position to the target.
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Fig. 20 Dimension sketch of s3

(3) Dimension s3 is to represent whether the position
where the robot moves with its current speed for 1s is too
far away from its current position, which also reflects the
coverage of all the sampling trajectories. The travelled dis-
tance d between the two positions is calculated by Eq. (15).

d =
{

2v
ω

ω > π
2v
ω
sin

(
ω
2

)
ω ≤ π

(15)

where v and ω are the linear speed and angular speed of the
robot.

The value of s3 is designed as Eq. (16) and dimension
sketch is shown in Fig. 20.

s3 =
{
1 d ≤ 0.5m
2 d > 0.5m

(16)

(4) Dimension s4 is to represent whether there are obsta-
cles in a certain range around the robot, and the approximate
relationship between the obstacle and the robot motion direc-
tion. Dimension s4 describes the approximate distribution of
the surrounding obstacles with a single angle, which is called
dominant orientation of obstacles. Laser sensors are widely
used in the field of robotic perception, so the method of laser
scanning can be applied to detect the obstacles around. We
divide the surrounding of the robot into several angles evenly,
and measure the distance of the nearest obstacle on each
angle. If the distance exceeds a given range 5R, it will be set
to zero. In this way, the angle of the nearest obstacle θon can
be foundwhich reflects the distribution of the obstacle around
to a certain extent, but it is not an ideal feature as it abandons
most of the information. Here we present a concept called
the average orientation of obstacles θoa . Generally speaking,
the smaller the distance is, the more dangerous the obstacle
is, and the larger the proportion in the average orientation
should be. Therefore, the distance reciprocal of each angle
can be used as the weight for obtaining the average angle,
and the average orientation of obstacles is weighted sum of

Fig. 21 Analysis for the dominant orientation of obstacles

the angles, which is calculated by Eq. (17).

θoa =
∑n

i=1
θi
di

∑n
i=1

1
di

(17)

where n is the angle resolution; θi is the i th angle; di is the
distance of the nearest obstacle on the i th angle.

However, the average position is not always accurate.Con-
sidering two situations inFig. 21, θn,a is the angle between the
orientation of the nearest and average obstacles. In situation
A, θn,a is smaller and the average orientation can reflect the
approximate distribution of the surrounding obstacle more
comprehensively. Conversely, obstacles in situation B are
located on both sides of the robot and there are no obsta-
cles in the direction of the average orientation, which makes
the average orientation fail to reflect the obstacle distribution.
The reason for this failure is that the obstacles are scattered or
discontinuous, so the average orientation may be the average
of several angles with short distance, which is probably the
discontinuity. At this time, θn,a is generally larger. Consid-
ering that θon also has certain reference value, the dominant
orientation of obstacles θo is set as Eq. (18).

θo =
{

θoa θn,a < π
4

θon θn,a ≥ π
4

(18)

Now, the value of s4 can be designed as Eq. (19) and the
dimension sketch is shown in Fig. 22.

s4 =

⎧
⎪⎪⎨

⎪⎪⎩

1 θr ,o ∈ [
0, π

3

)

2 θr ,o ∈ [−π
3 , 0

)

3 θr ,o ∈ else
4 no obstacle around

(19)

where θr ,o is the angle between the orientation of the robot
and the dominant orientation of surrounding obstacles.

So far, four kinds of features have been extracted. Single
feature can describe some explicit and measurable informa-
tion, while the relationship between each feature can deduce
some hidden information, such as: the relationship between
target and obstacles, the extent needed of obstacle avoidance,
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Fig. 22 Dimension sketch of s4

the way the robot moves toward target, etc. Both the measur-
able and hidden information are conducive to the parameter
selection in DWA. According to these four features, the state
space is divided into 48 substates, which constitutes the state
dimension of the matrix Q.

5.2.3 Definition of the action dimensions

The trajectory adopted by the robot has the highest total score
in the sampling space, and the total score is the weighted sum
of each evaluation function. According to the previous analy-
sis, the time period T is also an important parameter affecting
the score, which is determined by the travelled distance d and
the speed of the robot. The real-time speed is known, so d
can determine T . Therefore, each dimension in the action
space includes six parameters: the weights of each evalua-
tion function w1–w5 and the travelled distance d. Since each
evaluation function has been normalized before participating
in the general evaluation, their importance can be uniquely
represented by the weights. The base value of each weight is
set to 1, and the weight of the evaluation function requiring
more consideration is set 2 or 3. For example, if there are
closer obstacles on the motion direction, the weight of the
function obsdist(v, ω) should increase. The travelled dis-
tance is divided into three grades, and the range of value for
each parameter is designed in Eq. (20).

{
w1, w2, w3, w4, w5 ∈ {1, 2, 3}
d ∈ {1, 1.5, 2} (20)

To reduce the dimension of the action space, we do not
use all the combinations of the possible parameter values, but
select a representative part of them, namely the five weights
are chosen from {1, 2} or {1, 3}. After removing the equal
proportion weights and considering the three-grade trav-
elled distance, 93 combinations from the weights set {1, 2}
are obtained by (1 + C1

5 + C2
5 + C3

5 + C4
5) × 3, and 90

combinations are obtained from the weights set {1, 3} by
(C1

5 + C2
5 + C3

5 + C4
5) × 3. In summary, 183 combinations

are selected to constitute the action dimension of the matrix
Q.

5.2.4 Definition of the reward function

The reward function is to calculate the reward from the envi-
ronment of a specific action on a given state, which is an
indicator of how good or bad the action is. The definition of
reward function should consider different aspects and rely
on the actual movement whose goal is to reach the target
quickly and avoid obstacles. We refer to some Atari game
environments which are commonly applied in RL research to
motivate the reward values, and design some minor rewards
for each change of the state to avoid the reward being too
sparse. Concretely, the principle of the reward function is as
follows. If the robot reaches the target, it gets a larger posi-
tive reward (+5000). If the robot collides with obstacles, it
gets a larger negative reward (−200). If the robot is closer
to the target (+10) or farther from the obstacle (+5), it gets
a certain positive reward, otherwise, it gets a certain nega-
tive reward (−10 or −5). In addition, the robot gets smaller
negative reward (−2) at each time the state changes before
reaching the target. Generally, the robot will experiencemore
states during the path which costs more time, so we hope this
reward can help the robot experience few states to obtain a
faster path.

Concretely, when the robot executes an action A on the
previous state Spre and enters the current state Scurr (Spre �=
Scurr ), the reward R of A from the environment is calculated
with Algorithm 1.

5.2.5 Training process of the proposed method

The application of Q-learning in DWA is different from that
in other field such as labyrinth, which is mainly reflected in
two aspects. First, in the real environment, the real state of
the robot changes continuously while the 48 states consisting
of the features are discrete, so not each action will change
the state and get the reward. Note that the previous action
should be maintained if the state is not changed, so that the
investigation time of an action can be guaranteed. The time
of updating the matrix Q is when the state changes, and the
position of updating in thematrix Q is determined by the state
before this change and the action causing this change. Sec-
ond, because of the large dimension of the matrix Q, when
selecting a new action, especially in the initial stage of train-
ing, there will be many zeros in the matrix Q, which causes
some states to have many actions with the same maximum
Q value. At this time, selecting an action randomly is not
appropriate, since it makes the action change too frequently.
The investigation time of an action is not long enough, and
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Algorithm 1: Algorithm for calculating the reward R
from the environment
Input:
Nearest distance to the obstacle at Spre: do,pre;
Nearest distance to the obstacle at Scurr : do,curr ;
Distance to the target at Spre: dt,pre;
Distance to the target at Scurr : dt,curr .
Output:
Reward: R.

1 R = 0;
2 if Scurr collides with obstacles then
3 R = R − 200;
4 return R;

5 if Scurr reaches the target then
6 R = R + 5000;
7 return R;

8 if do,curr > do,pre then
9 R = R + 5;

10 else
11 R = R − 5;

12 if dt,curr > dt,pre then
13 R = R − 10;

14 else
15 R = R + 10;

16 R = R − 2;
17 return R;

finally, the learning results are highly random. It should be
checked whether the action set with the maximum Q value
Amax Q contains the previous action, and if does, the previous
action should be executed to keep its continuity, otherwise,
select one randomly. The end indicator of a navigation (say
an episode) is the robot reaching the target, forced to stop or
collision with obstacles.

Algorithm2 illustrates the trainingprocess of the proposed
method, where we assume that the initial robot pose does not
meet the end indicator of an episode. Concretely, i defined
in line 1 is the counter of the episode, and the training ends
when i exceeds the maximum times N . j defined in line
6 is the counter of the time steps in one episode by which
we can calculate the time required for a real robot to finish
this episode. The weights chosen in line 10 are the default
weights.

5.3 Simulation analysis

The simulations are carried out in this section to prove imple-
ment the training process and show the training results of the
proposed method using MATLAB. To enhance the training
effect and make the result adapt to different environments,
we design the map shown in Fig. 23. In this figure, the dis-
tribution of obstacles is various and there are many feasible
paths connecting the starting point and the target. Using such
a complex map is to enrich the states perceived (row of the

Algorithm 2:Algorithm for parameter adaptation in the
improved DWA based on Q-learning
Input:
Information of the map and robot, e.g. stating point, target,
kinematic model of the robot, etc;
Parameter in this algorithm, e.g. maximum training time N ,
learning rate α, greed factor γ , etc.
Output:
Trained agent: Q.

1 i = 1;
2 Q = zero matri x o f 48 × 183;
3 while i ≤ N do
4 Initialize robot pose;
5 //an episode where Spre and Scurr are the previous and current

state, Apre and Acurr are the previous and current action
6 j = 1;
7 while True do
8 Scurr= state perceived;
9 if j = 1 then

10 Acurr = [1 1 1 1 1 1.5]T ;

11 else
12 if Spre = Scurr then
13 Acurr = Apre;

14 else
15 Calculate R by Algorithm 1;
16 Update Q by Eq. (11);
17 if Scurr meet the end indicator of an episode then
18 break

19 else
20 if strategy is exploitation then
21 if Apre ∈ Amax Q then
22 Acurr = Apre;

23 else
24 Acurr = random action in Amax Q ;

25 else
26 Acurr = random action;

27 Spre = Scurr ;
28 Apre = Acurr ;
29 Robot moves with Acurr for one time step;
30 j = j + 1;

31 i = i + 1;

32 return Q;

matrix Q) and the actions chosen (column of the matrix Q)
during the training, which will help to train the agent Q fully
and make it applicative to other maps. Note that although the
distribution of the obstacles is determined, the robot is set to
use the information of the obstacles within a certain range,
which reflects the unknown characteristic of the global envi-
ronment. This simulation contains three parts: the first part
is the training process to obtain the trained agent, the second
part is the test result to show the superiority of the trained
agent comparedwith the fixedweight, and the third part is the
comparisons with other algorithm in different environments.
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Table 8 Parameters of the training process

Parameter name Parameter value

Map size 16m × 16m

Starting position (2.5m, 2.5m)

Target position (14.5m, 14.5m)

Initial orientation π/4 rad

α 0.5

γ 0.5

ε in ε − greedy 0.02

5.3.1 Training process

The parameters of the training are set by convention. The
initial speed of the robot is set to zero. Without loss of gen-
erality, the initial orientation of the robot is set to π/4 rad
to make the trajectories be distributed in both sides of the
map diagonal. The kinematic model of robot is the same as
before. The parameters of the training process are shown in
Table 8.

The training is implemented on an Intel Core i7-8750H2.2
GHz CPU with 16 GB memory and takes about 6.3 h. After
the training, 359 successful paths were obtained among the
5000 episodes, which are shown in Fig. 23a. It is clear that
multiple paths have been explored by the robot. To embody
the training effect more clearly, all the episodes are divided in
to 50 groups orderly and each group contains 100 episodes,
which are used for statistics. Figure 24 shows the number
of arriving paths and the average time consuming of the
arriving paths of each group respectively. With the agent Q
continuously updates, the successful rate of arrival presents a
rising tendency while the average time consumption presents
a declining tendency, which shows that the proposed method
conduces to the robot avoiding obstacles and finding a faster
path. A trained agent is obtained after the training. Figure
23b shows the trajectory of the robot adopting this trained
agent whose time consumption is 21.5s. The robot success-
fully reaches the target with relatively less time-consuming
path, which also reflects the effectiveness of the proposed
met- hod.

5.3.2 Test results

To further verify the performance of the trained agent, it
should be adopted in different environment. Note that the
information that the robot can perceive includes its pose and
speed, the relative position to the target and obstacles within
a certain range. These information will vary with different
initial states including positions and speeds. In addition, the
agent does not record any information about the distribution
of obstacles during the training. Therefore, the performance

(a) (b)

Fig. 23 a Arriving paths among training, b Trajectory adopting the
trained agent Q

(a)

(b)

Fig. 24 The statistical results of each group. a Average time consump-
tion of the successful path (s), bNumber of successful arrival (s), where
the discontinuity of the curvemeans no arriving paths in the correspond-
ing group

of the trained agent can be thoroughly evaluated with ade-
quate number of different initial states in the same map.

We randomly set 700 initial states, specifically: the start-
ing position is randomly distributed at the L-shaped area of
the lower left portion of the map, which is highlighted with
green rectangle in Fig. 25; starting linear speed is randomly
chosen in [0, 0.8vmax]; starting angular speed is 0; starting
orientation is randomly chosen in [0, 2π).

Figure 25 shows the navigation results of random ini-
tial state adopting the trained agent Q and three differ-
ent fixed parameter sets respectively. The parameter set I
[1 1 1 1 1 1.5]T contains the default parameters. This set
has the same weights of each evaluation subfunction which
means each of them shares the same importance in different
states, and the travelled distance 1.5m which is the medium
grade in Eq. (20). The parameter set II [1 2 1 1 1 2]T is
the same as the simulation in Sect. 4.3, which favors the
subfunction of obstacle avoidance. The parameter set III
[2 1 1 1 1 1.5]T favors the subfunction of navigation to the
target. In Fig. 25, the length and orientation of line segments
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Fig. 25 Navigation result of
random initial state adopting a
trained agent Q, b parameter set
I, c Parameter set II, d
Parameter set III

(a) (b)

(c) (d)

at the initial position of each path means the initial linear
speed and orientation of the robot. The arrival path is blue
while the failure path is red, and the failure points where
robot is forced to stop or collides with obstacles are marked
with stars.

One can find from Fig. 25a that the trained agent enables
the robot to move flexibly between obstacles and reach the
target in most case. In contrast, the arriving paths of Fig.
25b mostly reach the target from the edge or outside of the
obstacle area, and many paths with the starting position that
need the path to go through the middle of the obstacle area
fail. In Fig. 25c, the trend of bypassing the whole obstacle
area is even more obvious as the subfunction of obstacle
avoidance has the largest weight in parameter set II. The
weight of subfunction of navigation to the target is set higher
than otherweights in parameter set III. As a result, thewilling
of going through the obstacle is strong but the least paths
successfully reach the target in 25d. One can find from these
subfigures that the fixed parameter set will make the robot
always show a specific preference of navigation but fail to
consider the different states to change this preference, which
leads to low success rate. The comparison results are shown
in Table 9. Under the same randomly-chosen initial states,
the success rate of the trained agent is significantly higher
than that of the other fixed parameter sets.

This test further proves that the proposed method with
trained agent Q can find the best action at different states
by learning, and have significant effects without long-term
training.

5.3.3 Comparisons with other algorithms

In addition, we test the proposed method on different envi-
ronments by comparison with other local path planning
algorithms. The application scenario in this paper does not
include prior knowledge of obstacle in the global map, so the
comparison algorithm can only use the obstacle within the
detection range for real-time planning.

Rolling RRT algorithm is an improved version of RRT
which uses the rolling detection window instead of the accu-
rate global map for planning. This planning pattern is very
similar to our proposed method. Figure 26a is the result of
rolling RRT which is also smoothed by the Bezier curve (Li
et al. 2016). We build the same environment and test our
method with the trained agent Q in this environment, which
is shown in Fig. 26b. Obviously our path is smoother and
shorter without any smoothing process.

Bug algorithm is a stress based algorithm which avoids
the obstacle by rotating around it. In general, Bug algorithm
does not include the global map such as Bug2 (Lumelsky
and Stepanov 1987), VisBug (Lumelsky and Skewis 1990)
or E-Bug (Lynda 2015), but some versions still consider it
as K-Bug (Langer et al. 2007) or TangentBug (Ishay et al.
1998). Figure 27a is the result of a set of Bug algorithms
(Lynda 2015). We build the same environment and test our
methodwith the trained agent Q in this environment,which is
shown in Fig. 27b.We can find that our trajectory is similar to
the best path (E-Bug) of theBug familywhile being smoother
and safer.
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Table 9 Comparison of
navigation result with fixed
parameters and trained agent

Number of navigations Number of arrival Success rate (%)

Trained agent 700 636 90.86

Parameter set I 700 184 26.29

Parameter set II 700 266 38.00

Parameter set III 700 120 17.14
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Fig. 26 Navigation result of a rollingRRT (Li et al. 2016),bourmethod
with trained agent Q

(a) (b)

Fig. 27 Navigation result of a Bug family (Lynda 2015), b our method
with trained agent Q

Moreover, comparison algorithms only obtain the path. In
contrast, our paths are actually trajectories, whichmeans that
no path tracking algorithm is needed to follow the path. This
is the advantage of DWA and our method preserves it.

The comparisons prove that our proposed method adapts
to different environments and shows better effects than other
algorithms. Another different environment is built in Sect.
6.2.1.

6 Hardware experiments

6.1 Experimental framework

The experiments are carried out on the XQ-4 Pro two-
wheeled mobile robot with Intel Core i7-4500U 1.8 GHz
CPU, 8 GB memory and Robot Operating System (ROS)
based on Ubuntu 14.04, which is shown in Fig. 28. This
robot is equippedwithmany sensors such as gyroscope, lidar,

Fig. 28 The XQ-4 Pro robot

infrared, camera, etc. The robot’s kinematic model is the
same as the simulation in Sect. 5.3. We use a workstation to
remotely login and operate theXQ-4Pro through thewireless
network, and the monitoring and control on the workstation
is based on Rviz software.

In ROS, the autonomous navigation tasks involve many
nodes, which are divided into four categories by different
functions: sensor node, localization node, path planning node
(named move_base) and motor control node. The proposed
algorithm in this paper are implemented in the move_base
node through C++. The framework of autonomous naviga-
tion is shown in Fig. 29. The thin dashed box shows the
process of original path planning, where the A* global path
planner receives the information of the global map and tar-
get, and obtains a reference path which needs to be tracked
by the original DWA local path planner. However, when the
global map is less known or dynamic, a feasible reference
path is hard to obtain. In contrast, our new process shown in
the thick dashed box empowers the DWA algorithm with the
capability of global navigation. As it can be seen in the thick
dashed box, the improved DWA algorithm does not need the
global map, but only the target. The trained agent with opti-
mal weights obtained by the Algorithm 2 is deployed on the
move_base node. Note that the parameters of the training in
Sect. 5.3 are set the same as those in the experiment, so the
trained agent form the simulation can be adopted in the real
robot. The action with the maximum Q-value, which con-
tains the optimal weighs of each evaluation function and the
traveled distance, is selected according to the trained agent
and the current state calculated by the perception. Finally,
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Fig. 29 Framework of autonomous navigation

the best trajectory is obtained and the corresponding speed
command is released to the motor controller.

In addition, due to the existence of unknown obstacles,
the reference path obtained by the global path planner may
be found unfeasible during the navigation. At this time, the
original path planningwill rerun theA*global path planner to
get a new reference path considering the obstacles perceived.
This process is time-consuming and inefficient, especially
when there are many unknown obstacles. In contrast, our
new process can navigate and deal with unknown obstacles
without the reference path.

The supplementary materials of this paper include two
videos named “dwa_static” and “dwa_dynamic”. These
videos are the screen recordings of the workstation during
the two experiments respectively. The agent Q deployed in
the experiments is obtained by the training in Sect. 5.3.1, so
the successful arrivals in the videos validate the effectiveness
of the proposed method. The screenshots of the videos are
shown and analyzed in Sect. 6.2.

6.2 Experimental results

The experiments are conducted in an unknown environment
with static or dynamic obstacles to verify the performance
of the proposed method. All the experimental environments
are set up in the corridor of an office building. Note that
we still operate the global path planner to show the differ-
ence between the reference path generated by the global path
planner and the real trajectory obtained by our proposed algo-
rithm. However, the reference path plays no role in the robot
navigation.

Fig. 30 a Original map of experiment scenario 1, b real experiment
scenario 1

6.2.1 Experiment scenario 1

The first experiment scenario is carried out in the environ-
ment with unknown static obstacles. To reflect the char-
acteristic of “unknown”, the original scenario contains no
obstacles, and its 2D map built by simultaneous localization
and mapping (SLAM) is shown in Fig. 30a. However, as can
be seen in Fig. 30b, the actual environment for navigation
is equipped with obstacles such as stools and boxes. The
robot has no prior knowledge of the obstacles and can only
perceive the obstacles during the navigation. The spatial dis-
tribution of these obstacles is set to significantly intercepts
the trajectory of the robot towards the target.

Figure 31 shows the temporal sequence of the snapshots of
robot navigation visualized in ROS Rviz and the correspond-
ing real robot position in experiment 1. Concretely, Fig. 31a
shows the starting position, the target and the reference path.
We can find that the reference path only considers the origi-
nal obstacle (the wall). Figure 31b–d show the movements of
robot avoiding the equipped obstacles and Fig. 31e shows the
real trajectory as the robot successfully reaches the target. It
can be seen that the robot moves flexibly between the obsta-
cles and the trajectory is quite different from the reference
path, which proves that the proposed method can navigate
the robot in an unknown environment.

6.2.2 Experiment scenario 2

The second experiment scenario is carried out in the environ-
ment with one moving pedestrian as the dynamic obstacle.
Note that although the dynamic obstacles are not included
in our training process, the original DWA is well improved
for better navigation performance, and the trained agent is
obtained by the complex environment containing various
states defined in Sect. 5.2.2, so the proposed method can
deal with the scenario with simple dynamic obstacles. The
map of the original scenario built by SLAM is shown in Fig.
32a and the actual environment for navigation is shown in
Fig. 32b. In the experiment, a pedestrian walks randomly in
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Fig. 31 The process of robot experiment 1. a–e Respectively shows the
robot position in chronological order

Fig. 32 a Original map of experiment scenario 2, b real experiment
scenario 2

the scenario who significantly intercepts the trajectory of the
robot towards the target twice.

Figure 33 shows the temporal sequence of the snapshots
of the robot navigation visualized in ROS Rviz and the cor-
responding real robot position in experiment 2. Concretely,
Fig. 33a shows the starting position, the target and the ref-
erence path. Since there is no obstacle in the original map,
the reference path goes straight to the target. Figure 33b–g
show the movements of robot avoiding the moving pedes-

Fig. 33 The process of robot experiment 2. a–h Respectively shows
the robot position in chronological order
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trian. When a pedestrian hinders the robot motion, the robot
steers away from this pedestrian (see Fig. 33b, c, e, f). When
the pedestrian is far from the robot, the robot returns to the
target direction (see Fig. 33d, g). Figure 33e shows the real
trajectory as the robot successfully reaches the target. It can
be seen that the real trajectory avoids the moving pedestrian
and is quite different from the reference path, which proves
that the proposed method can effectively navigate the robot
in the simple dynamic environment.

7 Conclusion

As a classic local path planning algorithm, DWA has little
capability of global search and relies on a reference path,
which makes the robot navigation hard to achieve when the
global environment is unknown. In this paper, a modified
method for mobile robot navigation in unknown environ-
ments is proposed using the improved DWA combined with
Q-learning.We improve the original DWA bymodifying and
extending the original evaluation functions, whose calcula-
tion method are redesigned and number of the functions is
increased to enhance the navigation capability of DWA. In
addition, the weights of each evaluation function were dif-
ficult to choose, so the Q-learning is applied to adaptively
tune these weights. In order to apply Q-learning to robot nav-
igation in an unknown environment, the state space, action
space and reward function are defined. These definitions try
to mimic the human perception, reasoning and handling of
the unknown environment. Meanwhile they balance naviga-
tion performance and computation cost.

Series of simulations are carried out to verify the per-
formance of the improved DWA and its combination with
Q-learning. The first part of simulations shows that the effi-
ciency of navigation of the improved DWA is significantly
better than that of the original DWA in both environments
with discrete and spiral obstacle. In the second part of sim-
ulations, the training process shows the trend of decreasing
time consumption and increasing success rate, the test result
shows that the success rate of the DWA with the trained
agent is significantly higher than that of DWA with the fixed
parameters, and the comparisons prove the superiority of our
method against other local planners. The proposed method
is validated by the hardware experiments based on XQ-4 Pro
robot. The experimental results show that the improvedDWA
with trained agent is able to navigate the robot in both static
and dynamic unknown environment.

As future work, dynamic obstacles will be considered in
the training process and more complex obstacles will be set
in the experiment. Also, we may study pedestrian behaviors
avoiding robot to promote the robot obstacle avoidance.
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