
Autonomous Robots (2020) 44:1065–1089
https://doi.org/10.1007/s10514-020-09919-8

Online trajectory planning and control of a MAV payload system in
dynamic environments

Nikhil D. Potdar1 · Guido C. H. E. de Croon2 · Javier Alonso-Mora1

Received: 25 December 2018 / Accepted: 9 June 2020 / Published online: 24 June 2020
© The Author(s) 2020

Abstract
Micro Aerial Vehicles (MAVs) can be used for aerial transportation in remote and urban spaces where portability can be
exploited to reach previously inaccessible and inhospitable spaces. Current approaches for path planning of MAV swung pay-
load system either compute conservative minimal-swing trajectories or pre-generate agile collision-free trajectories. However,
these approaches have failed to address the prospect of online re-planning in uncertain and dynamic environments, which is
a prerequisite for real-world deployability. This paper describes an online method for agile and closed-loop local trajectory
planning and control that relies on Non-Linear Model Predictive Control and that addresses the mentioned limitations of con-
temporary approaches. We integrate the controller in a full system framework, and demonstrate the algorithm’s effectiveness
in simulation and in experimental studies. Results show the scalability and adaptability of our method to various dynamic
setups with repeatable performance over several complex tasks that include flying through a narrow opening and avoiding
moving humans.

Keywords Micro aerial vehicle · Collision avoidance · Trajectory optimization · Optimal control · MAV-payload system ·
MPC · Motion Planning in dynamic environments

1 Introduction

The small size, agility, and low upfront costs of Micro Aerial
Vehicles (MAVs) could instigate their widespread use and
rapid deployment for payload transport in areas that are inac-
cessible or dangerous for humans and conventional (aerial)
vehicles. Current applications for MAVs with slung pay-

A video of the experimental results is available at https://youtu.be/
9C7O34W1w8Y.

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s10514-020-09919-8) contains
supplementary material, which is available to authorized users.

B Nikhil D. Potdar
nikhil.potdar94@gmail.com

Guido C. H. E. de Croon
G.C.H.E.deCroon@tudelft.nl

Javier Alonso-Mora
j.alonsomora@tudelft.nl

1 Cognitive Robotics, Delft University of Technology, 2628 CD
Delft, The Netherlands

2 The Micro Aerial Vehicle Lab, Delft University of
Technology, 2629 HS Delft, The Netherlands

loads (the MAVP system) include search and rescue (Ryan
andHedrick 2005), package/cargo delivery, and construction
(Lee 2018) primarily in large, rural, obstacle-free spaces.

Operation of MAVPs in urban settings presents itself with
notable challenges given the complex and dynamic environ-
ment within which they would operate. A MAVP system is
required to be able to quickly, safely, and autonomously nav-
igate an obstacle-ridden space while adapting to different
situations. Carriage of a swinging payload vastly increases
the system’s spatial footprint making operation in restric-
tive spaces challenging. In such situations MAV trajectory
planning and control is necessary to generate the desired
swing motions to avoid collisions with obstacles. Failing to
acknowledge the system’s future response when perform-
ing agile flight could result in inevitable collisions as by the
time an obstacle is to be avoided, the MAV might be unable
to divert the swinging payload away. Working around the
problem, one may pre-generate trajectories for fully defined
environments (and thus static), or actively minimise swing
to reduce the system’s dynamic response, however, we will
demonstrate that these undermine the real-world practicality
of the approaches in dynamic environments.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-020-09919-8&domain=pdf
http://orcid.org/0000-0001-8377-3620
https://youtu.be/9C7O34W1w8Y
https://youtu.be/9C7O34W1w8Y
https://doi.org/10.1007/s10514-020-09919-8

1066 Autonomous Robots (2020) 44:1065–1089

1.1 Contributions

Our main contribution is an online local motion planner
and controller for the safe, agile, and collision-free flight
of a MAVP system in dynamic, multi-obstacle settings.
Our method is formulated as a constrained optimisation
using a finite-horizon Non-linear Model Predictive Control
(NMPC). The optimisation problem can be efficiently solved
thanks to contemporary fast solvers.

A full system framework is outlined integrating theNMPC
controller in a combined hardware and software based con-
trol loop. The proposed framework is verified and validated
in simulated and experimental studies where we showcase
our method’s scalability, adaptability, and performance over
various complex tasks in static and dynamic environments.
We compare it to state of the art methods and discuss the
effect of computation time on the resulting system perfor-
mance. Unlike previous works, we successfully demonstrate
the safe operation and readiness of ourmethod in realistic set-
tings involving a MAVP system operating amongst multiple
moving humans.

1.2 Related work

Historically, studies of aerial vehicle control with suspended
payloads involved helicopter systems with applications to
load transportation as shown inCicolani andKanning (1992),
however, with the advent of MAVs the research into MAVP
systems has gained traction. This paper addresses MAVP
motion planning for collision avoidance which we broadly
classify into two types, namely open-loop planning with
feedback control, and unified closed-loop planning and con-
trol; our method contributes to the latter. We introduce
contemporary approaches for both followed by a general
discussion of NMPC control for MAV(P) systems and its
application to closed-loop planning and control.

1.2.1 Open-loop MAVP trajectory planning

Most contemporary approaches to collision-free trajectory
planning for MAVP systems have addressed the track-
ing of pre-generated, possibly agile, trajectories in static
workspaces. We refer to these as offline, open-loop planning
approaches as there is no in-the-loop dynamic re-planning of
trajectories.

Using pre-generated trajectories, planar and spatial track-
ing ofMAVP trajectories has successfully been demonstrated
through accurate modelling and stabilisation of the vehicle
(Feng et al. 2014; Pizetta et al. 2015) sometimes utilising
swing minimisation (Bisgaard et al. 2010; Palunko et al.
2012b; Trachte et al. 2014) to mitigate coupling distur-
bance effects. The latter approach is energetically inefficient
and over-conservative as the vehicle devotes considerable

control effort to reduce swing thus resulting in a sluggish
system. To accomplish desirable yet feasible MAV and pay-
load responses, the pre-generated trajectories are computed
taking the MAVP system model into account. Algorithms to
achieve this have included, amongst others, optimisation and
ReinforcementLearning (RL) techniques. In the former, opti-
mal trajectories are computed as a costminimisation problem
subject to the task objectives and the MAVP model which
are then encoded as full state evolutions (Foehn et al. 2017;
Palunko et al. 2012a) or a reduced dimension state using
differential-flatness (Sreenath et al. 2013; Tang and Kumar
2015). In RL, as used in Palunko et al. (2013), Faust et al.
(2013) and Faust et al. (2017), feasible action policies (the
trajectory) are generated that enforce the MAVP model on
state transitions.

The main limitation of pre-generating MAVP trajecto-
ries is the reliance on task-specific full motion planning
which is consequently inherently non-adaptive at run-time
thus precluding handling of uncertain, dynamic obstacles.
Additionally, any trajectory infeasibility at run-time is catas-
trophic as the planning method is unable to accommodate
for this. Therefore, the aforementioned studies only address
fully known environments with static obstacles limiting the
practical application of these methods to limited specialised
demonstrative cases. In contrast, ourmethod is able to rapidly
re-plan even if the local trajectories intermittently become
infeasible due to prevailing conditions.

1.2.2 Closed-loop MAVP trajectory planning

Motion planning in dynamic environments requires re-
planning at run-time to accommodate for the changing
environment. Closed-loop re-planning of full motion trajec-
tories on a global level is intractable for a high-dimensional
system, such as that of a MAVP, thus necessitating the use
of local planners with finite time-horizons Brock and Khatib
(2000). Additionally, local planners need to cope with infea-
sibility during run-time while still conforming towards a
higher global planning objective.

In De Crousaz et al. (2014), an agile and collision-free
local trajectory generator and controller method was demon-
strated in simulated and experimental setups with static
obstacles using iterative Linear Quadratic Gaussian (iLQG)
control. The optimal control iLQG method relies on a cost
function that is minimised at every control step such that
user-defined planning objectives are met; the result is a
local trajectory satisfying the objectives and system dynam-
ics. The iLQG’s iterative algorithm is exploited to generate
locally optimal linear feedback controls to achieve the real-
time, closed-loop performance. In a similar fashion to Tang
and Kumar (2015), De Crousaz et al. (2014) apply iLQG
to demonstrate impressive manoeuvres which included the
flight through a narrow opening. However, the study by De

123

Autonomous Robots (2020) 44:1065–1089 1067

Crousaz et al. (2014) did not consider planning in a dynamic
environment. Furthermore, required rotor thrust inputs were
generated at run-time which could saturate as the method did
not account for vehicle constraints during planning. The con-
sequence of saturating inputs over sustained time periods is
the potential system instability and/or significant deviation
of the actual to planned trajectory. In contrast, our approach
takes into account the vehicle and environmental constraints
to ensure the physical feasibility of the generated trajectories.

1.2.3 Non-linear model predictive control and unified
planning and control of MAV(P)s

Early studies have successfully demonstrated the use of
(N)MPC for real-time MAV (Kim et al. 2002; Tzes et al.
2012) and MAVP (Trachte et al. 2014; Gonzalez et al. 2015)
simple trajectory tracking. Focussing on the latter, in Trachte
et al. (2014) NMPC for MAVP trajectory tracking con-
trol was addressed with a comparison to LQR control; the
results demonstrated NMPC’s superior physical constraint
handling for feasibility guarantees, and larger attainable
MAVP flight envelope from the non-linear MAVP model
description. Overall NMPC outperformed LQR in simulated
tasks involving swing minimisation and agile manoeuvres.
In Gonzalez et al. (2015), studies from Trachte et al. (2014)
were extended to an experimental setup validating the results,
however, unlike inDeCrousaz et al. (2014), both studies only
addressed the control aspect of tracking pre-generated trajec-
tories. In contrast, ourmethod unifies the online planning and
control extending the capability beyond simple tracking of a
pre-defined plan approach.

Traditionally, (N)MPC algorithms for unified motion
planning and control of MAVs have seldom been studied
as the required real-time re-planning was computationally
intractable (Neunert et al. 2016).With today’s improved com-
puting capabilities and fast optimisation solvers applications
have been demonstrated for a MAV without swung payload
(Neunert et al. 2016; Naegeli et al. 2017). The method of
Neunert et al. (2016) utilises the Sequential Linear Quadratic
(SLQ) algorithm to solve an unconstrained optimal control
problem that is paired with an external high-level planner
that pre-generates feasible waypoints accounting for only
static obstacles. Therefore, their method is only deployable
to MAVs in static environments for traversing a specific pre-
generated set of waypoints.

Building upon the NMPC planning algorithm introduced
by Naegeli et al. (2017), we utilise an interior-point based
algorithm from Domahidi and Jerez (2014) within a NMPC
setting to solve a constrained optimal control problem that is
subject to the constraints on the system dynamics and envi-
ronment. Introduction of constraints in our method allows
us to perform real-time obstacle avoidance while still pro-
viding guarantees on the trajectory feasibility. Thus, in this

work we demonstrate the viability of real-time NMPC based
unified motion planning and control for MAVPs in dynamic,
multi-obstacle settings.

1.3 Paper organisation

We introduce preliminaries in Sect. 2 with our notations
and system models. In Sect. 3 we describe our method for
online and closed-loop, unified motion planning and con-
trol with NMPC. For the simulated and experimental studies
performed, we outline our system setup and framework in
Sect. 4. In Sects. 5 and 6 we discuss our findings followed
by concluding remarks in Sect. 7.

2 Preliminaries

2.1 Notation

The following notations are observed; scalars x , vectors x,
matrices X , sets X , and reference frames {X}. Time deriva-
tives use dot accenting. Position vectors are denoted by
p ∈ R

3. Unless otherwise stated, vectors are expressed
in the East-North-Up (ENU) inertial frame {I }. For vec-
tor x ∈ R

n and positive semi-definite n×n matrix Q, the

weighted squared norm is ‖x‖Q
Δ= x� Qx. Rotations from

frame {A} to {B} are denoted bymatrix RB
A∈SO(3) and basic

axial rotations around x by Rx∈SO(3).

2.2 Quadrotor with swung payloadmodel

The system comprises a quadrotor of mass mq and a sus-
pended point mass ml attached by a l length cable from the
quadrotor centroid. Let pq , pl be the quadrotor, load posi-
tion, and rql = pl − pq . All reference frames are defined
in Fig. 1. The load suspension angles θl , φl parametrise the
orientation of {L} to {S}. Intermediary frame {S} is used to
avoid the singularity for a downward equilibrium load posi-
tion when computing a rotation from {L} to {E} directly.
Then let the MAVP configuration and its time derivative be
given by variables

q =
[
p�
q , θl , φl

]
∈ R

5

q̇ = d
dt q =

[
ṗ�
q , θ̇l , φ̇l

]
∈ R

5,

and let θq , φq be the true quadrotor pitch and roll with yaw
remaining constant. The following additionalmodel assump-
tions are adopted;

– rigid, massless cable with free suspension points,

123

1068 Autonomous Robots (2020) 44:1065–1089

Fig. 1 Quadrotor-Payload systemwith the following references frames;
{I } inertial ENU, {E} vehicle-carried ENU, {B} vehicle body frame,
{S} is {E} rotated by 180◦ about the {E} x-axis and {L} load frame with
z-axis directed away from the cable’s suspension point. Quadrotor and
load positions and relative suspensions angles indicated. Euler angles
φq , θq parametrise frame {B} to {E}; constant yaw assumed

– quadrotor centre of gravity, centroid, and cable suspen-
sion point coincide,

– no aerodynamic drag effects on the cable.

A non-rigid cable would introduce switching dynamics
increasing the complexity of the system modelling. A pre-
liminary study on the cable rigidity during agile manoeuvres,
as shown in “Appendix A”, shows the cable rarely slacks
during flight allowing this assumption to be made. The sec-
ond assumption regarding coincidence is made to simplify
the model as the listed points tend to physically be in close
proximity. Though the effects of the real point offsets on
the system dynamics were not considered, for the purpose
of performing predictions in the order of seconds, the effect
was considered to be negligible. The assumption of no cable
drag stems from the rationale that the string’s exposed sur-
face area to the flow is small resulting in negligible effects
on the system dynamics.

We first describe the quadrotor’s input handling and the
aerodynamic drag model. We then complete the model by
derivation of the coupled quadrotor-load dynamics.

2.2.1 Quadrotor inputs

As in Klausen et al. (2015), we abstract quadrotor motor
inputs and assume fast attitude andmotor control such that by
actuating the quadrotor’s pitch and roll, and setting a thrust
command, we produce an inertial control force Fu in any
desired direction for realising translational motion. There-
fore, let the inputs be a desired quadrotor pitch (radians),
roll (radians), and thrust command (meters/second) defined
in {E} giving

u = [
θ̄q , φ̄q , w̄q

] ∈ R
3.

This input choice is consistent with our chosen Parrot
Bebop 21 quadrotor that internally controls motors based on
inputs u to achieve full spatial flight; the internal controller is
schematised in “Appendix B”. The input magnitude ranges
are limited and hardware specific; these are accounted for
in the design of the model predictive controller using con-
straints as further discussed in Sect. 3.3. We note that our
method is not limited to the our chosen hardware and could
easily be adapted to other quadrotors.

As the hardware-specific internal controller dynamics
u → Fu are not documented, we empirically model the
function. We define Fq as the purely vertical control force
generated by the four rotors when commanded by input w̄q .
The quadrotor’s true pitch, roll response and the vertical con-
trol force Fq resulting from commanded inputs are given by

[
θq , φq , Fq

] = [
hθ (θ̄q), hφ(φ̄q), hF (w̄q)

]
(1)

where, using the method presented in Stanculeanu and
Borangiu (2011), hθ , hφ, hF are identified for the fast
dynamics and decoupled as three linear second-order black-
box models with model states and state transition

xc = [
xθ,1, xθ,2, xφ,1, xφ,2, xF,1, xF,2

] ∈ R
6

ẋc = fc(xc, u). (2)

Note that with hF wemodel w̄q → Fq directly as the internal
vertical velocity stabiliser controls the vertical control force
Fq (in {E}) generated by the motors based on the thrust com-
mand w̄q (See “Appendix B”). Then similar to Naegeli et al.
(2017), using outputs from (1) and based on equilibrium rela-
tions, the input control force is given by

Fu =
[
m

tan(θq)

cos(φq)
g, − m tan(φq)g, Fq + mg

]
∈ R

3 (3)

where m = mq + ml and g = 9.81m/s2. See “Appendix C”
for a derivation of this relation.

The full-form of (1) identified for the Parrot Bebop 2
quadrotor is provided in “Appendix D”.

2.2.2 Aerodynamic drag effects

We derive the drag induced forces on the MAVP system; as
in Derafa et al. (2006), assuming relatively low quadrotor
velocities ṗq (up to 5m/s) we model a proportional linear
drag force on the quadrotor with drag constant kDq giving

FDq = kDq ṗq . (4)

As in Klausen et al. (2015), for the payload we only con-
sider the rotational load motion relative to the quadrotor,

1 Parrot. http://developer.parrot.com/docs/SDK3/.

123

http://developer.parrot.com/docs/SDK3/

Autonomous Robots (2020) 44:1065–1089 1069

hence, its drag force is assumed to always be perpendicu-
lar to the moment arm (the rigid cable). The approximation
introduces swing associated damping due to the relatively
large rotational payload velocities. This allows the load’s
drag to be described in terms of the suspension angles and its
derivative which are components of q and q̇. We also avoid
defining the drag in terms of load velocity as this term is not
a variable available in q̇. Additionally, following from our
free suspension point assumption, there are no payload drag
induced reactive forces ormoments on the quadrotor.Wenote
that prolonged linear translation of the system would make
the linear drag contribution to the load dynamics significant
as the load would trail behind the quadrotor; this could be
included in future studies. Under these simplifications, the
load’s signed quadratic drag force with drag constant kDl is
given by

FDl = kDlv
2 v

|v| ≡ kDll
2ω2 ω

|ω| (5)

where v = ωl for circularmotionwith v,ω the linear, angular
load velocities and l the cable length. Substituting ω in (5)
by the load’s suspension angular rates and computing the
induced moment at the suspension point we obtain

[
τθ , τφ

] = kDll
3
[
ω2

θ
ωθ|ωθ | , ω2

φ
ωφ|ωφ|

]
(6)

where ωθ = θ̇l , ωφ = φ̇l and τθ , τφ are the load’s drag force
induced moments on the suspension angles θl , φl . With (4)
and (6), the total exogenous system drag term is

D(q̇) =
[
F�
Dq , τθ , τφ

]�
. (7)

2.2.3 System kinematics and dynamics

The MAVP Equations of Motion (EOMs) are derived in
frame {I } according to Lagrangian mechanics. With frame
transformations

RS
L = Ry(φl)Rx (θl) (8)

RE
S = Rx (π), (9)

and l = [0, 0, l]� the rigid cable vector in {L}, we define
the load position as

pl = pq + rql = pq + RE
S RS

L l. (10)

The payload velocity is then given by

ṗl = d
dt pl = ṗq + RE

S Ṙ
S
L l. (11)

Table 1 MAVP system variables and parameters

Notation Definition

mq ,ml ; g ∈ R Mass of quadrotor, load; Gravitational acceleration

l; θl , φl ∈ R Cable length; Payload suspension angles

pq , pl ∈ R
3 Position of quadrotor, payload in {I }

q, q̇ ∈ R
5 MAVP configuration, and its time derivative

u ∈ R
3 Quadrotor input commands

F, Fu ∈ R
n General, control input force in {I }

xc, xq , x ∈ R
n Quadrotor input, system, and full MAVP model state

The Lagrangian in terms of the system kinetic and potential
energies is

L = 0.5
∥∥∥[

ṗq, ṗl
]�∥∥∥

K︸ ︷︷ ︸
kinetic energy

− g
(
mq ṗ

�
q e3 + ml ṗ

�
l e3

)
︸ ︷︷ ︸

potential energy

(12)

where K = diag(mq(1×3), ml(1×3)) and e3 = [0, 0, 1]�.
Using Lagrange’s equations according to D’Alembert’s

principle, the non-linearEOMsdescribing theMAVPdynam-
ics in compacted form are given by

q̈ = M−1(q)
(
F − D(q̇) − C(q, q̇) − G(q)

)
(13)

with force F = [Fu, 0, 0]� ∈ R
5, mass M, drag D from

(7), Coriolis C and gravitational G matrix terms. Equa-
tion (13) in its full form is presented in Klausen et al. (2015).
Using (13), the system state and state transition are given by

xq = [
q, q̇

] ∈ R
10

ẋq = [
q̇, q̈

] = fq(xq , Fu). (14)

2.2.4 Full MAVPmodel

Combining the quadrotor input and system model from (2)
and (14), we denote the full MAVP state and state transition
by

x = [
xc, xq

] ∈ R
16

ẋ = [
ẋc, ẋq

] = f (x, u). (15)

Important MAVP model related variables and parameters
that we often refer to are summarised in Table 1.

2.3 Obstacle model

Obstacles with each position po are user-specified as cuboids
and subsequently modelled by enclosing ellipsoids. Human
obstacles are also specified as a cuboid of comparable size.
Ellipsoids create smooth convex bounding volumes for (non-
convex) obstacles making them appropriate for representing

123

1070 Autonomous Robots (2020) 44:1065–1089

Fig. 2 Cuboid obstacle (left)withfixedposition po or dynamic (human)
obstacle (right) with constant velocity vo each modelled by bounding
So and expanded Se ellipsoid with dimensional buffers β

objects including trees, humans and pillars. Additionally,
computationally efficient collision checks against the ellip-
soid’s quadric exist (Uteshev and Goncharova 2018) making
them favourable for real-time applications.

2.3.1 Obstacle ellipsoid definitions

Let the ellipsoid semi-principal axes (ao, bo, co) be propor-
tional to the specified cuboid dimensions (uo, vo, wo) such
that there is ellipsoid surface contact at all cuboid corners,
hence

(ao, bo, co) =
√
3
2 (uo, vo, wo) .

We define two ellipsoids with buffers β as shown in Fig. 2;

1. the bounding ellipsoid So with dimensions (ao + βo,

bo + βo, co + βo)models the obstacle againstwhich col-
lisions are checked,

2. the expanded ellipsoid Se with dimensions (ao + βe,

bo + βe, co + βe) represents a padding identified as a
high risk zone used for planning safer trajectories.

Note by setting β, a minimum cuboid to ellipsoid sep-
aration of β is warranted. Buffers βo, βe are used for
collision-avoidance purposes as will become clear later.

2.3.2 Obstacle motion prediction

Static obstacle positions are assumed to be readily available
for planning. As in Naegeli et al. (2017), we assume a con-
stant velocity model for dynamic obstacles and predict their
future positions based on a velocity estimate produced by a
linear Kalman Filter using measured obstacle position data.

2.4 MAVP-obstacle collision avoidance requirements

Imperative to collision avoidance is ensuring separation
between theMAVPandobstacles.Byquantifying thequadro-
tor, load, and cable’s proximity to an obstacle we define
mathematical requirements to guarantee a collision-free sys-
tem.

2.4.1 Point to ellipsoid distance

The point to an ellipsoid signed distance is approximated
as the true value cannot be expressed in closed form (Ute-
shev and Goncharova 2018). For a generic ellipsoid S with
buffered dimensions (ao + β, bo + β, co + β) and position
po, the approximate signed distance to a point p based on
the ellipsoid equation is

do(p, S) = ‖ p − po‖Ω − 1 (16)

where Ω = diag(1/(ao + β)2, 1/(bo + β)2, 1/(co + β)2).
When p is inside or on S, do ≤ 0, and as p is further away

from S, do increases from 0 to infinity.

2.4.2 Quadrotor and payload proximity

Wemodel the quadrotor andpayload individually by abound-
ing sphere with an associated radius rc. Without loss of
generality, we assume an equal rc for the quadrotor and pay-
load. Consider the quadrotor; using the obstacle’s bounding
ellipsoid So and setting βo > rc and p = pq , then using
(16) we can guarantee the quadrotor does not collide with
the cuboid shaped obstacle provided

do(pq , So) > 0. (17)

Similarly, considering the payload associated bounding
sphere and position pl gives

do(pl , So) > 0. (18)

2.4.3 Rigid cable proximity

Modelling the cable as a mobile finite line segment we
identify the cable’s Closest Point of Approach (CPA) to
So denoted by p∗

c ; this is the cable’s most critical point
for collisions simplifying the check as a point to ellipsoid
computation. Given the cable cross-section dimensions are
negligible, no buffer is required so βo = 0. Using (16), p∗

c is
computed by

p∗
c = argmin

pc
(do(pc, So)) (19)

with pc ∈ {
p| p = pq + s(pl − pq), s ∈ [0, 1]

}
.

“Appendix E” shows the problem (19) is expressible in
closed-form and analytically solvable. Using (19) the cable
is guaranteed to be collision-free with respect to the cuboid
obstacle provided

do(p∗
c , So) > 0. (20)

123

Autonomous Robots (2020) 44:1065–1089 1071

Requirements (17-18,20) must be satisfied with respect to
each obstacle to guarantee a collision-free MAVP system.

3 Online and closed-loopMAVP trajectory
generation

3.1 Method overview

The planning and control objective is to navigate the MAVP
system from an initial position pstart to a user-definable goal
position pgoal in a safe, agile, and collision-free manner.
To accommodate for the dynamic environment, we perform
dynamic and closed-loop localmotion planning usingNMPC
which is a receding finite-horizon controller.

3.1.1 Receding horizon dynamic planning

Denote by Δt the time-step, by k the stage index, and by
N the finite planning horizon (number of stages). At every
sampling instance t we generate a local trajectory of duration
NΔt encoded as a sequence of N +1 states that includes the
initial state x0, the transition states xk , and a terminal state
xN thus giving

x̃ := [x0, . . . , xN] . (21)

For state realisation, the associated input sequence up to the
terminal state is denoted by

ũ := [
u0, . . . , uN−1

]
. (22)

Following execution of u0, the planning is receded by Δt
to t + Δt . At the next sampling instance the new obstacle
positions and a new initial state estimate x0 are obtained.
Subsequently, a local trajectory is re-generated by initialising
the solverwith a time-shifted version of the previous solution.
The time-shift in simulation studies is a fixed simulation time
step, and in real experiments the actual control loop time is
used. This approach results in our method’s computationally
efficient closed-loop performance with robustness to model
uncertainties (Naegeli et al. 2017); we illustrate this process
in Fig. 3.

3.1.2 Local trajectory generation

At every sampling instance we solve a constrained optimi-
sation problem. The designer encodes the desired planning
objectives in an objective function using costs to quantify the
generated trajectory’s performance. The costs are designed
to lower with an increasing satisfaction of the objective. For
every trajectory stage k, we evaluate an associated scalar cost
giving a cost sequence

Fig. 3 System moves towards pgoal with t2 > t1; planned local tra-
jectory (grey) at the current time (left) that is updated in a future time
(right) with the new state and obstacle data. Schematic projected top
view with illustrative obstacle ellipsoids shown

c̃ := [c0, . . . , cN] . (23)

Within (23), the trajectory stage costs are given by

ck = cs(xk, uk, ∗k), k ∈ [0, N − 1] (24)

where function cs is evaluated on the predicted state, input,
and any online environment variables (obstacle positions,
navigation goal, slacks etc.) thatwe denote by∗. The terminal
cost is given by

cN = ct (xN , ∗N) (25)

where function ct is evaluated on the variables of the termi-
nal stage N . Terminal costs are used to achieve closed-loop
stability of the finite-horizon planner (Mayne et al. 2000).

We then quantify the full trajectory’s performance by the
objective function defined as

J =
∑N

k=0
ck . (26)

Constraints are introduced to limit the solution space for the
trajectory which is encoded in x̃ and ũ thus providing (feasi-
bility) guarantees for the computed trajectory. To ensure the
optimiser always returns a solution at run-time,wemay toler-
ate minor constraint violations by introducing non-negative
slack variables that soften the constraint (Zheng and Morari
1995). We encode the slack variables associated with the tra-
jectory in

s̃ := [s0, . . . , sN] . (27)

A planning violation occurs when the optimiser produces
positive entries of s̃. A physical violation only occurs when
the real system breaches constraints, i.e., the current slack s0
of s̃ is positive. By associating a high slack related cost in the
optimisation objective function,we avoid positive entries of s̃
and accordingly any planning and physical violations (Zheng
and Morari 1995).

During optimal trajectory generation we minimise (26)
while respecting the constraints resulting in a NΔt length

123

1072 Autonomous Robots (2020) 44:1065–1089

locally feasible trajectory. In subsequent sections we intro-
duce the costs and constraints after which we formalise the
optimisation algorithm in Sect. 3.4.

3.2 Costs

We introduce cost terms derived fromour planning objectives
presented in Sect. 3.1. We use our weighted square norm
definition fromSect. 2.1with an n×n identitymatrix denoted
by In to make all cost terms scalar and positive.

3.2.1 Point-to-point navigation

For navigation we minimise the displacement between the
quadrotor position and goal pgoal. Let pstart be the start posi-
tion, then we normalise the cost to treat all start to goal
distances equally. The cost term is given by

cnav =
∥∥ pgoal − pq

∥∥
I3∥∥ pgoal − pstart
∥∥
I3

. (28)

Making (28) a stage cost would mean the shortest path
(straight line) is always preferred which may result in dead-
lock for cases where it is necessary to go around an obtrusive
obstacle. Therefore, we use (28) only as a terminal cost thus
allowing curved paths to be generated such that locally and
terminally the system reaches a more favourable position.

3.2.2 Potential field based obstacle separation

For obstacle separation, we employ a MAVP to obstacle
proximity related cost analogous to a reactive potential field
(Khatib 1986). We combine this with constraints to guaran-
tee collision-free trajectories as is presented in Sect. 3.3.3.
This two layered approach, similar to Naegeli et al. (2017),
enhances the operational safety by pro-actively reducing the
collision risk especially for unmodelled system and obstacle
dynamics.

Let p be the quadrotor, load, or cable’s CPA position [see
(19)]; for each object we compute a cost. Let po be the obsta-
cle’s predicted position, then the potential cost term activates
when p is in the obstacle’s expanded ellipsoid Se, i.e., using
(16), do(p, Se) < 0. We choose the Se associated buffer
βe such that βe � βo. Observing that |do(p, Se)| increases
from zero to one as point pmoves from the ellipsoid surface
towards its centre, by penalising a pmore towards the centre,
we naturally discourage p from getting closer to the smaller
bounding ellipsoid So. Given So models the actual obstacle,
using this method we promote separation from the obstacle.
With this insight, and using (16), the cost is formalised as

cpf =
{ ‖do(p, Se)‖I1 , if do(p, Se) < 0,
0, otherwise.

(29)

3.2.3 Input magnitude regulation

The input magnitude associated cost is given by

cin =
∥∥∥u�

∥∥∥
I3

. (30)

For our agile manoeuvres, we weigh this cost low. Associat-
ing a high cost will improve the system’s energy-efficiency
by the conservative use of large inputs.

3.2.4 Payload suspension angles regulation

The suspension angle associated cost is given by

cswing =
∥∥∥[θl , φl]

�
∥∥∥
I2

. (31)

For our agile manoeuvres, we weigh this cost low. Associat-
ing a high cost will minimise the swing angles if desired.

3.3 Constraints

We derive planning constraints from our system and setup
limits in addition to the global planning objectives.

3.3.1 MAVP dynamics

The processmodel state transition given by (15) is discretised
and enforced on the trajectory state evolution by an inter-
stage equality constraint

xk+1 = f (xk, uk) (32)

where k is the stage index.

3.3.2 State and input limits

The state and input values are bound to the system allowable
ranges. Let Xmin, Xmax and Umin, Umax denote the state and
input range limits, then the following inequalities must be
satisfied

Xmin ≤ x ≤ Xmax (33)

Umin ≤ u ≤ Umax. (34)

We specify the hardware-specific limits in Section 4.

3.3.3 Collision-free planning

Collision-free trajectory planning is guaranteed by con-
straining the allowable system’s spatial states. Let p be the
quadrotor, load, or cable’s CPA position [see (19)]; for each
wedefine a constraint.Adopting the requirements (17-18, 20)

123

Autonomous Robots (2020) 44:1065–1089 1073

for a collision-free MAVP system as presented in Sect. 2.4,
and using (16), the associated constraint is formalised as

do(p, So) + sc > 0 (35)

with the non-negative scalar slack sc. Note that even though
(35) is defined for every obstacle, only one slack sc is defined
and used in all obstacle associated inequality constraints per
timestep in our optimisation problem definition. When any
do(p, So) becomes negative, sc assumes the highest value
such that all obstacle associated inequality constraints are
satisfied according to (35) for a specific timestep. Ideally sc
is zero hence the system is collision-free with respect to all
obstacles. Provided a sufficiently high penalty cost associated
with the slack, the feasible solution is recovered as shown in
Kerrigan and Maciejowski (2000). Summarising, only one
slack is necessary to differentiate between a system in colli-
sion or collision-free state with no necessary differentiation
with respect to which obstacle that occurs.

3.3.4 Workspace limits

For confined (indoor) operation, the quadrotor and load posi-
tion is limited to the workspace limits. Assume a cuboid
workspace, then let Wmin, Wmax denote the minimum and
maximum workspace coordinates in frame {I }, and between
which the cuboid’s space diagonal is defined, then the fol-
lowing inequalities must be satisfied

pq + 13sq ≥ Wmin and pq − 13sq ≤ Wmax (36)

pl + 13sl ≥ Wmin and pl − 13sl ≤ Wmax (37)

with 13 = [1, 1, 1]� and the non-negative scalar slacks sq ,
sl . When a constraint violation occurs, the slacks assume the
highest value required to satisfy the associated workspace
inequalities. Under workspace convexity, we also guarantee
the rigid cable remains inside W . Note that the inequalities
are written in short form, however, for implementation each
vector dimension would each have an individually defined
inequality.

3.3.5 Scalability to large obstacle rich workspaces

We set a maximum omnidirectional obstacle detection range
originating from the quadrotor position whereby we disre-
gard any obstacles beyond the range for planning purposes.
Therefore, the previously introduced obstacle related costs
and constraints are dynamically implemented.

3.4 Optimisation algorithm

Local trajectory generation is formulated as a constrained
optimisation problem subject to the following costs and con-
straint definitions;

3.4.1 Costs

We define the stage and terminal cost functions based on
the cost term definitions (28–29,65, 30-31). Let w denote a
user-definable weighting used to assign relative importance
to costs and their associated objective, then the stage cost
function, as introduced in (24), is defined as

cs(xk, uk, ∗k) = wincin + wswingcswing

+ w�
pfcpf + w�

slacks, k ∈ [0, N − 1]
(38)

where wpf and cpf are vectors of weights and costs equal in
size to the number of obstacles, and w�

slacks all the slacks
associated cost where s = [

sc, sq , sl
] ∈ R

3. The terminal
cost function, as introduced in (25) is defined as

ct (xN , ∗N) = wnavcnav + wincin + wswingcswing

+ w�
pfcpf + w�

slacks.
(39)

3.4.2 Constraints

We impose the system dynamics, and state/input constraints,
as introduced in Sect. 3.3, on the optimiser. By function
g(xk, uk, ∗k) we denote all additional inequality constraints
as defined in (35-37) which are functions of state, input and
additional (time specific) variables/parameters, e.g., obstacle
positions and workspace limits.

Combining our previously introduced trajectory variables
(21–22,27), we denote the optimisation variable by

z̃ = [
x0, . . . , xN , u0, . . . , uN−1, s0, . . . , sN

]

≡ [
x̃, ũ, s̃

]
.

(40)

With the estimated initial state x0, we optimise z̃ such
that the objective function (26) is minimised resulting in a
locally optimal and feasible trajectory. With costs and con-
straints stacked together over all stages and obstacles, the
optimisation problem that is solved at every planning time
instance t is formally defined as

123

1074 Autonomous Robots (2020) 44:1065–1089

min
z̃

J = ct (xN , ∗N) +

N−1
k=0 cs(xk, uk, ∗k)

s.t. x0 = x(t) (Initial Estimated State)

xk+1 = f (xk, uk) (Discretised Dynamics)

g(xk, uk, ∗k) ≥ 0 (Inequality Constraints)

xk ∈ X (State Constraints)

uk ∈ U (Input Constraints)

sk ≥ 0 (Slack Constraints).

(41)

3.5 Theoretical analysis

3.5.1 Problem dimensionality

Variable z̃ is optimised at every planning time instance encod-
ing the optimised local trajectory in its solution. As given by
(40), z̃ comprises a sequence of N + 1 states x ∈ R

16, N
inputs u ∈ R

3 and N +1 slacks s ∈ R
3, hence z̃ ∈ R

22N+19.

3.5.2 Optimality and feasibility

We use a fast non-linear programming based optimiser,
namely FORCES Pro (Zanelli et al. 2017), on our non-
convex optimal control problem. FORCES Pro implements
a primal-dual interior-point constrained optimisation algo-
rithm which is outlined in “Appendix F”. Consequently, the
computed trajectories are only locally optimal over the plan-
ning horizon N with the possibility of deadlocks when the
planned trajectory converges to any local optima in the solu-
tion space. When this occurs, our planner holds the MAVP at
this locally optimal state until a solution becomes available as
a result of the changing environment or external perturbation
to the system.

Planning feasibility is warranted over the full N stages
when all optimised slacks s̃ are zero. When full planning
feasibility is not realised, provided that at least the current
slack s0 is zero, the current system state and inputs will be
feasible. Re-planning at a future instance can re-establish full
planning feasibility.

A comprehensive overview of the optimality and stability
of (N)MPC algorithms is available in Mayne et al. (2000).

4 System setup and framework

We outline our particular implementation of the system
model and NMPC controller for simulated and experimental
studies, including a state estimator.

4.1 System properties and hardware

The MAVP system properties used for all studies are given
in Table 2. The maximum pitch, roll and thrust command

Table 2 MAVP system properties as used for study

Quad. mass 500 g Quad. drag const. kDq 0.28

Load mass 11 g Load drag const. kDl 0.00177

Cable length 0.77m Max.
∣∣θ̄q

∣∣, ∣∣φ̄q
∣∣ input 15◦

Max.
∣∣w̄q

∣∣ input 1m/s Detection range 3.5 m

Payload

Cable

4 x Markers

4 x Markers
Quadrotor

Fig. 4 ParrotBebop2quadrotorwith cable suspended load and attached
tracking markers

inputs are derived from quadrotor’s system limits as used in
this study. The MAVP hardware is shown in Fig. 4.

4.2 Workspace

We perform studies in a simulated and real workspace
measuring 6.0 × 3.0 × 2.6m (L×W×H). The real indoor
workspace has an OptiTrack2 Motion Capturing System
(MCS) that can track markers for obtaining rigid-body pose
measurements in SE(3) at around 120 Hz.

4.3 Programmed control system framework

The control framework is schematised in Fig. 5; in
“Appendix B” the on-board control component is expanded
upon. The off-board components run on an Intel i7-3610QM
Quad Core 3.3GHz processor PC, and is programmed in
MATLABwith an efficientC language solver FORCES Pro
performing the online NMPC computations (Zanelli et al.
2017). All studies are performed on the same computer with
at maximum one core being utilised by FORCES Pro at
run-time. The on-board components run on the MAVP hard-
ware; for simulated studies we replicate this with our system
model. In experiments, communication between hardware
is performed over a ROS based network. As it is shown in
Sect. 5, the controller loop time was on median in the order
of 10−2 s, therefore, for simulation and controller design,
explicit Runge–Kutta 2nd order integration of the system
model is used. Runge–Kutta 2nd was chosen as a prelimi-
nary examination of the predicted system response showed
it provided a good balance between loop time performance
and dynamics approximation. An in-depth comparison of

2 OptiTrack Prime 17W. http://www.optitrack.com.

123

http://www.optitrack.com

Autonomous Robots (2020) 44:1065–1089 1075

Fig. 5 Control system framework with the off-board NMPC controller
and state estimator sharing a MAVP model, and the on-board MAVP
system. Quadrotor input controller performs closed-loop low-level con-
trol. External motion capturing produces measurements necessary for
state estimation

Table 3 Implemented default cost term weights

Navigation wnav 1.0 Inputs win 0.01

Potential field wpf 1.2 Swing Angles wswing 0.001

Slacks wslack 10000

other discretisationmethods is beyond the scope of this paper
and should be investigate in future studies. The implemented
NMPC cost weights are given in Table 3.

4.4 Cascaded Kalman filter state estimator

Kalman Filtering (KF) based state estimation of x is per-
formed using the system process model, and MCS based
sub-millimetre measurements of the quadrotor and load’s
pose in SE(3) (Point 2009). As the Parrot Bebop’s standard
interface lacks a high frequency output of internal sensor
measures to off-board clients, they were unusable for our
state estimation routine. The MAVP system for which we
present process models in Sect. 2.2 comprises (i) a quadro-
tor specific input controller, and (ii) the general non-linear
MAVP system. We distribute the state estimation over two
KFs permitting individual treatment of the subsystems and
maintaining modularity.

A Linear KF is used to estimate state xc of the quadro-
tor input model (2). The MCS provides measures of real
pitch θq and roll φq for estimating states xθ1 , xθ2 , xφ1 , xφ2 .
Lacking necessarymeasurements of the vertical control force
Fq , states xF,1, xF,2 are only predicted without performing
the KF measurement update step. Similar to Bisgaard et al.
(2007), a non-linear Unscented KF is used to estimate the
MAVP states xq of the systemmodel (14).Measures for state
variable q are directly reconstructed fromMCSdata using the
kinematic relations introduced in Sect. 2.2.3. Using the pro-
cess model, the Unscented KF is primarily tuned to provide
noise reduced estimates of the time derivatives of q in xq . The
Unscented KF directly uses the non-linear and observable
process model for state prediction without performing lin-
ear approximations as traditionally required by the Extended
KF thus usually improving the prediction accuracy (Julier

Fig. 6 Cascaded state estimation using Linear and Unscented KF and
measured MCS data. Linear KF estimates xc based on the quadrotor
input model, measured true pitch, roll and inputs. Unscented KF esti-
mates xq based onMAVPmodel, measured MAVP configuration q and
control force inputs computed by (3) using the Linear KF outputs

and Uhlmann 1997). The full cascaded KF based estimator
design is schematised in Fig. 6.

5 Simulation study

Weshowcase ourmethod’s scalability, robustness and perfor-
mance in simulated studies. This is presented as a precursor
towards our experimental results involving flight amongst
multiple human obstacles and acrobatic manoeuvers.

The following metrics are used; let the system’s distance-
to-goal be defined as

dgoal = ∣∣ pq − pgoal
∣∣ , (42)

then the time-to-goal is the elapsed run-time such that dgoal
strictly remains below 0.2m.

5.1 Scalability of the optimisation problem

The scalability of the optimisation problem is studied against
the number of planning stages and separately the number of
obstacles.

5.1.1 Scaling with number of planning stages

The quadrotor, with a randomised initial swing θl , φl <

10◦ starts at (−2.0, 0.0, 1.1) with the dynamic obstacle at
(2.0, 0.0). A collinear position swap is performed with the
obstacle moving at 0.5m/s such that the head-on paths criti-
cally tests the predictive planning behaviour. The number of
planning stages N is increased from 10 by 4 to 26. Using
Δt = 0.05s, default cost weights we perform 16 runs per
case.

Results in Fig. 7 show the scaling of the NMPC solve time
with N ; it shows a positive correlation which is expected as
the optimisation variable, given by z̃ ∈ R

22N+19, increases
the problem dimension with a larger N . As shown in Fig. 8a
where N=10 the system responds late to the incoming obsta-
cle leading to a near-miss or collision (physical violation).
The late response means the attempted aggressive evasive
behaviour causes the system tomove far off-track, sometimes

123

1076 Autonomous Robots (2020) 44:1065–1089

Fig. 7 Simulated NMPC solve time, time-to-goal and physical violations (collisions or breach of workspace limits) per run with increasing planning
stages and 16 runs per case

(b)

(b)

Fig. 8 Point-to-point navigation with collinear dynamic obstacle; showing planned and executed trajectory and current quadrotor position. Top
down view

leading to workspace limit violations, and overall increas-
ing the time-to-goal. As depicted in Fig. 8b, with a higher
N the collisions are averted and the system responds in a
smooth agile motion. However, with N = 26, the planner
favours a greater MAVP to obstacle separation over each
generated trajectory resulting in a lower potential field asso-
ciated cost of the objective function. As a result of the greater
separation, the total distance covered from the start to goal
is greater thus increasing time-to-goal. Important to note is
that the generated planning remains tunable through mod-
ification of the cost function weights resulting in different
system behaviours.

Based on the results and qualitative observations, N = 18
was used for all subsequent studies as it balances run-time
and planning performance. To address the pitfalls of using
a low N , a novel assistive steering approach can be used

that guides the planned trajectory away from obstacles even
when the obstacle is not within the prediction horizon; this
method is outlined in “Appendix G”. The results and benefits
of assistive steering is discussed in “Appendix H”. For short
prediction horizons which are low N , the assistive steering
aids the planning performance for obstacle avoidance. For N
higher than 14 and the system speeds achieved in our exper-
iments, the planner’s lengthened predictive horizon makes
the assistive steering redundant as no benefit are apparent.
Therefore, in the experiments discussed in this paper, we do
not employ assistive steering.

5.1.2 Scaling with number of dynamic obstacles

We perform a navigation task from (−2.5,−1.0, 1.0) to
(2.5, 1.0, 1.0) amongst no randomly placed obstacles with

123

Autonomous Robots (2020) 44:1065–1089 1077

Fig. 9 Simulated NMPC solve time and time-to-goal with increasing
number of dynamic obstacles using N = 18 and 16 runs per case. No
violations/collisions occurred. Outlier for time-to-goal at 6 obstacles is
for a run that temporarily entered deadlock resulting in a longer path

randomised velocities≤1m/s. We increase no from 2 by 2 to
8 with Δt = 0.05s, N=18, default cost weights and perform
16 runs per case.

Results in Fig. 9 indicate a positive trend in MPC solve
timewithno resulting from the additional cost and constraints
introduced into the optimisation problem per additional
obstacle. The time-to-goal shows an increasing spread with
no as the obstacles are more likely to obstruct the system’s
most direct path to the goal thus requiring a re-route resulting
in a lengthier route. In Fig. 10 we show one run demonstrat-
ing theMAVP’s agile response amongst 8 dynamic obstacles.
The outlier at six obstacles is the result of a temporary dead-
lock situation that is resolved by a lengthier planned route. As
mentioned, NMPC is locally optimal, therefore, the deadlock
situation arises from a local minimum of the objective func-
tion that occurs when several obstacles corner or obstruct the
MAVP’s path. In those cases, the planning may not be able to
detour around the obstruction as the objective function over
the planning length may only have a positive gradient. This
local optimality is a limiting characteristic of local planning
algorithms (LaValle 2011). However, a benefit of our local
planning method is that the system holds its position during
deadlock and continues identifying solutions in the evolv-
ing solution space (due to dynamic obstacles). Therefore, in
most cases it is capable of self-resolving the deadlock given
sufficient time.

5.2 Performance comparison to contemporary
approaches

We compare the total task completion time for three meth-
ods; (i) our NMPC (ii) pre-generated and (iii) minimal swing
trajectory planning and control. A navigation task is per-
formed for a simple static obstacle and a difficult slalom
setup. For (i) we use N = 18 and default cost weights,
for (ii) we use our optimiser with N = 200 for sufficient
stages to pre-plan the entire trajectory and then simply track
it, and for (iii) we use N = 18 with a high swing cost
wswing = 1. We use Δt = 0.05 and perform 4 repeated
runs. Table 4 shows a comparison of the total task comple-
tion times (off-line computation and trajectory execution),
and Fig. 11 depicts the executed trajectories using the three
approaches. As expected, the pre-generated trajectory has
the shortest time-to-goal for both tasks due to its highly
optimised planning which requires large off-line computa-
tion times. The minimal swing approach results in sharp
turns as the system accelerates and decelerates at the turn-
ing points making the motion slow and space inefficient as
substantial effort is required to maintain a low swing angle
through the turns. The NMPC based trajectory is marginally
slower and less optimal than pre-generation, however, direct
deployability means the simple task is completed within

Table 4 Comparison of NMPC to pre-generated and minimal swing
approach for mean off-line computation, trajectory execution (time-to-
goal) and total task completion time over 4 repeated runs

Algorithm Off-line (s) Time-to-goal (s) Total (s)

Simple task

NMPC N/A 2.65 2.65

Pre-Generated 2.91 2.25 5.16

Minimal Swing N/A 7.10 7.10

Difficult task

NMPC N/A 5.35 5.35

Pre-Generated 10.54 4.85 15.39

Minimal Swing N/A 18.55 18.55

Fig. 10 Point-to-point navigation using N=18 amongst 8 randomised dynamic obstacles moving at ≤ 1m/s. The dynamically planned and agile
executed trajectories of the quadrotor and payload are shown with the current quadrotor position indicated. Top down view

123

1078 Autonomous Robots (2020) 44:1065–1089

(d) (e) (f)

(a) (b) (c)

Fig. 11 Comparison of executed trajectories for manoeuvring around
an obstacle (simple) and completing a slalom course (difficult) using
NMPCwith N=18, pre-generated andminimal swing planning and con-
trol. Observe that pre-generation leads to the smoothest, most optimal
path resulting from the global planning scope. NMPC response resem-

bles pre-generation and only initially reacts later to the presence of
obstacles due to local planning. Minimal-swing response is sluggish as
the turning motions are more suited for agile behaviour. Top down view
with t3 > t2 > t1 > t0 shown

2.65 s, a 48% reduction, and the difficult task within 5.35 s, a
sizeable 65% reduction compared to pre-generation. Unlike
pre-generation where a task-specific trajectory is generated,
our NMPC method adapts to both tasks without any recon-
figuration. With increasing task complexity and duration,
greater reductions can be realised making NMPC’s scala-
bility unparalleled. Furthermore, our NMPC method applies
to dynamic scenarios.

5.3 Robustness to change in control time step and
lags

We demonstrate the robustness of our method by (i) increas-
ing Δt from 0.05 s to 0.20 s to simulate a slower NMPC
controller (on a less-powerful computer), and (ii) artificially
adding a 0.1 s lag betweenNMPCgenerated input commands
and actually executing them. We use the simple task from
Sect. 5.2 for analysis and N = 18 and default cost weights.
Given that N is a pre-configured design value of the MPC
controller, and that Δt depends on the real loop-time, this
study aims to show the affects of different Δt resulting from
the use of hardware with varying computationally capability.
Therefore, it is important to note that the lookahead horizon
NΔt is different in each case.

Comparing Fig. 12a, b with the different Δt , notice that
NMPCautomatically adjusts and reduces the computed input
magnitudes for the longer time step resulting in a slower,
less agile system; this is apparent from the distance-to-goal
and load angles plots. With Δt=0.20 s, agile manoeuvres

are inconceivable as large inputs over the long time-step
would result in excessive accelerations with detrimental con-
sequences on overall performance. Using the process model,
NMPC is able to appropriately adapt its planning and control
to the time-step size to realise the desired motion.

With a 0.10 s lag, notice in Fig. 12c that the system’s
distance-to-goal and load angles are similar to those with no
lag in Fig. 12a. Due to our method’s closed-loop setup, the
true system behaviour is continually used to re-initialise the
planning instance thus modelling errors do not accumulate.
If pre-generated trajectories were used, any unaccounted lag
would result in significant deviations of the real system from
the planned path due to model mismatch. NMPC is therefore
more robust to smallmodelling inaccuraciesmaking it a safer
and more practical method for real-world applications.

IncreasingΔt further to 0.25 s and lag to 0.15 s destabilises
the NMPC controller in simulation. We attribute this to sev-
eral causes; first large time-steps used in combination with
NMPC’s discretised process model can result in prediction
error divergence. Second, unmodelled time lags result in the
prolonged execution of the large magnitude inputs required
for agile flight resulting in excessive, destabilising accelera-
tions; for short lags, the closed-loop control is able to prevent
this fromoccurring. By acknowledging the presence of a long
time-step and/or lag in the controller design, the method’s
prediction accuracy can be improved; this is future work.

In the simulation studywewere able to selectΔt for a pre-
configured N and show its effects on the system dynamics
approximation and system performance. In the experimental

123

Autonomous Robots (2020) 44:1065–1089 1079

(a) (b) (c)

Fig. 12 Distance-to-goal for a simple point-to-point navigation task,
load suspension angles and NMPC generated pitch and roll inputs with
N = 18 and an increased NMPC time-step from Δt=0.05s to 0.20 s
and control to execution time lag of 0.10 s. In (b), observe that NMPC

compensates for the long time-step over which inputs are executed by
reducing the input magnitudes resulting in a stable yet slower, less agile
motion. Comparing (a) and (c), observe that even with a high time lag,
the MAVP responds in a stable and agile manner

setup the Δt is equal to the real control loop-time which
positively correlates to N as shown in Sect. 5.1. Therefore,
in experimental studies it is important to tune N such that
the obtainedΔt is compatible with the discretisation method
used on the system dynamics.

6 Experimental study

We showcase complex, agile behaviour in static and dynamic
experimental setups. First we analyse the effects of predic-
tion accuracy on our planner’s performance as it is integral
to our discussion of the experimental results. The same
distance/time-to-goal definitions as introduced in Sect. 5 are
used. Videos of the experiments performed are at https://
youtu.be/9C7O34W1w8Y.

6.1 Planning prediction accuracy over prediction
horizon

To demonstrate the effect of our local planner’s prediction
accuracy on system performance, we replicated the simu-
lation as described in Sect. 5.1.1 in a real-world setup. Six
identical runs were performed with the NMPC planner con-
figured to use the real time-step, N = 18 and default cost
weights.

As our method is online and local, closed-loop trajec-
tory planning is achieved every cycle by using the estimated
system and dynamic obstacle states, and a plant model for
propagating these states over N planning stages. For each
generated local trajectory x̃, we compute the absolute error
between the predicted and future true measured quadro-
tor/payload position for all N stages. With Δt our time-step,

(a) (b)

Fig. 13 Absolute position error for the 18 predicted stages of quadrotor
and payload position when compared to measured true values for a
point-to-point navigation task with a collinear dynamic obstacle

for the k-th stage we compare the predicted position to the
true measurements obtained for the system kΔt in the future.

As shown in Fig. 13, our planner’s prediction error of the
quadrotor and payload position are in the order of magnitude
10−2 m up to 3 stages. As stated in Sect. 1, each local plan
must remain feasible during execution for a full computa-
tion cycle, therefore, it is important that these first stages are
accurately predicted. During one computation cycle of Δt ,
the system translates to the first predicted state of our plan
before we re-plan, therefore, it is critical that this predic-
tion is accurate to guarantee feasibility during execution. We
demonstratewithmetrics in Fig. 13 that our planner performs
as desired for this critical prediction horizon.

Furthermore, as NMPC utilises plant model propagation
over the N stage prediction we observe that the accumulation
of inter-stage errors partially contributes to the reduction of
prediction accuracy at the higher stage counts. Furthermore,
with our local planning approach in a dynamic environment,
planned trajectories can significantly differ from cycle-to-
cycle as new routes become feasible at run-time. This can

123

https://youtu.be/9C7O34W1w8Y
https://youtu.be/9C7O34W1w8Y

1080 Autonomous Robots (2020) 44:1065–1089

skew prediction error results as a predicted trajectory may
never actually be executed. These two factors results in an
increase of absolute position error with number of prediction
stages as seen in Fig. 13. We refer to this prediction accu-
racy analysis in the discussion of our experimental results to
support explanation of observed system behaviour.

6.2 Agile acrobatic manoeuvres

Two complex agilemanoeuvres are performed; (i) theMAVP
must fly over a high bar at 0.95m with a virtual ceiling
of 1.8m, and (ii) similar to De Crousaz et al. (2014) and
Tang and Kumar (2015) , the MAVP must fly through a nar-
row 0.7× 0.7m opening. For both manoeuvres, three passes
over/through the obstacle are performed in a rapid, successive
and bidirectionalmanner. The tasks are impossible to execute
without reducing the system’s total vertical dimension (0.9m
when stationary) by swinging the load. The NMPC uses the
real time-step, N = 18 and default cost weights. For the nar-
row opening, the maximum pitch/roll input is increased to
20◦.

In Fig. 14 the two agile manoeuvres and the obstacle to
MAVP clearance over all passes is shown. As the planning
must excite the load’s swing over a relatively short distance,
large rapid inputs are commanded. Following the manoeu-
vre, the controller is able to stabilise the system at the goal
position. As we do all computations online, and perform
the passes in rapid succession, the clearances over the three
passes differ while maintaining acceptable separation to the
obstacle(s). For both manoeuvres, the entire system setup is
identical with only the obstacles changed exemplifying our
method’s adaptability to different tasks.

Of the 48 tests performed over both tasks, 77% were suc-
cessfully executed. In the rare caseswhen themanoeuvrewas
not successful, the system would either end up in a deadlock
in front of the obstacle or make a momentary contact with
the obstacle. Flight was recoverable following the contact
with only four tests where this was not the case. For our

unsuccessful tests, the primary cause was traced to our local
planning approach or inaccuracies in the model resulting in
the discrepancy between the observed and planned motion.

As addressed in Sect. 3.5, local planning method such
as ours are prone to deadlocks. In this particular case, one
reason could be an insufficient planning horizon necessary
to compute a feasible trajectory over/through the obstacle.
Furthermore, our NMPC optimisation algorithm utilises the
time-shifted previous solution as an initial guess for the
optimisation problem thus reduce computation time, how-
ever, this strategy contributes to an increased likelihood of
deadlocks. The latter can be mitigated at the cost of few
longer computation cycles by randomising the initial solution
when deadlock situations arise. An automated and structural
method to address these situations within our local planning
framework is an interesting topic to be addressed in future
work.

The cases involving obstacle contact were only observed
in the flight through an opening experiment as the mar-
gins of error were small. Our method enables us to mitigate
the effects of long horizon planning inaccuracies by using
observed system states to re-plan rapidly. However, in this
case, the prediction accuracy over longer horizons is critical
to ensure the planner only initiates an agile manoeuvre that is
feasible over the full planned trajectory. In the rare case the
planner experiences an intermittent infeasibility during run-
time, such as system-obstacle contact, it will quickly recover
stable controlled flight once feasible trajectories become
available.

The setup was extended to the case of a moving high bar
manoeuvre for agile dynamic obstacle avoidance (see video).

6.3 MAVP human obstacle avoidance

Obstacle avoidance performance is demonstrated amongst
dynamic human obstacles with (i) test cases involving inter-
secting MAVP-human paths, and (ii) random motion in a
shared MAVP-human space. The humans are represented by

(a) (b)

Fig. 14 MAVP’s agile acrobaticmanoeuvre over a high bar and through
a narrow opening. Snapshot of one pass shown (image). The quadrotor
and payload clearance to obstacles (grey with pink enclosing ellipsoid)
at the vertical obstacle plane (x = 0m) over three successive passes

(plot) is shown and numbered 1,2,3 and 1′,2′,3′ for each pass. Observe
the agile motion and that sufficient clearance is maintained over all
passes

123

Autonomous Robots (2020) 44:1065–1089 1081

(a) (b)

Fig. 15 One planning instance (left) and full executed trajectory (right) with t3 > t2 > t1 > t0 for a perpendicular and diagonal MAVP-human
path crossing. Smooth and agile planned and executed trajectories maintain a safe separation to the moving human obstacle (shown by the bounding
ellipsoid)

ellipsoids with buffers βo = 0.2m, βe = 1.0m, and are
tracked to estimate their velocities for planning. The NMPC
uses the real time-step, default cost weights and N = 18.
Note that we define the MAVP’s closest approach to the
human’s associated ellipsoid as the smallest value of either
the quadrotor to ellipsoid, or load to ellipsoid distance.

6.3.1 One human with crossing paths

A human walks perpendicularly and diagonally on a path
crossing the MAV performing a navigation task from
(−1.5, 0, 1.9) to (1.5, 0, 1.9).

In Fig. 15 we show a snapshot and the full executed tra-
jectory for both cases. Observe the MAVP’s smooth, safe
and agile execution of the task which includes the use of
full spatial avoidance exploiting the available horizontal and
vertical space around the obstacle (video shows this clearly).
NMPC’s predictive capability means load is actively swung
away from the human’s direction of motion to avoid a poten-
tial load-human collision. The minimum MAVP to human

separations for the perpendicular and diagonal crossing task
were 0.45m and 0.61m.

6.3.2 Two humans walking randomly

Two humans walk for 150s in random directions crossing
the MAVP’s path. The MAVP autonomously follows a goal
position moving anti-clockwise with a 7 s period along a cir-
cle with radius 1.5m and a constant 1.4m height. Experiment
was conducted in a larger workspace measuring 3.2×3.2m.

In Fig. 16 we show a snapshot from our experiment along-
side the system’s closest approach to the humans and the
framework/NMPC loop time. As shown in Fig. 16c, a safe
distance is maintained by the MAVP from the humans with
no collisions over the entire run; the minimum observed sep-
aration was 0.38m from to the human’s collision avoidance
limit. In some cases the humans were apprehensive about
the MAVP getting too close so they would perform a precau-
tionary evasive motion, however, as shown in Fig. 16c, the
MAVP still always maintains a safe separation. To address

(a) (b) (c) (d)

Fig. 16 MAVP follows a circular path avoiding two randomly walk-
ing human obstacles modelled as ellipsoids moving at a mean 0.78m/s
with max. 1.45m/s. As shown in (c), the 0.2m buffered collision avoid-
ance limit is never violated. The system only intermittently enters the

larger potential field ellipsoids with a 1.0m buffer. In (d), observe the
steady loop times for the full framework (mean 71ms) which includes
the NMPC controller (mean 46ms); brief spiking arises from situations
where significant re-planning was required

123

1082 Autonomous Robots (2020) 44:1065–1089

observable closeness, it is possible to enlarge the obstacle
associated buffers to increase the separation.

Observe from Fig. 16d that the NMPC solve time resem-
bles the statistics obtained from the simulated study with two
dynamic obstacles as shown in Fig. 9, therefore, the NMPC
computation performance is preserved going from a simula-
tion to the experimental setup. As the optimiser is initialised
using the time-shifted previous solution, a roughly constant
solve time is achieved. Spiking occurs when the optimiser’s
iterative solver requires more time to compute solutions
which primarily occurs when considerable re-planning is
required. Examples where we observed spikes included sit-
uations where the humans would inhibit the NMPC planner
from feasibly planning a path to go to the goal position, or the
MAVP would be trapped. The spikes only lasted one to two
time-steps so observations showed the overall performance
was not degraded. Specific to experiments is a mean 25ms
overhead (on top of NMPC solve time) associated with the
framework’s state estimation, communication and data pars-
ing. The low overhead means controller’s performance is not
severely affected.

Thanks to its online and receding-horizon nature, our
method can execute agile and safe continuous manoeuvres
and avoid dynamic obstacles such as humans. Our method
is extendable to larger spaces with more humans/obstacles
as we have already demonstrated in simulation with eight
obstacles.

7 Conclusion

In this paper, we presented an optimisation based uni-
fied motion planner and controller to accomplish online,
closed-loop and agile flight of a Micro Aerial Vehicle slung
payload system. We formulated the optimisation objective
function, constraints and relied on a state of the NMPC
solver to achieve collision-free flight in dynamic environ-
ments over various complex tasks including flying through a
narrow opening and avoiding moving humans. With simula-
tion and experimental studies we demonstrate the method’s
(i) scalability with the planning stages and the number of
obstacles, (ii) robustness to different controller time-step
durations and input execution lags, (iii) adaptability and
repeatability over various complex tasks, and (iv) fast online
performance in experimental conditions. For future studies
we recommend the method’s extension to non-rigid cables,
improving themodel’s realism, accuracy and consequentially
the NMPC prediction performance. Furthermore, a study
involving variations of the model parameters would show-
case the generality of the approach to different systems and
setups. Also, due to our reliance on off-board NMPC control
and motion capturing we limited our experiments to indoor
spaces, however, with the controller frequency achieved off-

board, we believe on-board computations would be feasible
with hardware available today. Combining our method with
contemporary obstacle detection, localisation and state esti-
mation techniques could make urban MAVP operation a
reality.

Acknowledgements This work has been supported in part by Veni
project 15916 of the Netherlands Organisation for Scientific Research
(NWO), domain Applied and Engineering Sciences (TTW), the Ams-
terdam Institute for Advanced Metropolitan Solutions and ONRG-
NICOP-grant N62909-19-1-2027.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Analysis of cable slackening during
maneuvers

A preliminary experimental study was performed to identify
whether the cable slackens during flight maneuvers that were
foreseen to be part of this study. The position of the cable sus-
pension point and attachment to the load were recorded then
the difference was used to compute the cable length. A flight
was performed maintaining a close to constant altitude while
combining (aggressive) pitch and roll inputs. The maximum
pitch and roll angle was capped at 20◦ which is the limit set
by the internal controller on the quadrotor. Fig. 17 shows the
computed cable length, suspension angles and inputs to the
system for a section of the flight.

As shown, the cable length varies by 0.01mduring the run,
about 1.3% of the nominal value of 0.755 m. If slackening
had occurred then deep troughs would have been visible in
the cable length data, however, this was not the case therefore
assuming the cable remains taut is a reasonable assumption.
Slackening is likely when the vehicle suddenly accelerates in
various direction not allowing sufficient time for the payload
to respond, however, given the system performance limits
this was not realised.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Autonomous Robots (2020) 44:1065–1089 1083

Fig. 17 Load suspension cable length, suspension angles and MAV commanded pitch, roll and thrust command inputs over an aggressively
maneuvered flight section. Nominal cable length is 0.755 m when system is at equilibrium

B Quadrotor on-board controller

Figure 18 shows an expanded schematic of the quadrotor’s
on-board controller. The pitch, roll input θ̄q , φ̄q are tracked
by the fast attitude controller resulting in longitudinal and lat-
eral control forces Fx , Fy . From our observations, the Parrot
Bebop quadrotor can perform level flight under a pitch/roll
tilt suggesting the absence of an additional vertical force
component. The quadrotor vertical velocity is stabilised by
a controller based on reference thrust command input w̄q

resulting in vertical control force Fq which when trimmed
for the system weight gives Fz . All forces F are in the world
East-North-Up inertial frame.

Fig. 18 On-board quadrotor input controller showing inner attitude
and vertical velocity stabiliser loops. Motor inputs c are generated
by controllers, resulting in forces F and moments M . Internally sta-
bilised quadrotor attitude is perturbed by M ; control force Fu affects
MAVP dynamics. Sensed measures are internally fed-back on-board
the quadrotor

C Input control force derivation

For modeling the input control force relations the premise is
that the quadrotor is able to perform horizontal maneuvers
while maintaining altitude, hence, the total vertical thrust
component must always counteract the system weight when
not changing elevation. The assumption made is that the hor-
izontal and vertical input force components are decoupled.
We also assume elevation changes only occur at negligible
roll and pitch angles, so the system is in or near equilibrium.
Let T be the total thrust force generated by the four rotors,
RB
E define the quadrotor’s orientation andm the systemmass,

then the generated thrust force vector in frame {E} is defined
as

Fu = RB
E [0, 0, T]� . (43)

Additionally, as altitude is maintained then

F�
u [0, 0, 1]� − mg = 0. (44)

Solving for T in (44) gives,

T = mg

cos(φ)cos(θ)
. (45)

As we assume elevation changes only occur from a (near)
equilibrium state, the vertical control input Fq directly con-
trols the generated vertical thrust force component. Then
using (44) and (45), the thrust force vector is defined as

123

1084 Autonomous Robots (2020) 44:1065–1089

Fu =
[
m

tan(θq)

cos(φq)
g, − m tan(φq)g, Fq + mg

]
∈ R

3. (46)

D Identified Parrot Bebop 2 input model

The quadrotor pitch θq , roll φq and vertical control force Fq
response to inputs pitch θ̄q , roll φ̄q and thrust command w̄q

are identified using theMATLAB system identification tool-
box. The linear second-order, state-space, black-boxmodels,
which we denote by hθ , hφ, hF , are given by equations (47)
(48) and (49) respectively;

ẋθ =
[−4.301 −2.877
10.92 −10.37

]
xθ +

[−0.6893
−16.32

]
θ̄q

θq = [
1.763 4.586 × 10−3

]
xθ + [

0
]
θ̄q (47)

ẋφ =
[−2.789 −4.978
9.302 −13.72

]
xφ +

[−5.41
−18.04

]
φ̄q

φq = [
1.996 0.4657

]
xφ + [

0
]
φ̄q (48)

ẋ F =
[−6.767 −6.546
3.031 0.311

]
xF +

[
38.75
1.841

]
w̄q

Fq = [
0.310 2.03 × 10−2

]
xF + [−0.121

]
w̄q . (49)

The states xθ = [
xθ,1, xθ,2

]
, xφ = [

xφ,1, xφ,2
]
and xF =[

xF,1, xF,2
]
are combined as xc = [

xθ , xφ, xF
]
.

For system identification, we experimentally collected
two datasets (estimation and validation) of the Parrot Bebop
2 response on a 5◦ amplitude 0.5Hz square wave pitch/roll
input over 15 s, and a 1m/s pulse of width 1 s for the thrust
command. Table 5 shows the quadrotor input model’s fit. We
use NRMSE (MATLAB’s definition) to facilitate compari-
son; a 100% NRMSE means a perfect fit.

As the thrust command activates a velocity stabiliser loop,
the commanded value will be tracked by the quadrotor hence
a velocity input-output model can be identified. Using this
relation, to obtain amodel for the vertical force generated Fq ,
the velocity model’s differential output is multiplied by the
system mass. This approach to model the thrust command
response is rudimentary so future studies would explore a
better approach to modeling this.

Table 5 Normalised Root Mean Squared Error (NRMSE) to estima-
tion and validation dataset for empirically identified linear second-order
quadrotor input control model

System Model fit as NRMSE to dataset [%]

Estimation Validation

Pitch 94.59 93.81

Roll 91.09 89.09

Thrust command 91.38 91.56

(a)

(b)

(c)

Fig. 19 Identified second order input model fit to experimentally col-
lected system response validation data on the Parrot Bebop 2. For roll
and pitch a 5◦, 0.5 Hz square wave input was used over a duration of
15 s starting at 2 s. For the thrust command, a 1 m/s pulse of width 1 s
was used starting at 2s

Figure 19 shows the second order models’ fit to the valida-
tion data experimentally collected on the Parrot Bebop 2. For
thrust command, the velocity input-output model response is
shown (thus prior to taking the differential output and multi-
plying by the system mass).

As shown the identifiedmodel properly tracks the quadro-
tor’s true pitch, roll and the vertical velocity response when
given a pitch, roll and thrust command. This is also reflected
in the NRMSE model fit shown in Table 5.

E Derivation of the closest point of approach
(CPA) of a finite line segment to an
ellipsoid

Consider an ellipsoid of dimensions (a, b, c), at posi-
tion po and a parametrised finite line segment L ={
p| p = pq + s(pl − pq), s ∈ [0, 1]

}
where pq and pl are

123

Autonomous Robots (2020) 44:1065–1089 1085

the end-points. Let [u, v, w]� ≡ pl − pq and rqo = po− pq .
Substituting L in the ellipsoid equation and expanding vec-
tors into x, y, z components, we approximate the signed line
to ellipsoid distance function by

d(s) = (xqo + su)2

a2
+ (yqo + sv)2

b2
+ (zqo + sw)2

c2
−1. (50)

Minimising (50) with respect to s, we get the ellipsoid’s clos-
est point along the infinite expansion of line L

ŝ = argmin
ŝ∈R

d(s) = − xqoub2c2 + yqova2c2 + zqowa2b2

u2b2c2 + v2a2c2 + w2a2b2
.

(51)

Then on the finite line segment we obtain the Closest Point
of Approach (CPA)

p∗
c = [

xq + s∗u, yq + s∗v, zq + s∗w
]�

where s∗ = min{max{ŝ, 0}, 1}.

F Primal-dual interior-point constrained
optimisation algorithm

TheModel Predictive Controller (MPC) algorithm is a reced-
ing and finite-horizon, constrained optimisation problem that
solves for quasi-optimal solutions. Global optima can be
found for convex problems under specific conditions. For
non-convex problems, the optimiser cannot be guaranteed
to converge to the global optimum but rather any min-
ima/maxima, local or global.

A Newton-type, optimisation scheme is implemented in
the software package FORCES Pro that is used to achieve
real-time computational performance Domahidi and Jerez
(2014). The specific algorithm is called Barrier Interior-
Point Optimisation for which a short theoretical exposition
is provided based on the derivation provided in Vanderbei
(2012). The notation convention may differ from the main
paper and is made clear from the context or by explicit defi-
nition in this appendix.

F.1 Optimisation problem definition

Take the cost function minimisation optimisation problem
with the total cost J , and with f : R

n → R subject to p
inequality and q − p equality constraints as defined by

J = min
x∈Rn

f (x)

gi (x) ≥ bi for i = 1, . . . , p ∈ N

gi (x) = bi for i = p + 1, . . . q ∈ N.

(52)

Rewrite an equivalent problem using slack variables si to
convert the inequality constraints to equality constraints.

J = min
x∈Rn

f (x)

ci (x, s) = 0 for i = 1, . . . , q ∈ N

si ≥ 0 for i = 1, . . . , p ∈ N,

(53)

where,

c(x, s) = [
gi (x) − bi − si , . . . ,

gp(x) − bk − sp, gp+1(x) − bp+1, . . . ,

gq(x) − bq
]�

.

The non-negativity constraint on the slack variables is
rewritten as a logarithmic barrier function cost term giving

B = min
x∈Rn

f (x) − μ

p∑
i=1

ln(si)

ci (x, s) = 0 for i = 1, . . . , q ∈ N,

(54)

which gives the equivalent barrier problem.
A small positive barrier parameter μ is introduced such

that for lim
μ→0

min B = min J , the new optimisation problem

is equivalent to the original. By definition, the natural loga-
rithmic is undefined for si < 0 thereby implicitly satisfying
the inequality si ≥ 0. Finally, incorporate the equality con-
straints into the objective functionusingLagrangemultipliers
λ giving the Lagrange function

L(x, s,λ) = f (x) − c(x, s)�λ − μ

p∑
i=1

ln(si) (55)

where primal variable is x with the dual variable λ ∈ R
q .

F.2 Newton–Raphson iterative root finding search

Theoptimisationproblem is solved iterativelywith aNewton–
Raphson gradient based search direction algorithm. The
gradients of (55) is defined by equations

∇x L ≡ ∇x f (x) − ∇x cT (x, s)λ = 0 (56)

∇s L ≡ −μS−1e + Yλ = 0 (57)

∇λL ≡ c(x, s) = 0 (58)

with S =
[s1 0

. . .
0 sp

]
,Y = [

I(p×p) 0(p×q−p)
]
,

where the gradients are set to equal zero. These three nec-
essary conditions constrained optimisation problems are

123

1086 Autonomous Robots (2020) 44:1065–1089

referred to as the Karush–Kuhn–Tucker (KKT) conditions
Kuhn (2014).

Rewriting, the above we get the reformulated conditions

∇x f (x) − ∇x c(x, s)�λ = 0 (59)

ΛSe = μe (60)

c(x, s) = 0 (61)

with Λ = diag(Yλ) =
[

λ1 0

. . .
0 λp

]

e = [1, . . . , 1] ∈ N
p.

Applying the Newton–Raphson method for root-finding
to the set of Eqs. 59 to 61, the following system of equations
is obtained with the Δ search steps;

⎡
⎣

W 0 −∇x c(x, s)�
0 Λ S

∇x c(x, s) −Z 0

⎤
⎦

⎡
⎣

Δx
Δs
Δλ

⎤
⎦ (62)

= −
⎡
⎣

∇x f (x) − ∇x c�(x, s)λ
ΛSe − μe
c(x, s)

⎤
⎦

with Z =
[
I(p×p) 0
0 0(q−p×q−p)

]

W = ∇2
xx L(x, s,λ).

The left matrix is the Jacobian to set of Eqs. 59 to 61.
Computing the search direction given by the vector of Δ

is the most computationally expensive step of the algorithm
Domahidi et al. (2012). In practice this is achieved through
various methods, however, this is beyond the scope of this
paper.

Then the variables x, s, λ are iteratively found by taking
step of size α in the search directions identified in Eq. 62
resulting in the update

⎡
⎣
x
s
λ

⎤
⎦

(k+1)

=
⎡
⎣
x
s
λ

⎤
⎦

(k)

+ α(k)

⎡
⎣

Δx
Δs
Δλ

⎤
⎦

(k)

, (63)

where the step-size is regulated to achieve a converging line-
search.

F.3 Algorithm convergence and extensions

As the Newton–Raphson method is iterative in nature, the
KKTconditions defined byEqs. 59 to 61 are set to be satisfied
when a certain tolerance ε is satisfied.

max
∣∣∣∇x f (x) − ∇x c(x, s)�λ

∣∣∣ ≤ ε1

max |ΛSe − μe| ≤ ε2

max |c(x, s)| ≤ ε3

As the Hessian W is not analytically defined in FORCES
Pro, an approximation method is used resulting in a quasi-
Newton method known as the Broyden-Fletcher-Goldfarb-
Shanno algorithm Domahidi and Jerez (2014); the specific’s
of which are beyond the scope of this paper. The standard
Newton method as presented in this appendix is sufficient
to understand the general method utilised to solve the con-
strained optimisation problem.

Note in Karmarkar (1984), Karmarkar first showed that
interior-point methods are polynomial time algorithms hence
the number of algorithmic steps isO(nk) for a non-negative k
and n size input. Furthermore, for interested readers, the arti-
cle Forsgren et al. (2002) provides a comprehensive overview
of interior-point methods for non-linear optimisation.

G Goal directed assistive steering

Collision-free trajectory generation for low planning hori-
zons can be augmented using an assistive steering based
cost term; the idea is inspired from Vector Field Histograms
Borenstein and Koren (1991). The quadrotor position and
obstacle ellipsoids are projected onto the world horizon-
tal plane P by the transformation TP : R

3 → R
2 where

TP = diag(1, 1, 0). On P , we define a set of nd candidate
angular directions for steering

D =
{
γ | γ = i 2πnd , i ∈ {1, . . . , nd} ⊂ N

}

originating from our projected quadrotor position TP pq .
Checking all γ ∈ D, we determine Dfree ⊆ D which are all
the non-obstructed (free) directions in P up to a maximum
omnidirectional range from TP pq . With γgoal the heading of
the goal position from the quadrotor position, the steering
direction is chosen to minimise the angular offset to the goal
as given by

γ ∗ = argmin
γ

∣∣γ − γgoal
∣∣ , γ ∈ Dfree. (64)

With � TP ṗq the quadrotor’s heading, the cost is evaluated
as its deviation from γ ∗ by

csteer = ∥∥� TP ṗq − γ ∗∥∥
I1

. (65)

Under a short planning horizon, evasive actions for obsta-
cles are generally performed abruptly as there is limited
planning foresight. Steering assists planning by guiding the
system towards obstacle-free areas for smoother trajectories;
we demonstrate the utility of steering when using low plan-
ning horizons. As the R2 steering method is only amendable

123

Autonomous Robots (2020) 44:1065–1089 1087

to planar obstacle avoidance, for R3 spatial avoidance we
disable steering. Extension toR3 could be done analogously.

H Effects of steering on system response

To address the underperformance of the system response to
incoming obstacles using a low number of stages, assistive
steering is used to guide the MAVP towards obstacle-free
regions without compromising on run-time performance.
Inclusion of the Goal Directed Assistive Steering as intro-
duced in “Appendix G” is demonstrated by repeating the
simulation study from Sect. 5.1. The steering associated cost
weight is set to wsteer = 0.05, with a detection range of
3.5 m and 8 pre-defined uniformly space steering direction
were used. As with the other cost weights, wsteer was found
by manually tuning the weights. Figure 20 shows how the
NMPC solve time and time-to-goal scales with the number
of stages when using the assistive steering associated cost.

Fig. 20 Simulated NMPC solve time and time-to-goal per run with
increasing planning stages using assistive steering and 16 runs per case

Comparing the NMPC algorithm solve times for the case
when assistive steering is disabled and enabled, as shown in
Figs. 7 and 20, respectively, demonstrates that there is a neg-
ligible delta. Referring to Fig. 21 for the N=10 case, observe
how the steering assisted trajectory is guided away from the
obstacle resulting in a collision-free task completion. Com-
pare this behaviour to the N=10 case with no steering shown
in Fig. 8a where clearly the steering guides the system pre-
emptively. In general, application of the steering command
over the entire planning length makes the path more con-
servative thus increasing the time-to-goal especially for the
higher N when compared to no steering. The benefits of
steering are more apparent for low stage (N) counts where
the guidance is used to improve local planning. A low N
with steering is a viable method to maintain a reasonable
run-time frequency and collision-free performance. In our
simulation, we always used default cost weights, however,
by fine-tuning the weights to accommodate a shorter/longer
prediction length, better performance may be realised.

Fig. 21 Point-to-point navigation with collinear dynamic obstacle,
N = 10 and assistive steering enabled; showing planned and executed
trajectory and current quadrotor position. Notice how the steering guide

the system away from the obstacle even when the MPC prediction hori-
zon would not capture the oncoming obstacle. Top down view

123

1088 Autonomous Robots (2020) 44:1065–1089

References

Bisgaard, M., Cour-Harbo, A., & Bendtsen, J. D. (2007). Full state
estimation for helicopter slung load system. Proceedings of AIAA
conference on guidance, navigation, and control, August (pp. 1–
15).

Bisgaard, M., Cour-Harbo, A., & Dimon Bendtsen, J. (2010). Adaptive
control system for autonomous helicopter slung load operations.
Control Engineering Practice, 18(7), 800–811.

Borenstein, J., & Koren, Y. (1991). The vector field histogram-fast
obstacle avoidance for mobile robots. IEEE Transactions on
Robotics and Automation, 7(3), 278–288.

Brock, O., & Khatib, O. (2000). Real-time re-planning in high-
dimensional configuration spaces using sets of homotopic paths.
Proceedings 2000 ICRA millennium conference IEEE interna-
tional conference on robotics and automation symposia proceed-
ings (Cat No00CH37065) (Vol. 1, No. April, pp. 550–555).

Cicolani, L. S., & Kanning, G. (1992). Equations of motion of
slung-load systems, including multilift systems. Technical Report,
National Aeronautics and Space Administration, Moffett Field.

De Crousaz, C., Farshidian, F., & Buchli, J. (2014). Aggressive opti-
mal control for agile flight with a slung load. In: IROS workshop
on machine learning in planning and control of robot motion.
Chicago: IROS

Derafa, L., Madani, T., Benallegue, A., & (2006) Dynamic mod-
elling and experimental identification of four rotors helicopter
parameters. In 2006 IEEE international conference on industrial
technology. Mumbai: IEEE.

Domahidi, A., & Jerez, J. (2014). FORCES Professional. embotech
GmbH. http://embotech.com/FORCES-Pro.

Domahidi, A., Zgraggen, A. U., Zeilinger, M. N., Morari, M., & Jones,
C. N. (2012). Efficient interior point methods for multistage prob-
lems arising in receding horizon control. In 2012 IEEE 51st IEEE
conference on decision and control (CDC) (pp. 668–674). Maui:
IEEE.

Faust, A., Palunko, I., Cruz, P., Fierro, R., & Tapia, L. (2013). Learn-
ing swing-free trajectories for UAVs with a suspended load.
Proceedings—IEEE international conference on robotics and
automation (pp. 4902–4909). Karlsruhe: IEEE.

Faust,A., Palunko, I., Cruz, P., Fierro,R.,&Tapia, L. (2017).Automated
aerial suspended cargo delivery through reinforcement learning.
Artificial Intelligence, 247, 381–398.

Feng, Y., Rabbath, C. A., & Su, C. Y. (2014). Modeling of a micro
UAV with slung payload. In K. P. Valavanis & G. J. Vachtsevanos
(Eds.), Handbook of unmanned aerial vehicles (pp. 1257–1272).
Dordrecht: Springer.

Foehn, P., Falanga, D., Kuppuswamy, N., Tedrake, R., & Scaramuzza,
D. (2017). Fast trajectory optimization for agile quadrotor maneu-
vers with a cable-suspended payload. In: Proceedings of robotics:
Science and systems (pp. 1–10). RSS Foundation: Boston.

Forsgren, A., Gill, P. E., & Wright, M. H. (2002). Interior methods for
nonlinear optimization. SIAM Review, 44(4), 525–597.

Gonzalez, F., Heckmann, A., Notter, S., Zürn, M., Trachte, J., &
McFadyen, A. (2015). Non-linear model predictive control for
UAVswith slung/swung load. In ICRAworkshop onaerial robotics
manipulation and load transportation, ICRA, Seattle.

Julier, S. J., & Uhlmann, J. K. (1997). New extension of the
Kalman filter to nonlinear systems. In: Proc.SPIE 3068 (p. 12).
arXiv:1011.1669v3.

Karmarkar, N. (1984). A new polynomial-time algorithm for linear pro-
gramming. Combinatorica, 4(4), 373–395. 0604171.

Kerrigan, E. C., &Maciejowski, J.M. (2000). Soft constraints and exact
penalty functions in model predictive control. Proccedings of the
UKACC international conference (Control 2000).

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and
mobile robots. The International Journal of Robotics Research,
5(1), 90–98. arXiv:1011.1669v3.

Kim, H., Shim, D., & Sastry, S. (2002). Nonlinear model predictive
tracking control for rotorcraft-based unmanned aerial vehicles. In
Proceedings of the 2002 American control conference (IEEE Cat.
No.CH37301) (Vol. 5, pp. 3576–3581). IEEE, Anchorage.

Klausen, K., Fossen, T. I., & Johansen, T. A. (2015). Nonlinear control
of a multirotor UAVwith suspended load. 2015 International con-
ference on unmanned aircraft systems, ICUAS2015 (pp. 176–184).
Denver: IEEE.

Kuhn, H. (2014). Nonlinear programming: A historical view. In G.
Giorgi & T. Kjeldsen (Eds.), Traces and Emergence of Nonlinear
Programming (pp. 393–414). Basel: Birkhüser.

LaValle, S. M. (2011). Motion planning. IEEE Robotics & Automation
Magazine, 18(1), 79–89.

Lee, T. (2018). Geometric control of quadrotor UAVs transporting a
cable-suspended rigid body. IEEE Transactions on Control Sys-
tems Technology, 26(1), 255–264.

Mayne, D. Q., Rawlings, J. B., Rao, C. V., & Scokaert, P. O. (2000).
Constrained model predictive control: Stability and optimality.
Automatica, 36(6), 789–814.

Naegeli, T., Alonso-Mora, J., Domahidi, A., Rus, D., & Hilliges, O.
(2017). Real-time motion planning for aerial videography with
dynamic obstacle avoidance and viewpoint optimization. IEEE
Robotics and Automation Letters, 2(3), 1696–1703.

Neunert, M., de Crousaz, C., Furrer, F., Kamel, M., Farshidian, F., Sieg-
wart, R., et al. (2016). Fast nonlinear Model Predictive Control
for unified trajectory optimization and tracking. In 2016 IEEE
international conference on robotics and automation (ICRA) (pp.
1398–1404). Stockholm: IEEE.

Palunko, I., Cruz, P., & Fierro, R. (2012a). Agile load transportation
: Safe and efficient load manipulation with aerial robots. IEEE
Robotics and Automation Magazine, 19(3), 69–79.

Palunko, I., Fierro, R., & Cruz, P. (2012b). Trajectory generation for
swing-free maneuvers of a quadrotor with suspended payload: A
dynamic programming approach. In Proceedings—IEEE interna-
tional conference on robotics and automation (pp. 2691–2697).
Saint Paul: IEEE.

Palunko I, Faust A, Cruz P, Tapia L, Fierro R (2013) A reinforcement
learning approach towards autonomous suspended load manipu-
lation using aerial robots. In 2013 IEEE international conference
on robotics and automation (pp. 4896–4901).

Pizetta, I. H. B., Brandao, A. S., & Sarcinelli-Filho, M. (2015). Mod-
elling and control of a PVTOL quadrotor carrying a suspended
load. In 2015 International conference on unmanned aircraft sys-
tems (ICUAS) (pp. 444–450). Denver: IEEE.

Point, N. (2009). Optitrack-optical motion tracking solutions. Retrieved
November 10, 2017, from http://optitrack.com/.

Ryan, A., & Hedrick, J. (2005). A mode-switching path planner for
UAV-assisted search and rescue. In Proceedings of the 44th IEEE
conference on decision and control (pp. 1471–1476). IEEE.

Sreenath, K., Michael, N., & Kumar, V. (2013). Trajectory genera-
tion and control of a quadrotor with a cable-suspended load-A
differentially-flat hybrid system. In Proceedings—IEEE interna-
tional conference on robotics and automation (pp. 4888–4895).
Karlsruhe: IEEE.

Stanculeanu, I., & Borangiu, T. (2011). Quadrotor black-box system
identification. International Journal of Mechanical and Mecha-
tronics Engineering, 5(6), 1025–1028.

Tang, S., & Kumar, V. (2015). Mixed Integer Quadratic Program trajec-
tory generation for a quadrotor with a cable-suspended payload.
In Proceedings—IEEE international conference on robotics and
automation 2015, June (pp. 2216–2222).

Trachte, J., Gonzalez, F., & McFadyen, A. (2014). Nonlinear model
predictive control for a multi-rotor with heavy slung load. In 2014

123

http://embotech.com/FORCES-Pro
http://arxiv.org/abs/1011.1669v3
http://arxiv.org/abs/1011.1669v3
http://optitrack.com/

Autonomous Robots (2020) 44:1065–1089 1089

International conference on unmanned aircraft systems, ICUAS
2014—Conference proceedings (pp. 1105–1110). Orlando: IEEE.

Tzes, A., Nikolakopoulos, G., & Alexis, K. (2012). Model predic-
tive quadrotor control: Attitude, altitude and position experimental
studies. IET Control Theory & Applications, 6(12), 1812–1827.

Uteshev, A. Y., &Goncharova,M. V. (2018). Point-to-ellipse and point-
to-ellipsoid distance equation analysis. Journal of Computational
and Applied Mathematics, 328(January), 232–251.

Vanderbei, R. J. (2012). Interior point methods and nonlinear optimiza-
tion.

Zanelli, A., Domahidi, A., Jerez, J., & Morari, M. (2017). FORCES
NLP: An efficient implementation of interior-point methods for
multistage nonlinear nonconvex programs. International Journal
of Control, 93, 13–29.

Zheng, A., & Morari, M. (1995). Stability of model predictive control
with mixed constraints. IEEE Transactions on Automatic Control,
40(10), 1818–1823.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Nikhil D. Potdar received his
M.Sc. degree in Aerospace Engi-
neering and specialised in ight
control systems and operations at
the Delft University of Technol-
ogy, The Netherlands, in 2018.
Mr. Potdar completed his mas-
ter thesis, from which this arti-
cle originates, under the supervi-
sion of Dr. de Croon (MAVLab)
and Dr. Alonso-Mora (Cognitive
Robotics) in Delft.

Dr. Guido de Croon is Asso-
ciate Professor and scientific lead
in the Micro Air Vehicle lab. He
received his M.Sc. and Ph.D. in
the field of Artificial Intelligence
(AI) at Maastricht University, the
Netherlands. His research inter-
est lies with computationally effi-
cient algorithms for robot auton-
omy, with a particular focus on
computer vision. Since 2008 he
has worked on algorithms for achiev-
ing autonomous flight with small
and lightweight flying robots, such
as the DelFly Explorer; a fully

autonomous 20-gram apping wing MAV. In 2011-2012, he was a
research fellow in the Advanced Concepts Team of the European
Space Agency, where he studied topics such as optical flow based con-
trol algorithms for extraterrestrial landing scenarios. He is currently
working at TU Delft again, where he is the Principal Investigator
in various projects, e.g., the NWO project “Decentralized control of
UAVs.” and the STW project “As nimble as a bee”.

Dr. JavierAlonso-Mora is an Assis-
tant Professor at the Delft Univer-
sity of Technology, in the Depart-
ment of Cognitive Robotics. Until
October 2016 he was a Postdoc-
toral Associate at the Computer
Science and Artificial Intelligence
Lab CSAIL of MIT, working in
the Distributed Robotics Lab. Dr.
Alonso-Mora received his Ph.D.
(2014) and M.Sc. (2010) degrees
in robotics from ETH Zurich, where
he worked in the Autonomous Sys-
tems Lab. Dr. Alonso-Mora holds
a Diploma in Engineering (2010)

and a Diploma in Mathematics (2008) from the Technical Univer-
sity of Barcelona. Until 2014 was also a member of Disney Research
Zurich. Dr. Alonso-Mora is the recipient of a NWO Veni grant from
the Netherlands Organisation for Scientific Research (2017), a best
video award at the IEEE/ACM HRI (2014), a nomination for best stu-
dent paper award at DARS (2010), a postgraduate scholarship from the
Swiss Government and silver medals in the Spanish Physics and Math-
ematics Olympiads.

123

	Online trajectory planning and control of a MAV payload system in dynamic environments
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related work
	1.2.1 Open-loop MAVP trajectory planning
	1.2.2 Closed-loop MAVP trajectory planning
	1.2.3 Non-linear model predictive control and unified planning and control of MAV(P)s

	1.3 Paper organisation

	2 Preliminaries
	2.1 Notation
	2.2 Quadrotor with swung payload model
	2.2.1 Quadrotor inputs
	2.2.2 Aerodynamic drag effects
	2.2.3 System kinematics and dynamics
	2.2.4 Full MAVP model

	2.3 Obstacle model
	2.3.1 Obstacle ellipsoid definitions
	2.3.2 Obstacle motion prediction

	2.4 MAVP-obstacle collision avoidance requirements
	2.4.1 Point to ellipsoid distance
	2.4.2 Quadrotor and payload proximity
	2.4.3 Rigid cable proximity

	3 Online and closed-loop MAVP trajectory generation
	3.1 Method overview
	3.1.1 Receding horizon dynamic planning
	3.1.2 Local trajectory generation

	3.2 Costs
	3.2.1 Point-to-point navigation
	3.2.2 Potential field based obstacle separation
	3.2.3 Input magnitude regulation
	3.2.4 Payload suspension angles regulation

	3.3 Constraints
	3.3.1 MAVP dynamics
	3.3.2 State and input limits
	3.3.3 Collision-free planning
	3.3.4 Workspace limits
	3.3.5 Scalability to large obstacle rich workspaces

	3.4 Optimisation algorithm
	3.4.1 Costs
	3.4.2 Constraints

	3.5 Theoretical analysis
	3.5.1 Problem dimensionality
	3.5.2 Optimality and feasibility

	4 System setup and framework
	4.1 System properties and hardware
	4.2 Workspace
	4.3 Programmed control system framework
	4.4 Cascaded Kalman filter state estimator

	5 Simulation study
	5.1 Scalability of the optimisation problem
	5.1.1 Scaling with number of planning stages
	5.1.2 Scaling with number of dynamic obstacles

	5.2 Performance comparison to contemporary approaches
	5.3 Robustness to change in control time step and lags

	6 Experimental study
	6.1 Planning prediction accuracy over prediction horizon
	6.2 Agile acrobatic manoeuvres
	6.3 MAVP human obstacle avoidance
	6.3.1 One human with crossing paths
	6.3.2 Two humans walking randomly

	7 Conclusion
	Acknowledgements
	A Analysis of cable slackening during maneuvers
	B Quadrotor on-board controller
	C Input control force derivation
	D Identified Parrot Bebop 2 input model
	E Derivation of the closest point of approach (CPA) of a finite line segment to an ellipsoid
	F Primal-dual interior-point constrained optimisation algorithm
	F.1 Optimisation problem definition
	F.2 Newton–Raphson iterative root finding search
	F.3 Algorithm convergence and extensions
	G Goal directed assistive steering
	H Effects of steering on system response

	References

