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Abstract
Unmanned aerial vehicles represent a new frontier in a wide range of monitoring and research applications. To fully leverage
their potential, a key challenge is planning missions for efficient data acquisition in complex environments. To address this
issue, this article introduces a general informative path planning framework for monitoring scenarios using an aerial robot,
focusing on problems in which the value of sensor information is unevenly distributed in a target area and unknown a priori.
The approach is capable of learning and focusing on regions of interest via adaptation to map either discrete or continuous
variables on the terrain using variable-resolution data received from probabilistic sensors. During a mission, the terrain maps
built online are used to plan information-rich trajectories in continuous 3-D space by optimizing initial solutions obtained by a
coarse grid search. Extensive simulations show that our approach is more efficient than existing methods.We also demonstrate
its real-time application on a photorealistic mapping scenario using a publicly available dataset and a proof of concept for an
agricultural monitoring task.
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1 Introduction

Autonomous mobile robots are increasingly employed to
gather valuable scientific data about the Earth. In the past
several decades, rapid technological advances have unlocked
their potential as a flexible, cost-efficient tool enabling mon-
itoring at unprecedented levels of resolution and autonomy.
Inmany emerging aerial (Ezequiel et al. 2014; Vivaldini et al.
2016; Colomina and Molina 2014) and aquatic (Hitz et al.
2014, 2017; Girdhar and Dudek 2015) applications, these
devices are replacing traditional data acquisition campaigns
based on static sensors, manual sampling, or conventional
manned platforms, which can be unreliable, costly, and even
dangerous (Dunbabin and Marques 2012; Manfreda et al.
2018).

The era of robotics-based monitoring has opened many
interesting areas of research. A key challenge arises in
that practical devices are subject to a finite quantity of
sensing resources, such as energy, time, or travel distance,
which limits the number of measurements that can be col-
lected. Therefore, paths need to be planned to maximize the
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information gathered about an unknown environment while
satisfying the given budget constraint. This is known as the
informative path planning (IPP) problem, which is the sub-
ject of much recent work. Despite recent advances in this
field,most real robot systems today still performdata acquisi-
tion in a passive manner, e.g., using coverage-based planning
(Galceran and Carreras 2013), as current IPP solutions tend
to be limited to specific platforms or application domains.

To address this, our work introduces a general framework
for surveying terrain characteristics using an aerial robot.We
present an IPP strategy suitable for adaptive scenarios, which
require modifying plans online based on new measurements
to learn and focus on targeted objects or regions of interest,
e.g., to find cars in a parking lot or map high-temperature
areas. This setup involves several closely related research
challenges. First, the dense visual information received from
different altitudes needs to be integrated into a compact prob-
abilistic map. Second, using the map, the planning unit must
search for informative trajectories in the large 3-D space
above the monitored area, which poses a complex opti-
mization problem. During this procedure, a crucial aspect
is trading off between sensor resolution and Field of View
(FoV), while accounting for the platform-specific constraints
and adaptivity requirements. Finally, the integrated system is
required to be efficient for online mapping and planning in
a wide variety of scenarios. In this paper, we cater for these
needs by developing a modular IPP framework for aerial
robots in general environmental monitoring applications.

1.1 Contributions

Overall, this article corresponds to a major extension of
the methods introduced in the authors’ preliminary confer-
ence works. The journal version brings together our previous
contributions in online informative planning (Popović et al.
2017a) and multiresolution mapping (Popović et al. 2017b)
with additional explanations and simulations to consolidate
the integrated system along with open-source software.

Building upon our developments in planning and map-
ping, we present an IPP framework capable of mapping
either discrete or continuous target variables on a terrain
using a probabilistic altitude-dependent sensor. A key fea-
ture of the approach is that it is modular, with interfaces
and computational requirements that are easily adapted for a
given monitoring scenario. During a mission, the planner
uses the terrain maps built online to generate trajectories
in continuous 3-D space for maximized information gain.
This is achieved in a computationally efficient manner by
exploiting recursive Bayesian mapping methods and an opti-
mization strategy for IPP with an informed initialization
procedure. Our method was tested extensively in simulation
and its online and integration capabilities were validated by
mapping a publicly available dataset using an Unmanned

Aerial Vehicle (UAV) equipped with an image-based clas-
sifier. Additionally, a proof of concept field deployment is
presented in an agricultural monitoring application with real-
time requirements.

The core contributions of this work are:

1. An informative planning framework that is applicable
for mapping either discrete or continuous variables on a
given terrain using probabilistic sensors for data acqui-
sition in online settings with adaptivity requirements by
learning targeted objects or regions of interest.

2. The extensive evaluation of our framework in simulation,
along with results from a publicly available dataset and
field experiments to demonstrate its performance.

3. The release of our implementation as anopen-source soft-
ware package1 for usage and further development by the
community.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses prior studies relevant to our work. We define
the IPP problem in Sect. 3 and detail our proposed methods
for mapping and planning in Sects. 4 and 5, respectively. Our
experimental results are reported in Sects. 6 and 7. Finally,
in Sect. 8, we conclude with an outlook towards future work.

2 Related work

A large and growing body of literature exists for autonomous
information gathering problems. Recently, this field has
attracted considerable interest in the context of robotics-
based environmental monitoring (Dunbabin and Marques
2012) for a wide variety of applications, including aerial
surveillance (Colomina and Molina 2014; Vivaldini et al.
2016), aquatic monitoring (Hitz et al. 2014, 2017), and
infrastructure inspection (Ezequiel et al. 2014; Bircher et al.
2016). This section overviews recentwork based on twomain
research streams: (1) methods for environmental modeling
and (2) algorithms for informative planning, or efficient data
acquisition.

2.1 Environment mapping

In data gathering scenarios, a model of the environment
is fundamental to capture the target variable of interest.
Occupancy grids are themost commonly-used representation
for spatial sensing with uncorrelated measurements (Elfes
1989). This type of model is suitable for active classification
problems with discrete labels, such as occupancy mapping
(Charrow et al. 2015) and semantic segmentation (Berrio

1 Available at: http://github.com/ethz-asl/tmplanner.
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et al. 2017), and offers relatively high computational effi-
ciency.

However, many natural phenomena exhibit complex inter-
dependencies where the assumption of independent mea-
surements does not hold. A popular Bayesian technique
for handling such relationships is using Gaussian Processes
(GPs) (Rasmussen and Williams 2006). For IPP, they have
been applied in various scenarios (Hollinger and Sukhatme
2014; Hitz et al. 2017; Binney and Sukhatme 2012; Wei
et al. 2016) to collect data accounting for map structure and
uncertainty. This framework permits using different kernel
functions to express data relations within the environment
(Singh et al. 2010) and approximations to scale to large
datasets (Rasmussen and Williams 2006).

For terrain monitoring, the main issue with applying GPs
directly is the escalating computational load as dense imagery
data accumulate over time. Moreover, limited studies have
addressed data fusion using images at varying resolutions and
noise levels. In our priorwork, we addressed this by introduc-
ing a multiresolution GP-based mapping approach for IPP
based on a Bayesian filtering technique, inspired by Vidal-
Calleja et al. (2014). This method replaces the complexity
of conventional GP regression with constant processing time
in the number of measurements and cubic scaling only with
the size of the fixed terrain map. Our current work extends
these ideas by presenting a general framework that can han-
dle both non-correlated and correlated monitored variables
and by demonstrating its integration with a practical altitude-
dependent sensor.

2.2 Informative planning

Wealsodistinguishbetween (i) non-adaptive and (ii) adaptive
planning strategies. Non-adaptive approaches, e.g., coverage
methods (Galceran and Carreras 2013), explore an environ-
ment using a sequence of pre-determined actions. Adaptive
approaches (Hitz et al. 2017; Girdhar and Dudek 2015; Lim
et al. 2015; Hollinger et al. 2013) allow plans to change as
information is collected, making them suitable for planning
based on targeted application-specific interests.

In itsmost general form, the data gathering task amounts to
one of sequential decision-making under uncertainty, which
can be expressed as a Partially Observable Markov Decision
Process (POMDP) (Kaelbling et al. 1998). Unfortunately,
despite substantial progress in recent years (Chen et al.
2016; Kurniawati et al. 2008), solving large-scale POMDP
models remains an open challenge. For data gathering, a
major issue with practical algorithms is that they do not
generalize well for large state spaces or over long horizons
(Lim 2015). Although approximate Markov Decision Pro-
cess (MDP)-based solvers have been successfully applied
for online planning, their performance is limited in terrain
monitoring setups since they cannot exploit the ability of

UAVs to gather multiresolution information from different
altitudes, e.g., to adaptively find objects of interest (Arora
et al. 2018). The computational and representational issues
associated with such methods motivates more efficient IPP-
based solutions.

The NP-hard sensor placement problem addresses select-
ing the most informative measurement sites in a static setting
subject to cardinality constraints (Krause et al. 2008). The
related IPP problem builds upon this task by maximizing
the information gathered by a mobile platform traversing a
path while subject to finite resources. A number of general
algorithms for IPP operate by performing combinatorial opti-
mization over a discrete grid. The seminal work of Chekuri
and Pál (2005) presents a recursive greedy algorithm pro-
viding a sub-logarithmic approximation in sub-exponential
time. Singh et al. (2009) apply these ideas to environmental
sensing problems and extend them to multi-robot settings.
More recently, branch and bound techniques have been pro-
posed to improve computational efficiency using monotonic
objective functions (Binney and Sukhatme 2012). In 2-D
scenarios, an alternative strategy is to represent the robot
workspace as decomposed cells (Cai and Ferrari 2009) or
a connectivity tree (Ferrari and Cai 2009). These methods
(Cai and Ferrari 2009; Binney and Sukhatme 2012) have
been shown to outperform coverage-based planning strate-
gies (Choset 2001; Galceran and Carreras 2013) and are
applicable in cluttered environments.

However, discrete solvers are typically limited in reso-
lution and scale exponentially with the problem instance.
To reduce the computational overhead, we follow previous
approaches (Bircher et al. 2016; Hitz et al. 2014) in using a
method with a limited look-ahead to generate plans within
a fixed horizon of the total budget. This approach allows us
to perform incremental replanning, as required for adaptive
settings, by trading off guarantees on exploration optimality
outside the planning horizon.

Continuous-space planning strategies offer better scal-
ability in comparison to discrete methods by leveraging
Rapidly-exploring Random Tree (RRT)-like sampling-based
methods (Hollinger and Sukhatme 2014) or splines (Vival-
dini et al. 2016; Hitz et al. 2017; Charrow et al. 2015; Morere
et al. 2017) directly in the robot workspace. As in our prior
work (Popović et al. 2017a), we follow the latter approaches
in defining smooth polynomial trajectories (Richter et al.
2013)which are optimized globally for an information objec-
tive. Our spline optimization problem setup most closely
resembles the ones studied by Hitz et al. (2017) and Morere
et al. (2017); however, our strategy differs in that it uses
an informed initialization procedure to obtain faster conver-
gence.

Specifically, we follow a two-step approach, which explo-
its a greedy, grid-based solution to the resource-constrained
IPP problem to initialize an evolutionary optimization rou-
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tine. Our grid search procedure closely resembles frontier-
based strategies commonly used for exploration in cluttered
environments (Yamauchi 1998). However, a key difference
is that our method does not rely on the internal geometry of
the environment as the camera FoV is unobstructed by obsta-
cles. For the optimization step, an alternative approach to our
global evolutionary strategy is to generate control actions for
the robot using gradient ascent on an information objective
(Schwager et al. 2017; Julian et al. 2011; Grocholsky et al.
2003). Such techniqueswould be useful when the initial grid-
based solution is close to a trajectory with high information
quality, but may be susceptible to local minima. This issue
can be addressed by applying algorithms based on random
walks, local roadmaps (Lu et al. 2014; Bellini et al. 2014),
or two-stage optimization strategies (Charrow et al. 2015;
Rastgoftar et al. 2018).

The motivation behind our approach is shared by the
studies of Jadidi et al. (2016, 2018) in robotic exploration
and information gathering. In contrast, however, we address
the problem of terrain monitoring, considering a 3-D robot
workspace, instead of 2-D occupancy mapping and environ-
mental mapping with a point-based sensor.

Within this context, several recent works have examined
applications similar to ours. Notably, Sadat et al. (2015)
devise an adaptive planner for aerial coverage problems
in which regions of interest are non-uniformly distributed.
Their method, however, assumes discrete viewpoints and
does not support probabilistic data acquisition. To address
this, Bellini et al. (2014) present an information gradient-
based control law for active target classification in cluttered
environments. More similarly to our approach, Arora and
Scherer (2017) introduce an efficient near-optimal algorithm
that provides anytime solutions in adaptive scenarios. As fur-
ther discussed by Arora et al. (2018), their setup considers
using a multiresolution sensor to gather targeted informa-
tion about specific objects as they are detected. A key
difference is that our method also caters for probabilistic
variations in sensor noise for data fusion at different alti-
tudes, and can accommodate adaptively mapping continuous
variables, e.g., temperature, as well as discrete objects, e.g.,
cars.

3 Problem statement

Our setup focuses on efficient data-gathering strategies for
an aerial robot operating above a terrain. The aim is to maxi-
mize the information collected about the environment, while
respecting resource constraints, such as energy, time, or dis-
tance budgets. Formally, this is known as the IPP problem,
which is defined as follows. We seek an optimal trajectory
ψ∗ in the space of all continuous trajectories� formaximum
gain in some information-theoretic measure:

ψ∗ = argmax
ψ∈�

I(measure(ψ))

cost(ψ)
,

s.t. cost(ψ) ≤ B .

(1)

The functionmeasure(·) obtains a finite set ofmeasurements
along trajectory ψ in the 3-D space above the environment,
and cost(·) provides the corresponding cost, which cannot
exceed a predefined budget B. The operator I(·) defines the
information objective quantifying the utility of the acquired
measurements.

4 Mapping approach

In this section, we propose a new mapping framework for
terrain monitoring applications. The generic structure of our
system setup is depicted in Fig. 1. As shown, our frame-
work is capable of mapping either discrete or continuous
variables based on measurements extracted from a sensing
unit, e.g., a depth or multispectral camera. For a particu-
lar problem setup, the map representation can be selected
depending on the type of data received. During a mission,
the planner uses the terrain maps built online to optimize
continuous trajectories for maximum gain in an information
metric reflecting the mission aim. A key aspect of our archi-
tecture is its generic formulation, which enables it to adapt
to any surface mapping scenario, e.g., elevation (Colomina
andMolina 2014), pipe thickness (Vidal-Calleja et al. 2014),
gas concentration (Marchant and Ramos 2014), spatial occu-
pancy (O’Callaghan and Ramos 2012), seismic hazards (Gao
et al. 2017), post-disaster assessment (Ezequiel et al. 2014),
signal strength (Hollinger and Sukhatme 2014), etc.

In Sects. 4.1 and 4.2, we present methods for map rep-
resentation for monitoring discrete and continuous targets,
respectively, as the basis of our framework. In Sect. 5, these
concepts are used to formulate the objective function, and we
describe our adaptive planning scheme.

4.1 Discrete variable mapping

We study the task of monitoring a discrete variable as an
active classification problem. The terrain environment E is
discretized and represented using a 2-D occupancy map X
(Elfes 1989), where each grid cell is associated with an inde-
pendent Bernoulli random variable indicating the probability
of target occupancy (e.g., presence of weed on a farmland).
Measurements are taken with a downwards-looking sensor
providing inputs to a data processing unit, from which dis-
crete classification labels are obtained. At time t , for each
observed cell xi ∈ X within the FoV from a UAV pose p
above the terrain, a log likelihood update is performed given
an observation z:
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Fig. 1 System diagram showing the key elements of our IPP frame-
work. A map of the target environment is built using measurements
extracted from a sensor data stream. The dashed lines indicate that the
map representation can be either discrete or continuous. At a particular

time instant, the map knowledge is used by the planning unit to find
the most useful trajectories for data collection, starting at the current
pose. These are then executed by the robot, allowing for subsequent
map updates in a closed-loop manner
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Fig. 2 Sensor model for a typical camera-based binary classifier oper-
ating above a terrain. The blue and orange curves depict the probability
of observing label ‘1’ for a map cell containing ‘1’ or ‘0’, respectively,
i.e., p(z | xi ,p). As altitude increases, the curves approach unknown
classification probability (0.5)

L(xi | z1:t ,p1:t ) = L(xi | z1:t−1,p1:t−1) + L(xi | zt ,pt ) ,
(2)

where L(xi | zt ,pt ) denotes the altitude-dependent inverse
sensor model log-likelihood capturing the classification out-
put.

As an example, Fig. 2 shows the sensor model for a hypo-
thetical camera-based binary classifier labeling observed
cells as ‘1’ (occupied by target) or ‘0’ (target-free). For
each class, curves are defined to account for poorer classi-
fication with lower-resolution measurements taken at higher
altitudes. In practice, these curves can be obtained through
a Monte Carlo-type accuracy analysis of raw classifier data

by averaging the number of true and false positives (blue and
orange curves, respectively) recorded at different altitudes.

The described approach can be easily extended to map-
pingmultiple class labels bymaintaining layers of occupancy
maps for each, as demonstrated in Sect. 6.2.

4.2 Continuous variable mapping

To monitor a continuous variable, our framework leverages
a more sophisticated mapping method using GPs to encode
spatial correlations common in environmental distributions.
We use a GP to initialize a recursive filtering procedure with
probabilistic sensors at potentially different resolutions. This
approach replaces the computational burden of applying GPs
directly with constant processing time in the number of mea-
surements. We describe our method for creating prior maps
before detailing the Bayesian data fusion technique.

4.2.1 Gaussian processes

A GP is used to model spatial correlations on the terrain in
a probabilistic and non-parametric manner (Rasmussen and
Williams 2006). The target variable for mapping is assumed
to be a continuous function in 2-D space: ζ : E → R. Using
theGP, aGaussian correlated prior is placed over the function
space, which is fully characterized by the mean μ = E[ζ]
and covariance P = E[(ζ−μ)(ζ�−μ�)] as ζ ∼ GP(μ, P),
where E[·] denotes the expectation operator.

Given a pre-trained kernel K (X ,X ) for a fixed-size ter-
rain discretized at a certain resolutionwith a set of n locations
X ⊂ E , we first specify a finite set of new prediction points
X ∗ ⊂ E atwhich the priormap is to be inferred. For unknown
environments, as in our setup, the values at xi ∈ X are ini-
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tialized uniformly with a constant prior mean. For known
environments, the GP can be trained from available data and
inferred at the same or different resolutions. The covariance
is calculated using the classic GP regression equation (Reece
and Roberts 2013):

P = K (X ∗,X ∗) − K (X ∗,X )[K (X ,X ) + σ 2
n In]−1

× K (X ∗,X )� ,
(3)

where P is the posterior covariance, In is the n×n iden-
tity matrix, σ 2

n is a hyperparameter representing signal noise
variance, and K (X ∗,X ) denotes cross-correlation terms
between the predicted and initial locations.

The kernel K (·) determines the generalization properties
of the GP model, and is chosen to describe the characteris-
tics of ζ . To describe environmental phenomena, we suggest
choosing from among a number of well-known kernel func-
tions common in geostatistical analysis, e.g., the squared
exponential or Matérn functions. The free parameters of
the kernel function, called hyperparameters, control relations
within the GP. These values can be optimized using various
methods (Rasmussen andWilliams 2006) to match the prop-
erties of ζ by training on multiple maps obtained previously
at the required resolution.

Once the correlated prior map p(ζ |X ) is determined,
independent noisy measurements at variable resolutions are
fused as described in the following section.

4.2.2 Sequential data fusion

A key component of our framework is a map update pro-
cedure based on recursive filtering. Given a uniform mean
and the spatial correlations captured by Eq. (3), the map
p(ζ |X ) ∼ GP(μ−, P−) is used as a prior for fusing new
sensor measurements.

Let z = [z1, . . . , zm]� denote new m independent mea-
surements received at points [x1, . . . , xm]� ⊂ X modeled
assuming aGaussian sensor as p(zi | ζi , xi ) = N (μs,i , σs,i ).
To fuse the measurements z with the prior p(ζ |X ), we use
the maximum a posteriori estimator:

argmax
ζ

p(ζ | z,X ) . (4)

TheKalman Filter (KF) update equations are applied directly
to compute the posterior density p(ζ | z,X ) ∝ p(z | ζ,X )×
p(ζ |X ) ∼ GP(μ+, P+) (Reece and Roberts 2013):

μ+ = μ− + Kv , (5)

P+ = P− − KHP− , (6)

whereK = P−H�S−1 is the Kalman gain, and v = z−Hμ−
and S = HP−H� + R are the measurement and covariance

innovations. R is a diagonal m × m matrix of altitude-
dependent variances σ 2

s,i associated with each measurement
zi , and H is an m × n matrix denoting a linear measurement
model that intrinsically selects part of the state {ζ1, . . . , ζm}
observed through z. The information to account for variable-
resolution measurements is incorporated according to the
measurement model H in a simple manner as detailed in
the following section.

The constant-time updates in Eqs. (5) and (6) are repeated
every time new data are registered. Note that, as all models
are linear in this case, the KF update produces the optimal
solution. Moreover, this approach is agnostic to the type of
sensor used as it permits fusing heterogeneous data into a
single grid map.

4.2.3 Altitude-dependent sensor model

As an example, we detail an altitude-dependent sensormodel
for a downward-facing camera used to take measurements of
a terrain, e.g., a farmland or disaster site. In contrast with
the pure classification case in Sect. 4.1, our model needs to
express uncertainty with respect to a continuous target distri-
bution. To do this, we consider that the visual data degrades
with altitude in two ways: (i) noise and (ii) resolution. The
proposed model accounts for these issues in a probabilistic
manner as follows.

We assume an altitude-dependent Gaussian sensor noise
model. For each observed point xi ∈ X , the camera pro-
vides a measurement zi capturing the target field ζi as
N (μs,i , σs,i ), where σ 2

s,i is the noise variance expressing
uncertainty in zi . To account for lower-quality images taken
with larger camera footprints, σ 2

s,i is modeled as increasing
with the UAV altitude h using:

σ 2
s,i = a(1 − e−bh) , (7)

where a and b are positive constants.
Figure 3 illustrates the sensor noise model used to eval-

uate our setup in Sect. 6 which represents a camera. The
measurements zi denote the levels of the continuous vari-
able being surveyed, e.g., green biomass level or temperature.
This model is designed so that the quality of the sensor data
decreases at higher altitudes, according to requirements of
the terrain monitoring problem. As for the discrete classifier
in Sect. 4.1, in practice, the parameters of such a model can
be obtained by analyzing how the sensor behaves at different
altitudes using previously acquired datasets.

We define altitude envelopes corresponding to different
resolution scales with respect to the initial points X on the
map. This is motivated by the fact that the Ground Sample
Distance (GSD) ratio (in m/px) depends on the altitude of
the sensor and its fixed intrinsic resolution. To handle data
received from variable altitudes, adjacent xi are indexed by
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Fig. 3 Inverse sensor noise model for a camera providing measure-
ments as N (μs,i , σ

2
s,i ) with a = 0.2, b = 0.05 in Eq. (7). The

uncertainty σ 2
s,i increases with h to represent degrading image qual-

ity. The dotted line at h = 10m indicates the altitude above which
image resolution scales down by a factor of 2

a single sensor measurement zi through the measurement
modelH. At lower altitudes (higher GSDs, corresponding to
the maximum mapping resolution in X ), H is simply used
to select the part of the state observed with a scale of 1.
However, at higher altitudes (lowerGSDs), the elements ofH
used to map multiple ζi to a single zi are scaled by the square
inverse of the resolution scaling factor s f . Note that the fusion
procedure described in Sect. 4.2.2 is always performed at the
maximum mapping resolution as defined by X , so that the
proposed model H considers low-resolution measurements
as a scaled average of the high-resolution map.

Figure 4 consolidates our strategy with an example. The
map in (d) depicts the ground truth corresponding to a field
distribution on a terrain. Mapping is performed at the reso-
lution shown in (a), where the grid cells correspond to the
locations in X . The maps in (e)–(h) demonstrate sequen-
tially fusing two measurements taken at different altitudes
(middle row) into a single probabilistic map (bottom row),
i.e., (g) and (h) visualize the results of fusing first (e) then
(f), respectively, assuming map initialization with a uniform
mean. The plots in (b) and (c) (top row) schematize the UAV
poses from which the measurements were registered, with
the red grids indicating their resolutions. In (c), the scaling
factor is s f = 0.5, such that 4 locations in X (black cells)
map to a single measurement (red cell). By inspecting the
final field map in (h), upon fusing (f), it can be seen the off-
center values are more widely diffused compared to those in
the center, where the higher-quality measurement in (e) was
taken, as expected.

5 Planning approach

This section details our planning scheme for terrain monitor-
ing. As depicted in Fig. 1, we generate fixed-horizon plans to
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Fig. 4 Overview of our strategy for continuous variable mapping. A
ground truth field is shown in (d). e, f depict measurements taken from
9m and 20m altitudes, with different resolutions visible in the projected
camera FoVs (pyramids) in (b) and (c). The resolution scales (red) are
defined by factors s f of 1 and 0.5 with respect to themapping resolution
in (a), respectively. g, h illustrate maps resulting from fusing the data
sequentially. The variable diffusion effects show that our method can
accomodate noisy multiresolution measurements and capture spatial
correlations (Color figure online)

maximize an objective. To do this efficiently, an evolution-
ary technique is applied to optimize trajectories initialized by
a 3-D grid search in the UAV workspace. We first describe
our approach to parameterizing trajectories, then detail the
algorithm itself.

5.1 Trajectories

A polynomial trajectoryψ is represented by a sequence of N
control waypoints to visit C = {c1, . . . , cN } connected using
N − 1 k-order spline segments. Given a reference veloc-
ity and acceleration, we optimize the trajectory for smooth
minimum-snap dynamics (Richter et al. 2013). The first way-
point c1 is clamped as the initial UAV position. As discussed
in Sect. 3, the function measure(·) in Eq. (1) is defined by
computing the spacing of measurement sites along ψ given
a constant sensor frequency and the traveling speed of the
UAV along the trajectory.

5.2 Algorithm

Afixed-horizon approach is used to plan adaptively as data is
collected. During amission, we alternate between replanning
and execution until the elapsed time t exceeds a budget B.
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Our replanning approach consists of two stages and is shown
in Algorithm 1. First, an initial trajectory, defined by N fixed
control waypoints C, is derived through a coarse grid search
(Lines 3–7) in the 3-Dworkspace. This step proceeds sequen-
tially, selecting points in a greedy manner based on a chosen
utility function I(·), so that a rough solution can quickly be
obtained. Then, the trajectory is refined using Eq. (1) to max-
imize the information objective. In this step, we employ a
generic evolutionary routine (Line 8) to optimize the set of
control waypoints C.

In Algorithm 1,Z symbolizes a general model of the envi-
ronment E capturing either a discrete or continuous target
variable of interest. The following sections outline the key
steps of the algorithm before discussing possible ways of
defining the objective for informative planning, including in
scenarios with adaptivity requirements that require learning
and focusing on objects or regions of interest online as they
are discovered.

Algorithm 1 replan_path procedure
Input: Current environment model Z, initial position c1, number of

control waypoints N , lattice points L
Output: Waypoints defining next polynomial trajectory C
1: Z ′ ← Z // Create a local copy of the map.

2: C ← c1; cprev ← c1 // Initialize control points.

3: while |C| ≤ N do
4: c∗ ← argmax

c∈L
I(c)

cost(c, cprev)
// Find next-best point.

5: Z ′ ← predict_measurement(Z ′, c∗) // From this point.

6: C ← C ∪ c∗
// Add to trajectory solution.

7: cprev ← c∗

8: C ← cmaes(C, Z) // Optimize control points using Eq. (1).

5.3 3-D grid search

The first step of the replanning procedure (Lines 3–7 of
Algorithm 1) supplies an initial solution for the optimiza-
tion step in Sect. 5.4. To achieve this, the planner performs
a 3-D grid search based on a coarse multiresolution lattice
L in the robot workspace (Fig. 5). A low-accuracy solution
neglecting sensor dynamics is obtained efficiently by using
the points in L to represent candidate measurement sites and
assuming constant velocity travel. Unlike in frontier-based
exploration commonly used in cluttered environments (Char-
row et al. 2015), selecting goal measurement sites based on
map boundaries is not applicable in our setup. Instead, we
conduct a sequential greedy search for N waypoints (Line 3),
where the next-best point c∗ (Line 4) is found by evaluat-
ing the incremental information gain rate given the chosen
utility definition I(·) over L. This term represents the infor-
mation objective and is discussed in detail in Sect. 5.5. Since
the number of waypoints N is specified as a constant, note
that our approach in this step closely resembles the sequen-

(a) (b)

Fig. 5 Visualizations of a 14-point and b 30-point 3-D lattice grids L
for obtaining an initial trajectory solution in a 40m×40m×30m space.
The point density can be chosen to trade off between solution accuracy
and computational efficiency in the grid search. Note that the points are
sparser at the top due to increasing FoV

tial greedy algorithm (Krause et al. 2008) and generalized
cost-benefit greedy algorithm (Zhang andVorobeychik 2016)
for submodular function optimization with cardinality con-
straints, with the requirement that travel time of the output
trajectory defined by the points must lie within the budget B.
However, the optimization subproblem in Algorithm 1 fun-
damentally differs from cardinality constrained submodular
maximization in that our objective function is not submodu-
lar.

Importantly, the prediction step assumes that no prior
knowledge about the value of future measurements is avail-
able. The search is thus conditioned on the most likely
estimate of the current field map, i.e., considering that the
maximum probability distribution of the map state will be
re-observed. For discrete mapping, this involves partitioning
the occupancy grid cells with p(xi ) ≥ 0.5 as being occupied
and those with p(xi ) < 0.5 as being free in order to identify
which of the two classification curves in Fig. 2 to apply for
the map update procedure (Eq. (2)). For continuous variable
mapping, the most likely estimate of the map simply corre-
sponds to the current mean μ of the field distribution and the
update is performed using theBayesian data fusion technique
(Eqs. (5) and (6)).

For each c∗, a fused measurement is simulated inZ using
the relevant update strategy (Line 5). This point is then added
to the initial trajectory solution (Line 6).

As depicted in Fig. 5, the length scales ofL can be defined
based on the computational resources available and the level
of accuracy desired; the denser grid in Fig. 5b procures better
initial solutions at the expense of longer evaluation times.

5.4 Optimization

The second step (Line 8 of Algorithm 1) optimizes the coarse
grid search solution for the control waypoints C using Eq. (1).
This is done by computing I(·) for a sequence of measure-
ments taken along the trajectory, as defined in Sect. 5.5.
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Thereby, an informed initialization procedure is used to speed
up the convergence of the optimizer. Note that this step
is agnostic to the optimization method considered; in our
specific approach, we apply the Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES), discussed below. In
Sect. 6.1.2, we evaluate our choice by comparing the use of
different routines.

The CMA-ES is a generic global optimization routine
based on the concepts of evolutionary algorithms which
has been successfully applied to high-dimensional, nonlin-
ear, non-convex problems in the continuous domain. As an
evolutionary strategy, the CMA-ES operates by iteratively
sampling candidate solutions according to a multivariate
Gaussian distribution in the search space. Further details,
including a convergence analysis, are provided in the in-depth
review by Hansen (2006).

Our choice of optimization method is motivated by the
nonlinearity of the objective space in Eq. (1) as well as by
previous results (Popović et al. 2017a, b; Hitz et al. 2017).
We initialize the mean solution with the grid search result,
constraining c1 to coincide with the current robot pose, as
described above. In addition, a coordinate-wise boundary
handling algorithm (Hansen 2009) is applied to constrain the
measurement points to lie within a feasible cubical volume
of the workspace above the terrain. For optimization, we use
the strategy internal parameters proposed by Hansen (2006),
and tune only the population size (number of offspring in the
search), co-ordinate wise initial standard deviation (step size,
representing the distribution spread), and maximum number
of iterations based on application-specific requirements.

5.5 Utility definition

The utility, or information gain, function I(·) is critical as it
encapsulates the specific interests for data-driven planning
(Eq. (1)). This section discusses possible ways of quantify-
ing the value of new sensor measurements with respect to the
proposedmap representations.Wefirst introduce utility func-
tions for a pure exploration scenario, in which information
gain depends only on the map uncertainty. Sect. 5.5.1 then
discusses objectives for missions with adaptivity require-
ments, where the aim is to discover and focus on targeted
regions of interest in the environment.

We examine definitions of I(·) for evaluating the explora-
tory value of a measurement from a pose p (Line 4 of
Algorithm 1). Note that, above, c denotes a control waypoint
parameterizing a polynomial trajectory, whereas here p is a
generic pose from where the measurement is registered. In
particular, in a pure non-targeted exploration scenario, we
consider maximizing the reduction of Shannon’s entropy H
in the map X :

I(p) = H(X−) − H(X+) , (8)

where the superscripts denote the prior and posterior maps
given a measurement taken from p.

In the discrete variable scenario, the value of H for the
occupancy map X is obtained by simply summing over the
entropy values of all cells xi ∈ X , assuming their indepen-
dence:

H(X ) = −
∑

xi∈X
p(xi ) log p(xi )

+ (1 − p(xi )) log (1 − p(xi )) , (9)

where p(xi ) indicates the probability of occupancy at xi .
In the continuous variable scenario, however, calculating

H involves the determinant of the covariance matrix P of the
GP model (Rasmussen and Williams 2006). We avoid this
computationally expensive step by instead maximizing the
decrease in the matrix trace, which is equivalent to minimiz-
ing the criterion for A-optimal design, and only measures the
total variance of the map cells (Sim and Roy 2005):

I(p) = Tr(P−) − Tr(P+) , (10)

where Tr(·) denotes the trace of a matrix.
Note that Eq. (8) defines I(·) for a single measurement

site p. To determine the utility of a complete trajectory ψ ,
the same principles can be applied by fusing a sequence of
measurements iteratively and computing the overall infor-
mation gain.

5.5.1 Adaptivity for regions of interest

We also study an adaptive planning setup where the aim is
to map targeted objects or areas of interest, such that the
objective depends on the values of themeasurements taken in
addition to their location. This property is very valuable for
practical monitoring applications, such as finding function
extrema (Marchant and Ramos 2014), classifying level sets
(Hitz et al. 2014), or focusing on specific value ranges. To this
end, Eq. (8) is modified so that the elements mapping to the
value of each cell xi ∈ X are excluded from the objective
computation, provided they do not satisfy the requirement
which defines interest-based planning.

As an example, this work considers a mission where the
aim is to focus specifically on regions of interest which have
higher values of the latent target parameter, e.g., areas of high
vegetation cover in a field. A threshold is applied to separate
the (a) “interesting” (above) and (b) “uninteresting” (below)
parameter value range into complementary subsets (a)XI and
(b) X− of all points X in the map. The partitioning strategy
is described below. The main idea is to selectively include
only the points XI in calculating the information value of
potential measurements in Eq. (8), i.e., the utility associated
with lower values in the points X− = X \XI is ignored.
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Fig. 6 Example simulation results of our IPP framework. The col-
ormaps are shown on the top-right. Bluer and yellower shades represent
lower and higher values of the target parameter, respectively. In the bot-
tom maps, opacity indicates the model uncertainty (variance, σ 2

i ), with
the checkerboard added for visual clarity and the hatched sections denot-
ing uninteresting areas with < μ = 40%. The ground truth is shown on
the bottom-right. The three columns on the left depict the trajectories

(top row) andmaps (bottom row) at different snapshots of themission at
times t = 0 s, 6.67 s, and 33.74 s. In the top plots, the black dot indicates
the current UAVpositionwhile the squares show themeasurement sites.
The top-left figure illustrates an example trajectory before (orange) and
after (colored gradient) optimization using the CMA-ES. Note that the
map means are rendered in the top trajectory plots (Color figure online)

In the discrete case, this simply amounts to computing
Eq. (8) only for the upper set of interesting cells XI = {xi ∈
X | pth < p(xi )}, where pth is a threshold on probabilis-
tic occupancy. However, in the continuous case, to account
for model uncertainty when planning with the GP model
(Eq. (10)), we adopt the principles of bounded uncertainty-
aware classification from (Gotovos et al. 2013; Srinivas et al.
2012). The subset of interesting locationsXI is defined based
on the mean and variance of each cell (μi , σi ) as:

XI = {xi | xi ∈ X ∧ μi + βσi ≥ μth} , (11)

where μth is a threshold on the underlying scalar field and β

is a design parameter tuned to scale the confidence interval
for classification, i.e., the certainty below μth a cell must
possess before being considered interesting.

6 Experimental results

This section discusses our experimental findings in both con-
tinuous (Sect. 6.1) anddiscrete (Sect. 6.2)mapping scenarios.
The overall aim is to assess the performance of our frame-
work and demonstrate its flexibility to cater for both types of
scenario in missions with and without requirements to adapt

to targeted regions of interest. First, in Sect. 6.1, we evalu-
ate the performance of the proposed approach in simulation
and examine the influence of its key parameters. For these
experiments, we consider the more complex case of map-
ping a continuous target variable in a bounded environment
using a UAV equipped with an image-based classifier. Sec-
tions 6.1.1 and 6.1.2 compare our approach to state-of-the-art
methods and study the effects of using different optimization
routines in our algorithm. The adaptive replanning scheme is
evaluated in Sect. 6.1.3. Then, in Sect. 6.2, we demonstrate
the application of our framework for a realistic active clas-
sification problem using the RIT-18 dataset (Kemker et al.
2018), before validating real-time capabilities in a real world
agricultural monitoring scenario.

To begin, Fig. 6 presents an illustrative example of the pro-
gression of our framework for mapping an a priori unknown
environment. For adaptive planning, we set a base threshold
μth = 40% in Eq. (11) to focus on the more interesting,
higher-valued target parameter range. This value allows us
to also include unobserved cells in the objective, which are
initialized uniformly with a uninformed mean prior of 50%.
The top and bottom rows visualize the planned UAV tra-
jectories and maps, respectively, as images are registered at
different times during the mission. The top-left plot depicts
the first planned trajectory before (orange) and after (colored
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gradient) applying the CMA-ES. As shown, the optimiza-
tion step shifts initial measurement sites (squares) to high
altitudes, allowing low-resolution, high-uncertainty data to
be quickly collected before the map is refined (second and
third columns). A qualitative comparison with ground truth
(bottom-right) confirms that our method performs well, pro-
ducing a a fairly complete map in a short time period with
most uninteresting regions (hatched areas) identified.

6.1 Simulation results

6.1.1 Comparison against benchmarks

Our framework is evaluated by comparison to benchmarks
for continuous variable mapping in a simulated environment.
The simulations were run in MATLAB on a single desk-
top with a 1.8GHz Intel i7 processor and 16GB of RAM
and model a synthetic information gathering problem in a
30m×30m area. The target distributions are generated as
2-D Gaussian random fields with the mapped scalar param-
eter ranging from 0 to 100% and cluster radii randomly set
between 1m and 3m. We use a uniform resolution of 0.75m
for both the trainingX and predictive X ∗ grids, and perform
uninformed initialization with a uniformmean prior of 50%.
For the GP, an isotropic Matérn 3/2 kernel is applied. It is
defined as (Rasmussen and Williams 2006):

kMat3(x, x′) = σ 2
f

(
1 +

√
3d

l

)
exp

(
−

√
3d

l

)
, (12)

where d is the Euclidean distance between inputs x and x′,
and l and σ 2

f are hyperparameters representing the length
scale and signal variance, respectively. We train the hyperpa-
rameters {σ 2

n , σ 2
f , l} = {1.42, 1.82, 3.67} by maximizing

the model log marginal likelihood, using four independent
maps with variances modified to cover the entire target
parameter range during inference.

For fusing new data, measurement noise is simulated
based on the camera model in Fig. 3, with a 10m altitude
beyond which images scale by a factor of s f = 0.5. This
places a realistic limit on the quality of data that can be
obtained from higher altitudes. We consider a square camera
footprint with 60◦ FoV and a 0.15Hz measurement fre-
quency. For the purposes of these experiments, we assume no
actuation or localization noise and that the on-board camera
always faces downwards.

Our approach is compared against three different strate-
gies: (a) the sampling-based rapidly exploring informa-
tion gathering tree (RIG-tree) introduced by Hollinger and
Sukhatme (2014), a state-of-the-art IPP method; (b) a tra-
ditional fixed-altitude “lawnmower” coverage path; (c) an
upward spiral 3-D coverage path; and (d) random waypoint

selection. The random approach is considered as a naïve
benchmark that does not incorporate either the structure or
the state of the field map for planning, but can be easily
implemented in practice. A 200s budget B is allocated for
all strategies. Considering that, to the best of our knowledge,
there is no IPP method that procures optimal results when
operating in the continuous trajectory space, we assess per-
formance by comparing different information metrics during
a mission. We quantify uncertainty with the trace of the map
covariance matrix Tr(P) and study the Root Mean Squared
Error (RMSE) andMeanLogLoss (MLL) at points inX with
respect to ground truth as accuracy statistics. As described
by Marchant and Ramos (2014), the MLL is a probabilistic
confidence measure incorporating the variance of the pre-
dictive distribution. Intuitively, all metrics are expected to
reduce as data are acquired over time, with steeper declines
signifying better performance.

For our planner and methods (a), (b), and (d), the UAV
starting position is specified in the corner of the environ-
ment as (7.5m,7.5m) within the field and 8.66m altitude to
assert the same initial conditions as for the complete “lawn-
mower” coverage pattern. For trajectory optimization, the
maximum reference velocity and acceleration are 5m/s and
2m/s2 using polynomials of order k = 12, and the number
of measurements along a path is limited to 10 for computa-
tional feasibility. In our planner, we define polynomials with
N = 5 waypoints and use the lattice in Fig. 5b for the 3-D
grid search. In RIG-tree, we associate control waypoints with
vertices, and form polynomials by tracing the parents of leaf
vertices to the root. For both planners, we consider the utility
I(·) in Eq. (10) and set a base threshold of μth = 40% in
Eq. (11) above which map regions are considered interesting
to define an adaptive planning requirement.

As outlined in our previous papers (Popović et al.
2017a, b),we use a fixed-horizon version ofRIG-tree to allow
for incremental replanning and adaptivity and obtain a fair
comparison to our planner. We set the UAV starting position
as the same corner of the environment as described above,
with no prior map information used to create the initial plan.
The algorithm alternates between tree construction (replan-
ning) and plan execution, updating the map with each new
set of measurements. For replanning, the tree branch expan-
sion step size is set to 10m with 500 sampling iterations.
The latter value was set to obtain the same ∼ 20 s replanning
time as required by the CMA-ES to optimize a single tra-
jectory, given 45 iterations and the optimization paremeters
suggested by Hansen (2006). This enables us to compare the
methods fairly in the experimental setup based on the time
taken to find an informative trajectory.

In the fixed-altitude coverage planner, height (8.66m) and
velocity (0.78m/s) are defined for complete uniform cover-
age given the specified budget and measurement frequency.
To design a fair benchmark, we studied possible “lawn-
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Fig. 7 Comparison of our IPP framework using the CMA-ES against
benchmarks for a fixed mission time budget of 200s. The solid lines
represent means over 30 trials. The thin shaded regions depict 95%
confidence bounds. Using IPP, map uncertainty (left) and error (middle,
right) reduce quickly as the UAV obtains low-resolution images before
descending. Note the logarithmic scale of the Tr(P) axis

mower” patterns with heights determined by the camera FoV.
For each pattern, we modified velocity to match the budget,
then selected the best-performing one. In the 3-D coverage
planner, the path is a conical spiral trajectory, reducing in
radiuswith height and spanning theminimum (1m) andmax-
imum (26m) UAV flight altitudes. Finally, in the random
planner, we randomly sample a destination in the bounded
volume above the terrain and generate a trajectory by con-
necting it to the current UAV position.

Figure 7 shows how the metrics evolve for each planner
during the mission. Note that the spiral curve (light blue) is
offset at t = 0 since the location of the initial measurement
is different. For our algorithm, we use the CMA-ES opti-
mization method. The “lawnmower” coverage curve (green)
validates our previous results that uncertainty (left) reduces
uniformly and deterministically for a constant altitude and
velocity. This motivates approaches that permit the UAV to
fly at variable altitudes, as they can compromise between
sensor uncertainty and FoV. By starting at the lowest altitude
before gradually ascending, the spiral planner (light blue)
improves the map most quickly early on in the missions but
levels off with the lower-quality measurements obtained as
the UAVflies further up. In contrast, with a fixed-size camera
footprint, the coverage performs better at later stages, but is
not capable of achieving the initial rapid map improvement.
As expected, both our algorithm (light orange) and RIG-
tree (dark blue) perform better than the spiral and random
(dark red) benchmarks, given that the latter do not exploit
IPP objectives to guide selecting next waypoint destinations.

Our algorithm produces maps with lower uncertainty and
error than those of RIG-tree given the same budget. This
confirms that our two-stage planner is more effective than
sampling-based methods with the proposed mapping strat-
egy. We noted that fixed step size is a key drawback of

RIG-tree, because values allowing initial ascents tend to limit
incremental navigation when later refining the map.

Using the same simulation setup, we also conducted
a detailed comparison between our approach and “lawn-
mower” coverage to examine the benefits of IPP for missions
of different durations. First, we considered six budgets B
(100 s, 200s,…, 600s) onmission time. For each budget, the
proposed CMA-ES-based framework was tested over 10 tri-
als, giving a total of 60 simulations, and the coverage planner
was run once with its deterministic path. As detailed above,
for a fair evaluation, the fixed coverage altitude for each
mission time was chosen for best performance among dif-
ferent complete “lawnmower” patterns. As an example, the
left plots in Fig. 8 depict the trajectories executed on a 200s
scenario used for the evaluation. The middle graph shows
a quantitative analysis of the final achieved map uncertain-
ties (Tr(P)). For comparison, the results of our approach are
normalized with the corresponding coverage planner value,
so that percentages below 100% (orange line) indicate a
better performance of our method. Second, on the right,
we compared the mission times needed by the two meth-
ods to produce maps with the same final uncertainties. In
these experiments, we examined the six fixed budgets for
our method (orange) and, for each, investigated the time
requirement for the coverage strategy (blue) to obtain the
same reconstruction quality.

Figure 8 illustrates two key benefits of using our approach:
(a) we obtain maps with lower final uncertainty (middle) by
not fixing the flight altitude of the UAV, and (b) we attain
significant time savings (right) by allowing for the early col-
lection of low-quality data, as evidenced in Fig. 7. As a result,
with increasing mission time, the marginal discrepancy in
the final maps increases. The plot on the right shows that
our approach also requires substantially less time (> 50%
savings for > 500 s missions) to achieve maps with the same
uncertainty. This is because the “zig-zag” pattern for these
missions must be set at a lower altitude (6.5m, compared to
8.66m for lower budgets) to obtain a reduced level of sensor
noise, which increases the total distance traveled by the UAV.
Interestingly, the coverage path produces a better result only
at the end of a 100s mission; this is because, at this bud-
get, our planner lacks time to descend to refine the map. In
future studies, we intend to extend our ideas from previous
work (Popović et al. 2017a) and include an awareness of the
remaining path budget for planning.

6.1.2 Comparison of optimization methods

Next, we consider the effects of using different optimiza-
tion routines in Sect. 5.4 to evaluate our CMA-ES-based
approach. We use the same simulation setup as described
above, i.e., 30 trials for mapping a 30m×30m environment,
and study the following methods:
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Fig. 8 Left: Example of an evaluation scenario comparing our IPP
approach with the CMA-ES to “lawnmower” coverage (left and right
plots, respectively) for mapping a continuous variable in 200s mis-
sions. The colored lines represent the traveled trajectories, the spheres
indicate measurement sites, and the ground truth maps are rendered.
Middle: Comparison of the final map uncertainties (Tr(P)) for various
path budgets. TenCMA-ES trials were run for each budget. Right: Com-

parison of times taken to achieve the same final map uncertainty, given
a fixed path budget for the CMA-ES. The orange line corresponds to
average values over 10 CMA-ES trials, and relative time savings using
the new method are shown as percentages. By allowing for altitude
variations, our approach trades off between FoV and sensor noise to
quickly obtain high-confidence maps with finer end quality in the same
time period (Color figure online)

(a) Lattice: 3-Dgrid search only (i.e., without Line 7 inAlgo-
rithm 1);

(b) CMA-ES: global evolutionary optimization routine
(Hansen 2006) (described in Sect. 5.4);

(c) Interior Point (IP): approximate gradient-based opti-
mization using the interior-point approach (Byrd et al.
2006);

(d) Simulated Annealing (SA): global optimization based on
the physical cooling process in metallurgy (Ingber and
Rosen 1992);

(e) Bayesian Optimization (BO): global optimization using
a GP prior (Gelbart et al. 2014).

For optimizers (b)–(e) we investigate initializations using: (i)
the lattice search output from (a) and (ii) random point selec-
tion in the workspace, in order to investigate their sensitivity
to the starting conditions.

The aim of these experiments is to examine how the meth-
ods compare using standard MATLAB implementations as
baselines. As described above, we set the stopping criteria
of the algorithms such that each one is allowed the same
∼ 20 s for replanning.Note that the benchmarkswere applied
using default or recommended values, without significant
effort invested into adjusting their parameters, in order to
make them practically comparable with the CMA-ES, which
requires minimal tuning procedures.

For the local IP optimizer, we approximate Hessians by a
dense quasi-Newton strategy and apply the step-wise algo-
rithm described by Byrd et al. (2006). For SA, we apply
an exponential cooling schedule and an initial tempera-
ture of 100. For BO, we use the time-weighted Expected
Improvement acquisition function studied by Gelbart et al.
(2014) with an exploration ratio of 0.5. Additionally, for

our approach, we examine two variations of the CMA-ES
with initial step sizes of (0.5m,0.5m,1m), (3m,3m,4m)

and (10m,10m,12m) in the (x, y, z) co-ordinates, where
the z-axis defines altitude. These values were chosen based
on the extent of the robot workspace in order to compare
different global search behaviors, as the step size parameter
effectively captures the distribution from which new solu-
tions are sampled, and thus how well the problem domain
is covered by the optimization routine. The aim is to also
obtain a practical insight into the tuning requirements for the
CMA-ES to achieve best results.

Table 1 displays the mean results for each method aver-
aged over the 30 trials, with the benchmarks from Sect. 6.1.1
included for reference. The suffixes are used to denote the
initialization strategy (lattice or random) and different step
sizes for the CMA-ES ((0.5, 1), (3, 4), and (10, 12) corre-
spond to step sizes of (0.5m,0.5m,1m), (3m,3m,4m) and
(10m,10m,12m), respectively). Following Marchant and
Ramos (2014), we also show weighted statistics to empha-
size errors in high-valued regions. As the same objective is
used for all methods, consistent trends are observed in both
non-weighted and weighted metrics. In Fig. 9, we show the
mean times taken by each method using the lattice initializa-
tion to reduce Tr(P) to 75% of its initial value to represent
the decay speed of the map uncertainty.

Comparing the lattice approach with the CMA-ES and
IP methods using this informed initialization (‘lat’) confirms
that optimization reduces both uncertainty and error.With the
lowest values, the CMA-ES performs best on all indicators
as it searches globally to escape local minima. Whereas the
CMA-ES variants with smaller and intermediate step sizes
behave similarly in this problem, using much larger steps
in ‘CMA-ES (10, 12)’ (> 33% of the workspace extent co-
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Table 1 Mean information
metrics for all optimization
methods, averaged over 30
continuous mapping trials. The
suffixes ‘lat.’ and ‘rand.’
indicate initializations using the
lattice and random approaches,
respectively. The lowest
uncertainties and errors obtained
with the CMA-ES justify our
proposed global optimization
strategy

Method Tr(P) RMSE WRMSE MLL WMLL

Lattice 51.421 0.0560 0.0559 −0.960 −0.960

CMA-ES (0.5,1) lat. 45.670 0.0520 0.0517 −1.007 −1.009

CMA-ES (3,4) lat. 45.187 0.0525 0.0522 −1.002 −1.006

CMA-ES (10,12) lat. 51.246 0.0603 0.0599 −0.894 −0.897

IP lat. 47.973 0.0541 0.0538 −0.961 −0.962

SA lat. 51.968 0.0571 0.0569 −0.903 −0.904

BO lat. 68.806 0.0685 0.0682 −0.747 −0.749

Random 92.618 0.0771 0.0764 −0.668 −0.669

CMA-ES (3,4) rand. 53.448 0.0613 0.0608 −0.8614 −0.8653

IP rand. 86.709 0.0753 0.0746 −0.658 −0.658

SA rand. 67.730 0.0676 0.0672 −0.749 −0.752

BO rand. 74.581 0.0711 0.0705 −0.693 −0.696

RIG-tree 69.325 0.0690 0.0689 −0.757 −0.757

Coverage 170.911 0.0981 0.0968 −0.665 −0.667

Spiral 54.251 0.0595 0.0595 −0.793 −0.791

Bold indicates the best values (obtained using our method)

s)

Fig. 9 Mean times required by each optimization method to reduce
Tr(P) (map uncertainty) to 75% of its initial value, averaged over the
30 trials. The CMA-ES, IP, SA, and BO routines use a lattice-based
initialization strategy. The CMA-ES result corresponds to a search with
intermediate step sizes (‘CMA-ES (3, 4)’). With a mean time of 18.1 s,
this approach performs best

ordinate-wise) results in worse performance, as these lead
to large random fluctuations during the evolutionary search,
which slows down convergence. This reflects the impor-
tance of selecting suitable step sizes to cover the application
domain, as discussed byHitz et al. (2017) andHansen (2006).
Surprisingly, applying BO with lattice-based initialization
yields mean metrics poorer than those of the lattice itself.
We suspect this to be due to its high exploratory behavior
causing erratic paths similar to those of ‘CMA-ES (10, 12)’.
Despite attempting several commonly used acquisition func-
tions, we found BO to be the most difficult one to tune for
the highly nonlinear problem domain.

The fact that the CMA-ES remains as the most successful
optimizer using random initialization (‘rand’) suggests that
it is most robust to varying starting conditions. Nonetheless,
the results show that the lattice search still contributes sig-
nificantly to finding a good initial solution in practice, which

underlines the benefits of our two-step approach. Though it
performs well with the lattice, the IP method using random
initialization scores almost as poorly as the random bench-
mark alone since it only conducts a local search to refine the
solution. This implies that it is very dependent on the ini-
tial grid selection within our planner, and further motivates
global optimization routines.

6.1.3 Adaptive replanning evaluation

We examine the performance of our online framework in
planning setups with adaptivity requirements (Sect. 5.5.1) to
assess its ability to learn and focus on targeted regions of
interest in different environments. The experiments consider
two continuous mapping scenarios: (a) ‘Split’, handcrafted
maps where the interesting area is well-defined and (b)
‘Gaussian’, the uniformly distributed fields from Sect. 6.1.1.
Practically speaking, ‘Gaussian’ maps are representative of
cases where the underlying field varies smoothly, matching
the assumption of the model, whereas ‘Split’ maps highlight
the targeted behaviour of the planner where specific zoning
might be present in the field. Both of these scenarios are rel-
evant for an agricultural monitoring application as in Sect. 7,
for example, depending on the type of plants growing on
a field and the treatments it has received. ‘Split’ maps are
partitioned spatially such that half of the cells in X are clas-
sified as interesting based onEq. (11)with a base threshold of
μth = 40% and β = 3. Then we apply these parameters for
adaptive replanning in the simulation setup from Sect. 6.1.1.

The gain of replanning online is evaluated by comparing
a targeted variant of our approach, i.e., using Eq. (11) as
the planning objective, against itself aiming for pure non-
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(a)

(b)

(c)

Fig. 10 Evaluation of our adaptive replanning scheme. a Top: Example
‘Split’ scenario visualizing the trajectory traveled by our planner using
the targeted objective in Eq. (11) (colored line) in a 200s mission. The
spheres indicate measurement sites and the ground truth map is ren-
dered. Colormaps are on the right. The dashed line shows the threshold
μth = 40% above which map regions are considered interesting (yel-
lower). Bottom: Final map output by our planner (left) compared with
ground truth (right). The opacity indicates model uncertainty with the

checkerboard added for visual clarity. Lower opacity confirms higher
certainty in the interesting area XI . b In ‘Split’ scenarios, adaptivity
achieves low error (left) with higher uncertainty differences (right) in
interesting areas. c In ‘Split’ scenarios (left), adaptivity reduces uncer-
tainty faster in interesting areas, while performing comparably to a
standard exploration approach in ‘Gaussian’ scenarios (right). In (b) and
(c), the solid lines represent means over 30 trials. The shaded regions
depict 95% confidence bounds (Color figure online)

targeted exploration, i.e., using Eq. (10), which treats the
information acquired from all locations in X equally. As
before, we perform 30 simulation trials in 30m×30m envi-
ronments.

For a quantitative evaluation, we consider the variations
of WRMSE and the uncertainty difference Δσ 2 in the area
of interest and the rest of the total area, which is defined by
(Hitz et al. 2017) as:

Δσ 2 = σ̄ 2(X−) − σ̄ 2(XI )

σ̄ 2(X−)
, (13)

where σ̄ 2(·) evaluates the mean variance and X− and XI

denote the sets of uninteresting and interesting locations,
respectively, as described in Sect. 5.5.1.

Moreover, the rate of uncertainty (Tr(P)) reduction in XI

evaluates the ability of the planners to focus on interesting
regions.

Our results are summarized in Fig. 10. As shown qualita-
tively in Fig. 10a, once the uninteresting (bluer) map side
X− is classified in a ‘Split’ environment, planning adap-
tively in a targeted manner leads to more measurements on

the interesting (yellower) side XI , which induces lower final
uncertainty in this area, as expected. Figure 10b confirms that,
in these scenarios, the relative uncertainty difference Δσ 2

increases more rapidly using adaptivity, while mapWRMSE
remains low. Note that, early in the mission (< 30 s), both
approaches behave similarly to explore the initially unknown
map. Finally, Fig. 10c shows that the benefit of adaptivity, in
terms of reducing uncertainty in areas of interest, is higher in
‘Split’ environments when compared with ‘Gaussian’. Since
the region XI is clearly distinguished, purely informative
measurements can be taken within the camera FoV given the
thresholded objective. Planning adaptively, however, yields
no disadvantages when the field is uniformly dispersed.

6.2 RIT-18mapping scenario

We demonstrate our complete framework on a photorealistic
scenario in the Gazebo-based RotorS simulation environ-
ment (Furrer et al. 2016). In contrast to the preceding section,
these experiments show our framework in the discrete map-
ping domain to reflect the nature of the target dataset.
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Fig. 11 Our photorealistic simulation setup in RotorS. a, b depict the
AscTec Firefly UAV and the view from its on-board camera. c Shows
an aerial view of the 200m×290m surveyed area (RIT-18 validation
orthomosaic). The red and green lines annotate the two target classes
for mapping using our approach: ‘Lake’ and ‘BRV’, respectively (Color
figure online)

Figure 11 depicts our experimental setup, which runs on a
single desktop with a 2.6GHz Intel i7 processor and 16GB
of RAM. The planning and mapping algorithms were imple-
mented in MATLAB on Ubuntu Linux and interfaced to
the Robot Operating System. For mapping, we use RIT-18
(Kemker et al. 2018), a high-resolution 6-band VNIR dataset
for semantic segmentation consisting of coastal imagery
along Lake Ontario in Hamlin, NY. In our simulations, the
surveyed region is a 200m×290m area featuring the RIT-18
validation fold.

Our UAV model is an AscTec Firefly equipped with a
downward-facing camera,which has a 360px×480px image
resolution and a (35.4◦, 47.2◦)FoV in the x- and y-directions,
respectively. To extract measurements for active classifica-
tion, we use a modified version of the SegNet convolutional
architecture (Badrinarayanan et al. 2017; Sa et al. 2018)
accepting multispectral as well as RGB image inputs. The
imagery registered from a given UAV pose is passed to the
network to produce a dense semantic segmentation output,
as exemplified in Fig. 12. We simplify the classification
problem by only mapping the following 3 classes derived
from the RIT-18 labels: (a) ‘Lake’; (b) a combination of
‘Building’, ‘RoadMarkings’, and ‘Vehicle’ (‘BRV’); and (c)
‘Background’ (‘Bg’), i.e., all others. These particular labels
were chosen based on their distributions to obtain strongly
altitude-dependent classification performance, as relevant for
the terrain monitoring problem setup.

To model the sensor for predictive planning, we first
trained SegNet on all labels using RIT-18 training fold
imagery. Our training procedure uses (323, 72, 16) images
simulated at 3 different altitudes, (50m,70m,100m), and is

Fig. 12 Example classification result from an altitude of 70m. a Shows
the RGB image channel input, and b visualizes the dense segmentation
output. In (b), the probabilistic output for each class [‘Lake’, ‘BRV’,
‘Bg’] is mapped to the corresponding pixel intensity on the [R, G, B]
channels
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Fig. 13 Sensor models for our trained classifier for the a ‘Lake’ and
b ‘BRV’ classes. The blue and orange curves depict the probability of
observing class label ‘1, given that the map contains ‘1 or ‘0’, i.e., true
and false positives, respectively. Note that the false positive probability
can decrease with altitude as the classifier becomes more conservative
with true outputs (Color figure online)

performed on anNvidia TitanXPascalGPUmodule.At 70m
and 100m, the training images were additionally downscaled
to exaggerate the effects of pixel mixing at lower resolutions.
Then, classification accuracy was assessed by using valida-
tion data to compute confusion matrices at each altitude for
the 3 classes of interest (30% train and 70% test split, with
a higher proportion of training data at lower altitudes). This
enabled us to derive the sensormodels in Fig. 13, inwhichwe
associate intermediate altitudes with the closest performance
statistics available. Note that the altitude range considered
here is wider compared to the previous sections due to the
larger environment size.

We employ a discrete strategy to map the target region,
maintaining one independent occupancy grid layer for each
of the 3 classes. Each layer has a uniform resolution of 5m,
and all cells are initialized with an uninformed probability
of 0.5. For predictive measurements when planning, we use
the sensor models in Fig. 13 conditioned on the most prob-
able current map states. For fusing new data, we project the
classifier output in Fig. 12b on the occupancy grids for each
class, performing likelihood updateswith themaximumpixel
probabilitiesmapping to each cell. Note that, unlike the pixel-
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Fig. 14 Comparison of our IPP approach using the CMA-ES against
fixed-altitude coverage benchmarks (‘Cvge. 1’ = 157m, ‘Cvge. 2’ =
104m) in a 400s photorealistic mapping scenario. By planning adap-
tively, map uncertainty (middle) and error (right) in interesting areas
(‘BRV’ class) reduce most rapidly, while yielding higher overall map
uncertainty (left). Note the logarithmic scale of the Entropy axis

wise classifier output, our mapping strategy does not enforce
the probabilities of a cell across the layers to sum to 1, as a
cell may contain objects from multiple classes.

The planning goal in this setup is to efficiently map the
‘BRV’ class, which would be useful, e.g., for identifying
man-made features in search and rescue scenarios. Our pro-
posed approach with the CMA-ES is evaluated against the
“lawnmower” coverage strategy, considered as the naïve
choice of algorithm for such applications. To investigate
height-dependent performance, trials are performedwith two
coverage patterns at fixed altitudes of 157m and 104m,
denoted ‘Cvge. 1’ and ‘Cvge. 2’, respectively. In addition,
we study both targeted and non-targeted versions of our
approach, in order to expose the benefits of using adaptive
replanning to map the regions of interest. Our performance
metrics are map entropy and RMSE with respect to the RIT-
18 ground truth labels.

All methods are given a 400s budget B. To limit com-
putational load on the classifier, we assign a measurement
frequency of 0.1Hz, allowing the UAV to stopwhile process-
ing images. As before, trajectory optimization is performed
on polynomials of order k = 12. The UAV starting position
in our approach is set as (33m,46m) within the lower-left
field corner with 104m altitude to achieve consistency with
the lower-altitude coverage pattern. For planning, we use
polynomials defined by N = 5 waypoints with a reference
velocity and acceleration of 15m/s and 20m/s2. The 3-D
grid search is executed on a scaled version of the 30-point
lattice in Fig. 5b, stretched to cover the rectangular area,
and the CMA-ES optimizer runs with initial step sizes of
(50m,60m,40m). We apply a low threshold of pth = 0.4 in
Eq. (9) on the occupancy grid layer of the target ‘BRV’ class
to define the adaptive planning requirement. The coverage
benchmarks are designed based on the principles discussed
in the preceding sections.

Figure 14 compares the performance of each planner in
this scenario. As in Sect. 6.1.1, total map uncertainty reduces
uniformly using the coverage patterns, with interesting areas
surveyed only towards the end due to the environment layout.
In these regions, ‘Cvge. 2’ (dark red) achieves higher-quality
mapping than ‘Cvge. 1’ (green) as its lower altitude permits
more accurate measurements. This evidences the height-
dependent nature of the classifier, which motivates using IPP
to navigate in 3-D space. By planning adaptively using our
targeted approach (orange), both uncertainty and error decay
most rapidly in the areas of interest, as expected. However,
a non-targeted strategy (blue) performs better in terms of
overallmap uncertainty, since it is biased towards pure explo-
ration. These results demonstrate how our framework can be
tailored to balance exploration (uniform uncertainty reduc-
tion) and exploitation (mapping a target class) in a particular
scenario.

Figure 15 visualizes the trajectory traveled by our targeted
planner during the mission. As before, the UAV initially (<
100 s) explores unobserved space, before concentrating on
high-probability areas for the ‘BRV’ class once they have
been discovered (green, or cyan for cells containing both
‘BRV’ and ‘Bg’). It can be seen that the map becomes more
complete in these regions as low-altitude measurements are
accumulated. Note that the two small cars to the right of
the building and above the parking lot (visible in Fig. 11c)
are mapped incorrectly as our SegNet model is limited in
segmenting out fine details given the data it was trained on.
Considering the richness of the RIT-18 dataset, an interesting
direction for future work is to explore different classification
methods and target classes within our IPP framework.

7 Field deployment

Finally, we present experimental results from a field deploy-
ment implementing our framework on a UAV to monitor
the vegetation distribution in a field. The aim is to validate
the system for performing a practical sensing task in a chal-
lenging outdoor environment, with all algorithms running
on-board and in real-time.

The experiments were conducted on an agricultural field
at the Research Station for Plant Sciences Lindau of ETH
Zurich in Switzerland (Lat. 47.450040◦, Lon. 8.681056◦)
in Sept. 2018. Figure 16 depicts our on-field setup. The
UAV platform in (a) is the DJI Matrice M100 monitor-
ing a 20m×20m area within the field with maximum and
minimum altitudes of 21m and 8m. As shown in (b), the
controlled field features a central area of crops planted in
row arrangements, surrounded by dense weed distributions
on its edges. The width of the crop row area is ∼ 18m. Veg-
etation mapping is performed using RGB imagery from a
downward-facing Intel RealSense ZR300 camera with a res-
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Fig. 15 Visualization of the trajectory traveled by our targeted plan-
ner (colored line) in the 400s mission. The three plots depict different
snapshots of the mission at times t = 50 s, 100s, and 400s. The RIT-18
ground truth is shown on the right. In the trajectory plots, the spheres
indicate measurement sites and the current occupancy map states are
rendered. The colors portray composites of the three-layer map rep-
resentation, with the cell probabilities for each class [‘Lake’, ‘BRV’,

‘Bg’]mapped to the corresponding intensities on the [R,G, B] channels.
Gray indicates unobserved space. The sequence shows that our plan-
ner quickly explores the area to later focus on more closely mapping
interesting regions (‘BRV’ class). Note that the magenta and cyan cells
indicate the presence of two classes, [‘Bg’, ‘Lake’] and [‘Bg’, ‘BRV’],
respectively (Color figure online)

Fig. 16 a shows a close-up of theDJIMatriceM100 used in the outdoor
trials. b illustrates the UAV executing a mission, flying to monitor the
vegetation distribution in a field of interest. c, d exemplify RGB images
taken by the on-board camera at different altitudes, which are used for
mapping online. Note that, in (b), the UAV is positioned approximately
above a boundary between the controlled crop (left) and weed (right)
areas, visible in (c, d)

olution of 1920px×1080px and a FoV of (68.0◦, 47.2◦).
Example images taken from different altitudes are shown in
(c) and (d). In these images, the boundaries between theweed
and crop areas of the field can be distinguished.

We use the robust visual inertial odometry (ROVIO)
framework (Bloesch et al. 2015) for state estimation with
model predictive control (MPC) (Kamel et al. 2017) to track
trajectories output by the planner. All computations, includ-
ing modules for environmental mapping and informative
planning, are based on our open-source package and run on
an on-board computer with a 3.2GHz Intel NUC i7, 16GB
of RAM, and running Ubuntu Linux 16.04 LTS with Robot
Operating System (ROS) as middleware. Further platform
specifics are discussed by Sa et al. (2017, 2018).

The goal is to map the level of Excess Green Index (ExG)
in the area of interest based on the RGB images and using
our GP-based mapping method for continuous variables. It
is defined by ExG = 2g − r − b, where r , g, and b are the
normalized red, green, and blue color channels in the RGB
space (Yang et al. 2015).Note thatwenormalized the range of
the ExG based on the maximum and minimum magnitudes
measured on the experimental field in previously acquired
datasets.

For mapping, a uniform resolution of 0.5m is set for both
the training X and predictive X ∗ grids in the GP. Assuming
that the field only contains soil, we initialize the map with
a uniform mean prior of 0 normalized ExG. The isotropic
Matérn 3/2 kernel (Eq. (12)) is applied to approximate the
vegetation spread in the field, with the hyperparameters
{σ 2

n , σ 2
f , l} = {0.50, 0.50, 1.76} trained using images from

a manually acquired dataset. We recorded the dataset while
flying the UAV at a fixed altitude of 8m over the area, which
corresponds to the minimum level allowed in the experi-
ments, and the maximum GSD (in m/px) obtainable in the
images, i.e., highest possible mapping resolution in X .

Measurements are extracted from RGB images taken at a
constant frequency of 0.20Hz. We consider the sensor noise
model defined by Eq. (7) with coefficients a = 0.05 and
b = 0.2 set to determine the variance variation based on
the altitude range. Note that, due to the inherently high cam-
era resolution, the scaling factor is s f = 1 across the altitude
range. To update themapwith a new image, the pixels are first
projected on the ground plane based on the camera param-
eters and the estimated UAV pose. The projected pixels are
averaged per cell, and the normalized ExG values for each
cell are computed from the color channels. Data fusion then
proceeds according to the method described in Sect. 4.2.2.

The planning strategy considers polynomial trajectories of
order k = 12 defined by N = 3 waypoints and optimized for
a maximum reference velocity and acceleration of 5m/s and
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Fig. 17 Experimental results from the field trial using our IPP frame-
work for UAV-based vegetation monitoring. Top-right: Colorbar, indi-
cating the normalized excess green index (ExG) level (plant greenness).
Left: Estimatedmap reconstructions (GPmeans) of the normalized ExG
on the field at different times t during the mission. The bluer and yel-

lower regions correspond to successfully identified crop row and weed
regions, respectively. Bottom-right: Evolution of total map uncertainty
over time. The results confirm improvingmap completeness as the num-
ber of measurements increases (Color figure online)

3m/s2. The planning objective is set as uncertainty reduc-
tion with no interest-based threshold (Eq. (10)), i.e., the aim
is to reconstruct the field in a uniform manner, as quickly
as possible. We perform the 3-D grid search over a coarse
14-point lattice and set initial CMA-ES step sizes of 4.5m in
each co-ordinate of the UAV workspace. For simplicity, we
do not specify a mission budget B; instead allowing the algo-
rithm to create fixed-horizon plans until the mapping output
is perceived visually as being complete.

The deployment results are reported in Fig. 172. Since the
ground truth data of normalized ExG levels are not available,
we validate our framework by assessing the progression of
total map uncertainty on the bottom-right, which confirms
that uncertainty is reduced over time. Note that the curve in
the plot is offset by ∼ 100 s as data recording was triggered
before the UAV took off to take the first measurement.

Qualitatively, the sequence of plots on the left verifies that
the estimated map does become more complete as images of
the field are accumulated. The yellower parts, corresponding
to areas with high values of the normalized ExG, indicate
successfully identified weeds on the edges of the physical
field (visible in Fig 16c, d). Towards the central area, a close
look at the bluer parts with lower ExG reveals that even the
crop row details are mapped correctly. These findings show-
case our mapping strategy and represent valuable data that
could guide practical crop management decisions.

2 A video showing the UAV trajectory is available at: http://youtu.be/
5dK8LcQH85o.

8 Conclusion and future work

This paper introduced a general IPP framework for environ-
mental monitoring applications using an aerial robot. The
method is capable of mapping either discrete or continuous
target variables on a terrain using variable-resolution data
received from probabilistic sensors. The resulting maps are
employed for IPP by optimizing parameterized continuous-
space trajectories initialized by a coarse 3-D search.

Our approach was evaluated extensively in simulations
using synthetic and real world data. The results reveal higher
efficiency compared to state-of-the-artmethods andhighlight
its ability to efficiently build models with lower uncertainty
in value-dependent regions of interest. Furthermore, we vali-
dated our framework in an active classification problemusing
a publicly available dataset. These experiments demonstrated
its online application on a photorealistic mapping scenario
with a SegNet-based sensor for data acquisition. Finally, a
proof of concept was presented showing the algorithms run-
ning on-board and in real-time for an agricultural monitoring
task in an outdoor environment.

The implementation of the proposed planner is released
for use and further development by the community alongwith
sample experimental results. Future theoretical work will
investigate scaling the approach to larger environments and
extending the mapping model to capture temporal dynam-
ics. This would enable previously acquired data to be used
as a prior in persistent monitoring missions. Towards more
accurate map building in practice, it would be interesting
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to also incorporate the robot localization uncertainty in the
decision-making algorithm.

Acknowledgements Wewould like to thank Dr. Frank Liebisch for his
useful discussions. This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant
agreement No 644227 and from the Swiss State Secretariat for Educa-
tion, Research and Innovation (SERI) under contract number 15.0029.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Arora, S., Choudhury, S., & Scherer, S. (2018). Hindsight is only 50/50:
Unsuitability of MDP based approximate POMDP solvers for
multi-resolution information gathering. arXiv:1804.02573.

Arora, S., & Scherer, S. (2017). Randomized algorithm for informa-
tive path planning with budget constraints. In IEEE international
conference on robotics and automation (pp. 4997–5004). IEEE.

Badrinarayanan,V.,Alex,K.,&Cipolla, R. (2017). SegNet:Adeep con-
volutional encoder-decoder architecture for image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(12), 2481–2495.

Bellini, A. C., Lu,W.,Naldi, R.,&Ferrari, S. (2014). Information driven
path planning and control for collaborative aerial robotic sensors
using artificial potential functions. InAmerican control conference
(pp. 590–597).

Berrio, J. S., Ward, J., Worrall, S., Zhou, W., & Nebot, E. (2017).
Fusing lidar and semantic image information in octree maps. In
Australasian conference on robotics and automation. ACRA.

Binney, J., & Sukhatme, G. S. (2012). Branch and bound for informative
path planning. In IEEE international conference on robotics and
automation (pp. 2147–2154). IEEE.

Bircher, A., Siegwart, R., Kamel, M., Alexis, K., & Oleynikova, H.
(2016). Receding horizon path planning for 3D exploration and
surface inspection. Autonomous Robots, 42(2), 291–306.

Bloesch,M.,Omari, S.,Hutter,M.,&Siegwart, R. (2015).Robust visual
inertial odometry using a direct EKF-based approach. In IEEE/RSJ
international conference on intelligent robots and systems (pp.
298–304). IEEE.

Byrd, R. H., Gilbert, J. C., Nocedal, J., Byrd, R. H., Gilbert, J. C.,
Nocedal, J., et al. (2006). A trust region method based on inte-
rior point techniques for nonlinear programming. Mathematical
Programming, 89(1), 149–185.

Cai,C.,&Ferrari, S. (2009). Information-driven sensor path planningby
approximate cell decomposition. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 39(3), 672–689.

Charrow, B., Liu, S., Kumar, V., & Michael, N. (2015). Information-
theoretic mapping using cauchy-schwarz quadratic mutual infor-
mation. In IEEE international conference on robotics and automa-
tion (pp. 4791–4798). IEEE.

Chekuri, C., & Pál, M. (2005). A recursive greedy algorithm for walks
in directed graphs. In IEEE symposium on foundations of computer
science (pp. 245–253). IEEE.

Chen, M., Frazzoli, E., Hsu, D., & Lee, W. S. (2016). POMDP-lite
for robust path planning under uncertainty. In IEEE international
conference on robotics and automation (pp. 5427–5433). IEEE.

Choset, H. (2001). Coverage for robotics: a survey of recent results.
Annals of Mathematics and Artificial Intelligence, 31, 113–126.

Colomina, I., & Molina, P. (2014). Unmanned aerial systems for pho-
togrammetry and remote sensing: A review. ISPRS Journal of
Photogrammetry and Remote Sensing, 92, 79–97.

Dunbabin, M., & Marques, L. (2012). Robots for environmental moni-
toring: Significant advancements and applications. IEEE Robotics
and Automation Magazine, 19(1), 24–39.

Elfes, A. (1989). Using occupancy grids for mobile robot perception
and navigation. Computer, 22(6), 46–57.

Ezequiel, C.A. F., Cua,M., Libatique,N. C., Tangonan,G. L., Alampay,
R., Labuguen, R. T., Favila, C. M., Honrado, J. L. E., Canos, V.,
Devaney, C., Loreto, A. B., Bacusmo, J., & Palma, B. (2014).
UAV aerial imaging applications for post-disaster assessment,
environmental management and infrastructure development. In
International conference on unmanned aircraft systems (pp. 274–
283). IEEE.

Ferrari, S., & Cai, C. (2009). Information-driven search strategies in the
board game of CLUE. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 39(3), 607–625.

Furrer, F., Burri, M., Achtelik, M., & Siegwart, R. (2016). RotorS—A
modular gazebo MAV simulator framework. In Robot operat-
ing system (ROS): The complete reference (Vol. 1, pp. 595–625).
Springer.

Galceran, E., & Carreras, M. (2013). A survey on coverage path plan-
ning for robotics. Robotics and Autonomous Systems, 61(12),
1258–1276.

Gao, M., Xu, X., Klinger, Y., Van Der Woerd, J., & Tapponnier, P.
(2017). High-resolution mapping based on an unmanned aerial
vehicle (UAV) to capture paleoseismic offsets along the Altyn-
Tagh fault, China. Scientific Reports, 7(1), 1–11.

Gelbart, M. A., Snoek, J., & Adams, R. P. (2014). Bayesian optimiza-
tion with unknown constraints. In Conference on Uncertainty in
Artificial Intelligence (pp. 250–259). AUAI Press.

Girdhar, Y., & Dudek, G. (2015). Modeling curiosity in a mobile
robot for long-term autonomous exploration and monitoring.
Autonomous Robots, 33(4), 645–657.

Gotovos, A., Casati, N., Hitz, G., & Krause, A. (2013). Active learn-
ing for level set estimation. In International joint conference on
artificial intelligence (pp. 1344–1350). AAAI Press.

Grocholsky, B., Makarenko, A., & Durrant-Whyte, H. (2003).
Information-theoretic coordinated control of multiple sensor plat-
forms. In IEEE international conference on robotics and automa-
tion (pp. 1521–1526). IEEE.

Hansen, N. (2006). The CMA evolution strategy: A comparing review.
Studies in Fuzziness and Soft Computing, 192(2006), 75–102.

Hansen, N. (2009). A method for handling uncertainty in evolutionary
optimization with an application to feedback control of com-
bustion. IEEE Transactions on Evolutionary Computation, 13(2),
180–197.

Hitz, G., Galceran, E., Garneau, M. È., Pomerleau, F., & Siegwart, R.
(2017). Adaptive continuous-space informative path planning for
online environmentalmonitoring. Journal of FieldRobotics, 34(8),
1427–1449.

Hitz, G., Gotovos, A., Pomerleau, F., Garneau, M. E., Pradalier, C.,
Krause, A., & Siegwart, R. Y. (2014). Fully autonomous focused
exploration for robotic environmental monitoring. In IEEE inter-
national conference on robotics and automation (pp. 2658–2664).
IEEE.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1804.02573


Autonomous Robots (2020) 44:889–911 909

Hollinger, G. A., Englot, B., Hover, F. S., Mitra, U., & Sukhatme, G. S.
(2013). Active planning for underwater inspection and the bene-
fit of adaptivity. The International Journal of Robotics Research,
32(1), 3–18.

Hollinger, G. A., & Sukhatme, G. S. (2014). Sampling-based robotic
information gathering algorithms. The International Journal of
Robotics Research, 33(9), 1271–1287.

Ingber, L., & Rosen, B. (1992). Genetic algorithms and very fast sim-
ulated reannealing: A comparison. Mathematical and Computer
Modelling, 16(11), 87–100.

Jadidi, M. G., Miro, J. V., & Dissanayake, G. (2016). Sampling-based
incremental information gathering with applications to robotic
exploration and environmental monitoring. arXiv:1607.01883.

Jadidi, M. G., Miro, J. V., & Dissanayake, G. (2018). Gaussian process
autonomous mapping and exploration for range sensing mobile
robots. Autonomous Robots, 42(2), 273–290.

Julian, B. J., Angermann, M., Schwager, M., & Rus, D. (2011). A
scalable information theoretic approach to distributed robot coor-
dination. In IEEE/RSJ international conference on intelligent
robots and systems (pp. 5187–5194). IEEE.

Kaelbling, L., Littman,M.,&Cassandra,A. (1998). Planning and acting
in partially observable stochastic domains. Artificial Intelligence,
101(1–2), 99–134.

Kamel, M., Stastny, T., Alexis, K., & Siegwart, R. (2017). Model pre-
dictive control for trajectory tracking of unmanned aerial vehicles
using robot operating system. In Robot operating system (ROS):
The complete reference (Vol. 2, pp. 3–39). Springer.

Kemker,R., Salvaggio,C.,&Kanan,C. (2018).Algorithms for semantic
segmentation of multispectral remote sensing imagery using deep
learning. ISPRS Journal of Photogrammetry and Remote Sensing,
145, 60–77.

Krause, A., Singh, A., & Guestrin, C. (2008). Near-optimal sensor
placements in gaussian processes: Theory, efficient algorithms and
empirical studies. Journal of Machine Learning Research, 9, 235–
284.

Kurniawati, H., Hsu, D., &Lee,W. S. (2008). SARSOP: Efficient point-
based POMDP planning by approximating optimally reachable
belief spaces. In Robotics: Science and systems. MIT Press. http://
www.roboticsproceedings.org/rss04/p9.html.

Lim, Z. W. (2015). Planning under uncertainty: From informative path
planning to partially observable semi-MDPs. PhD thesis, National
University of Singapore.

Lim, Z. W., Hsu, D., & Lee, W. S. (2015). Adaptive informative path
planning in metric spaces. The International Journal of Robotics
Research, 35, 585–598.

Lu, W., Zhang, G., & Ferrari, S. (2014). An information potential
approach to integrated sensor path planning and control. IEEE
Transactions on Robotics, 30(4), 919–934.

Manfreda, S., McCabe, M. F., Miller, P. E., Lucas, R., Madrigal, V. P.,
Mallinis, G., et al. (2018). On the use of unmanned aerial systems
for environmental monitoring. Remote Sensing, 10(4), 641.

Marchant, R., & Ramos, F. (2014). Bayesian optimisation for informa-
tive continuous path planning. In IEEE international conference
on robotics and automation (pp. 6136–6143). IEEE.

Morere, P., Marchant, R., & Ramos, F. (2017). Sequential bayesian
optimisation as a POMDP for environmentmonitoringwithUAVs.
In IEEE international conference on robotics and automation (pp.
6381–6388). IEEE.

O’Callaghan, S. T., &Ramos, F. T. (2012). Gaussian process occupancy
maps. The International Journal of Robotics Research, 31(1), 42–
62.
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