Autonomous Robots (2020) 44:485-503
https://doi.org/10.1007/s10514-019-09871-2

®

Check for
updates

Hierarchical reinforcement learning via dynamic subspace search
for multi-agent planning

Aaron Ma'® - Michael Ouimet? - Jorge Cortés'

Received: 24 April 2018 / Accepted: 22 June 2019 / Published online: 12 July 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

We consider scenarios where a swarm of unmanned vehicles (UxVs) seek to satisfy a number of diverse, spatially distributed
objectives. The UxVs strive to determine an efficient plan to service the objectives while operating in a coordinated fashion.
We focus on developing autonomous high-level planning, where low-level controls are leveraged from previous work in
distributed motion, target tracking, localization, and communication. We rely on the use of state and action abstractions in
a Markov decision processes framework to introduce a hierarchical algorithm, Dynamic Domain Reduction for Multi-Agent
Planning, that enables multi-agent planning for large multi-objective environments. Our analysis establishes the correctness
of our search procedure within specific subsets of the environments, termed ‘sub-environment” and characterizes the algorithm
performance with respect to the optimal trajectories in single-agent and sequential multi-agent deployment scenarios using
tools from submodularity. Simulated results show significant improvement over using a standard Monte Carlo tree search in
an environment with large state and action spaces.

Keywords Reinforcement learning - Multi-agent planning - Distributed robotics - Semi-Markov decision processes - Markov
decision processes - Upper confidence bound tree search - Hierarchical planning - Hierarchical Markov decision processes -
Model-based reinforcement learning - Swarm robotics - Dynamic domain reduction - Submodularity

1 Introduction

Recent technology has enabled the deployment of UxVs in a
wide range of applications involving intelligence gathering,
surveillance and reconnaissance, disaster response, explo-
ration, and surveying for agriculture. In many scenarios, these
unmanned vehicles are controlled by one or, more often than

A preliminary version of this work appeared as Ma et al. (2017) at the
International Symposium on Multi-Robot and Multi-Agent Systems.

This is one of the several papers published in Autonomous Robots com-
prising the Special Issue on Multi-Robot and Multi-Agent Systems.

B Aaron Ma
aam021 @ucsd.edu

Michael Ouimet
ouimet@spawar.navy.mil

Jorge Cortés

cortes @ucsd.edu

Department of Mechanical and Aerospace Engineering,
University of California, San Diego, La Jolla, USA

Naval Information Warfare Center Pacific, San Diego, USA

not, multiple human operators. Reducing UxV dependence
on human effort enhances their capability in scenarios where
communication is expensive, low bandwidth, delayed, or
contested, as agents can make smart and safe choices on their
own. In this paper we design a framework for enabling multi-
agent autonomy within a swarm in order to satisfy arbitrary
spatially distributed objectives. Planning presents a challenge
because the computational complexity of determining opti-
mal sequences of actions becomes expensive as the size of
the swarm, environment, and objectives increase.

1.1 Literature review

Recent algorithms for decentralized methods of multi-agent
deployment and path planning enable agents to use local
information to satisfy some global objective. A variety of
decentralized methods can be used for deployment of robotic
swarms with the ability to monitor spaces, see e.g., Gerkey
and Mataric (2004), Bullo et al. (2009), Mesbahi and Egerst-
edt (2010), Dunbabin and Marques (2012), Das et al. (2015),
Cortés and Egerstedt (2017) and references therein. We
gather motivation from these decentralized methods because

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-019-09871-2&domain=pdf
http://orcid.org/0000-0003-4397-2881
http://orcid.org/0000-0001-9582-5184

486

Autonomous Robots (2020) 44:485-503

they enable centralized goals to be realized with decentral-
ized computation and autonomy. In general, these decentral-
ized methods provide approaches for low-level autonomy in
multi-agent systems, so we look to common approaches used
for high-level planning and scheduling algorithms.
Reinforcement learning is relevant to this goal because it
enables generalized planning. Reinforcement learning algo-
rithms commonly use Markov decision processes (MDP) as
the standard framework for temporal planning. Variations
of MDPs exist, such as semi-Markov decision processes
(SMDP) and partially-observable MDPs (POMDP). These
frameworks are invaluable for planning under uncertainty,
see e.g., Sutton et al. (1999), Broz et al. (2008), Puterman
(2014); Howard (1960). Given a (finite or infinite) time hori-
zon, the MDP framework is conducive to constructing a
policy for optimally executing actions in an environment
(Papadimitriou and Tsitsiklis 1987; Lovejoy 1991; Bellman
1966). Reinforcement learning contains a large ecosystem of
approaches. We separate them into three classes with respect
to their flexibility of problem application and their ability to
plan online vs the need to be trained offline prior to use.
The first class of approaches are capable of running online,
but are tailored to solve specific domain of objectives, such
as navigation. The work Bai et al. (2016) introduces an
algorithm that allows an agent to simultaneously optimize
hierarchical levels by learning policies from primitive actions
to solve an abstract state space with a chosen abstraction
function. Although this algorithm is implemented for naviga-
tional purposes, it can be tailored for other objective domains.
In contrast, our framework reasons using higher levels of
abstraction over different types of multiple objectives. In our
formulation, we assume agents have the ability to use pre-
existing algorithms, such as Bai et al. (2016), LaValle and
Kuffner (2000), Prentice and Roy (2010), Agha-mohammadi
etal. (2011), as actions that an agent utilizes in a massive envi-
ronment. The dec-POMDP framework Oliehoek and Amato
(2016) incorporates joint decision making and collabora-
tion of multiple agents under uncertain and high-dimensional
environments. Masked Monte Carlo Search is a dec-POMDP
algorithm Omidshafiei et al. (2015) that determines joint
abstracted actions in a centralized way for multiple agents
that plan their trajectories in a decentralized POMDP. Belief
states are used to contract the expanding history and curse
of dimensionality found in POMDPs. Inspired by Rapidly-
Exploring Randomized Trees (LaValle and Kuffner 2000),
the Belief Roadmap (Prentice and Roy 2010) allows an agent
to find minimum cost paths efficiently by finding a trajectory
through belief spaces. Similarly, the algorithm in Agha-
mohammadi et al. (2011) creates Gaussian belief states and
exploits feedback controllers to reduce POMDPs to MDPs
for tractability in order to find a trajectory. Most of the algo-
rithms in this class are not necessarily comparable to each
other due to the specific context of their problem statements

@ Springer

and type of objective. For that reason, we are motivated to
find an online method that is still flexible and can be utilized
for a large class of objectives.

The second class of approaches have flexible use cases
and are most often computed offline. These formulations
include reinforcement learning algorithms for value or policy
iteration. In general, these algorithms rely on MDPs to exam-
ine convergence, although the model is considered hidden or
unknown in the algorithm. An example of a state-of-the-art
reinforcement model-free learner is Deep Q-network (DQN),
which uses deep neural networks and reinforcement learning
to approximate the value function of a high-dimensional state
space to indirectly determine a policy afterwards (Mnih et al.
2015). Policy optimization reinforcement algorithms focus
on directly optimizing a policy of an agent in an environment.
Trust Region Policy Optimization (TRPO) (Schulman et al.
2015) enforces constraints on the KL-divergence between
the new and old policy after each update to produce more
incremental, stable policy improvement. Actor-Critic using
Kronecker-factored Trust Region (ACKTR) (Wu et al. 2017)
is ahybrid of policy optimization and Q-learning which alter-
nates between policy improvement and policy evaluation to
better guide the policy optimization. These techniques were
successfully applied to a range of Atari 2600 games, with
results similar to advanced human players. Offline, model-
free reinforcement algorithms are attractive because they can
reason over abstract objectives and problem statements, how-
ever, they do not take advantage of inherent problem model
structure. Because of this, model-free learning algorithms
usually produce good policies more slowly than model-based
algorithms, and often require offline computation.

The third class of algorithms are flexible in application
and can be used online. Many of these algorithms require
a model in the form of a MDP, or other variations. Stan-
dard algorithms include Monte Carlo tree searches (MCTS)
(Bertsekas 1995) and modifications such as the upper confi-
dence bound tree search (Kocsis and Szepesvari 2006). Many
works under this category attempt to address the curse of
dimensionality by lowering the state space through either
abstracting the state space (Hansen and Feng 2000), the
history in POMDPs (McCallum and Ballard 1996), or the
action space (Theocharous and Kaelbling 2004). These algo-
rithms most closely fit our problem statement, because we are
interested in online techniques for optimizing across a large
domain of objectives.

In the analysis of our algorithm, we rely on the notion of
submodular set functions and the characterization of the per-
formance of greedy algorithms, see e.g., Clark et al. (2016),
Bian et al. (2017). Even though some processes of our algo-
rithm are not completely submodular, we are able to invoke
these results by resorting to the concept of submodularity
ratio (Das and Kempe 2011), that quantifies how far a set

Autonomous Robots (2020) 44:485-503

487

function is from being submodular, using tools from scenario
optimization (Campi et al. 2009).

1.2 Statement of contributions

Our approach seeks to bridge the gap between the MDP-
based approaches described above. We provide a framework
that remains general enough to reason over multiple objec-
tive domains, while taking advantage of the inherent spatial
structure and known vehicle model of most robotic appli-
cations to efficiently plan. Our goal is to synthesize a
multi-agent algorithm that enables agents to abstract and
plan over large, complex environments taking advantage of
the benefits resulting from coordinating their actions. We
determine meaningful ways to represent the environment
and develop an algorithm that reduces the computational
burden on an agent to determine a plan. We introduce
methods of generalizing positions of agents, and objectives
with respect to proximity. We rely on the concept of ‘sub-
environment’, which is a subset of the environment with
respect to proximity-based generalizations, and use high-
level actions, with the help of low-level controllers, designed
to reduce the action space and plan in the sub-environments.
The main contribution of the paper is an algorithm for split-
ting the work of an agent between dynamically constructing
and evaluating sub-environments and learning how to best
act in that sub-environment, cf. Figure 1. We also intro-
duce modifications that enable multi-agent deployment by
allowing agents to interact with the plans of other team
members. We provide convergence guarantees on key com-
ponents of our algorithm design and identify metrics to

Environment

evaluate the performance of the sub-environment selec-
tion and sequential multi-agent deployment. Using tools
from submodularity and scenario optimization, we estab-
lish formal guarantees on the suboptimality gap of these
procedures. We illustrate the effectiveness of dynamically
constructing sub-environments for planning in environments
with large state spaces through simulation and compare our
proposed algorithm against Monte Carlo tree search tech-
niques.

1.3 Organization

The paper is organized as follows. Section 2 presents
preliminaries on Markov decision processes. Section 3
introduces the problem of interest. Section 4 describes
our approach to abstract states and actions with respect
to spatial proximity, and Sect. 5 builds on these mod-
els to design our hierarchical planning algorithm. Sec-
tion 6 presents analysis on algorithm convergence and
performance, and Sect. 7 shows our simulation results.
We gather our conclusions and ideas for future work in
Sect. 8.

1.4 Notation

We use Z, Z>1, R, and R- ¢ to denote integer, positive inte-
ger, real, and positive real numbers, respectively. We let
|Y'| denote the cardinality of an arbitrary set Y. We employ
object-oriented notation throughout the paper; b.c, means
that ¢ belongs to b, for arbitrary objects b and c. For reference,
“Appendix C” presents a list of commonly used symbols.

Environment

Sub-environment search <
f'_?'m'mm? _'?'. T :
§ b] & & & (] R W .]] & W | & M [} & &
BA A hdh Adddh A hadd b hdda B A A A AdE A b sd & bbb had & hen T
SIS S S SSSddd & 6 s ms SIS S SSs SSSs S 5 8 S o5 S Sss Ss TaSk-Sea rCh
L1 LN} oe ae e (2] L L] LLLT] @ e ae

oS

Fig. 1 Workflow of the proposed hierarchical algorithm. A sub-
environment is dynamically constructed as series of spatial-based state
abstractions in the environment in a process called SubEnvSearch.
Given this sub-environment, an agent performs tasks, which are
abstracted actions constrained to properties of the sub-environment,
in order to satisfy objectives. Once a sub-environment is created,
the process TaskSearch uses a semi-Markov decision process

L]

S
aa

to model the sub-environment and determine an optimal ‘task’ to
perform. Past experiences are recycled for similar looking sub-
environments allowing the agent to quickly converge to an opti-
mal policy. The agent dedicates time to both finding the best
sub-environment and evaluating that sub-environment by cycling
through SubEnvSearch and TaskSearch

@ Springer

488

Autonomous Robots (2020) 44:485-503

2 Preliminaries on Markov decision
processes

We follow the exposition from Bai et al. (2016) to intro-
duce basic notions on Markov decision processes (MDPs).
A MDP s a tuple (S, A, Pr*, R), where S and A are the state
and action spaces, respectively; Pr(s’|a, s) is a transition
function that returns the probability that state s € S becomes
state s’ after taking actiona € A;and R(s, a, s) is the reward
that an agent gets after taking action a from state s to reach
state s”. A policy is a feedback control that maps each state
to an action, 7w : § — a, for each s. The value of a state
under a given policy is

VT (s) = R(s, () + ¥) _Pr'(s'|m(s),)V (s,

s'eS

where y € (0, 1) is the discount factor. The value func-
tion takes finite values. The solution to the MDP is an
optimal policy that maximizes the value function, 7*(s) =
argmax, V7™ (s) for all s. The value of taking an action at a
given state under a given policy is

Q(s,a) = R(s,a) + yZPry(s’la, VT (s).

s'eS

Usual methods for obtaining 77 * require a tree search of
the possible states that can be reached by taking a series
of actions. The rate at which the tree of states grows is
called the branching factor. This search is a challenge for
solving MDPs with large state spaces and actions with low-
likelihood probabilistic state transitions. A technique often
used to decrease the size of the state space is state abstrac-
tions, where a collection of states are clustered into one in
some meaningful way. This can be formalized with a state
abstraction function of the form ¢; : s — s4. Similarly,
actions can be abstracted with an action abstraction func-
tion ¢, : a — ag. Abstracting actions is used to decrease
the action space, which can make 7 * easier to calculate.
In MDPs, actions take one time step per action. However,
abstracted actions may take a probabilistic amount of time to
complete, Pr' (¢|ag, s). When considering the problem using
abstracted actions ay € Ag in (S, Ag, Pr’, R), the process
becomes a semi-Markov Decision Process (SMDP), which
allows for probabilistic time per abstracted action. The loss
of precision in the abstracted actions means that an optimal
policy for an SMDP with abstracted modifications may not
be optimal with respect to the original MDP.

Determining 7* often involves constructing a tree of
reachable MDP/SMDP states determined through simulating
actions from an initial state. Dynamic programming is com-
monly used for approximating 7* by using a Monte Carlo
tree search to explore the MDP for the initial state. The action

@ Springer

with the maximum upper confidence bound (UCB) (Kocsis
and Szepesvari 2006) of the approximated expected value for
taking the action at a given state,

A In(N;)
argmax 4§ Q(s,a)+C |—— ¢,
acA Ns,a

is often used to efficiently explore the MDP. Here, N; is the
number of times a state has been visited, N , is the number
of times that action a has been taken at state s and C is
a constant. Taking the action that maximizes this quantity
balances between exploiting actions that previously had high
reward and exploring actions with uncertain but potentially
higher reward.

3 Problem statement

Consider a set of agents .4 indexed by « € A. We assume
agents are able to communicate with each other and have
access to each other’s locations. An agent occupies a point
in Z4, and has computational, communication, and mobile
capabilities. A waypoint o € 7% is a point that an agent
must visit in order to serve an objective. Every waypoint
then belongs to a class of objective of the form O =
{o1,...,0/00}. Agents are able to satisfy objectives when
waypoints are visited such that 0 € O” is removed from O”.
When O = ¢ the objective is considered ‘complete’. An
agent receives a reward r € R for visiting a waypoint o €
O’ Define the set of objectives to be O = {Ol, cel, O‘O‘},
and assume agents are only able to service one O € O at
a time. We consider the environment to be £ = O x A,
which contains information about all objectives and agents.
The state space of £ increases exponentially with the number
of objectives |@|, the cardinality of each objective |O?, for
each b, and the number of agents |A]|.

We strive to design a decentralized algorithm that allows
the agents in .4 to individually approximate the policy 7*
that optimally services objectives in O in scenarios where
€ is very large. To tackle this problem, we rely on abstrac-
tions that reduce the stochastic branching factor to find a
good policy in the environment. We begin our strategy by
spatially abstracting objectives in the environment into con-
vex sets termed ‘regions’. We dynamically create and search
subsets of the environment to reduce dimensions of the state
that individual agents reason over. Then we structure a plan
of high-level actions with respect to the subset of the envi-
ronment. Finally, we specify a limited, tunable number of
interactions that must be considered in the multi-agent joint
planning problem, leading up to the Dynamic Domain Reduc-
tion for Multi-Agent Planning algorithm to approximate the
optimal policy.

Autonomous Robots (2020) 44:485-503

489

4 Abstractions

In order to leverage dynamic programming solutions to
approximate a good policy, we reduce the state space and
action space. We begin by introducing methods of abstrac-
tion with respect to spatial proximity for a single agent, then
move on to the multi-agent case.

4.1 Single-agent abstractions

To tackle the fact that the number of states in the environment
grows exponentially with respect to the number of agents, the
number of objectives, and their cardinality, we cluster way-
points and agent locations into convex sets in space, a process
we term region abstraction. Then, we construct abstracted
actions that agents are allowed to execute with respect to the
region abstractions.

4.1.1 Region abstraction

We define a region to be a convex set x C RY. Let 2, be
a set of disjoint regions where the union of all regions in
£2, is the entire space that agents reason over in the envi-
ronment. We consider regions to be equal in size, shape, and
orientation, so that the set of regions creates a tessellation of
the environment. This makes the presentation simpler, albeit
our framework can be extended to handle regions that are
non-regular by including region definitions for each unique
region in consideration.

Furthermore, let Of be the set of waypoints of objective
O%in region x;, i.e., such that Ol].’ C x;. We use an abstraction
function, ¢ : Of? — sf’ , to get the abstracted objective state,
sf , which enables us to generalize the states of an objective in
a region. In general, the abstraction function is designed by
a human user that distinguishes importance of an objective
in a region. We define a regional state, s; = (sl.l, R sl!ol),
to be the Cartesian product of sf’ for all objectives, O e,
with respect to x;.

4.1.2 Action abstraction

We assume that low-level feedback controllers allowing for
servicing of waypoints are available. We next describe how
we use low-level controllers as components of a ‘task’ to
reason over. We define a task to be T = (sf’, slfb, Xi, Xj, b),
where sf’ and si’b are abstracted objective states associated to
X, xj is a target region, and b is the index of a target objec-
tive. Assume that low-level controllers satisfy the following

requirements:

— Objective transition: low-level controller executing t

drives the state transition, t.sf’ — ‘L’.Sl-/b .

— Regional transition: low-level controller executing t
drives the agent’s location to x; after the objective tran-
sition is complete.

Candidates for low-level controllers include policies
determined using the approaches in Bai et al. (2016), Koc-
sis and Szepesvari (2006) after setting up the region as a
MDP, modified traveling salesperson (Blum et al. 2007), or
path planning-based algorithms interfaced with the dynam-
ics of the agent. Agents that start a task are required to
continue working on the task until requirements are met.
Because the tasks are dependent on abstracted objectives
states, the agent completes a task in a probabilistic time,
given by Pr’(¢|7), that is determined heuristically. The set
of all possible tasks is given by I'. If an agent begins
a task such that the following properties are not satis-
fied, then Pr'(co|t) = 1 and the agent never completes
1t.

4.1.3 Sub-environment

In order to further alleviate the curse of dimensionality,
we introduce sub-environments, a subset of the environ-
ment, in an effort to only utilize relevant regions. A
sub-environment is composed of a sequence of regions
and a state that encodes proximity and regional states of
those regions. Formally, we let the sub-environment region
sequence, X, bea sequence of regions of length up to
Ne € Zsi. The k™ region in X is denoted with X .
The regional state of X s given by s, . For exam-
ple, T = [x2, x1, x3] is a valid sub-environment region
sequence with N > 3, the first region in X is 7] =
X7, and the regional state of 71 is s+ L= Sx. In order
to simulate the sub-environment, the agent must know if
there are repeated regions in Y. Let £(k, X), return the
first index h of X such that 7;1 = 7;(. Define the
repeated region list to be §+ = [£(1, ?), ..., E(N, 7)].
Let ¢ (x;, x;) Xj,xj — Z be an abstracted amount
of time it takes for an agent to move from x; to x;,
or oo if no path exists. Let s = [571,...,S7N€] X
Eo X [¢(X 1, X2), ooy (X N—1,, ¥ n.)] be the sub-
environment state for a given X, and let S€ be the set
of all possible sub-environment states. We define a sub-
environment to be € = (7, s).

In general, we allow a sub-environment to contain any
region that is reachable in finite time. However, in prac-
tice, we only allow agents to choose sub-environments that
they can traverse within some reasonable time in order to
reduce the number of possible sub-environments and save
onboard memory. In what follows, we use the notation
€.s to denote the sub-environment state of sub-environment
€.

@ Springer

490

Autonomous Robots (2020) 44:485-503

4.1.4 Task trajectory

We also define an ordered list of tasks that the agents
execute with respect to a sub-environment €. Let T =

[? Iy enns z N.—1] be an ordered list of feasible tasks such
— — — —

that T -x; =€ Xy, and T -x; = € - X 4 forall

ke {l,..., Ne — 1}, where x; and x; are the regions in the

definition of task 7T . Agents generate this ordered list of
tasks assuming that they will execute each of them in order.
The probability distribution on the time of completing the
k™ task i 1n T (after comp_)leting all prev10us tasks in 7) is

given by Pr r. We define Pr’ = [Pr'q, .. Pr N.—1] to be the
ordered list of probability distributions. We construct the task
—

trajectory to be ¥ = (_r), Pr'), which is used to determine
the finite time reward for a sub-environment.

4.1.5 Sub-environment SMDP

As tasks are completed, the environment evolves, so we
denote &’ as the environment after an agent has performed
a task. Because the agents perform tasks that reason over
abstracted objective states, there are many possible initial,
and outcome environments. The exact reward that an agent
receives when acting on the environment is a function of
€ and &', which is complex to determine by our use of
abstracted objective states. We determine the reward an agent
receives for completing t as a probabilistic function Pr” that
is determined heuristically. Let 7€ be the abstracted reward
function, determined by

ré(r) = Z Pr' (r|v)r,

reR

“4.D

which is the expected reward for completing t given the state
of the sub-environment. Next we define the sub-environment
evolution procedure. Note that agents must begin in the
region €. X1 and end up in region €X) by definition of
task. Evolving a sub-environment consists of 2 steps. First,
the first element of the sub-environment region sequence is
removed. The length of the sub-environment sequence €. X
is reduced by 1. Next, the sub-environment state €.s is recal-
culated with the new sub-environment region sequence. To
do this, we draw the sub-environment state from a probabil-
ity distribution and we determine the sub-environment after
completing the task

"= (¥ =%

2. XN s =Pri(sles, 1), (4.2)

Finally, we can represent the process of executing tasks
in sub-environments as the sub-environment SMDP M =
(8¢, I, Prse, r€, Pr'). The goal of the agent is to determine
a policy 7, : €.s — t that yields the greatest rewards in M.

@ Springer

The state value under policy 7, is given by

V7 (e.s)=r + Z Pricy” Z PrivT™(e.s’)

t€eR €.seS€

(4.3)

We strive to generate a policy that yields optimal state value

7} (e.s) = argmax V7 (e.s),
e

with associated optimal value V7¢*(e.s) = max V7 (e.s).
e

Remark 4.1 (Extension to heterogeneous swarms) The frame-
work described above can also handle UxV agents with
heterogeneous capabilities. In order to do this, one can con-
sider the possibility of any given agent having a unique set of
controls which allow it to complete some tasks more quickly
than others. The agents use our framework to develop a policy
that maximizes their rewards with respect to their own capa-
bility, which is implicitly encoded in the reward function. For
example, if an agent chooses to serve some obje_)ctive and has

no low level control policy that can achieve it, Pr'y (00) = 1,
and the agent will never complete it. In this case, the agent
would naturally receive a reward of O for the remainder of
the trajectory. O

4.2 Multi-agent abstractions

Due to the large environment induced by the action coupling
of multi-agent joint planning, determining the optimal policy
is computationally unfeasible. To reduce the computational
burden on any given agent, we restrict the number of coupled
interactions. In this section, we modify the sub-environment,
task trajectory, and rewards to allow for multi-agent coupled
interactions. The following discussion is written from the
perspective of an arbitrary agent labeled « in the swarm,
where other agents are indexed with 8 € A.

4.2.1 Sub-environment with interaction set

Agent o may choose to interact with other agents in its
interaction set I, < A while executing 7T, in order to
more effectively complete the tasks. The interaction set is
constructed as a parameter of the sub-environment and indi-
cates to the agent which tasks should be avoided based
on the other agents’ trajectories. Let A/ be a (user speci-
fied) maximum number of agents that an agent can interact
with (hence |Z,| < N at all times). The interaction set is
updated by adding another agent § and their interaction set,
Ty = Ty U{BYUZg. If | T, U{B}UZg| > N, then we consider
agent § to be an invalid candidate. Adding B’s interaction set
is necessary because tasks that affect the task trajectory g
may also affect all agents in Zg. Constraining the maximum

Autonomous Robots (2020) 44:485-503

491

interaction set size reduces the large state size that occurs
when agents’ actions are coupled. To avoid interacting with
agents not in the interaction set, we create a set of waypoints
that are off-limits when creating a trajectory.

We define a claimed regional objective as 0 = (O, x;).
The agent creates a set of claimed region objectives &, =
{61, ..., 6N.—1} that contains a claimed region objective for
every task in its trajectory and describes a waypoint in OP
in a region that the agent is planning to service. We define
the global claimed objective set tobe A = {(O1,..., 04},
which contains the claimed region objective set for all agents.
Lastly, let ©,, = @A\{ Ugez, ©g} be the complete set of
claimed objectives an agent must avoid when planning a tra-
jectory. The agent uses @/, to modify its perception of the
environment. As shown in the following function, the agent
sets the state of claimed objectives in ©), to 0, removing
appropriate tasks from the feasible task set.

0 if (00 e. X)€@

b o

s =) 4.4
O Xk sb?k otherwise.

Let g@/ = g@/ - X 36’71\/’ where

o! @\ \ o .

g@’;77 =(s O/ 20 O’ 4). In addition to the modi-

fied sub-envrronrnent state, we 1nc1ude the partial trajectories
of other agents being interacted with. Consider ,3 ’s trajectory
U'g and an arbitrary €,. Let zﬁ‘ﬂ p = (9. T k.s?, 9.7 1.b).

The partial trajectory, ﬂﬂ = Wﬁ,r’ R ﬂ,\ﬂﬁl] describes

B’s trajectory with respect to €. % . Let £(k, €, €p) return
the first index of ea.?, h, such that Eﬁ.?h = ea.?k, or 0if
there is no match. Each agent in the interaction set creates a
matrix 5 of elements, £ (k, €4, €g), fork € {1, ..., N¢} and
B e{l,...,|Zy|}. We finally determine the complete multi-
agent state, s = o, % X { (z?f’, [_71>, , (ﬁ"%dl, EIZa\>} X
[p:(F1,%2), .. qb,(x N.—1, x N.)]. With these modifica-
tions to the sub environment state, we define the (multi-
. —
agent) sub-environment as €, = (X , 8, Zy).

4.2.2 Multi-agent action abstraction

We consider the effect that an agent o has on another agent
B € A when executing a task that affects sl.b in B’s trajectory.
Some tasks will be completed sooner with two or more agents
working on them, for instance. For all 8 € 1, let t5 be the
time that 8 begins a task that transitions s{’ CIf agent
B does not contain such a task in its trajectory, then l‘/g =

Let TA [11, ..., 1iz,1]. We denote by Prf (|, s » the
probablhty that t is completed atexactly time 7 if other agents
work on transitioning s” ;> si’b . We redefine here the defini-

— s

. — — — —
tion of Pr’ in Sect. 4.1.4, as Pr' = [Pr'y 7,,...,Pr'y 1 7,1,
which is the probability time set of « modified by accounting
for other agents trajectories. Furthermore, if an agent chooses

a task that modifies agent a’s trajectory, we define the prob-
ability time set to be Pr [Pr LT, P—r)’ﬁve_lja]. With
these modifications, we redefine the task trajectory to be
Y = <?, P_r)’> Finally, we designate Xy to be the set that
contains all trajectories of the agents.

4.2.3 Multi-agent sub-environment SMDP

We modify the reward abstraction so that each agent takes
into account agents that it may interact with. When « interacts
with other agents, it modifies the expected discounted reward
gained by those agents. We define the interaction reward
function, which returns a reward based on whether the agent
executes a task that interacts with one or more other agents.
The interaction reward function is defined as

(. Xy) = {m(r, Xy) if 1€} forany B, “5)

ré(t) otherwise.

Here, the term R represents a designed reward that that
the agent receives for completing t when it is shared by
by other agents. This expression quantifies the effect that an
interacting task has on an existing task. If a task helps another
agent trajectory in a significant way, the agent may choose a
task that aids the global expected reward amongst the agents.
Let the multi-agent sub-environment SMDP be defined as the
tuple M = (8¢, I, Pr*, r?, Pr[Ia). The state value from (4.3)
is updated using (4.5)

Vi(es) =r+ Y Py Y PrVT(es)).

t€eR

(4.6)

€.seS

We strive to generate a policy that yields optimal state
value

7} (e.s) = argmax V7 (e.s),
Te

with associated optimal value V7¢*(e.s) = max V7 (e.s).
TT

€

Our next section introduces an algorithm for approximating
this optimal state value.

5 Dynamic domain reduction for multi-agent
planning

This section describes our algorithmic solution to approxi-
mate the optimal policy . The Dynamic Domain Reduction
for Multi-Agent Planning algorithm consists of three main
functions: DDRMAP, TaskSearch, and SubEnvSearch.!

I pseudocode of functions denoted with ¥ is omitted but described in
detail.

@ Springer

492

Autonomous Robots (2020) 44:485-503

Algorithm 1 presents a formal description in the multi-agent
case, where each agent can interact with a maximum of A/
other agents for planning purposes. In the case of a single
agent, we take NV = 0 and refer to our algorithm as Dynamic
Domain Reduction Planning (DDRP). In what follows, we
first describe the variables and parameters employed in the
algorithm and then discuss each of the main functions and
the role of the support functions.

Algorithm 1: : Dynamic Domain Reduction for Multi-
Agent Planning

182, = {x} vx

2 £ < current environment

304 < Jog, Ve A

4 O, Vy, Nes, Np < loaded from previous trials

s DDRMAP (2, Ne, &, ©A, O, Vi, Ney, Ny, M):
Yoy =0
while run time < step time:
€ «<SubEnvSearch (£, &, OA, Vi)
TaskSearch (Q, Nes, Np, €)
10 Yy = Yy U{MaxTrajectory(e)}
1 return Yy

6
7
8
9

12 TaskSearch (Q, Nes, Np, €)
. — .

13 if €. X is empty

14 return O

15T max {Q[e.s][r.b] + ch\/%}

16 t < Sample’ M.Pr(t]t, €)

17 € =(eX2....,exXy],Sample’ M- Pri(es, 1))
18 r=M.r(t, e)+y'TaskSearch (0, Nes, Np, €')

19 TaskValueUpdate (Q, Nes, Np,€.s,T.b, 1)
20 return r

21 TaskValueUpdate (N¢g, Np, Q, €.s,t.b,r)
22 Negle.s] = Negles]+1
23 Nple.s][t.b] = Nple.s][t.b] + 1

2 QOleslt.b] = Ole.slt.b] + iz L Ole.sllz.b])

25 SubEnvSearch (82, €, OA, V)

26 X, =0
27 while | X, | < Ne:
28 for x € 2.:
29 if V. [X, U{x}]is empty:
30 Vil Xx U fx}] =
{ max Q[InitSubEnv(Xy,&, O4).S][r]}
TeM.I”
31 x = argmax Vi[X, U {x}]
XERe
32 Xy = Xy U{x}

33 return InitSubEnv(Xy, &, @A)

34 InitSubEnv (X4, &, ©H4)

—
35 X =

N > 4
argmax { max Q[GetSubEnvState(x, ®)][t]
—e (X,)\V teM.I’
[Xel27€

36 €= (X,GetSubEnvState(¥, ®4))
37 return €

@ Springer

The following variables are common across the multi-
agent system: the set of regions 2., the current environment
&, the claimed objective set ©A, and the multi-agent sub-
environment SMDP M. Some variables can be loaded, or
initialized to zero such as the number of times an agent has
visited a state N g, the number of times an agent has taken an
action in a state Np, the estimated value of taking an action
in a state Q, and the estimated value of selecting a region in
the sub-environment search process V. The set V. contains
sub-environments as they are explored by the agent.

The main function DDRMAP structures Q-learning with
domain reduction of the environment. In essence, DDRMAP
maps the environment into a sub-environment where it
can use a pre-constructed SMDP and upper confidence
bound tree search to determine the value of the sub-
environment. DDRMAP begins by initializing the set of
constructed trajectories Yy as an empty set. The function uses
SubEnvSearch to find a suitable sub-environment from
the given environment, then TaskSearch is used to eval-
uate that sub-environment. MaxTrajectory constructs a
trajectory using the sub-environment, which is added to Y.
This process is repeated for an allotted amount of time. The
function returns the set of constructed trajectories Yy .

TaskSearch is a modification on Monte Carlo tree
search. Given sub-environment €, the function finds an appro-
priate task ¢ to exploit and explore the SMDP. On line 15 we
select a task based on the upper confidence bound of Q We
simulate executing the task by sampling Pr’ for the amount
of time it takes to complete the task. We then evolve the
sub-environment to get €’ by following the sub-environment
evolution procedure (4.2). On line 18, we get the discounted
reward of the sub-environment by summing the reward for
the current task using (4.1,4.5) and the reward returned by
recursively calling TaskSearch with the sampled evolu-
tion of the sub-environment €’ at a discount. The recursive
process is terminated at line 13 when the sub-environment
no longer contains regions in €. X . TaskValueUpdate
is called after each recursion and updates Ny, Njp, and Q
On line 24, Q is updated by recalculating the average reward
over all experiences given the task and sub-environment state,
which is done by using N, Ias the learning rate. The time
complexity of TaskSearch is O(|I'|N¢) due to the task
selection on Line 15 and the recursive depth of the size of
the sub-environment N.

We employ SubEnvSearchtoexplore and find the value
of possible sub-environments in the environment. The func-
tion InitSubEnv maps a set of regions X, C £2, (we use
subindex ‘x’ to emphasize that this set contains regions) to
the sub-environment with the highest expected reward. We
do this by finding the sequence of regions Ed given a X, that
maximizes maxXqe Q[e.s][t] on line 35. We keep track of
the expected value of choosing X, and the sub-environment
thatis returned by Init SubEnv with V.. SubEnvSearch

Autonomous Robots (2020) 44:485-503

493

begins by initializing X to empty. The region that increases
the value V, the most when appended to X is then appended
to X,. This process is repeated until the length of X, is
N¢. Finally, the best sub-environment given X is returned
with InitSubEnv. The time complexity of InitSubEnv
and SubEnvSearch is O(N!) and O(]|§2;|N¢ log(Ne!)),
respectively. InitSubEnv requires iteration over all possi-
ble permutations of X, however in practice we use heuristics
to reduce the time of computation.

6 Convergence and performance analysis

In this section, we look at the performance of individual ele-
ments of our algorithm. First, we establish the convergence of
the estimated value of performing a task determined over time
using TaskSearch. We build on this result to characterize
the performance of the SubEnvSearch and of sequential
multi-agent deployment.

6.1 TaskSearch estimated value convergence

We start by making the following assumption about the sub-
environment SMDP.

Assumption 6.1 There always exists a task that an agent can
complete in finite time. Furthermore, no task can be com-
pleted in zero time steps.

Assumption 6.1 is reasonable because if not true, then the
agent’s actions are irrelevant and the scenario is trivial. The
following result characterizes long term performance of the
function TaskSearch which is necessary for the analysis
of other elements of the algorithm.

Theorem 6.1 Let Q be the estimated value of performing
a task determined over time using TaskSearch. Under
Assumption 6.1, Q converges to the optimal state value V*¢
of the sub-environment SMDP with probability 1.

Proof SMDP Q-learning converges to the optimal value
under the following conditions (Parr and Russell 1998),
rewritten here to match our notation:

(i) State and action spaces are finite;
(ii) Var{r€} is finite;
(iii) Z;ozl op(e.s, T) = oo and Z;‘;] af,(e.s, T) < 0O Uni-
formly over €.s, T;
(iv) 0 < B™* = max sese.rer O Pl (tle.st)y’ < 1.

In the construction of the sub-environment SMDP, we assume
that sub-environment lengths and number of objectives are
finite, satisfying (i). We reason over the expected value of the
reward in R, that is determined heuristically, which implies

that Var{r¢} = 0 satisfying (ii). From TaskValueUpdate
on line 24, we have that aj, (e.s, T) = 1/p if we substitute p

for Np. Therefore, (iii) is satisfied because Z?\Z,:l NLb =00

and Z:X,‘;Zl(l\%b)2 = 712/6 (finite). Lastly, to satisfy (iv), we
use Assumption 6.1 (there always exists some 7 such that
Pr’ (cole.s, T) < 1) and the fact that y € (0, 1) to ensure that
BM¥* will always be greater than 0. We use Assumption 6.1
(for all e.s, T Pr'(t > Ole.st) = 1) to ensure that B i
always less than 1. O

In the following, we consider a version of our algorithm
that is trained offline called Dynamic Domain Reduction
Planning:Online+Offline (DDRP-00). DDRP-00 utilizes
data thatit learned from previous experiments in similar envi-
ronments. In order to do this, we train DDRP offline and save
the state values for online use. We use the result of Theo-
rem 6.1 as justification for the following assumption.

Assumption 6.2 Agents using DDRP-00 are well-trained,
ie., Q =V*,

In practice, we accomplish this by running DDRP on ran-
domized environments until Q' remains unchanged for a
substantial amount of time, an indication that it has nearly
converged to V*¢. The study of DDRP-00 gives insight on
the tree search aspect of finding a sub-environment in DDRP
and gives intuition on its long-term performance.

6.2 Sub-environment search by a single agent

We are interested in how well the sub-environments are cho-
sen with respect to the best possible sub-environment. In our
study, we make the following assumption.

Assumption 6.3 Rewards are positive. Objectives are uncou-
pled, meaning that the reward for completing one objective
is independent of the completion of any other objective.
Furthermore, objectives only require one agent’s service for
completion.

Our technical approach builds on the submodularity
framework, cf. “Appendix A”, to establish analytical guar-
antees of the sub-environment search. The basic idea is to
show that the algorithmic components of this procedure
can be cast as a greedy search with respect to a conve-
niently defined set function. Let §2, be a finite set of regions.
InitSubEnv takes a set of regions X, C £2, and returns
the sub-environment made up of regions in X in optimal
order. We define the power set function f, : 2 — R,
mapping each set of regions to the discounted reward that
an agent expects to receive for choosing the corresponding
sub-environment

fe(Xy) = max OlInitSubEnv(X,y).sl[t]. 6.1)
TE

@ Springer

494

Autonomous Robots (2020) 44:485-503

For convenience, let X} = argmax X, e, fx(X4) denote the
setof regions that yields the sub-environment with the highest
expected reward amongst all possible sub-environments. The
following counterexample shows that f is, in general, not
submodular.

Lemma 6.1 Let f, be the discounted reward that an agent
expects to receive for choosing the corresponding sub-
environment given a set of regions, as defined in (6.1). Under
Assumptions 6.2-6.3, fy is not submodular.

Proof We provide a counterexample to show that f; is not
submodular in general. Consider a 1-dimensional environ-
ment. For simplicity, let regions be singletons, where §2, =
{xo = {0}, x; = {—1},xp = {1}, x3 = {2}}. Assume that
only one objective exists, which is to enter a region. For this
objective, agents only get rewarded for entering a region the
first time. Let the time required to complete a task be directly
proportional to the distance between region, t = |1.x; —7.x}|.
Let Xy = {x1} C Yy = (x1,x3) C £24. fy is submodular
only if the marginal gain including {x;} is greater for X, than
Y,. Assuming that the agent begins in x(, one can verify that
the region sequences of the sub-environments returned by
InitSubEnv are as follows:

InitSubEnv(Xy) — X = [x1]
TnitSubEnv(X, U{x)}) = % = [x1, x2]
InitSubEnv(Y,) — X = [x1, x3]

InitSubEnv(Y, U{x}) — X = [x2, x3, x1]

Assuming that satisfying each task yields the same reward r
we can calculate the marginal gains as

e (Xx U {xa}) — fu(Xx)
="r+y"ytr) = (')~ T3,

evaluated at t{ = x; —x9 = land rp = xp — x;1 = 2. The
marginal gains for appending {x,} to Y, is

fx(Yx U {x2}) — fx(Yx)
= r+yPyir+yPyRysn
— (Y + yy2r) & T4r,

evaluated at 17 = x1 —xo = 1, = x3 —x1 = 3,13 =
xo—x0=1,14 =x3—xp =1,and 15 = x; — x3 = 3,
showing that the marginal gain for including {x,} is greater
for Y, than X,. Hence, f is not submodular. O

Even though f, is not submodular in general, one can

invoke the notion of submodularity ratio to provide a guaran-
teed lower bound on the performance of the sub-environment

@ Springer

search. According to (A.4), the submodularity ratio of a func-
tion fy is the largest scalar A € [0, 1] such that

) < X:zez.¥ So Xy U{z}) — fu(Xyx)
B fx(Xx UZx)_fx(Xx)

(6.2)

forall X, Z, C £2,. This ratio measures how far the func-
tion is from being submodular. The following result provides
a guarantee on the expected reward with respect to the opti-
mal sub-environment choice in terms of the submodularity
ratio.

Theorem 6.2 Let X, be region set returned by the sub-
environment search algorithm in DDRP-00. Under Assump-
tions 6.2-6.3, it holds that f(Xy) > (1 —e™) f« (XP).

Proof According to Theorem A.3, we need to show that
fx is a monotone set function, that f,(J) = 0, and that
the sub-environment search algorithm has greedy charac-
teristics. Because of Assumption 6.3, adding regions to
X, monotonically increases the expected reward, hence
Eq. (A.2) is satisfied. Next, we note that if X, = (J, then
InitSubEnv returns an empty sub-environment, which
implies from Eq. (6.1) that f,(#) = 0. Lastly, by construc-
tion, the first iteration of the sub-environment search adds
regions to the sub-environment one at a time in a greedy
fashion. Because the sub-environment search keeps in mem-
ory the sub-environment with the highest expected reward,
the entire algorithm is lower bounded by the first iteration
of the sub-environment search. The result now follows from
Theorem A.3. O

Algorithm 2: : Submodularity ratio estimation

1 A <« set of all possible pairs of X, Z,.
2 Pr® <« probability distribution of sampling § from A.

3 submodulariyRatioEstimation (w, e, 2, A, Pr®)
4 At=1,d=1,h=0

5 Nscp = %(ll’l% +d)

6 for n = 0;n++;n < Nscp

7 X, Z, =Sample’ (Pr?)

s 238 = Zzezy rXaUleD—f(Xo)
- S (XxUZy)— fr (Xx)

9 if A% <At

10 At =28

11 h.append(A?, n)

2 a,b=argmin Y (At —a—bn)?
a,beR 38 neh

13 A=a+ b|A|
14 return A

Given the generality of our proposed framework, the sub-
modularity ratio of fy is in general difficult to determine.
To deal with this, we resort to tools from scenario opti-
mization, cf. “Appendix B”, to obtain an estimate of the

Autonomous Robots (2020) 44:485-503

495

submodularity ratio. The basic observation is that, from its
definition, the computation of the submodularity ratio can be
cast as a robust convex optimization problem. Solving this
optimization problem is difficult given the large number of
constraints that need to be considered. Instead, the procedure
for estimating the submodularity ratio samples the current
environment that an agent is in, randomizing optimiza-
tion parameters. The human supervisor chooses confidence
and violation parameters, @ and ¢, that are satisfactory.
submodulariyRatioEstimation, cf. Algorithm 2,
iterates through randomly sampled parameters, while main-
taining the maximum submodularity ratio that does not
violate the sampled constraints. Once the agent has com-
pleted Nscp number of sample iterations, we extrapolate
the history of evolution of the submodularity ratio to get
X, the approximate submodularity ratio. We do this by using
a simple linear regression in lines 12-13 and evaluate the
expression at n = |A|, the cardinality of the constraint
parameter set, to determine an estimate for the robust convex
optimization problem.

The following result justifies to what extent the obtained
ratio is a good approximation of the actual submodularity
ratio.

Lemma6.2 Let A be the approximate submodularity ratio
returned by submodulariyRatioEstimation with
inputs w and e. With probability, 1 — w, up to e-fraction
of constraints will be violated with respect to the robust con-
vex optimization problem (B.1).

Proof First, we show submodulariyRatioEstimation
can be formulated as a scenario convex program and that
it satisfies the convex constraint condition in Theorem B.1.
Lines 6-11 provide a solution, A™, to the following scenario
convex program.
AT =argmin — A~
AeR
st. fsi(A7) =<0, i=1,..., Nscp,
where line 8 is a convex function that comes from Eq. (6.2).
Since fs is a convex function, we can apply Theorem B.1;
with probability, 1 — z, AT violates at most e-fraction of
constraints in A.

The simple linear regression portion of the algorithm,
lines 12-13, uses data points A°, n that are only included in
when A% < AT Therefore, the slope of the linear regression
b is strictly negative. On line 13, X is evaluated at n = Nscp
which implies that A < At and that with probability, 1 — @,
A violates at most &-fraction of constraints in A. O

Note that o and ¢ can be chosen as small as desired to
ensure that A is a good approximation of A. As A approaches
A, our approximation of the lower bound performance of

the algorithm with respect to f, becomes more accurate. We
conclude this section by studying whether the submodularity
ratio is strictly positive. First, we prove it is always positive
in non-degenerate cases.

Theorem 6.3 Under Assumptions 6.1-6.3, f, is a weakly
submodular function.

Proof We need to establish that the submodularity ratio of
fx 1s positive. We reason by contradiction, i.e., assume that
the submodularity ratio is 0. This means that there exist X
and Z, such that the righthand side of expression (6.2) is
zero (this rules out, in particular, the possibility of either X
or Z, being empty). In particular, this implies that f, (X, U
{z}) — fr(Xy) = 0 for every z € Z, and that f, (X, U
Zy) — fx(Xy) > 0. Assume that ITnitSubEnv(X, U {z})
yields an ordered region list [x, x2, ..., z] for each z. Let
ry and t, denote the reward and time for completing a task
in a region x conditioned by the generated sub-environment
InitSubEnv(Xy U{z}). Then,

fo(Xx) = Vtxlrxl + Vterxz +..
f(XyU{z})) = Vtxl Ix; + Vtxzrxz +...+ ytzrz»
Xy U{zD) — fi(Xy) = Vlzrb

for each z € Z, conditioned by the generated sub-
environment InitSubEnv(Xy U {z}). Under Assump-
tion 6.3, the term f, (X, U {z}) — fx(X) equals O when z,
is infinite. On the other hand, let r|, and ¢, denote the reward
and time for completing a task in region x conditioned by the
generated sub-environment InitSubEnv(X, U Z;). The
denominator is nonzero when ¢/ is finite. This cannot hold
when ¢, is infinite for each z € Z, without contradicting
Assumption 6.3, concluding the proof. O

The next remark discusses the challenge of determining
an explicit lower bound on the submodularity ratio.

Remark 6.1 Beyond the result in Theorem 6.3, it is of interest
to determine an explicit positive lower bound on the submod-
ularity ratio. In general, obtaining such a bound for arbitrary
scenarios is challenging and likely would yield overly conser-
vative results. To counter this, we believe that restricting the
attention to specific families of scenarios may instead lead
to informative bounds. Our simulation results in Sect. 7.1
later suggest, for instance, that the submodularity ratio is
approximately 1 in common scenarios related to scheduling
spatially distributed tasks. However, formally establishing
this fact remains an open problem. O

6.3 Sequential multi-agent deployment
We explore the performance of DDRP-0O0 in an environment

with multiple agents. We consider the following assumption
for the rest of this section.

@ Springer

496

Autonomous Robots (2020) 44:485-503

Assumption 6.4 If an agent chooses a task that was already
selected in Xy, none of the completion time probability distri-
butions are modified. Furthermore, the expected discounted
reward for completing task t given the set of trajectories Xy
is

—
T(t, Xy) = max 9.Pr'py'r® = max T(t, {¥}), (6.3)
veXy veXy

given that 0T =r1.

This assumption is utilized in the following sequential
multi-agent deployment algorithm.

Algorithm 3: : Sequential multi-agent deployment

12, =J{x} Vx
2 £ <« current environment

3 0, Vi, Ny, Ny < loaded from previous trials

4 Evaluate (¢, Xp):
5 val =0

6 for ?k ing.7:
. - —)[I3
7 if T(T g, Xo) < 0.Prig@)y'r?:
. N
8 val = val + 0.Priy(t)y'r® — T (T, Xy)

9 return val

10 SequentialMultiAgentDeployment (&, A, £2,)

11 Op=0

12 Xy =0

13 forp e A

14 O4 =064 U{OF}

15 Zy = DDRMAP (£2,, N, £, ®4, 0, Vi, Neg, Ny, M)
16 ¥, = argmax Evaluate(d, Xy) Xy = Xp U {0y}

VeZy
17 return X,

In this algorithm, agents plan their sub-environments and
task search to determine a task trajectory ¥ one at a time. The
function Evaluate returns the marginal gain of including
¥, which is the added benefit of including ¥ in X y. We define
the set function fy : 2 — R to be a metric for measuring
the performance of SequentialMultiAgentDeploy-
ment as follows:

fo(X9) =D T(r, Xy).

vVt

This function is interpreted as the sum of discounted rewards
given all a set of trajectories Xy. The definition of 7 from
Assumption 6.4 allows us to state the following result.

Lemma 6.3 Under Assumptions 6.3-6.4, fy is a submodular,
monotone set function.

Proof With (6.3) and the fact that rewards are non-negative
(Assumption 6.3), we have that the marginal gain is never

@ Springer

negative, therefore the function is monotone. For the func-
tion to be submodular, we show that it satisfies the condition
of diminishing returns, meaning that fy(Xy U {04}) —
fo(Xy) = fo(Yp U{Pa}) — fo(Yy) forany Xy C Yy C 2y
and ¥, € 2y \ Yy. Let

G(Xy,0a) =T(r, Xy U{Ua}) — T(z, Xy) =

max T (z, {9} — ;réa}l(xﬁ T(z,{v})

D eXyU{De)

be the marginal gain of including ¥, in Xy. The maxi-
mum marginal gain of occurs when no ¥ € Xy share
the same tasks as ¥,. We determine the marginal gains
G(Xy,9y) and G(Yy, ¥y) for every possible case and show
that G(Xyp, o) = G(Yy, Vo).

Case 1: Uy = argmaxyex,up, (v, {0} =
argmaxy cy, Uiy, | T (t,{9#}). This implies that T (7, Xy U
{Da)) =T(z, Yy U {D}).

Case 2: ¢ = argmaxyex,up,) [(7. {0) =
argmaxy ey, ugp,) 1 (7. {#}) such that & € Xy. This implies
that T (7, Xy U {0a}) = T (7, Yy U {Da}).

Case 3: ¥, = argmaxy.y, s, 7(7. {9}), and ¥ =
argmaxy ey, uip,) 1 (7, {#}) such that # € Yy \ Xyp. Thus

G(Xp,0) 20 and G(Yy,Js) =0.

For both cases 1 and 2, since the function is monotone, we
have T(t,Yy) > T(t, Xy). Therefore, the marginal gain
G(Xyg,04) > G(Yy, ¥y) for all cases. O

Having established that fy is a submodular and monotone
function, our next step is to provide conditions that allow
us to cast SequentialMultiAgentDeployment as
a greedy algorithm with respect to this function. This
would enable us to employ Theorem A.l to guarantee
lower bounds on fy(Xy), with X being the output of
SequentialMultiAgentDeployment.

First, when picking trajectories from line 16 in
SequentialMultiAgentDeployment,all trajectories
must be chosen from the same set of possible trajectories £2;.
We satisfy this requirement with the following assumption.

Assumption 6.5 Agents begin at the same location in the
environment, share the same SMDP, and are capable of inter-
acting with as many other agents as needed, i.e., N' = | A|.
Agents choose their sub-environment trajectories one at a
time. Furthermore, agents are given sufficient time for DDRP
(line 15) to have visited all possible trajectory sets §2.

The next assumption we make allows agents to pick tra-
jectories regardless of order and repetition, which is needed
to mimic the set function properties of fy.

Autonomous Robots (2020) 44:485-503

497

Assumption 6.6 R is set to the single agent reward r€. As a
result, the multi-agent interaction reward function is r® = r€.

This assumption is necessary because, if we instead con-
sider a reward R that is dependent on the number of agents
acting on 7, the order of which the agents choose their trajec-
tories would affect their decision making. Furthermore, this
restriction satisfies the condition Var (¥R) to be finite in The-
orem 6.1. We are now ready to characterize the lower bound
performance of SequentialMultiAgentDeployment
with respect to the optimal set of task trajectories. For con-

venience, let X; = argmax fy(Xy) denote the optimal set
Xy €y
of task trajectories.

Theorem 6.4 Let Xy be the trajectory set returned by
SequentialMultiAgentDeployment. Under Assump-
tions 6.2—6.6, it holds that fy(Xy) > (1 — e_l)f,y (X3).

Proof Our strategy relies on making sure we can invoke The-
orem A.l for SequentialMultiAgentDeployment.
From Lemma 6.3, we know f3 is submodular and monotone.
What is left is to show that SequentialMultiAgent-
Deployment chooses trajectories from 2y which max-
imize the marginal gain with respect to fy. First, we
have that the agents all choose from the set £2y as a
direct result of Assumptions 6.2 and 6.5. This is because
O and SMDP are equivalent for all agents and they all
begin with the same initial conditions. Now we show
that SequentialMultiAgentDeployment chooses
agents which locally maximizes the marginal gain of fy.
Given any set Xy and ¥, € 2y \ Xy, the marginal gain is

Jo(Xp U{da}) — fo(Xy)
=) T Xy U} —) T(x, Xp)
vVt vVt

- Z (T(r, Xp U{9a}) — T (1, Xp)).

\44

The function Evaluate on lines 7 and 8 has the agent cal-
culate the marginal gain for a particular task, given ¢ and
Xy.Evaluate calculates the marginal gain for all tasks as

> max((T(x, (9., T(z, X)) — T(z, X»)),

Vred. T

which is equivalent to Y (T(Xy U {9#}) — T(Xy)). Since
vt

SequentialMultiAgentDeployment takes the tra-
jectory that maximizes Evaluate, the result now follows
from Theorem A.1. O

7 Empirical validation and evaluation
of performance

In this section we perform simulations in order to validate our
theoretical analysis and justify the use of DDRP over other
model-based and model-free methods. All simulations were
performed on a Linux-based workstation with 16 GB of RAM
and a stock AMD Ryzen 1600 CPU. GPU was not utilized
in our studies, but could be implemented to improve sam-
pling speed of some testing algorithms. We first illustrate the
optimality ratio obtained by the sub-environment search in
single-agent and sequential multi-agent deployment scenar-
ios. Next, we compare the performance of DDRP, DDRP-00,
MCTS, and ACKTR in a simple environment. Lastly, we
study the effect of multi-agent interaction on the performance
of the proposed algorithm.

7.1 lllustration of performance guarantees

Here we perform simulations that help validate the results
of Sect. 6. We achieve this by determining X, from
SubEnvSearch, which is an implementation of greedy
maximization of submodular set functions, and the optimal
region set X7, by brute force computation of all possible
sets. In this simulation, we use 1 agent and 1 objective
with 25 regions. We implement DDRP-00 by loading pre-
viously trained data and compare the value of the first
sub-environment found to the value of the optimal sub-
environment. 1000 trials are simulated by randomizing the
initial state of the environments. We plot the probability dis-
tribution function of fx(X,)/ f,(X}) in Fig. 2. The empirical
lower bound of fy(Xy)/ fx(X}) is alittle less than 1 — e !,
consistent with the result, cf. Theorem 6.2, that the submodu-
larity ratio of SubEnvSearchmay notbe 1. We believe that

Greedy approach PDF

0.25 4

0.20

0.15

%

0.10

0.05

0.00 -— - . : . .
0.0 0.2 0.4 0.6 0.8 1.0
Greedy performance / Optimal performance

Fig.2 Probability distribution function of f(Xy)/ fr(X})

@ Springer

498

Autonomous Robots (2020) 44:485-503

Greedy approach PDF

0.7 4

0.6

0.5 4

0.4 4

%

0.3 4

0.2 4

0.1 4

0.0 T T T N T T T T
0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000

Greedy performance / Optimal performance

Fig.3 Probability distribution function of fy(Xy)/ f (X3;)

another factor for this empirical lower bound is that Assump-
tion 6.2 is not fully satisfied in our experiments. In order to
perform the simulation, we trained the agent on similar envi-
ronments for 10 min. Because the number of possible states
in this simulation is very large, some of the uncommon states
may not have been visited enough for Q to mature.

Next we look for empirical validation for the lower bounds
on fy(Xy)/ fo (Xy). Thisis adifficult task because determin-
ing the optimal set of trajectories X7 is combinatorial with
respect to the trajectory size, number regions, and number of
agents. We simulate SequentialMultiAgentDeploy-
ment in a 36 region environment with one type of objective
where 3 agents are required to start at the same region and
share the same Q, which is assumed to have converged to
the optimal value. 1000 trials are simulated by randomizing
the initial state of the environments. As shown in Fig. 3, the
lower bound on the performance with respect to the optimal
set of trajectories is greater than 1 — ¢~!, as guaranteed by
Theorem 6.4. This empirical lower bound may change under
more complex environments with an increased number of
agents, more regions, and longer sub-environment lengths.
Due to the combinatorial nature of determining the optimal
set of trajectories, it is difficult to simulate environments of
higher complexity.

7.2 Comparisons to alternative algorithms

In DDRP, DDRP-00, and MCTS, the agent is given an allo-
cated time to search for the best trajectory. In ACKTR, we
look at the number of simulations needed to converge to a
policy comparable to the ones found in DDRP, DDRP-00,
and MCTS. We simulate the same environment across these
algorithms. The environment has |O| = 1, where objectives
have a random number of waypoints (|O”?| < 15) placed

@ Springer

—— DDRP 4— DDRP-O0O —#— MCTS

10

Episode reward

104 1073 1072 1071 10°
Runtime (s)

Fig. 4 Performance of DDRP, DDRP-00, and MCTS in randomized
2D environments with one objective type

uniformly randomly. The environment contains 100 x 100
points in R?, with 100 evenly distributed regions. The sub-
environment length for DDRP and DDRP-0O0 are both 10
and the maximum number of steps that an agent is allowed
to take is 100. Furthermore, the maximum reward per episode
is capped at 10. We choose this environment because of
the large state space and action space in order to illustrate
the strength of Dynamic Domain Reduction for Multi-Agent
Planning in breaking it down into components that have been
previously seen. Figure 4 shows that MCTS performs poorly
for the chosen environment because of the large state space
and branching factor. DDRP initially performs poorly, but
yields strong results given enough time to think. DDRP-00
performs well even when not given much time to think. Theo-
rem 6.2 helps give intu