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Abstract

The majority of work in the field of swarm robotics focuses on the bottom-up design of local rules for individual robots
that create emergent swarm behaviors. In this paper, we take a top-down approach and consider the following problem: how
can we specify a desired collective behavior and automatically synthesize decentralized controllers that can be distributed
over robots to achieve the collective objective in a provably correct way? We propose a formal specification language for
the high-level description of swarm behaviors on both the swarm and individual levels. We present algorithms for automated
synthesis of decentralized controllers and synchronization skeletons that describe how groups of robots must coordinate to
satisfy the specification. We demonstrate our proposed approach through an example in simulation.
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1 Introduction

Swarm robotics is the study of robotic systems consist-
ing of large numbers of robots whose local interactions
with each other and with their environment lead to a col-
lectively intelligent behavior. Swarm robotic systems have
many potential applications such as exploration, surveil-
lance, search and rescue, intrusion detection, inspection,
construction and cleaning. Thus, it is not surprising that
swarm robotics have been a very active research area [see
(Brambilla et al. 2013] for an excellent review of the liter-
ature). However, as observed in Brambilla et al. (2013), the
intuition of the human designer is still the main ingredient
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in the development of swarm robotic systems, and a trial
and error process based on iterative design and testing is an
essential part of many existing design methods.

Advancements in technology are enabling mass produc-
tion of cheap and capable robots, and there will be an
indispensable need for scientific and engineering methods
for formal mission specification and automated design tech-
niques that result in swarm robotic systems with provably-
correct collective behavior. To this end, in this paper we
consider the problem of automated synthesis from high-level
temporal logic specifications of decentralized controllers for
safe navigation of robotic swarms. The proposed framework
facilitates the design and deployment process for swarm
robotic systems, while providing formal guarantees on ful-
fillment of the collective objective.

As a motivating example, consider a room that is par-
titioned into regions {A, B, C, D, E} as shown in Fig. la.
Assume that an operator wants (1) the whole swarm to repeat-
edly (infinitely often) gather in region A, i.e., all robots must
be present together in region A, (2) all robots to visit region
E infinitely often, but they can do so at different times, i.e.,
it is acceptable if a subset of the swarm visits E at time #
and the rest of the robots visit E at time t» # t1, (3) a part
of the swarm (i.e., at least one robot) to infinitely often visit
region B, (4) the swarm to never occupy regions B and E
simultaneously, and (5) no robot to enter region D.
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Fig.1 a Workspace, b group of robots moving from A to B, ¢ region graph and d labeled transition system

We distinguish between multi robot systems where the
number of robots is known and typically each robot is treated
as a unique agent, and a robotic swarm where robots are
interchangeable and the number of robots might be large and
even a priori unknown. We propose a formal specification
language, based on Linear Temporal Logic (LTL), for spec-
ifying different navigation semantics over an abstraction of
the system that is independent of the number of robots in
the swarm. Given the user-specified global specification, we
provide algorithms to automatically synthesize discrete and
decentralized controllers that can be assigned to groups of
robots such that the resulting system satisfies the given spec-
ification. To this end, we synthesize a centralized controller
for the whole swarm and then partition the controller in order
to obtain local programs that can be deployed on individual
robots.

Synthesized local programs can be executed
asynchronously, however, to enforce all objectives, it may be
necessary for the robots to synchronize. For example, if it is
required that the whole swarm must be in a region simultane-
ously, then a coordination mechanism is needed that signals
the robots whether the whole swarm is currently in a particu-
lar region or not. By augmenting the decentralized controllers
with information about coordination or synchronization such
as when robots must synchronize with other robots and with
which robots they must do so, we ensure that asynchronous
and decentralized execution of the local programs satisfy the
specification.

Each synthesized local program will be executed by a
group of robots of variable size. We assume that each group
moves (almost) together between the regions, e.g., if a group
of robots are moving from region A to B, and some members
of the group reach B, they wait for other group members to
enter B before executing their next step. Careful attention
must be paid when dealing with safety constraints because
of the physical properties of moving in groups, e.g., if the
specification forbids robots to be in both regions A and B
at the same time, the discrete controller cannot have a tran-
sition between a state where the robots are in A to a state
where the robots are in B since a group of robots mov-
ing from region A to B will never leave A and enter B
instantaneously. Therefore, in reality, we will witness “inter-
mediate” states, where part of the group occupies region A
while the rest of it is in region B. Figure 1b shows such an
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intermediate state. The synthesized controllers and coordina-
tion mechanism must be able to accommodate these physical
artifacts.

Related work With many potential application domains
of swarm robotic systems, their design and analysis has
been subject to extensive research and investigation (Bram-
billa et al. 2013). The most common way to develop a
swarm robotic system is behavior-based design (Brambilla
et al. 2013) where the individual behavior of each robot
is implemented, studied and improved iteratively until the
desired collective behavior is obtained (e.g., Nouyan et al.
2008; Soysal and Sahin 2005; Labella et al. 2006; Bachrach
et al. 2010; Balch and Hybinette 2000). Existing automatic
design methods for robotic swarms can be classified into two
categories: evolutionary robotics (ER) and multi-robot rein-
forcement learning (RL) (Panait and Luke 2005). In the RL
framework, an agent learns a behavior through trial and error
interactions with an environment and through feedback from
its actions. ER applies evolutionary computation techniques
(Goldberg 1989) to single and multi-robot systems and is
inspired by the Darwinian principle of natural selection and
evolution. However, these approaches do not provide formal
guarantees on the emergence of the desired collective behav-
ior.

The synthesis problem was first recognized by Church
(1962). The problem of synthesizing reactive systems from
an LTL specification was considered by Pnueli and Rosner
(1989), and shown to be doubly exponential in the size of
the LTL formula (Rosner 1992). Bloem et al. (2012) present
polynomial time algorithms for the realizability and synthe-
sis problems for a fragment of LTL known as Generalized
Reactivity (1) (GR(1)). The specification language used in
this paper is based on GR(1).

The use of formal verification techniques for analyz-
ing the emergent behaviors of robotic swarms is studied in
Dixon et al. (2012), Gjondrekaj et al. (2012). In this paper,
we consider synthesizing correct-by-construction decentral-
ized controllers for swarms of robots. Hierarchical control
and planning for systems with large number of identical
components from high-level temporal logic specifications
is also considered in Nilsson and Ozay (2016), Kloetzer
and Belta (2006). However, these works synthesize central-
ized controllers. The problem of intermediate states due to
arbitrary execution times of the actions for single and multi-
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robot systems are addressed in Raman et al. (2015), Raman
and Kress-Gazit (2014), and it is shown how a centralized
controller can be synthesized that is safe w.r.t. possible inter-
mediate states. In this paper, we show how decentralized
controllers for swarms can be synthesized that are safe w.r.t.
possible intermediate states.

A framework similar to ours is proposed in Kloetzer et al.
(2011) for synthesis of controllers for multi-robot systems,
however, we provide a specification language and synthe-
sis algorithms that are designed to handle swarms of robots.
Furthermore, unlike Kloetzer et al. (2011), we do not require
strong synchronization, i.e., requiring a group of robots to
perfectly synchronize and move from one region to the next
one exactly at the same time since for physical robots with
possibly different speeds, ensuring strong synchronization
is not practical. Our framework creates controllers for spec-
ifications that include the next operator only if the swarm
satisfies the task under asynchronous execution.

Synthesis from high-level LTL specifications for multi-
robot systems is considered in many recent works (see e.g.,
Guo and Dimarogonas 2015; Ulusoy et al. 2013; Karaman
and Frazzoli 2008; Loizou and Kyriakopoulos 2005; Filip-
pidis et al. 2012; Guo et al. 2014). In this paper we consider
a fragment of LTL, with the advantage of applying symbolic
synthesis algorithms that generally scale better in practice
compared to automata-theoretic approaches (Bloem et al.
2012; Ehlers 2010). Furthermore, we develop abstractions
and algorithms to synthesize decentralized controllers for
swarms of robots where the number of robots are a priori
unknown.

Synthesis of synchronization skeletons for concurrent pro-
grams is a classical problem in concurrency theory. However,
to the best of our knowledge, the majority of the works in
synthesis of synchronization for concurrent programs are
focused on shared-memory settings or assume a centralized
synchronization process (e.g., Emerson and Clarke 1982;
Vechev et al. 2010; Manna and Wolper 1984). This setting
is not suitable in our case since the assumption of having
access to a centralized agent or global information is often
violated in realistic scenarios. Here, we consider a decentral-
ized architecture where groups of robots can coordinate as
needed.

Contributions This paper is based on Moarref and Kress-
Gazit (2017) and contains detailed explanations of the
methods and results presented there. In addition, we describe
situations where a specification may not be realizable due to
unrealistic requirements on the robot numbers and provide
a new algorithm for quantitative analysis of the centralized
controller that decides ifitis feasible, i.e., the centralized con-
troller can be executed by a finite number of robots, and if so,
computes the minimum number of robots that are required
to implement the symbolic plan in a decentralized fashion
(Sect. 4.2).

Organization The organization of the paper is as follows.
In Sect. 2 we introduce some notation, background and defi-
nitions that are used in the rest of the paper. In Sect. 3 we show
how desired swarm behavior can be specified in our proposed
framework. In Sect. 4 we explain our solution. In Sect. 5 we
demonstrate our algorithms over a swarm robotic example.
In Sect. 6 we evaluate the performance of our framework
over a set of examples. Finally, in Sect. 7 we conclude and
discuss possible future directions.

2 Preliminaries

Temporal logic We use linear temporal logic (LTL) to spec-
ify system objectives. LTL is a formal specification language
with two types of operators: logical connectives (e.g., —
(negation) and A (conjunction)) and temporal operators (e.g.,
O (next), U (until), ¢ (eventually), and [J (always)). The for-
mulas of LTL are defined over a set of atomic propositions
(Boolean variables) V. The syntax is given by the grammar:

QP =v|®VP|-D| OP|PUDforveV

We define True = v V —w, False = v A =, (P =
Trueld @, and 0@ = —O—P. A formula with no temporal
operator is a predicate. Given a predicate ¢ over variables V,
we say § € 2V satisfies ¢, denoted by s = ¢, if the formula
obtained from ¢ by replacing all variables in s by True and
all other variables by False is valid. We call the set of all
possible assignments to variables V symbols and denote them
by Xy, ie., Xy = 2V, An LTL formula over variables V is
interpreted over infinite words w € (X')“. The language of
an LTL formula @, denoted by L£(®), is the set of infinite
words that satisfy @, i.e., L(®) = {w € (Z))* | w = D).
We refer the reader to Clarke et al. (2009) for a more formal
introduction to LTL.

Labeled transition system (LTS) An LTS is a tuple 7 =
(Q,q0,V, 8, L) where Q is a finite set of states, g9 €
Q is an initial state, V is a set of propositions, § C
Q x Q is a transition relation, and £ : Q9 — 2Y is a
labeling function which maps each state to a set of propo-
sitions that hold in that state. A run of an LTS is an
infinite sequence of states gogi1q>... where ¢; € Q and
(gi,gi+1) € 6 for all i > 0. The language of an LTS
T is defined as the set L(7) = {L(q0)L(q1)L(q2) - €
Y)Y | gogiqa -+~ isarun of T}, i.e., the set of (infinite)
words generated by the runs of 7. An LTS 7 realizes an
LTL specification @ iff all infinite words in its language
satisfy @, i.e., Vw € L(7). w = @. Given an LTL spec-
ification, the synthesis problem is to find an LTS that realizes
it. LTSs represent the symbolic plans or controllers executed
by the robots. Figure 1d shows an example of an LTS where
0 = {q0, q1, 92, q3} 1s the set of states, g is the initial state,
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Fig.2 a A centralized LTS 7. b 7 is partitioned into 77 (left) and 75 (right)

andV = {ma, np, ¢, TE, 7} is the set of propositions. The
directed edges in Fig. 1d show possible transitions between
states, i.e., § = {(qo0, q1), (1, 92), (42, 43), (93, q0)}. Each
state is labeled with the set of propositions that hold in that
state, e.g., L(q1) = {mp}.

Generalized reactivity (1) (GR(1)) GR(1) is a fragment of
LTL for which symbolic realizability and synthesis algo-
rithms exist (Bloem et al. 2012). GR(1) specifications are
of the form ® = @, — @, where @, for o € {e, s} has the
structure

@y = 0% A [\ Oy A\ DOgY
i i

Intuitively, @, indicates the assumptions on the environ-
ment and @ characterizes the requirements of the system.
Roughly speaking, 6. is a predicate specifying the initial
conditions, v are predicates or LTL formulas that may
only include the next temporal operator, characterizing safe,
allowable moves and invariants, and ¢} are predicates that
must hold repeatedly (i.e., infinitely often) during system
execution, representing liveness assumptions and guarantees.
We refer the reader to Bloem et al. (2012) for formal defini-
tions. In Bloem et al. (2012), a symbolic synthesis algorithm
for GR(1) specifications is given that performs O (mn2%V!)
symbolic steps (i.e., next step computations) in the worst
case, where m is the number of liveness assumptions, 7 is
the number of liveness guarantees, and V is the set of atomic
propositions, respectively.

In this paper, we only consider navigation tasks and we
assume that the environment is static and known, i.e., ®, =
True. In general, GR(1) allows specification and synthesis
of reactive controllers that respond to dynamic changes in
the environment. Extension to full GR(1) is the subject of
our current research.

Synchronization skeleton Let P = {71, ..., 7} be a set of
LTSs. A synchronization skeleton S; for LTS 7; with respect
to P is a function S; : Q; — 2P that maps each state ¢ € Q;
of 7; to a set of LTSs S;(¢) C P indicating that LT S; must
synchronize with LTSs 7; € S;(g) before executing the next
transition.

Mixed-synchronous—asynchronous composition of LTSs
Given a set P = {71,...,7;} of LTSs and their corre-
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sponding synchronization skeletons Sy, . . . , Sk, their mixed-
synchronous—asynchronous composition, denoted by 7©, is
an LTS itself. Roughly speaking, at each state of the com-
position, an LTS 7; is selected for execution while the other
LTSs stay at the same state. If 7;, at its current state, does
not need to synchronize with any other LTSs or that the nec-
essary synchronizations have already happened, 7; moves to
its next state according to its transition relation. Otherwise,
7; remains in the same state waiting for necessary synchro-
nizations. More specifically, 7@ includes a set A C V),
A={a; |1 <i,j=<ki# j}of propositions where
each a;; represents whether a synchronization has happened
between LTSs 7; and 7; or not (similar to acknowledge mes-
sages in networking). If two LTSs 7; and 7; synchronize,
aij and aj; are set to True. If an LTS 7; satisfies all syn-
chronization requirements and is scheduled to execute, all its
corresponding a;;’s are reset by setting them to False in
the next step.

For example, consider two LTSs 77 and 7, shown in
Fig. 2b. Assume that 77 and 7, synchronize with each
other at states u( and vg, respectively. The sequence o =
(1o, vo) (u1, vo) - - - (U4, vo) (1o, vo)(uo, v1)(uo, v2)--- is a
possible interleaving of states of 77 and 7 in their mixed-
synchronous—asynchronous composition. Note that in o, 7}
and 75 synchronize initially, and propositions a|; and a;| are
set to True (i.e., initially 77 and 73 are in states uq and vy,
respectively, with ajp = ap; = True). 7 is scheduled to
execute until returning to uo while 7, remains in vy. Once
T, leaves the state uq, ajo is reset (i.e., 71 moves to u; and
ayp is set to False). Upon visiting ug the second time, 73
needs to synchronize with 7;. Since ay; is False while ap;
is True, 77 must wait for 7, to execute and come back to
vo. Then 77 and 7, can synchronize and continue their exe-
cutions. Note that if two LTSs do not synchronize with each
other at any state, then any interleaving of their executions
is a possible run in the composition (i.e., fully-asynchronous
composition). On the other hand, if two LTSs synchronize
with each other at every state (i.e., fully-synchronous com-
position), each LTS after executing a step must wait for the
other one to catch up and synchronize before being able to
proceed, e.g., (1o, vo)(u1, vo)(u1, v1)(Uy, v2) (U2, v2) -+ i
a possible run.
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3 Specification of swarm behaviors

We define a specification language that captures desired
swarm behaviors. In our framework, the user provides
a region graph that represents the connectivity of the
workspace. They also provide a temporal logic specification
describing the objectives of the system.

Region graph Let R = {ry, ..., 1t} be a set of regions
partitioning the workspace. The user provides a region graph
Gr = (R, E) where the vertices R are the regions and E C
R x R is the set of possible transitions between regions, i.e.,
(r;,r;) € E indicates that robots can move from region r;
tor;. Figure 1c shows the region graph corresponding to the
workspace in Fig. 1a. We assume thatVr € R. (r,r) € E,i.e.,
robots can stay in a region. We do not show the self-loops
over the region graph to keep the figures of region graphs
simple.

Region propositions The user specifies the navigation
behaviors over an abstraction obtained from the region graph
GRr where each region is represented by a unique proposi-
tion. Formally, let 7, be a proposition that is true iff a part
of the swarm is currently in region r. To simplify the nota-
tion, we introduce a predicate nrfuu = A /\r, eR\(r} 7T’
that holds iff some of the robots are in r and there are no
robots in any other region, i.e., the whole swarm is in region
r. We let [T = {my,, ..., 7y} be the set of all propositions
corresponding to the regions.

Moreover, to distinguish between when we talk about
groups or individual robots, we introduce a (parametric)
proposition for each region. Let 7 be a proposition that
is true iff an individual robot is in region r. We define
I* ={ng ..., mf }as the set of robot region propositions.
Since an individual robot cannot be at two different regions
at the same time, the truth values of the robot region propo-
sitions are mutually exclusive, i.e., Vn;‘i, Jtl?j e IT*,r; #
rj. Tl — —-n;‘j . Note that in the following we quantify over
a; therefore, in practice, we are not actually creating propo-
sitions for each robot.

Specification We allow the user to specify the desired
behaviors as a temporal logic specification at two levels: a
macroscopic specification @M that describes how groups of
robots should behave and is given as a GR(1) specification
over region propositions I7, and a microscopic specification
@ that describes how individual robots must behave and is
given as

ot = /\Va. Op? A /\Va. 00¢% 1)
i j

where ¢? and qb*/.‘ are predicates over robot region propo-
sitions IT?. For example, Va. L(—rg A “77?,») requires all
robots to avoid regions r; and r; at all times.

Example 1 The example introduced in Sect. 1 can be formally
specified as follows. A macroscopic specification @M =
00 A OO (rp) A O(=mp) A O(=(p A 7E)) where
the first conjunct says that the whole swarm must repeat-
edly meet at region A, the second indicates that part of the
swarm must repeatedly visit region B, the third requires that
no subswarm should enter region D, and the fourth specifies
that robots must never occupy regions B and E at the same
time, and a microscopic specification @# = Va. O(r})
indicating that all robots must repeatedly visit region E.

4 Synthesis

In this section we explain how we automatically synthesize
decentralized LTSs along with their synchronization skele-
tons that realize the given specification.

4.1 Synthesis of a centralized solution

To synthesize decentralized controllers, we first synthesize
a centralized LTS that satisfies the input specification. To
this end, we create a GR(1) specification ¥ from the macro-
scopic specification @ and microscopic specification ®*.
We define 7y ¢ IT to be a synchronization proposition. Intu-
itively, 7 holds at a state if (some) groups of robots must
synchronize. The macroscopic specification @ is automat-
ically translated into a GR(1) specification ¥ as follows. If
a safety formula (g appears in @ it is also added to ¥
as is. For each liveness formula [J(¢ that appears in @Y, we
add OO (¢ A7ry) to WM Intuitively, JO (¢ A ) indicates that
(some) groups of robots may need to synchronize to satisfy
the global liveness requirement, e.g., if all the robots must
infinitely often be at the same region.

Next, we translate @* into a specification ¥*. Intuitively,
this is done by removing the universal quantifiers and replac-
ing the predicates ¢? in sub-formulas of @/ by corresponding
predicates Y9 defined over IT. We first give an example.

Example 2 Consider the workspace shown in Fig. la. The
formula Ya. O(¢]) = Va. (-7} A —7}) (i.e., no robot
must enter D and FE) is translated into D(W‘”?) =U(—mp A
—rg) (i.e., no part of swarm must occupy regions D and E).
Similarly, the formula Va. 00 (¢3) = Ya. OO(r vry) (ie.,
all robots are required to repeatedly visit regions A or B) is
translated into D()(wd’?) = 0O0(—mc A —mp A —7tg) (ie.,
the swarm must repeatedly not be in C, D and E).

Note that since an individual robot cannot be at two regions
at the same time, the truth values of the propositions /72 are
mutually exclusive. Formally, let ¢"*¢* = A, g(7? —
Aver\r} ™) be a predicate indicating that if a robot a
is in region r, then it cannot be in any other region r’ €
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R\ {r}. Now consider a predicate ¢? over IT?. First, observe
that the set 9" < 21° of possible truth assignments to
propositions in IT* that satisfies ¢ and also ¢™"'¢* is of the
form ¥ = ({72} € 21" | (72} = p A @) ie., B is
either empty or consists of singleton sets that assign True
to exactly one robot region proposition (due to the mutual
exclusion condition), e.g., a predicate ¢* = -7} A~} is
satisfied if the robot a occupies any region other than A or
B, i.e., if exactly one proposition 72 € IT*\ {7}, w3} holds.

Let R®" = {fre R|{n?} e 24’3} be the set of regions
that an individual robot can occupy to satisfy ¢? A ¢™4rex,
The microscopic specification ¢* as defined in (1) is auto-
matically translated into a GR(1) specification

vt = A\ Oy A \DOy?
i J

where Yy = /\reR\R"’la -7, is a predicate over I1 corre-
sponding to ¢{'. Assuming that no robot can be at two regions
at the same time, the safety formulas in ¢* are “semantically
equivalent” to their corresponding formulas in ¥/*. Note that
a safety formula Va. (J(¢?) in ¢* holds iff all robots are
in any region r € R?" at all times, or equivalently, iff no
robot (no part of swarm) is in any region r € R\R¢a, ie.,
Ow®") = O\ rer\ge® —7r) holds.

On the other hand, ¥* may impose a stronger requirement
on the swarm as it requires the swarm to visit particu-
lar regions at the same time to satisfy a liveness property.
For example, the formula Va. D()(ng) is translated into
OO(—ma A =g A =t A —TTp) = DO(ngu”), requiring
the whole swarm to be in E repeatedly and at the same time.
Thus, groups of robots may have to “wait” for each other
in the centralized solution, however, note that the robots do
not need to synchronize and those unnecessary waitings (i.e.,
staying in the same region) are removed during the decentral-
ization process. This approximation allows us to synthesize
an LTS that ensures that all the robots repeatedly visit a par-
ticular region possibly at different times.

Remark 1 In Moarref and Kress-Gazit (2017), the micro-
scopic specification @ is translated into a specification ¥*
by removing the universal quantifier and replacing the indi-
vidual robot propositions 2 € IT? with their corresponding
full region predicate nrf"[l, e.g., the formula Va. OO (?) is
translated into D()(nf“”). This translation works if the predi-
cates ¢ and c/)? in (1) are written in positive normal form, i.e.,
no negation symbol appears in the predicates. For example,
consider the formula Ya.[OO(¢?) where ¢? = —mq A =3,
requiring all the agents to not be in regions A and B infinitely
often. Note that ¢? is not in l]})ositive normal form, and the
formula DQ(—w}{”” A —wé" ) does not imply Va.[JO(¢?).
The translation proposed in this paper resolves this issue and

can treat general Boolean formulas defined over I72.
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Fig.3 a Region graph, and b an LTS

Finally, we define ¥ = WM A Wk to be the speci-
fication created using the user-provided macroscopic and
microscopic specifications.

Example 3 The specification in Example 1 is translated into
M = 00N A ) ADOGs) A D(—7p) A D(=(p A
7g)), and ¥H* = OO (—mwa A =g A —7tc A —TTD).

4.1.1 Specification of region graph

To complete the specification, we also need to formally
specify the transition rules between regions that repre-
sent the feasible motion of the robots. Formally, for each
r € R, let outgoing(r) = {r € R | (r,r') € E}
and incoming(r) = {r € R | (r/,r) € E} be region
r’s corresponding set of outgoing and incoming neighbors,
respectively. For each r € R we write two LTL formu-
las @ = O = Vycoutgoingry O(Tr) and @y =
OO@e) = Vi eincoming(r) 7r)- Intuitively, @y specifies
that if a part of swarm is in region r, then at the next step the
robots can occupy any of its adjacent regions or stay in region
r, while @,- encodes that if a region r is occupied at the next
step, then r or at least one of its neighbors is occupied in the
current step. Finally, the specification @G corresponding to
the region graph Gr is the conjunction of formulas for each
region, i.e., PGy = \;er Dr A D

Example 4 Consider the region graph Gr shown in Fig. 3a.
It can be formally specified as conjunction of the following
formulas:

- &, =U(my — Oy vrp)) forr € {A, C},
@y =O(O(my) = (i Vorg)) forr € {A, C},
— @ =U@mpg — Qs Vg VvV nc)), and

Gp =L(O(p) = (wa V7B V 71C)),

The specification @y, is conjoined with ¥ obtained from
the macroscopic and microscopic specifications to create a
new specification #C€ = ¥ A Pgy. A centralized LTS is
then synthesized, using the synthesis algorithm proposed in
Bloem et al. (2012), that realizes ®C.

Example 5 Consider the specification in Example 3. A cen-
tralized LTS 7 is synthesized that moves the swarm from
region A to B, then E, then C, and then back to A, and this
is repeated indefinitely as shown in Fig. 1d. Note that region
D is avoided as it is required by the specification.
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4.1.2 Intermediate states

In the synthesized LTS, the robots can move between the
regions “instantaneously”, i.e., in a single step. For exam-
ple, in the LTS shown in Fig. 1d, the swarm moves from
region B to E in a single step. However, one of the char-
acteristics of a group moving from one region to the next
is that instantaneous region transitions are impossible, thus
the execution goes through “intermediate” states where the
robots are spread out between two regions. In this work we
check if the intermediate states resulting from transitions of
the synthesized LTS 7 can violate any safety guarantee.

To this end, for each transition 7 = (g;, gi+1) € § of
the synthesized LTS 7 = (Q, qo, V, 8, L) a predicate ¢
is obtained that encodes all possible intermediate states that
can occur during execution of that transition, as follows. Let
7r € L(g;) be aregion proposition that hold in state ¢;, and
let /' = {r € R |y € L(gi1+1) and (r, ') € E} be the
set of regions r’ such that v holds in the next state g;|
and there is an edge from r to r’ in Gg = (R, E). For each
mr € L(gq;), we define a predicate

O = /\ (7Tr V TT17)

ren’

that encodes possible states that may be visited due to tran-
sition between regions r and any region r’ € y{'. Intuitively,
the disjunct my V mp in ¢, indicates that while a group
of robots are moving from r to r’, region r or r’ or both
may be occupied while the transition is being executed.
let 8 = IT\(L(q;) U L(gi+1) be the set of “uninvolved”
region propositions, i.e., regions that are not occupied in
either source g; or destination g;4; states. The set of all
intermediate states that may be visited during the transition
T = (qi, gi+1) € 6 is represented symbolically by the predi-
cate

¢ = /\ ¢ | A /\ ~Ty | A =g A g4,
wr€L(qi) T €S

where

o= N\ m|~|l N\ -] foréelggin)

T eL(0) T €M\LO)

Intuitively, ¢, and ¢, , are predicates representing the
source ¢g; and destination ¢, states, respectively, and are
removed from the set of possible intermediate states (since
they are not intermediate). The conjunct /\nr/e p Ty in ¢y
ensures that regions that are not occupied during the transi-
tions, stay empty.

Let WS be the safety properties of the specification ¥
obtained from @ and ®M. A transition 7 of the LTS T
is safe, considering possible intermediate states, if ¢, =
wsafe e its corresponding predicate ¢, satisfies the safety
requirements of the given specification. If all transitions of 7°
are safe, 7 is returned as a centralized solution that satisfies
the input specification and is safe w.r.t. possible intermediate
states. Otherwise, the specification is strengthened by adding
safety formulas that prohibits taking the unsafe transitions.

4.1.3 Ruling out an unsafe transition

The predicate ¢, encodes possible intermediate states when
the swarm moves from state ¢; to state g; 4 in the LTS 7. If
¢ does not satisfy the safety properties of the specification,
ie., ¢; = W then the transition T = (g;, ¢i+1) is not a
safe transition w.r.t. intermediate states. Therefore, the syn-
thesized LTS 7 can violate the safety requirements and an
alternative LTS must be synthesized. To ensure that the new
LTS cannot have the unsafe transition, we update the speci-
fication by adding a new safety rule that prohibits the unsafe
transition. To this end, the safety formula r = (¢, —
O(—dy;,,)) is added to the specification that ensures that
transition from regions represented by £(g;) to regions rep-
resented by L£(g;i+1) is not allowed in the LTS synthesized
in the next iteration, if such an LTS exists. Intuitively, the
transition between g; and g; 41 is discovered to be unsafe and
ruled out from the next solution.

The iterative process of synthesizing an LTS, checking
its safety w.r.t. possible intermediate states, and refining the
specification if necessary, is repeated until either an LTS is
synthesized that is safe w.r.t. intermediate states, or the spec-
ification becomes unrealizable, indicating that there is no
solution satisfying all the constraints. Since the state space
is finite, the algorithm is guaranteed to terminate.

Example 6 Consider the LTS shown in Fig. 1d. Observe that
this LTS satisfies the specification given in Example 3, how-
ever, considering the intermediate states, the specification
would be violated since the transition between regions B
and E results in an intermediate state violating the require-
ment LI(—(wp Amg)). In other words, the transition between
the state where all the robots are in region B and the state
where all the robots are in region E is not safe consider-
ing the possible intermediate state, therefore our algorithm
automatically adds the requirement L(¢p,, — O(—¢y,)) =
O((g A /\rgR\{B} =) = O(we A /\reR\{E} —7y)))
to the specification, ruling out such transition and ensuring
that the next computed LTS will not include it. This process
of checking the synthesized LTSs and ruling out unsafe tran-
sitions is repeated until an LTS is computed that is safe w.r.t.
intermediate states. For example, an alternative LTS, shown
in Fig. 2a, realizing the specification moves the swarm from
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Algorithm 1: Synthesis of a centralized LTS

Data: GR: a region graph , @M : macroscopic specification, ®*:
a microscopic specification
Result: 7 a centralized LTS satisfying @# and @ and safe
w.r.t. intermediate states
1 Translate the region graph into a specification POr;
2 Create a specification ¥ from @ and @*;
3 Let W be safety properties of ¥;
4 Let € = ¢CrR Ay,
Let I' = (True);
while @€ A I is realizable do

5
6

7 Synthesize a centralized LTS 7 satisfying &€

8 rod .= r;

9 foreach rransition Tt = (gi, gi+1) € § do

10 bgi = Narerign Tr N Ngerm\zig) ~7us

11 Paiv1 = Navertisn T AN Naem\ cigisn) ~7us

12 ¢r = /\anL(qi) ORI /\nreﬁ T A _‘¢q; A _'¢Qi+1;
13 if ¢, = W'Y then

14 ¢ =0y — Oy,

15 I':=IAg;

16 end

17 end

18 if ' = "' then

19 ‘ return 7°;

20 end

21 end

22 return “No solution”;

region A to C, then to E, then to C, then partitions the swarm
such that a part moves to A and another part moves to B, then
two parts gather in A, and this behavior is repeated. This LTS
is also safe w.r.t. intermediate states.

4.1.4 Synthesis

Algorithm 1 summarizes the steps for computing a central-
ized LTS that satisfies the input specification. The specifica-
tion @€ = POR AW is the central specification that is used to
synthesize a centralized LTS, obtained from the region graph
and user provided specifications. The formula I”, which is ini-
tially set to LJ(True), allowing all transitions, is updated at
each iteration with a set of new formulas that rule out unsafe
transitions. In the main loop of Algorithm 1 (lines 6-21) first
a centralized LTS 7 is synthesized for @€ A I". Then each
transition (g;, ¢;+1) of 7 is checked for safety. If a transition
violates the specification, then a safety formula is added to
I' ruling out that transition. If after checking all transitions
of 7, no new safety requirement is added (I"°'¢ = I"), then
7 is safe and it can be returned as a solution. Otherwise,
the process is repeated with the strengthened specification
PCAT.

Complexity The most costly step of Algorithm 1 is the
synthesis of the centralized LTS 7 that satisfies @€ A I’
(line 7). In Bloem et al. (2012), it is shown that synthesis for
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GR(1) specifications can be done with effort O (mn|Xy|?)
where m and n are the number of liveness assumptions and
guarantees, respectively, and effort is measured in number
of symbolic steps, i.e., image and pre-image computations.
Let o = a™ 4 o' be the number of liveness formulas in
@€ AT where o™ and a* are the number of liveness for-
mulas in @M and @#, respectively. Note that we do not have
any liveness assumptions on the environment, nor do we add
liveness formulas during synthesis. Hence, the synthesis of
centralized LTS can be done in O («|Xy,|*) number of sym-
bolic steps. At each iteration of Algorithm 1, at least one
unsafe transition is ruled out. The number of possible tran-
sitions between the states is bounded by O(]X|?). Thus,
Algorithm 1 can compute a strategy with effort bounded by
0@ Zy|%.|Zy|?) = O(a|Zy|*). Note that this is a crude
upper bound, and in practice, Algorithm 1 may converge in
much fewer iterations depending on the safety requirements
and transition relation. Besides, at each iteration, all the tran-
sitions of the synthesized LTS are checked for safety, and
possibly a set of unsafe transitions are ruled out.

Remark2 An alternative method to synthesizing a central-
ized LTS is to explicitly model the intermediate states by
adding additional propositions. To this end, we need to add
an auxiliary proposition for each edge of the region graph,
e.g., m4op representing that a group is moving from region
A to B, and their transition has not completed yet [simi-
lar to the approach proposed in Raman et al. (2015)]. This
approach can synthesize an LTS in a single shot, however,
it requires the addition of |E| propositions. Thus, the com-
plexity is bounded by O (a(2/l|3),])?) symbolic steps as
the size of the state space grows exponentially with the num-
ber of propositions. Moreover, the symbolic steps themselves
becomes more expensive to perform as the cost of symbolic
computation strongly depends on the number of variables
used in the Boolean formula (Bloem et al. 2006). In con-
trast, Algorithm 1 does not require auxiliary propositions to
model the intermediate states. Note that not all the interme-
diate states need to be considered in the synthesis process,
only those that appear in the solution.

4.2 Synthesis of decentralized controllers

Once a centralized LTS is obtained, the next step is to extract
decentralized symbolic plans such that each can be assigned
to a group of robots for execution. To this end, we form and
solve an integer program that computes the minimum number
of robots required to execute the centralized LTS, and shows
how robots should move between regions to implement the
transitions of the centralized LTS. The solution of the integer
program is then used to partition the centralized LTS into
a set of decentralized LTSs that each can be executed by a
group consisting of one or more robots.
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Fig.4 a Possible transitions between regions. b A feasible matching. ¢ An infeasible matching

4.2.1 Quantitative analysis of swarm size

To synthesize a centralized LTS 7 = (Q, qo, V, 8, L) for
the swarm, an abstraction is used that is independent of the
number of robots in the swarm. Next we consider the problem
of computing the minimum number of robots required to
execute a symbolic plan. Let R; € R be the set of regions
whose corresponding region proposition holding € Q,i.e.,
R, = {r € R |y € L(q)}. We define pre(q) = {u €
Q| (u,q) € 8} and post(q) = {v € Q| (q,v) € &} to
be (possibly singleton) sets of previous and next states for
q in 7. For each transition (g, v) € 8, we define a set of
non-negative integer variables xf.{ ]U r, € Z=o wherer,; € Ry,
r, € Ry, and (ry, r,) € E, i.e., there is an edge between r,
and r, in the region graph.

Figure 4a shows possible transitions between regions for
the LTS shown in Fig. 3b and based on the region graph shown
in Fig. 3a. The middle dashed rectangular box correspond to
state g1, while the left and the right ones correspond to state
qo in the LTS depicted in Fig. 3b (qo is duplicated to keep
the figure simple). Some of the integer variables, e.g., x?ﬁi‘ﬁ)
are shown in Fig. 4a. The integer values assigned to these
variables indicate how many robots must be sent from the
source to the destination region, e.g., x(qé:qc‘)) = 2 means that
two robots must move from region B to C during the transi-
tion from q; to go. Let X be the set of all integer variables.
Naturally, it is desirable to minimize these quantities.

To this end, we define a set of linear constraints over these
variables. First, the sum of the outgoing edges from a region
must be greater than or equal to one, i.e.,

qu
Z x(rqyrv) z 1

(rg.ry)eEr,eRy

V(g,v) €4 2

Furthermore, sum of the incoming edges to a region must be
greater than or equal to one, i.e.,

vg
Z x(rv,rq) > 1

(ry,rg)eEr eRy

V(v,q) €6 3

Constraints 2 and 3 ensure that the regions corresponding to
the region propositions that hold in the source and destination
of a transition contain at least one robot. Note that a propo-
sition 7y holds iff there is at least one robot in r. Finally, for
each state ¢, and for each state u € pre(g) and v € post(q),
we define the conservation constraint:

uq _ qu
Z x(ruqu) - Z x(rq,ru) “)

(ry,rg)€Emr, eRy (rg,ry)€Emr, €Ry

i.e., sum of the robots entering a region is equivalent to the
sum of the robots leaving that region or stay in it. Finally, we
solve the integer program

. qu
min Xr,.r,

ek 5)

subject to constraints (2), (3), and (4)

By solving (5), we obtain a vector q = (¢!, ..., t"IRl) € ZLRol
for each state ¢ € Q characterizing the minimum number of
robots required in each region in state g as follows: if r; €
L(q), then t"J = Z(rj,ru)eE:r,,eRU x?r'j’rv) for an arbitrary
chosen v € post(q), and otherwise (i.e., r; ¢ L(g)), then
" = 0. Intuitively, if the region proposition does not hold,
the corresponding vector element is zero, and otherwise it is
the sum of the values attributed to the outgoing edges from
that region to the regions of the next state in the LTS. The sum
of the vector elements of q, i.e., ZreR t¥, is the minimum
number of robots required to execute the computed LTS. Note
that this sum is the same for any arbitrary g € Q due to the
conservation constraint (4).

Example 7 Figure 4b shows a possible value assignment to
integer variables corresponding to the edges in Fig. 4a. The
edges whose corresponding variables are assigned to zero are
not depicted. As shown in Fig. 4b, to implement the transition
from qo to g1, one robot stays in A, while from the two robots
in C, one stays in C and the other one moves to B. Similarly,
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Fig.5 a Partitioning of LTS in Fig. 3b, b three decentralized LTSs are
obtained after partitioning

to implement the transition from g; to go, robots that are
in A and C stay put, while the robot in region B moves to
C. Observe that we need at least three robots to execute the
symbolic plan shown in Fig. 3b. Intuitively, the solution of
the integer program provide us with a “matching” between
the regions, indicating how robots should move to implement
transitions of the centralized LTS.

Example 8 A synthesized centralized LTS is not necessarily
feasible, i.e., it cannot be implemented by a finite number
of robots. As an example, assume that the edges (B, A)
and (C, B) are removed from the region graph shown in
Fig. 3a, i.e., the robots are not allowed to move from region
B to A, or from C to B. Figure 4c shows possible transition
between regions for the LTS shown in Fig. 3b consistent with
the restricted region graph. Observe that although there is a
matching between the regions, there is no value assignment
to the edges that satisfies the conservation constraint in the
corresponding integer program, i.e., the integer program is
infeasible. Intuitively, every time the transition between g
to g1 is executed, a robot must be “generated” to move from
A to B, so we need an infinite number of robots to execute
the symbolic plan.

4.2.2 Partitioning

The solution of the integer program (5) provides us with the
minimum number of robots k > 1 required to implement the
centralized LTS 7, and also matchings between the regions
of the consecutive states of 7, i.e., how robots should move
between regions to implement a transition of 7". The next step
is to partition 7 to obtain k decentralized controllers. Each
decentralized controller can be executed by a group of robots
with a variable size. Partitioning of 7 is done by traversing
its states one by one starting from its initial state; each state
q € Q of T is partitioned and regions are assigned to k
LTSs, according to the vector q corresponding to ¢ and while
maintaining consistency with the matchings obtained from
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the solution of (5), such that each state of the decentralized
LTSs is labeled with a single region proposition.

Figure 5a shows the process of partitioning of the LTS
shown in Fig. 3b. Each stage of partitioning contains the
current state of the centralized LTS and labels of k& decen-
tralized LTSs, e.g., the left rectangular box in Fig. 5a depicts
the stage (qo, w4, ¢, mc) where one decentralized LTS is
labeled with 7t 4 and the other two are labeled with 7. Once a
state of 7 is partitioned, we move to the next state according
to the transition relation of 7. The second stage in Fig. 5a
shows partitioning of ¢; and a matching that is consistent
with Fig. 4b. This process of “unfolding” and partitioning
the centralized LTS continues until a repeated stage is vis-
ited, e.g., the last stage in Fig. 5a is the same as initial stage.
The repeated stage determines the looping index for decen-
tralized LTSs. Figure 5b shows the three decentralized LTSs
obtained through partitioning.

4.2.3 Synchronization skeletons for liveness

Figure 2b shows a partitioning of the LTS in Fig. 2a. After
the robots visit region C for the second time (state g3 of
T), the swarm is partitioned, one group moves to A and the
other group moves to B. An initial synchronization skeleton
for each decentralized controller is obtained while parti-
tioning the centralized LTS. These initial synchronization
skeletons indicate when each group must wait and synchro-
nize with other groups to satisfy a liveness guarantee, e.g., to
gather in some region. Formally, at each stage of partitioning
(q, xl, ..., 7k ), if the centralized LTS 7 synchronizes in ¢,
i.e.,, s € L(g), then 7" synchronizes with every other LTS
T/, j # i in the corresponding state. Intuitively, if the cen-
tralized LTS requires synchronization at a particular state,
then all the decentralized controllers are set to synchronize
with each other in the states corresponding to the partitioned
state, e.g., 71 and 75 in Fig. 2b synchronize with each other
at states ug and vg, respectively.

The synchronous composition of LTSs 71, . . ., 7 obtained
after partitioning satisfies the given specification. However,
this might not be true if the LTSs are executed asyn-
chronously. Although the synchronization skeletons obtained
in the previous step ensure that robots will synchronize to
satisfy the liveness requirements, they may not be enough
to guarantee safety, e.g., assume the LTSs in Fig. 2b are at
states uy and vy, respectively. If 7; moves to v3 and then vy,
while 77 is still in u;, then the joint state (u2, v4) is reached
that violates the safety requirement (J(—(wp A 7wE)). Next,
we show how we can reinforce the synchronization skeletons
(if necessary) such that the safety is also guaranteed under
asynchronous execution.

Remark 3 1f the input specification does not have any safety
requirement, i.e., wsafe — mrye, then there is no need for
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reinforcing the synchronization skeletons. and the decentral-
ized LTSs with the corresponding synchronization skeletons
for liveness are returned as a solution.

4.3 Reinforcing the synchronization skeletons

Asynchronous composition of a set of transition systems cap-
tures all possible interleavings of their executions. If we have
k transition systems each with n states, the composition can
have nf states, i.e., exponentially larger than the transition
systems. However, for safety properties, the exact interleav-
ings of the states does not matter, rather it is enough to know
whether an unsafe state is reachable due to asynchronous exe-
cution of the LTSs or not, and in the former case to add extra
synchronizations to make that unsafe state unreachable. We
avoid explicit construction of the asynchronous composition
of LTSs by taking advantage of this observation. To this end,
we first introduce the notion of the execution frame for an
LTS.

4.3.1 Execution frames

Intuitively, an execution frame (or frame for short) from an
initial state is a sequence of states that an LTS can visit
during its execution until either reaching a synchronization
state or a state that was already visited. Formally, a frame
f = (giy» Gy - - -, qi;) from an initial state g;, is a max-
imal sequence of states such that (gi,, gi,,,) € & for all
0 <p < j,andeither30 < p < j.qi, = qi; and Vp,r.
0<p<r<ij:iqg,#qi (e, gi is the first repeated
state), or 7ty € E(qij) andVO < p < j. 7y ¢ L(qip) (ie.,qi;
is the first state after ¢;,, that synchronization is required). For
example, LTSs 7; and 73 in Fig. 2b have only one execution
frame (ug, uy, ..., ua, up) and (vg, vy, ..., v4, Vo), respec-
tively.

At any time during execution, each LTS is in one of
its frames. For a frame f = (g;,qi11---q;), let [f] =
{qi, gi+1, ..., q;) bethe set of states appearing in f. A frame
profile FP = (fi,..., fx) for a set of LTSs 71, ..., 7; is
a tuple where each f; is a possible frame for 7;. Note that
due to synchronizations between LTSs, not all frame profiles
are reachable in general. Only reachable frame profiles are
considered while reinforcing the synchronization skeletons.

4.3.2 Checking the safety of the frame profiles

Consider the LTSs in Fig. 2b executing their only frames. The
processes may proceed with different speeds. Indeed there
are 252 different interleavings that take the system from joint
state (ug, vo) back to (u, vo). Instead of constructing these
different interleavings, we encode the set of reachable states
symbolically as ¢ = (uoVuiV---Vug) A(vpVorV:---Vug).
Intuitively, ¢ specifies that any combination of states of LTSs

are reachable, i.e., 7; is in one of the states {ug, . .., usq} and
T, is in one of the states {vo, . . ., v4}. Formally, given a frame
profile FP = (f1,..., fx) for LTSs 71, ..., 7, we obtain
apredicate g rp = /\f‘: 1V, e[ ;] 9) that encodes the set of
all reachable states due to the different interleavings.

Next, we check if there are any unsafe states for a frame
profile F'P. To this end, the conjunction of the frame profile
formula ¢ rp and negation of the safety properties of the
specification is computed. If the conjunction is unsatisfiable
[this can be checked using SAT solvers (Claessen et al. 2008)
or BDDs (Bryant 1992)], then FP is safe, i.e., no unsafe state
is reachable in FP. Otherwise, F P is unsafe, e.g., the joint
state (u2, v4) is an unsafe state for the LTSs in Fig. 2b, and
additional synchronization is necessary to prevent reaching
unsafe states.

4.3.3 Adding synchronizations for safety

Let n be the number of states for each LTS and / be the index
of the state where the loop begins, e.g., for the LTSs in Fig. 2b

we have n = Sand / = 0. Assume g = (qill,qizz,...,qikk)
is an unsafe joint state for LTSs 71, 73, ..., 7;, where 0 <
ij <nforl < j < k. Let ming = min(iy,...,i) and

max, = max(iy, ..., i) be the minimum and maximum
of the indices in the unsafe joint state g. Note that since
the synchronous execution of the decentralized LTSs sat-
isfies the specification and is safe w.r.t. intermediate states
(due to the construction in Algorithm 1), any two joint states
qi = (qil, ceey q{‘) and g; = (qjl., ...,qf) such that either
j=i+1l,orj =n—1andi =1 (ie., the joint states
corresponding to consecutive states in the centralized LTS)
are safe. In addition, all possible intermediate states between
g; and g are also safe. Thus, for any unsafe joint state g, we
have (max, > min, + 2).

Our goal is to make the unsafe states unreachable by
adding synchronizations. Note that to reach the unsafe joint
state ¢, each LTS 7; must reach its corresponding state

g, Intuitively, an LTS 7} may reach the state ¢; in two

ways; either by starting from a state qg] with £ < i; and

proceeding such that the indices increase along the path to

ql.],, or by starting from a state qg with £ > i; and reach-
J

ing g;; after “looping”, i.e., after visiting the state qu. The
latter is only possible if i; > [. To ensure that the unsafe
state ¢ is unreachable, we make sure that the LTSs synchro-
nize in at least one state with index min;, < i < max,.
Furthermore, if min, > /, i.e., the minimum index cor-
responding to the unsafe state g is greater than or equal
to the looping index, we add at least one synchronization
after the index max, and before the index min, so that the
unsafe state cannot be reached due to the looping. Formally,
if min, > [, there must be a synchronization at an index
i € [/,ming) U (max,,n — 1].
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Fig.6 Three groups of robots navigating between labs, offices and an equipment room through a corridor

‘We enumerate the unsafe states for every reachable frame
profile, and obtain a set of intervals as potential candidates
for synchronization to ensure safety. We then compute a min-
imal set of indices that covers all intervals,! thus making all
unsafe states unreachable. These additional synchronizations
combined with synchronization skeletons computed for live-
ness, form the final synchronization skeletons that ensure
satisfaction of the liveness and safety properties.

Example 9 To ensure that the swarm never occupies regions
E and B at the same time, i.e., the unsafe joint state (u2, v4)
cannot be reached, 7; and 7, synchronize at the states u3 and
v3 in Fig. 2b (note that 3 € (2, 4)). To ensure that (u2, v4)
cannot be reached due to looping, there must be at least a
synchronization at an index chosen from [0, 2) U (4, 4], i.e.,
at states ug and v, or 1 and vy. Since 7] and 7 already syn-
chronize in vy and u( for liveness, the same synchronization
can also be used to prevent reaching an unsafe state.

4.4 Synthesis of decentralized controllers

Algorithm 2 summarizes the steps to synthesize decentral-
ized LTSs from high-level task specifications. Note that
computed LTSs may include redundant “stuttering” states,
i.e., states where the robots stay in the same region without
synchronizing with any other group. As a final step, these
states are removed from the solutions to obtain shorter LTSs,
e.g., 71 in Fig. 2b is shortened by removing the state ug4.

Algorithm 2 synthesizes provably-correct symbolic plans
that realize the given specification. Continuous controllers
that simulate the symbolic plans can then be obtained using
existing methods in the literature (see e.g., Tabuada 2009).
If such continuous controllers exist that faithfully implement
the symbolic plans, then the correct system behavior is guar-
anteed at the continuous level, as we have recently shown
(Chen et al. 2018).

! This is a special case of the minimal hitting set problem (Kleinberg
and Tardos 20006).
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Algorithm 2: Synthesis of Decentralized Controllers

Data: Region graph Ggr, Macroscopic @ and Microscopic @

specifications
Result: A set of LTSs 77, - - - , 7 along with their
synchronization skeletons Sy, - - - , Sk

1 Synthesize a centralized LTS 7 that realizes ®M and ®H, and is
safe w.r.t. intermediate states;

2 Partition 7 into decentralized LTSs 71, - - - , Z;

3 Extract initial synchronization skeletons Sy, - - - , Sk;

4 Reinforce synchronization skeletons for safety;

5 Remove stuttering states;

5 Example

Consider a workspace partitioned into two labs (L1, L2),
three offices (01, 02, 03), and an equipment room (E R)
that are connected to each other through a corridor C as
showninFig.6a.LetR = {01, 02, O3, ER,C, L1, L2}be
the set of all regions. All the robots, initially positioned at the
right side of the corridor, must repeatedly visit the equipment
room (possibly at different times). This is specified as the
microscopic specification @# = Va. D()(ng r)- Moreover,
the swarm must repeatedly occupy the three offices at the
same time, described as

[0 =00 ol NTTO2 NTTO3 N /\ —TTy

reR\{01,02,03}
Similarly, two labs must be repeatedly occupied at the same

time, encoded as

Oy =00 | mp1 Ao A /\ —Ty

reR\{L1,L2}

Finally, if a part of the swarm is present in the labs, there must
be no robots in the offices and vice versa. This is captured by

@3 =U(—=((rL1 V7r2) A (o1 V o2 V 103)))

The macroscopic specification is given as @M = /\,-3=1 D;.
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We implemented our algorithms in Java. The simulations
were done in the Robotarium simulator in Matlab (Pickem
et al. 2016). A video of a simulation accompanies this paper
The demonstrations were run on a desktop machine with
an Intel Core i7 CPU@3.40GHz and 16GB RAM. The
centralized LTS was computed in 11 ms. Reinforcing the
synchronization skeletons took 47 ms.

Three LTSs along with their corresponding synchroniza-
tion skeletons were synthesized and assigned to three groups
of robots each with four members. The synthesized central-
ized LTS and each of the three resulting decentralized LTSs
have 6 states (not considering the intermediate states). Figure
6a—d show how three groups navigate through the workspace.
The dashed lines show the general directions each group
moves in and the stars represent regions where synchroniza-
tions happen between groups. The synthesized LTSs guide
the robots from their initial position toward the equipment
room. Then, each LTS guide the robots to one of the offices.
Once all three groups entered their corresponding offices,
they synchronize and then two groups move to L2 and one
group moves to L1. Groups gather in the corridor after vis-
iting the labs and synchronize, and then they repeat visiting
the equipment room, offices and labs as before.

6 Experimental results

In this section we study how varying the complexity of the
input specification can affect the computation time for syn-
thesis of centralized LTSs and synchronization skeletons. We
consider a N x M grid-world partitioned into cells (regions)
R={r;l1<i<Nandl < j < M}. We assume that
a swarm of robots is initially positioned in the top-left cell
1,1 whichis a charging station. The robots need to repeatedly
visit the charging station, but they can do so at different times.
This requirement is modeled as a liveness formula in the
specified microscopic specification, i.e., ®* = Va. Or? |.
In the sequel, we vary the size of the grid-world, the number
of liveness and safety requirements, and number of regions
that must be occupied at the same time by the swarm, and
report and discuss our experimental results.

Increasing the number of regions To study the effects of
the number of regions on the synthesis time, we fixed the
input specification @ as follows: (i) microscopic specifica-
tion @#: all the robots in the swarm must repeatedly visit
the charging station, (ii) macroscopic specification ®¥: the
swarm must repeatedly occupy the top-right and bottom-
left cells at the same time, i.e., @M = O0(rim Arn1 A
/\reR\{rl, o —r). Figure 7 shows the computation times
of the centralized LTSs for different sizes of the grid-world.
As can be seen there, the synthesis time grows exponentially
with the number of regions.
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Fig.7 Computation time for synthesis of centralized LTSs for different
grid-worlds sizes
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Fig.8 Computation time for synthesis of centralized LTSs for a 4 x 4
grid-world w.r.t. different number of liveness formulas
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Fig.9 Computation time for synthesis of centralized LTSs for a 4 x 4
grid-world where the swarm must occupy different number of regions
at the same time

Increasing the number of liveness formulas Next, we consider
a4 x 4 grid-world. The microscopic specification is defined
as before. For the macroscopic specification, we generate
number of liveness formulas @1, @;, ..., Pg where &, =
O0(x; /\reR\{ri.,-} —r) for 1 < k < B, i.e., each liveness
formula @ requires the whole swarm to occupy a region
r; j with r; ; being selected randomly. Figure 8 shows the
synthesis time w.r.t. the number of liveness formulas 8. For
each value of 8, we ran the experiment five times and reported
the average synthesis time. As it can be seen in Fig. 8, the
synthesis time grows linearly with the number of liveness
formulas.
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Table 1 Evaluation of effects of safety formulas on computation time of centralized LTS and synchronization skeleton

Size # Safety  # Occ. regions |7 Synthesis time (s) Iterations Safety synch. time (ms)
Min Max Min Avg. Max Min  Avg. Max Min Avg. Max
4x4 0 3 12 12 0.71 072 075 1 1 1 7 9.2 15
4x4 1 3 12 12 0.7 1.9 2.9 1 1.8 3 8 40.4 153
4x4 2 3 12 12 0.6 5.6 22.7 1 4.6 19 8 56 119
4x4 3 3 12 12 2.8 4 6.5 1 2.8 5 23 51 76
4x4 4 3 12 12 1.3 11.3 25.9 1 4.75 8 49 70.5 93
4x4 5 3 12 12 1.7 17.3 78 1 6.25 22 54 14525 326
4x4 0 2 6 0.58 0.61 0.64 1 1 1 2 2.25 3
4x4 1 2 6 0.6 1.08 14 1 1.25 2 2 3.25 7
4x4 2 2 6 8 0.8 1.76 3.6 1 1.2 2 2 3.8 7
4x4 3 2 6 10 0.6 392 7.8 1 2.8 9 2 3.6 5
4x4 4 2 6 10 1.7 2.28 2.9 1 1.2 2 2 3 5
4x4 5 2 6 10 1.2 6.74 24 1 32 12 2 2.8 4
3x4 5 2 6 10 0.17 0.33 0.9 1 5.2 21 2 3 4
3x4 5 3 10 10 0.14  1.25 2.9 1 13 28 21 115.6 271

The columns show the size of the grid-world, number of safety formulas, number of regions that must be occupied at the same time in the
liveness formula of the macroscopic specification, the minimum and maximum lengths of computed centralized LTSs, the minimum, average,
and maximum synthesis time, number of iterations required to compute the centralized LTS, and the time needed to reinforce the synchronization

skeleton, respectively

Increasing the number of simultaneously occupied regions
Here, we consider a 4 x 4 grid-world, and we assume
that the microscopic specification is defined as before. The
macroscopic specification is defined as a single liveness for-
mula that requires the swarm to occupy y randomly-selected
regions at the same time, i.e., oM = D(}((/\rem r) A
(/\ueR\RV —u)) where R¥ C R is a set of y randomly-
selected regions. Figure 9 shows how the synthesis time
changes as we increase the number of the regions that the
swarm must occupy at the same time. As it can be seen in
Fig. 9, the synthesis time slightly grows while increasing y .
Also, partitioning of the centralized LTS lead to y number
of decentralized LTSs since the swarm needs to occupy y
regions at the same time. The time required to partition the
centralized LTS was insignificant (less than one millisecond)
in all experiments.

Safety Next, we study how changing the number of safety
requirements will affect the synthesis time, number of iter-
ations required to synthesize a centralized LTS, and the
time needed to reinforce the synchronization skeletons. To
this end, in each experiment, we fix the size of the grid-
world. The microscopic specification requires all the robots
to repeatedly visit the charging station. The macroscopic
specification includes one liveness formula that requires the
whole swarm to repeatedly visit either two regions (top-right
and bottom-left cells), or three regions (top-right, bottom-
left, and bottom-right cells) at the same time (see # Occ.
Regions column in Table 1). Furthermore, the macroscopic

@ Springer

specification includes 6 number of safety formulas where
each safety formula is of the form @y = U(=(x;, j; ATy, j,))
with r;; j and r;, j, being two different randomly-selected
regions. Intuitively, each safety formula requires the swarm
not to occupy two specified regions at the same time.

For each grid-world size and input specification, we
repeated the experiment five times, and report the average,
min and max computation times as shown in Table 1. The
columns show the size of the grid-world, number of safety
formulas, number of regions that must be occupied at the
same time in the liveness formula of the macroscopic spec-
ification, the minimum and maximum lengths of computed
centralized LTSs, the minimum, average, and maximum syn-
thesis time, number of iterations required to compute the
centralized LTS, and the time needed to reinforce the syn-
chronization skeleton, respectively. The time required to
partition the centralized LTS was insignificant (less than one
millisecond) in all experiments.

As it can be observed in Table 1, the synthesis time does
not directly depend on the number of safety formulas. Since
the synthesis is done symbolically, the complexity of the
underlying symbolic data structures (BDDs) that represent
the safety requirements can affect the synthesis time. Further-
more, the synthesis time also depends on how “restrictive”
the safety requirements are, e.g., if the initial synthesized
LTS is safe w.r.t. safety requirements, the synthesis is done
in one iteration, otherwise, the unsafe transitions are ruled
out in possibly several iterations, leading to increased com-
putation time. For example, in our experiments with a 4 x 4
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grid-world with 5 safety formulas where three regions must
be repeatedly visited at the same time, in one of the experi-
ments, synthesis of centralized LTS was done in 1.7 s in one
iteration, while in another experiment, synthesis was done in
78 s and in 22 iterations (see Table 1).

The time needed to reinforce the synchronization skele-
tons for safety depends on the safety requirements, the length
and number of the decentralized LTSs. In the experiments
shown in Table 1, the number of decentralized LTSs are the
same as the number of regions that must be occupied at the
same time. The average time required to reinforce the syn-
chronization skeletons increase as the length and number of
decentralized LTSs increase, as it can be seen in Table 1.
Finally, we observe that the bottleneck of the framework
seems to be the synthesis of the centralized LTS. To improve
the scalability of the proposed framework, the first step would
be to boost the scalability of centralized synthesis. To this
end, compositional synthesis algorithms (Alur et al. 2018;
Filiot et al. 2011) seem like a promising future direction.

7 Conclusions and future work

We presented a framework for high-level specification of
swarm behaviors and automated synthesis of decentralized
controllers and synchronization skeletons. In this paper, we
assumed that the environment is static and known, i.e., it
is not changing and the values of all the propositions are
controlled by the system. In general, GR(1) allows one to
specify and synthesize controllers that react to a chang-
ing environment. Roughly speaking, in the presence of
a dynamically-changing and possibly adversarial environ-
ment, symbolic plans are no longer a sequence of steps, but
strategies that capture how the system must react to possible
changes in its environment. Some of the most challenging
aspects of reactive controller synthesis for swarms is to con-
sider that the environment can change asynchronously and
even during the intermediate states. Therefore, the swarm
must be prepared to react in all possible scenarios. Future
work includes extending the work in this paper to tasks per-
formed in dynamically changing environments.

Acknowledgements The authors thank Riidiger Ehlers for insightful
discussions relating to the need for quantitative analysis of the synthe-
sized symbolic plan.
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