
Autonomous Robots (2020) 44:57–73
https://doi.org/10.1007/s10514-019-09856-1

Distributed assignment with limited communication for multi-robot
multi-target tracking

Yoonchang Sung1 · Ashish Kumar Budhiraja1 · Ryan K. Williams1 · Pratap Tokekar1

Received: 29 August 2018 / Accepted: 25 April 2019 / Published online: 17 May 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
We study the problem of tracking multiple moving targets using a team of mobile robots. Each robot has a set of motion
primitives to choose from in order to collectively maximize the number of targets tracked or the total quality of tracking.
Our focus is on scenarios where communication is limited and the robots have limited time to share information with their
neighbors. As a result, we seek distributed algorithms that can find solutions in a bounded amount of time. We present two
algorithms: (1) a greedy algorithm that is guaranteed to find a 2-approximation to the optimal (centralized) solution but
requiring |R| communication rounds in the worst case, where |R| denotes the number of robots, and (2) a local algorithm that
finds aO ((1 + ε)(1 + 1/h))—approximation algorithm inO(h log 1/ε) communication rounds. Here, h and ε are parameters
that allow the user to trade-off the solution quality with communication time. In addition to theoretical results, we present
empirical evaluation including comparisons with centralized optimal solutions.

Keywords Multi-robot system · Task assignment · Distributed algorithm

1 Introduction

We study the problem of assigning robots with limited Field-
Of-View (FOV) sensors to track multiple moving targets.
Multi-robot multi-target tracking is a well-studied topic in
robotics (Parker and Emmons 1997; Parker 2002; Touzet
2000; Kolling and Carpin 2007; Hönig and Ayanian 2016).

This is one of the several papers published in Autonomous Robots com-
prising Special Issue onRobotCommunicationChallenges: Real-World
Problems, Systems, and Methods.

This material is based upon work supported by the National Science
Foundation under Grant No. 1637915.

B Yoonchang Sung
yooncs8@vt.edu

Ashish Kumar Budhiraja
ashishkb@vt.edu

Ryan K. Williams
rywilli1@vt.edu

Pratap Tokekar
tokekar@vt.edu

1 Department of Electrical and Computer Engineering, Virginia
Tech, 1185 Perry Street, Blacksburg, VA 24061, USA

We focus on scenarioswhere the number of robots is large and
solving the problem locally rather than centrally is desirable.
The robots may have limited communication range and lim-
ited bandwidth. As such, we seek assignment algorithms that
rely on local information and only require a limited amount
of communication with neighboring robots.

Constraints on communication impose challenges for
robot coordination as global information may not always be
available to all the robots within the network. As a result, it
may not be always possible to design algorithms that operate
on local information while still ensuring global optimality.
Recently, Gharesifard and Smith (2017) studied how lim-
ited information due to the communication graph topology
affects the global performance. Their analysis applies for the
case when the robots are allowed only one round of com-
munication with their neighbors. If the robots are allowed
multiple rounds of communication, they can propagate the
information across the network. Given sufficient rounds of
communication, all robots will have access to global infor-
mation, and therefore can essentially solve the centralized
version of the problem. In this paper, we investigate the
relationship between the number of communication rounds
allowed for the robots and the performance guarantees. We
focus on the problem of distributed multi-robot, multi-target
assignment for our investigation (Fig. 1).

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-019-09856-1&domain=pdf
http://orcid.org/0000-0002-6811-1490

58 Autonomous Robots (2020) 44:57–73

Fig. 1 Description of multi-robot task allocation for multi-target track-
ing. In this example, three robots (r1, r2, r3) are tracking two moving
targets (t1, t2). Each robot has five motion primitives (pim) to choose
from at each time step. c represents the cost of observing a target from
a motion primitive

We assume that each robot has a number of motion primi-
tives to choose from. A motion primitive is a local trajectory
obtained by applying a sequence of actions (Howard et al.
2014). A motion primitive can track a target if the target is
in the FOV of the robot. The set of targets tracked by dif-
ferent motion primitives may be different. The assignment
of targets to robots is therefore coupled with the selection of
motion primitives for each robot. Our goal is to assignmotion
primitives to the robots so as to track the most number of tar-
gets or maximize the quality of tracking. We term this as
the distributed Simultaneous Action and Target Assignment
(SATA) problem.

This problem can be viewed as the dual of the set cover
problem, known as themaximum (weighted) cover (Suomela
2013). Every motion primitive covers some subset of the tar-
gets. Therefore, we would like to pick motion primitives that
maximize the number (or weight) of covered targets. How-
ever, we have the additional constraint that only one motion
primitive per robot can be chosen at each step. This implies
that the relationship between a robot and the correspond-
ing motion primitives turns out to be a packing problem
(Suomela 2013) where only one motion primitive can be
“packed” per robot. The combination of the two aforemen-
tioned problems is called a Mixed Packing and Covering
Problem (MPCP) (Young 2001).

We study two versions of the problem. The first version
can be formulated as a (sub)modular maximization problem
subject to a partition matroid constraint (Nemhauser et al.
1978). A sequential greedy algorithm, where the robots take
turns to greedily choose motion primitives, is known to yield
a 2–approximation for this problem (Tokekar et al. 2014).We
evaluate the empirical performance of this algorithm by com-
paring it with a centralized (globally optimal) solution. The
drawback of the sequential greedy algorithm is that it requires
at least as many communication rounds as the number of

Fig. 2 Communication graph. The blue shaded region indicates a
radius–2 neighborhood of the red solid node. The red solid node may
be unaware of the entire communication graph topology. A local algo-
rithm that works for the red solid node only requires local information
of nodes in the blue shaded region. The same local algorithm runs on all
the nodes and ensures bounded approximation guarantees on the global
optimality (Color figure online)

robots. This may be too slow in practice. Consequently, we
study a second version of the problem for which we present
a local algorithm whose performance degrades gracefully
(and provably) as a function of the number of communica-
tion rounds.

A local algorithm (Suomela 2013) is a constant-time dis-
tributed algorithm that is independent of the size of a network.
This enables a robot only to depend on local inputs in a fixed-
radius neighborhood of robots (Fig. 2). The robot does not
need to know information beyond its local neighborhood,
thereby achieving better scalability.

Floréen et al. (2011) proposed a local algorithm to solve
MPCPusingmax-min/min-maxLinearProgramming (LP) in
a distributedmanner.We showhow to leverage this algorithm
to solve SATA.This algorithmhas a bounded communication
complexity unlike typical distributed algorithms. Specifi-
cally, the algorithm yields a O ((1 + ε)(1 + 1/h)) approx-
imation to the globally optimal solution in O(h log 1/ε)
synchronous communication rounds where h and ε are input
parameters.1 We verify the theoretical results through empir-
ical evaluation.

The contributions of this paper are as follows:

1. We present two versions of the SATA problem.
2. We show how to use the greedy algorithm and adapt the

local algorithm for solving the two versions of the SATA
problem.

3. We perform empirical comparisons of the proposed algo-
rithm with baseline centralized solutions.

1 An algorithm is called aO(x) approximation to a maximization prob-
lem if it guarantees a solution whose value is at least c

x of the optimal
value, where c is some constant.

123

Autonomous Robots (2020) 44:57–73 59

4. We demonstrate the applicability of the proposed algo-
rithm through Gazebo simulations.

A preliminary version of this paperwas presented at ICRA
2018 (Sung et al. 2018). This expanded paper extends the
preliminary version with a more thorough literature survey,
additional theoretical analysis, and significantly expanded
empirical analysis including a description of how to imple-
ment the greedy algorithm in practice.

The rest of the paper is organized as follows. We begin by
introducing the related work in Sect. 2.We describe the prob-
lem setup in Sect. 3. Our proposed distributed algorithms are
presented in Sect. 4. We present results from representative
simulations in Sect. 5 before concluding with a discussion of
future work in Sect. 6.

2 Related work

A number of algorithms have been designed to improve
multi-robot coordination under limited bandwidth (Yan et al.
2013; Li et al. 2017;Otte andCorrell 2013, 2018;Kassir et al.
2016) and under communication range constraints (Williams
and Sukhatme 2013; Vander Hook et al. 2015; Kantaros et al.
2015). This includes algorithms that enforce connectivity
constraints (Kantaros and Zavlanos 2017; Williams et al.
2015), explicitly trigger when to communicate (Dimarog-
onas et al. 2012; Zhou and Tokekar 2018; Ge and Han 2017)
and operate when connectivity is intermittent (Best et al.
2018; Guo and Zavlanos 2018). In this section, we focus
on work that is most closely related to the SATA problem
and local algorithms.

2.1 Multi-robot target tracking

There have been many studies on cooperative target tracking
in both control and robotics communities.We highlight some
of the recent related work in this section. For a more compre-
hensive overviewofmulti-robotmulti-target tracking, see the
recent surveys (Khan et al. 2016; Robin and Lacroix 2016).

Charrow et al. (2014) proposed approximate representa-
tions of the belief to design a control policy for multiple
robots to track onemobile target. The proposed scheme, how-
ever, requires a centralized approach. Yu et al. (2015) worked
on an auction-based decentralized algorithm for cooperative
path planning to track a moving target. Ahmad et al. (2017)
presented a unified method of localizing robots and tracking
a target that is scalable with respect to the number of robots.
Zhou and Roumeliotis (2011) developed an algorithm that
finds an optimal trajectory of multiple robots for the active
target tracking problem. Capitan et al. (2013) proposed a
decentralized cooperative multi-robot algorithm using auc-

tioned partially observable Markov decision processes. The
performance of decentralized data fusion under limited com-
municationwas successfully shownbut theoretical bounds on
communication rounds were not covered. Moreover, theoret-
ical properties presented in the above references considered
single target tracking, which may not necessarily hold in the
case of tracking multiple targets in a distributed fashion.

Pimenta et al. (2009) adopted Voronoi partitioning to
develop a distributed multi-target tracking algorithm. How-
ever, their objective was to cover an environment coupled
with multi-target tracking. Banfi et al. (2018) addressed the
fairness issue for cooperative multi-robot multi-target track-
ing, which is achieving balanced coverage among different
targets. One of the problems that we define in Sect. 3 (i.e.,
Problem 1) has a similar motivation. However, unlike the
algorithm in Banfi et al. (2018), we are able to give a global
performance guarantee. Xu et al. (2013) presented a decen-
tralized algorithm that jointly solves the problemof assigning
robots to targets and positioning robots using mixed-integer
nonlinear programming. While they proved the complexity
in terms of computational time and communication (i.e., the
amount of data needed to be communicated), the solution
qualitywas only evaluated empirically. Instead,we bound the
solution quality as a function of the communication rounds.
Furthermore, our formulation takes as input a set of discrete
actions (i.e., motion primitives) that the robot must choose
from, unlike the previous work.

We study a problem similar to the one termed as Coop-
erative Multi-robot Observation of Multiple Moving Targets
(CMOMMT) proposed by Parker and Emmons (1997). The
objective in CMOMMT is to maximize the collective time
of observing targets. Parker (2002) developed a distributed
algorithm for CMOMMT that computes a local force vec-
tor to find a direction vector for each robot. We empirically
compare this algorithm with our proposed one and report
the results in Sect. 5. Kolling and Carpin (2007) studied the
behavioral CMOMMT that added a new mode (i.e., help)
to the conventional track and search modes of CMOMMT.
The help mode asks other robots to track a target if the
target escapes from the FOV of some robot. Although our
work does not allowmode changes, previousworks regarding
CMOMMTdid not provide theoretical optimality guarantees
and did not explicitly consider scenarios where the commu-
nication bandwidth is limited. Refer to Section IV(C) of a
more detailed summary of CMOMMT.

In our prior work (Tokekar et al. 2014), we addressed the
problem of selecting trajectories for robots that can track the
maximum number of targets using a team of robots. How-
ever, no bound on the number of communication rounds was
presented, possibly resulting in all-to-all communication in
the worst case. Instead, in this work, we introduce a new ver-
sion of the problem and also explicitly bound the amount of
communication required for target assignment.

123

60 Autonomous Robots (2020) 44:57–73

2.2 Multi-robot task assignment

Multi-robot task assignment can be formulated as a discrete
combinatorial optimization problem. The work by Gerkey
and Matarić (2004) and the more recent work by Korsah
et al. (2013) contain detailed survey of this problem. There
exists distributed algorithms with provable guarantees for
different versions of this problem (Choi et al. 2009; Luo
et al. 2015; Liu and Shell 2011). There also exists vari-
ous multi-robot deployment strategies for task assignment
under communication constraints. These constraints include
limited available information (Kanakia et al. 2016), limited
communication flows (Le Ny et al. 2012), and connectivity
requirement (Kantaros and Zavlanos 2016). See the survey
papers (Zavlanos et al. 2011; Ge et al. 2017) on these results.
Le Ny et al. (2012) studied a formulation with a similar com-
munication constraint as ours. However, their formulation
assumed that the robots know which targets to track. In this
paper, we tackle the challenge of simultaneously assigning
robots to targets by choosing motion primitives with limited
communication bandwidth which might degrade task perfor-
mance when there are unreliable communication links and
communication delays.

Turpin et al. (2014) proposed a distributed algorithm that
assigns robots to goal locations while generating collision-
free trajectories. Morgan et al. (2016) solved the assign-
ment problem by using distributed auctions and generat-
ing collision-free trajectories by using sequential convex
programming. Bandyopadhyay et al. (2017) adopted the
Eulerian framework for both swarm formation control and
assignment. However, these works may not be suitable for
target tracking applications as the targets were assumed to be
static. For more survey results about SATA, see the work by
Chung et al. (2018). Recently, Otte et al. (2017) investigated
the effect of communication quality on auction-based multi-
robot task assignment. None of the above works, however,
analyzed the effect of communication rounds on the solution
quality, as is the focus of our work.

2.3 Local algorithms

A local algorithm (Angluin 1980; Linial 1992; Naor and
Stockmeyer 1995) is a distributed algorithm that is guaran-
teed to achieve desired objective in a finite (typically, fixed)
amount of time. The typical approach is to find approximate
solutions with provable (and global) performance guarantees
while ensuring a bound on the communication complex-
ity that is independent of the number of vertices in the
graph. Local algorithms have been proposed for a number
of graph-theoretic problems. These include, graph match-
ing (Hanckowiak et al. 2001), vertex cover (Åstrand et al.
2009; Åstrand and Suomela 2010), dominating set (Lenzen
and Wattenhofer 2010), and set cover (Kuhn et al. 2006).

Suomela (2013) gives a broad survey of local algorithms.
We build on this work and adapt a local algorithm for solv-
ing SATA.

3 Problem description

Consider a scenario where multiple robots are tracking mul-
tiple mobile targets. Robots can observe targets within their
FOV and predict the future states of targets. Based on pre-
dicted target states, robots decide where to move (i.e., by
selecting amotion primitive) in order to keep track of targets.
Bydiscretizing time, the problembecomes oneof combinato-
rial optimizations—choose the next position of robots based
on the predicted position of the targets. Thus, we solve the
SATA problem at each time step.

We define sets, R and T , to denote the collection of robot
and target labels respectively: R = {1, . . . , i, . . . , |R|} for
robot labels and T = {1, . . . , j, . . . , |T |} for target labels.
Let r and t denote the set of robot states and predicted tar-
get states, respectively. In this paper, states are given by the
positions of the robots and the targets in 2- or 3-dimensional
space. However, the algorithms presented in this paper can
be used for more complex states (e.g., 6 degree-of-freedom
pose). Here, r(k) = {r1(k), . . . , ri (k), . . . , r|R|(k)} denotes
the state of the robots at time k. t(k) = {t1(k), . . . , t j (k),
. . . , t|T |(k)} denotes the state of the targets at the next time
step (i.e., at time k + 1) predicted at time k. We assume
that the targets can be uniquely detected and multiple robots
know if they are observing the same target. Therefore, no data
association is required. Each robot independently obtains the
predicted states, t(k), by fusing its ownnoisy sensormeasure-
ments using, for example, a Kalman filter.

We define the labels of available motion primitives for the
i-th robot as Pi = {1, . . . ,m, . . . , |Pi |}. These labels corre-
spond to a set of motion primitive states of the i-th robot at
time k given by: pi (k) = {pi1(k), . . . ,pim(k), . . . ,pi|Pi |(k)}.
Note that the term motion primitives in this paper repre-
sents the future state of a robot at the next time step (i.e.,
at time k + 1) computed at time k. We compute a set of
the motion primitives a priori by discretizing the continuous
control input space. This can be done by various methods
such as uniform random sampling or biased sampling based
on predicted target states. However, once a set of the motion
primitives is obtained, the rest of the proposed algorithms (in
Sect. 4) remain the same.

We define RS(pim(k)) to be the set of targets that can be
observed by the m-th motion primitive of i-th robot at time
k. Specifically, the j-th target is said to be observable by the
m-th motion primitive of a robot i , iff t j (k) ∈ RS(pim(k)). It
should be noted that only targets that were observed by robot
i at time k − 1 are candidates to be considered for time k
because unobserved targets at time k−1 cannot be predicted

123

Autonomous Robots (2020) 44:57–73 61

by the robot i . Note also that since RS is a set function, we
can model complex FOV and sensing range constraints that
are not necessarily restricted to 2D.

We make the following assumptions.2

Assumption 1 (Communication Range) If two robots have a
motion primitive that can observe the same target, then these
robots can communicatewith each other. This implies if there
exists a target j such that t j (k) ∈ RS(pim(k)) and t j (k) ∈
RS(plm(k)), then i-th and l-th robots can communicate with
each other.

Assumption 2 (Synchronous Communication) All the robots
have synchronous clocks leading to synchronous rounds of
communication.

From Assumption 1, neighboring robots can share their
local information with each other when they observe the
same targets. For example, robots can use techniques such as
covariance intersection (Niehsen 2002) to merge their indi-
vidual predictions of the target’s state into a joint prediction
T . This can be achieved in one round of communication
when each robot simply broadcasts its own estimate of all
the targets within its FOV. Note that a robot does not need to
know the prediction for all the targets but only the ones that
are within the FOV of one of its motion primitives. In this
sense, a communication graph GC = (R, EC) can be created
from a sensing graph GS = (P ∪ T , ES) at each time, where
EC and ES denote edges among robots and edges between
targets and motion primitives, respectively.

As shown in Fig. 1, each robot is able to compute feasi-
ble motion primitives of its own and detect multiple unique
targets within the FOV. Then, the objective of the proposed
problem is to choose one of the motion primitives for each
robot, yielding either the best quality of tracking or the max-
imum number of targets tracked by the robots, depending
on the application. One possible quality of tracking can be
measured by the summation of all distances between selected
primitives and the observed targets.

Let xim be the binary variable which represents the i-th
robot selecting the m-th motion primitive. That is, xim = 1 if
amotion primitivem is selected by a robot i and 0 otherwise.3

Since each robot can choose only one motion primitive, we
have:

∑

m∈Pi

xim ≤ 1 ∀i ∈ R. (1)

Our objective is to find xim . We propose two following
problems.

2 After these assumptions, we omit the time index (i.e., k) for notational
convenience.
3 If all xim = 0 for a robot i , then it can choose any motion primitives
since the objective value will remain the same.

Problem 1 (BOTTLENECK) The objective is to select primi-
tives such that we maximize the minimum tracking quality:

argmax
xim

min
j∈T

⎛

⎝
∑

i∈R

∑

m∈Pi

c ji,mx
i
m

⎞

⎠ , (2)

subject to the constraints in Eq. (1). Here, c ji,m denotes
weights on sensing edges ES between m-th motion primi-
tive of i-th robot and j-th target.

Here, c ji,m can represent the tracking quality given by, for
example, the inverse of the distance between m-th motion
primitive of i-th robot and j-th target. Alternatively, ci,m can
be binary (1 when the m-th motion primitive of robot i sees
target j and 0 otherwise) making the objective function equal
to maximizing the minimum number of targets tracked.

We term this as the BOTTLENECK version of SATA. In the
BOTTLENECK version, multiple robots may be assigned to the
same target. We also define a WINNERTAKESALL variant of
SATA where only one robot is assigned to a target.

We define additional binary decision variable, y j
i . y

j
i rep-

resents the i-th robot assigned to track the j-th target. We
have, y j

i = 1 if i-th robot is assigned to j-th target and 0
otherwise.

Sincewe restrict only one robot to be assigned to the target
(unlike BOTTLENECK), we have:

∑

i∈R

y j
i ≤ 1 ∀ j ∈ T . (3)

Problem 2 (WINNERTAKESALL) The objective is to maximize
the total quality of tracking given by,

argmax
xim ,y j

i

∑

j∈T

⎛

⎝
∑

i∈R

y j
i

⎛

⎝
∑

m∈Pi

c ji,mx
i
m

⎞

⎠

⎞

⎠ , (4)

subject to the constraints in Eqs. (1) and (3).

Both versions of the SATA problem are NP-Hard (Vazi-
rani 2001). The WINNERTAKESALL version can be optimally
solved using aQuadraticMixed Integer Linear Programming
(QMILP) in the centralized setting.4 Our main contributions
are to show how to solve both problems in a distributed man-
ner: an LP-relaxation of the BOTTLENECK variant using a local
algorithm; and the WINNERTAKESALL variant using a greedy
algorithm. The following theorems summarize the main con-
tributions of our work.

4 Note that Problem2can also be converted into a simplerMixed Integer
Linear Programming (MILP) by linearizing the product of the binary
variables in Eq. (4), which is not covered in this paper.

123

62 Autonomous Robots (2020) 44:57–73

Theorem 1 Let �R ≥ 2 be the maximum number of motion
primitives per robot and �T ≥ 2 be the maximum number
of motion primitives that can see a target. There exists a
local algorithm that finds an�R(1+ε)(1+1/h)(1−1/�T)

approximation inO(h log 1/ε) synchronous communication
rounds for the LP-relaxation of the BOTTLENECK version of
SATA problem, where h and ε > 0 are parameters.

The proof follows directly from the existence of the local
algorithm described in the next section. We show how the
local algorithm for MPCP can be modified to solve SATA by
means of a linear relaxation.

Theorem 2 There exists a 2–approximation greedy algo-
rithm for the WINNERTAKESALL version of the SATA problem
for any ε > 0 in polynomial time.

This directly follows from the fact that the problem is a mod-
ular maximization problem subject to a partition matroid
constraint (Nemhauser et al. 1978). The algorithms are
described in the next section.

4 Distributed algorithms

We begin by describing the local algorithm that solves the
BOTTLENECK version of SATA.

4.1 Local algorithm

In this section,we showhow to solve the BOTTLENECKversion
of the SATA problem using a local algorithm. We adapt the
local algorithm for solving max-min LPs given by Floréen
et al. (2011) to solve the SATA problem in a distributed man-
ner.

Consider the tripartite, weighted, and undirected graph,
G = (R ∪ P ∪ T , E) shown in Fig. 3. Each edge e ∈ E
is either e = (ri ,pim) with weight 1 or e = (t j ,pim) with

weight c ji,m . Themaximum degree among robot nodes ri ∈ r
is denoted by�R and among target nodes t j ∈ t is�T . Each
motion primitive pim ∈ pi is associated with a variable xim .
The upper two layers of G in Fig. 3 are related with a packing
problem (Eq. (4)). The lower two layers are related with the
covering problem.

Lemma 1 The BOTTLENECK version (Eq. (2)) can be rewrit-
ten as a linear relaxation of ILP:

maximize w

subject to
∑

m∈Pi

xim ≤ 1 ∀i ∈ R

∑

i∈R

∑

m∈Pi

c ji,mx
i
m ≥ w ∀ j ∈ T

xim ≥ 0 ∀m ∈ Pi .

(5)

Fig. 3 One instance of a graph for MPCP when there are three robot
nodes, six motion primitive nodes and three target nodes

Fig. 4 Flowchart of the proposed local algorithm

The proof is given in Appendix A.
Floréen et al. (2011) presented a local algorithm to solve

MPCP in Eq. (5) in a distributed fashion. They presented
both positive and negative results for MPCP. We show how
to adopt this algorithm for solving the BOTTLENECK version
of SATA.

An overview of our algorithm is given in Fig. 4. We
describe the main steps in the following.

4.1.1 Local algorithm from Floréen et al. (2011)

The local algorithm in Floréen et al. (2011) requires�R = 2.
However, they also present a simple local technique to split
nodes in the original graph with �R > 2 into multiple nodes
making�R = 2. Then, a layered max-min LP is constructed
with h layers, as shown inFig. 5. h is a user-defined parameter
that allows to trade-off computational time with optimality.
If the number of layers is set to h, then it means that a robot
can communicate with another robot that is no more than h
communication edges (i.e., hops) away. The layered graph
breaks the symmetry that inherently exists in the original
graph. This layered mechanism is specifically designed for
solvingMPCP and is covered in depth in Section 4 of Floréen
et al. (2011). We omit the details in this paper due to limited
space and redirect the readers to Section 4 of Floréen et al.
(2011) for the construction of the layered graph.

They proposed a recursive algorithm to compute a solution
of the layeredmax-min LP. The solution for the originalmax-
min LP can be obtained by mapping from the solution of the

123

Autonomous Robots (2020) 44:57–73 63

Fig. 5 Graph of the layered max-min LP with h = 2 that is obtained
from the original graph of Fig. 3 after applying the local algorithm.
The details for constructing a layered graph are given in Section 4 of
Floréen et al. (2011). Each motion primitive pim ∈ pi is colored either
red or blue to break the symmetry of the original graph. Squares, circles,
and triangles represent robot nodes, motion primitive nodes, and target
nodes, respectively, corresponding to Fig. 3

layered one. The obtained solution corresponds to values of
xim . They proved that the resulting algorithmgives a constant-
factor approximation ratio.

Theorem 3 There exists local approximation algorithms for
max-min and min-max LPs with the approximation ratio
�R(1 + ε)(1 + 1/h)(1 − 1/�T) for any �R ≥ 2, �T ≥ 2,
and ε > 0, where h denotes the number of layers.

Proof Please refer to Corollary 4.7 from Floréen et al. (2011)
for a proof. �	
Note that each node in the layered graph carries out its local
computation (details of the local computation for solving
SATA are included in Floréen et al. (2011)). Each node also
receives and sends information from and to neighbors at each
synchronous communication round.Constructing the layered
graph is done in a local fashion without requiring any single
robot to know the entire graph.

4.1.2 Realization of local algorithm for SATA

To apply the local algorithm of Sect. 4.1.1 to a distributed
SATA problem, each node and edge in a layered graph
must be realized at each time step (i.e., generating a graph
shown in Fig. 5 which becomes the input to the local
algorithm (Floréen et al. 2011)). In our case, the only compu-
tational units are the robots. Nodes that correspond to motion
primitives, pim ∈ pi , can be realized by the corresponding

robot ri ∈ r . Moreover, nodes corresponding to the tar-
gets must also be realized by robots. A target j is realized
by a robot i satisfying t j ∈ RS(pim). If there are multi-
ple robots whose motion primitives can sense the target (by
Assumption 1), they can arbitrarily decide which amongst
them realizes the target nodes in a constant number of com-
munication rounds.

After applying the local algorithm of Sect. 4.1.1 to robots,
each robot obtains xim on corresponding pim at each time.
However, due to the LP relaxation, xim will not necessarily
be binary, as in Eq. (1). For each robot we set the highest
xim equal to one and all others as zero. We shortly show that
the resulting solution after rounding is still close to optimal
in practice. Furthermore, increasing the parameter h finds
solutions that are close to binary.

The following pseudo-code explains the overall scheme
of each robot for a distributed SATA. We solve the SATA
problem at each time step.

Algorithm 1: Local algorithm
1 for ri (k) ∈ r(k) do
2 pi (k) ←ComputeMotionPrimitives(ri (k)).
3 Find targets that can be sensed by m-th motion primitive of

i-th robot (pim(k)).
4 Construct a h-hop communication graph.
5 Apply local algorithm (Floréen et al. 2011).
6 x̂ im ← Rounding

(
xim

)
.

7 pi∗m (k) ← Motion primitive with x̂ im = 1.
8 ApplyAction

(
pi∗m (k)

)
.

9 k ← k + 1.
10 end

4.1.3 Advantages of the local algorithm

It is possible that there are some robots that are isolated from
the others. That is, the communication graph or the layered
graph may be disconnected. However, each component of
the graph can run the local algorithm independently without
affecting the solution quality. Furthermore, if a robot is dis-
connected from the rest, then it can take a greedy approach
as described in Tokekar et al. (2014) before they reach any
other robots to communicate.

The algorithm also allows for the number of robots and
targets to change over time. Since each robot determines its
neighbors at each time step, any new robots or targets will be
identified and become part of the time-varying local layered
graphs. The robots can also be anonymous (as long as they
can break the symmetry to determine which robot, amongst
a set, will realize the target node, when multiple robots can
observe the same target).

123

64 Autonomous Robots (2020) 44:57–73

Table 1 Solution returned by the local algorithm for the example shown
in Fig. 3, with all edges’ weights set to 1, as a function of h

pim xim h = 2 h = 10 h = 30

p11 x11 = 0.5000 0.5000 0.5000

p12 x12 = 0.5000 0.5000 0.5000

p23 x23 = 0.6667 0.7591 0.7855

p24 x24 = 0.3333 0.2409 0.2145

p35 x35 = 0.3333 0.2409 0.2145

p36 x36 = 0.6667 0.7591 0.7855

The number of layers, h, directly affects the solution qual-
ity and can be set by the user. Increasing h results in better
solutions at the expense of more communication. h = 0 is
equivalent to the greedy approach where no robots commu-
nicate with each other (Table 1).

The above table shows the result of applying the local
algorithm to the graph in Fig. 3 when all edge weights were
set to 1. Three different values for h were tested: 2, 10, and
30. In all cases, p23 and p

3
6 have larger values of xp than other

nodes. Thus, the robot 2 (r2) and the robot 3 (r3) will select
the motion primitive 3 (p23) and the motion primitive 6 (p36),
respectively, after employing a rounding technique to xp’s.

As the number of layers increases, themore distinct the xip
values returned by the algorithm. Another interesting obser-
vation is that robot 1 has the same equal value on bothmotion
primitives of its own no matter how many number of layers
are used. This is because all the targets are already observed
by robots 2 and 3 with higher values.

4.2 Greedy algorithm

The greedy algorithm requires a specific ordering of the
robots given in advance. The first robot greedily chooses
a motion primitive that can maximize the number of tar-
gets being observed. Those observed targets are removed
from the consideration. Then, the second robot makes its
choice; this repeats for the rest of robots. If the commu-
nication graph is disconnected and forms more than one
connected component, the greedy algorithm can indepen-
dently be applied to each connected component without
modifying the algorithm. Note again that the greedy algo-
rithm is for the WINNERTAKESALL version of SATA.

As shown in Algorithm 2, the greedy algorithm runs in
|R| communication rounds at each time step. We define two
additional functions: w(t j) gives a quality of tracking for j-
th target; and w′(pim) gives the sum of quality of tracking
over all feasible targets using m-th motion primitive of i-th
robot. If, for example, c ji,m is used as a distance metric, the
max ensures that the quality of tracking for j-th target is only
given by the distance of the nearest robot/primitive. That is,

Algorithm 2: Greedy algorithm
Input : Order of robots R.

1 Initialize w(t j) = 0 ∀ j ∈ T .
2 for i ∈ R do
3 for m ∈ Pi do
4 Compute c ji,m ∀ j ∈ T .

5 w′(pim) = ∑
j max{w(t j), c

j
i,m}.

6 end
7 Determine xim = argmaxw′(pim) ∀m ∈ Pi .

8 Update w(t j) = max{w(t j), c
j
i,m} ∀ j ∈ T .

9 end

10 y j
i ← 0 ∀i ∈ R, j ∈ T .

11 for j ∈ T do
12 r∗

i ← argmaxi∈R
∑

m c ji,mx
i
m .

13 y j
i∗ ← 1.

14 end

even if multiple primitives can track the same target j , when
counting the quality we only care about the closest one. The
total quality will then be the sum of qualities for each target.

The objective in Line 5 in Algorithm 2 appears, at first
sight, to be different than that given in Eq. (4). The following
lemma, however, proves that the two objectives are equiva-
lent.

Lemma 2 Greedy algorithm of Algorithm 2 gives a feasible
solution for the WINNERTAKESALL version of SATA.

The proof is given in Appendix B. Since the objective in
Line 5 in Algorithm 2 is submodular, the resulting algorithm
yields a 2–approximation to WINNERTAKESALL (Nemhauser
et al. 1978).

The greedy algorithm can perform arbitrarily worse than
the optimal solution if it is applied to the BOTTLENECK ver-
sion of the problem. In Appendix C, we show an example
where the greedy yields an arbitrarily bad solution for the
BOTTLENECK version.

A centralized-equivalent approach is one where the robots
all broadcast their local information until some robot has
received information from all others. This robot can obtain a
centralized solution to the problem. A centralized-equivalent
approach for a complete GC runs in 2 communication rounds
for receiving and sending data to neighbors. However, the
greedy algorithmand local algorithmhave |R| and h log(1/ε)
communication rounds, respectively, for a completeGC . Note
that h |R| for most practical cases.

5 Simulations

We carried out four types of simulations to verify the effi-
cacy of the proposed algorithms under the condition that
the amount of time required for communication is limited.

123

Autonomous Robots (2020) 44:57–73 65

First, we compare the performance of the greedy and local
algorithms with centralized, optimal solutions. Second, we
study the effect of varying the parameters (i.e., the number
of layers) for the local algorithm. Third, we describe how to
implement the algorithms for sequential planning overmulti-
ple horizons and evaluate their performance over time. Last,
we compare the greedy algorithm with a state-of-the-art dis-
tributed tracking algorithm.

5.1 Comparisons with centralized solutions

We performed comparison studies to verify the performance
of the proposed algorithms. We compared the greedy solu-
tionwith the optimal, centralizedQMILP solution aswell as a
randomalgorithm as a baseline for the WINNERTAKESALL ver-
sion. We compared the local algorithm’s solution with the
optimal ILP solution as well as the LP with rounding for
BOTTLENECK. For these comparisons, we assumed that there
are only two primitives to choose from (making the random
algorithm a powerful baseline). We later analyzed the algo-
rithmswithmore primitives.We used Tomlab (2017) to solve
theQMILP and ILP problems. The toolboxworkswithMAT-
LAB and uses IBM’s CPLEX optimizer in the background.
On a laptop with processor configuration of Intel® Coretm

i7-5500U CPU @ 2.40GHz x 4 and 16 GB of memory the
maximum time to solve was around 3s on a case with 150
targets. Most of our cases were solved in less than 2 s.

We randomly generated graphs similar to Fig. 3 for the
comparison. To control the topology of the randomly gener-
ated graphs, we defined φ : GS → R to be the percentage
of targets that are detected by a motion primitive. We denote
the average degree of edges by davg(·). Therefore:

φ(GS) := davg(T)
∑|R|

i=1 |Pi |
× 100 = |ES|

∑|R|
i=1 |Pi ||T |

× 100. (6)

We started with the upper half of the graph, connecting
each robot to its two motion primitives. Then, we iterated
through each ofmotion primitive and randomly chose a target
node to create an edge. Next, we iterated through target nodes
and randomly chose a motion primitive to create an edge.We
also added random edges to connect disconnected compo-
nents (to keep the implementation simpler). We repeated this
in order to get the required graph. If we needed to increase
the degree of target nodes in the graph, we created new edges
to random primitives till we achieved the desired φ(GS). We
generated cases by varying φ(GS), number of targets, and
number of robots using the method described above. Here,
the tracking quality was defined as the number of targets, i.e.,
c ji,m ∈ {0, 1} for all cases.

The comparative simulation results for WINNERTAKESALL-
WINNERTAKESALL are presented in Fig. 6. The plots show
minimum, maximum, and average of the targets covered

by the greedy algorithm and QMILP running 100 random
instances for every setting of the parameters. We also show
the number of targets covered when choosing motion prim-
itives randomly as a baseline. We observe that the greedy
algorithm performs comparatively to the optimal algorithm,
and is always better than the baseline. In all the figures,
�R = 2, making random a relatively powerful baseline. The
difference between the greedy algorithm and the baseline
becomes smaller as φ(GS) increases. This could be because
of the fact that the baseline saturates at the maximum objec-
tive value with fewer robots as φ(GS) increases. As φ(GS),
number of targets, and number of robots increase, the perfor-
mance of the greedy algorithm also improves.

Figure 7 shows the comparison results for BOTTLENECK

where the objective values were computed from the w term
of Eq. (5). As the proposed local algorithm is a linear relax-
ation of the ILP formulation, we compared the local solution
with the optimal ILP solution. Note that both the ILP and
LP with rounding are centralized methods. If the solution
value is 0, this means that at least one target is not covered
by any selectedmotion primitives. The specific configuration
of input motion primitives and target states is such that no
matter what motion primitives are chosen, at least one target
will be left uncovered. This means that the bottleneck objec-
tive (i.e., the optimal value of ILP) is 0. If the mean value is
larger than 0, this implies that all targets are covered by at
least one motion primitive on average. The ILP and LP with
rounding outperform the local algorithm in all cases. Never-
theless, we find that the local algorithm performs comparably
to the centralized methods (and far better than the theoretical
bound).

5.2 Effect of h for the local algorithm

We analyzed the performance of the local algorithm for dif-
ferent number of layers (i.e., h), as shown in Fig. 8. The LP
value (without rounding) is the upper bound on the optimal
solution. We observed how much the rounding sacrifices by
comparing the LP with and without the rounding. In the case
where h was set to 5 and 8 for both with and without the
rounding, there is no evident difference between them. This
implies that h should not necessarily be large as it does not
contribute to the solution quality much (as also seen in The-
orem 1). In other words, the local algorithm does not require
a large number of communication hops among robots, which
is a powerful feature of the local algorithm.

5.3 Multi-robot multi-target tracking over time

The greedy and local algorithms find themotion primitives to
be applied over a single horizon. In order to track over time,
the SATA problem will need to be solved repeatedly at each
time step. In this section, we describe how to address this and

123

66 Autonomous Robots (2020) 44:57–73

Fig. 6 Showing the comparative results of QMILP, greedy algorithm, and randomly choosing a motion primitive for WINNERTAKESALL. To
generate the graphs, we varied number of robots, total number of targets, and φ(GS). We ran 100 trials for each case

Fig. 7 Comparison simulation for the BOTTLENECK version of the ILP, LP with rounding, local algorithm and randomly choosing a motion
primitive. We set h to 2 in the local algorithm, for all cases. Each case was obtained from 100 trials

123

Autonomous Robots (2020) 44:57–73 67

Fig. 8 Analysis of varying the number of layers (h) for the local algo-
rithm. The number of targets used is 50 and φ(GS) = 15%. We ran 100
trials for each case

Fig. 9 Gazebo simulator showing ten robots tracking thirty randomly
moving targets. We set the sensing and communication ranges to 5 m
and 10 m, respectively

other challenges associated with a practical implementation.
We demonstrate a realistic scenario of cooperative multi-
target tracking in the Gazebo simulator using ROS (Fig. 9). A
bounded environment consists of dynamic targets that move
in a straight line and change their heading direction randomly
after a certain period. The motion model is not known to the
robots.

Greedy Algorithm We implemented the greedy algorithm
to solve the WINNERTAKESALL variant in a fully distributed
fashion. There was no centralized algorithm and each robot
was a separate ROS node that only had access to the local
information. Each robot had its local estimator that estimated
the state of targets within its FOV. We simulated proximity-
limited communication range such that only robots that can
see the same target can exchange messages with each other.

A sketch for the implementation of the greedy algorithm
is as follows. Each robot has a local timer which is synchro-
nizedwith the others. Each robot also knows its own IDwhich
is also the order in which the sequential decisions are made.
We partition the planning horizon into two periods. In the
first selection period, the robots choose their own primitives
sequentially using the greedy algorithm. In the second exe-
cution period, the robots apply their motion primitives and
obtain measurements of the target.

In the selection period, a robot waits for the predeces-
sor robots (of lower IDs) to make their selections. Every
robot knows when it is its turn to select a motion primi-
tive (since the order is fixed). Before its turn, a robot simply

0 20 40 60 80 100 120 140 160 180

Time (s)

12

14

16

18

20

22

24

26

N
um

be
r o

f t
ar

ge
ts

Change in the number of targets over time

Actual number
Estimated number

Fig. 10 Change in the number of targets over time when ten robots are
tracking thirty moving targets

keeps track of the most recent w(t j) vector received from a
predecessor robot within communication range. During its
turn, the robot chooses its motion primitive using the greedy
algorithm, and updates the w(t j) vector based on its choice.
It then broadcasts this updated vector to the neighbors, and
waits for the selection period to end. Then, each robot applies
its selected motion primitive till the end of the horizon. The
process repeats after each planning horizon. The selection
period can be preceded by a sensor fusion period, where the
robots can execute, for example, the covariance intersection
algorithm (Niehsen 2002).

For simulations we set the selection and execution periods
times to 0.2|R|s and 6 s, respectively,where |R| is the number
of robots. Each robot made its choice after 0.2 s within the
selection period. Each robot had a precomputed library of
21 motion primitives including staying in place. It should be
noted that our algorithms do not require a motion primitive
of stay in place. Each robot had a disk-shaped FOV. The
sensing and communication ranges were set to 5 m and 10
m, respectively. We tested both the inverse of the distance
and the number of targets as tracking quality (which defines
c ji,m).

We carried out simulations using ten robots tracking thirty
moving targets, as shown in Fig. 9. Initial positions of robots
and targets were randomly chosen in a 30×30m square envi-
ronment. It may be possible that some targets were outside
the FOV of any robots in the beginning.

Figure 10 shows the change in the number of targets over
time from a randomly generated instance where the objective
was to track the most number of targets. We show both the
estimated number of targets and the actual number of targets.
The estimated number is the value of the solution found at
the end of the selection period (obtained every 8 s). This is

123

68 Autonomous Robots (2020) 44:57–73

Fig. 11 Histogram of the number of targets

0 20 40 60 80 100 120 140 160 180
Time (s)

5

10

15

20

25

30

35

40

In
ve

rs
e

di
st

an
ce

Change in the inverse distance over time

Actual inverse distance
Estimated inverse distance

Fig. 12 Change in the inverse of the distance over time when ten robots
are tracking thirty moving targets

Fig. 13 Histogram of the inverse distance

based on the predicted trajectory of the targets.5 The actual
number of targets was found by counting the target that is
within the FOV of any robots during the execution period.
Figure 11 shows the histogram of the actual and estimated
number of targets for 10 trials, each lasting three minutes.

Figures 12 and 13 show the corresponding plots when
the objective was to maximize the total quality of tracking

5 Although we model linear motion for the targets, more sophisticated
models for the prediction of target states can also be employed.

Fig. 14 Snapshot of the Gazebo simulator that shows when five robots
are tracking thirty stationary and moving targets. The sensing and com-
munication ranges were set to 3 m and 6 m, respectively

(inverse distance to the targets). Here, we saw that the esti-
mated and the actual values differed much more than the
previous case. We conjectured that this was due to the fact
that the uncertainty in themotionmodel of the robots, targets,
and measurements had a larger effect on the actual quality of
tracking as compared to the number of targets tracked. For
instance, even if the actual state of the target deviates from
the predicted state, it is still likely that the target will be in
the FOV. However, the actual distance between the robot and
the target may be much larger than estimated.

Local algorithm We also implemented the proposed local
algorithm as shown in Fig. 14. Five mobile robots were
deployed to track thirty targets (a subset of which were
mobile)with aFOVof 3mon the xyplane. For each robot two
motion primitives were used: one was to remain in the same
position and the other one was randomly generated between
−30◦ and 30◦ of the robot’s heading traveling randomly up
to 1m.

Theobjective of this simulation is to show theperformance
of the proposed algorithm for the BOTTLENECK version. At
each time step, the local algorithm was employed to choose
motion primitives that maximize the minimum number of
targets being observed by any robots.

Figure 15 shows the resultant trajectories of robots and
targets obtained from the simulation. Figure 16 presents the
(total/average) number of targets tracked by the local algo-
rithm for a specific instance. Although the local algorithm
has a sub-optimal performance guarantee, we observe that in
practice, it performs comparably to the optimal path.

5.4 Comparison of the greedy algorithmwith other
CMOMMT algorithm

We compared the greedy algorithm with an algorithm pro-
posed by Parker Parker (2002) following the CMOMMT
approach. This algorithm addresses the same objective as the
WINNERTAKESALL. Parker’s algorithm computes a local force
vector for all robots (attraction by nearby targets and repul-

123

Autonomous Robots (2020) 44:57–73 69

-10 -5 0 5 10
x (m)

-10

-8

-6

-4

-2

0

2

4

6

8

10
y

(m
)

Trajectories of robots and targets

Robot 1
Robot 2
Robot 3
Robot 4
Robot 5

Fig. 15 Plot of trajectories of robots and targets applying the local
algorithm to the simulation given in Fig. 14. Black lines represent tra-
jectories of thirty targets. ◦ denotes the end position of trajectories. The
algorithm was performed for 40s

0 10 20 30 40

Time (s)

15

20

25

30

35

To
ta

l n
um

be
r o

f t
ar

ge
ts

Total number of
targets observed

(a) Total number of targets
observed.

0 10 20 30 40

Time (s)

22

23

24

25

26

27

28

A
ve

ra
ge

 n
um

be
r o

f t
ar

ge
ts

Average number of
 targets observed

(b) Average number of tar-
gets observed over time.

Fig. 16 Change in the total and average number of targets being
observed by any robots over time

sion by other nearby robots). It does not require any central
unit to determine their motion primitives and considers lim-
ited sensing and communication ranges, similar to this paper.
Parker’s algorithm determines themoving direction of robots
by using the local force vector and moves the robots along
this direction until theymeet the available maneuverability at
each time step. However, no theoretic guarantee with respect
to the optimal solution was provided by this algorithm.

We created an environment of 200 × 200 m square for
comparison using MATLAB. The robots can move 10m per
time step while the targets can move 5 m per time step and
randomly changed their direction every 25 time steps. If the
targets met the boundary of the environment, they picked
a random direction that kept them within the environment.
In each instance, robots and targets were randomly located

initially. The sensing and communication ranges were set to
40 m and 80 m, respectively.

We empirically studied two cases: the first is to evaluate
the objective value of the proposed greedy algorithm and
Parker’s algorithm for the same problem instance at a given
time step; and the second is to apply the two algorithms over
200 time steps starting from the same configuration.

When both algorithms were applied to the same problem
setup (Fig. 17a), the objective values for both algorithms
increased as the number of targets increased. Nevertheless,
the greedy algorithm outperformed Parker’s algorithm. This
can be attributed to the fact that Parker’s algorithm computes
the local force vector based on a heuristic (get closer to the
targets) but does not explicitly optimize the objective func-
tion of WINNERTAKESALL. In Fig. 17b, c, similar results can
be seen when both algorithms generate different trajectories
for robots after 200 time steps. The comparisonmeasure used
in Fig. 17c is the average of the objective value over time,
first proposed by Parker (2002). These empirical simulations
show the superior performance of the greedy algorithm over
the existing method.

In summary, we find that our algorithms perform compa-
rably with centralized, optimal algorithms and outperform
the baseline algorithm. We also find that greedy algorithm
has better performance than the decentralized algorithm from
Parker (2002). In theory, the performance bound for the local
algorithm worsens as h, the amount of communication avail-
able, decreases. However, in practice, we find that the local
algorithm does not require a large number of layers to yield
good performance, which reduces the computational and
communication burden.

6 Conclusion

This paper gives a new approach to solve the multi-robot
multi-target assignment problemusing greedy and local algo-
rithms. Our work is motivated by scenarios where the robots
would like to reduce their communication to solve the given
assignment problemwhile at the same timemaintaining some
guarantees of tracking. We used powerful local communica-
tion framework employed by Floréen et al. (2011) to leverage
an algorithm that can trade-off the optimality with communi-
cation complexity. We empirically evaluated this algorithm
and compared it with the baseline greedy strategies.

Our immediate future work is to expand the scope of the
problem to solve both versions of SATA over multiple hori-
zons. In principle,we can replace eachmotion primitive input
with a longer horizon trajectory and plan for multiple time
steps (say, H time steps). However, this comes at the expense

of increased number of trajectories |Pi |H to choose from
which will result in increased computational time. Further-

123

70 Autonomous Robots (2020) 44:57–73

Fig. 17 Comparison with the Parker’s algorithm Parker (2002). a 200
instances were run. b 200 time steps were run. c 200 time steps were run
to compare the metric proposed by Parker (2002). We used 10 robots

for all cases. We ran 10 trials for b and c. Bar graphs show the mean
and standard deviation for different number of targets (10, 20 and 30
targets)

more, planning for a longer horizon will require prediction
of targets’ states far in the future which can lead to poorer
tracking performance.We are also working on implementing
the resulting algorithms on actual aerial robotic systems to
carry out real-world experimentation.

Acknowledgements Theauthorswould like to thankDr. JukkaSuomela
from Aalto University for fruitful discussion.

A Proof of lemma 1

Equation (5) of amax-min linear program is equivalent to the
following max-min problem if the scalar variable w which
represents the inner minimization is eliminated:

max
xim

min
j∈T

⎛

⎝
∑

i∈R

∑

m∈Pi

c ji,mx
i
m

⎞

⎠

subject to
∑

m∈Pi

xim ≤ 1 ∀i ∈ R

xim ≥ 0 ∀m ∈ Pi .

(7)

From Eqs. (5) and (7), the following relationship is satis-
fied:

w∗ = min
j∈T

⎛

⎝
∑

i∈R

∑

m∈Pi

c ji,mx
i
m

∗
⎞

⎠ . (8)

Since Eq. (2) does not require xim to be a linear value, Eq.
(2) is equivalent to Eq. (5) with additional integer constraints.

B Proof of lemma 2

Considering c ji,m , which is a weight between m-th motion
primitive of i-th robot and j-th target on graph GS , a quality
of tracking (w(t j)) for j-th target can be defined as follows:

w(t j) � max{c ji,m
∣∣xim = 1, ∀i ∈ R,m ∈ Pi }. (9)

Therefore, the sum of quality of tracking over all targets
is:

∑

j∈T
w(t j) =

∑

j∈T
max{c ji,m

∣∣xim = 1, ∀i ∈ R,m ∈ Pi }

=
∑

j∈T

(∑

i∈R

y j
i

(∑

m∈Pi

c ji,mx
i
m

))
.

(10)

Equation (10) is obtained by taking into account the con-
ditional term of the first equation explicitly. The last equation
follows from theproperty that y j

i chooses themaximumvalue

of
∑

m∈Pi c
j
i,mx

i
m among all robots, which is shown in lines

10–14 of Algorithm 2. Therefore, the last equation is equal
to the inner term of Eq. (4).

C Greedy performs poorly for the
Bottleneck variant

We present an example of instance that shows an arbitrary
poor performance of the greedy algorithm when applied to
the BOTTLENECK variant. Consider the following case where
there are two robots (ri) having two motion primitives (pim)
for each and two targets. The realization of the communi-
cation and sensing graphs are as in the following table. The
tracking quality in this example corresponds to the number
of targets being tracked.

123

Autonomous Robots (2020) 44:57–73 71

p11, p
2
1 p12, p

2
2

r1 t1 ∅

r2 ∅ t2

Let’s apply the BOTTLENECK version of greedy algorithm
to this case. Since the objective of the BOTTLENECK variant is
to maximize the minimum tracking quality, the robot 1 (r1)
chooses motion primitive 2 (p12) because choosing motion
primitive 1 (p11) gives the value of 1 while choosing motion
primitive 2 (p12) gives the value of 0. For the same reason,
the robot 2 (r2) chooses motion primitive 1 (p21). This gives
the total value of 0, whereas the optimal solution is 2 as
the first robot and second robot choose motion primitive 1
(p11) and motion primitive 2 (p22), respectively. The similar
case is reproducible with a larger number of robots, motion
primitives, and targets. Thus, the simple greedy performs
arbitrarily badly for the BOTTLENECK variant.

References

Ahmad,A., Lawless,G.,&Lima, P. (2017).Anonline scalable approach
to unified multirobot cooperative localization and object tracking.
IEEE Transactions on Robotics, 33(5), 1184–1199.

Angluin, D. (1980) Local and global properties in networks of pro-
cessors. In Proceedings of the twelfth annual ACM symposium on
theory of computing. ACM, (pp. 82–93).

Åstrand,M., & Suomela, J. (2010) Fast distributed approximation algo-
rithms for vertex cover and set cover in anonymous networks. In
Proceedings of the twenty-second annual ACM symposium on par-
allelism in algorithms and architectures. ACM, (pp. 294–302).

Åstrand, M., Floréen, P., Polishchuk, V., Rybicki, J., Suomela, J., &
Uitto, J. (2009) A local 2-approximation algorithm for the vertex
cover problem. In International symposium on distributed com-
puting. Springer (pp. 191–205).

Bandyopadhyay, S., Chung, S.-J., & Hadaegh, F. Y. (2017). Probabilis-
tic and distributed control of a large-scale swarm of autonomous
agents. IEEE Transactions on Robotics, 33(5), 1103–1123.

Banfi, J.,Guzzi, J.,Amigoni, F., Flushing,E. F.,Giusti,A.,Gambardella,
L., & Di Caro, G. A. (2018) An integer linear programming model
for fair multitarget tracking in cooperative multirobot systems.
Autonomous Robots, pp. 1–16.

Best, G., Forrai, M., Mettu, R. R., & Fitch, R. (2018). Planning-
aware communication for decentralised multi-robot coordination.
In Proceedings of the international conference on robotics and
automation, Brisbane, Australia, (Vol. 21).

Capitan, J., Spaan,M.T.,Merino, L.,&Ollero,A. (2013).Decentralized
multi-robot cooperationwith auctioned pomdps.The International
Journal of Robotics Research, 32(6), 650–671.

Charrow, B., Kumar, V., & Michael, N. (2014). Approximate repre-
sentations for multi-robot control policies that maximize mutual
information. Autonomous Robots, 37(4), 383–400.

Choi, H.-L., Brunet, L., & How, J. P. (2009). Consensus-based decen-
tralized auctions for robust task allocation. IEEE Transactions on
Robotics, 25(4), 912–926.

Chung, S.-J., Paranjape, A., Dames, P., Shen, S., & Kumar, V. (2018).
A Survey on Aerial Swarm Robotics. IEEE Transactions on
Robotics.

Dimarogonas, D. V., Frazzoli, E., & Johansson, K. H. (2012). Dis-
tributed event-triggered control for multi-agent systems. IEEE
Transactions on Automatic Control, 57(5), 1291–1297.

Floréen, P., Hassinen,M., Kaasinen, J., Kaski, P.,Musto, T., &Suomela,
J. (2011). Local approximability of max-min and min-max linear
programs. Theory of Computing Systems, 49(4), 672–697.

Ge,X.,&Han,Q.-L. (2017).Distributed formation control of networked
multi-agent systems using a dynamic event-triggered communi-
cation mechanism. IEEE Transactions on Industrial Electronics,
64(10), 8118–8127.

Gerkey, B. P., & Matarić, M. J. (2004). A formal analysis and taxon-
omy of task allocation in multi-robot systems. The International
Journal of Robotics Research, 23(9), 939–954.

Ge, X., Yang, F., & Han, Q.-L. (2017). Distributed networked control
systems: A brief overview. Information Sciences, 380, 117–131.

Gharesifard, B. & Smith, S. L. (2017). Distributed submodular maxi-
mizationwith limited information. In IEEE transactions on control
of network systems.

Guo, M., & Zavlanos, M. M. (2018). Multirobot data gathering under
buffer constraints and intermittent communication. IEEE transac-
tions on robotics.

Hanckowiak, M., Karonski, M., & Panconesi, A. (2001). On the
distributed complexity of computing maximal matchings. SIAM
Journal on Discrete Mathematics, 15(1), 41–57.

Hönig, W., & Ayanian, N. (2016) Dynamic multi-target coverage with
robotic cameras. In IEEE RSJ International conference on intelli-
gent robots and systems (IROS) (pp. 1871–1878).

Howard, T., Pivtoraiko, M., Knepper, R. A., & Kelly, A. (2014).
Model-predictive motion planning: Several key developments for
autonomous mobile robots. IEEE Robotics and Automation Mag-
azine, 21(1), 64–73.

Kanakia, A., Touri, B., & Correll, N. (2016). Modeling multi-robot
task allocation with limited information as global game. Swarm
Intelligence, 10(2), 147–160.

Kantaros, Y., Thanou, M., & Tzes, A. (2015). Distributed coverage
control for concave areas by a heterogeneous robot-swarm with
visibility sensing constraints. Automatica, 53, 195–207.

Kantaros, Y., & Zavlanos, M. M. (2016). Global planning for multi-
robot communication networks in complex environments. IEEE
Transactions on Robotics, 32(5), 1045–1061.

Kantaros, Y., & Zavlanos, M. M. (2017). Distributed intermittent con-
nectivity control of mobile robot networks. IEEE Transactions on
Automatic Control, 62(7), 3109–3121.

Kassir, A., Fitch, R., & Sukkarieh, S. (2016) Communication-efficient
motion coordination and data fusion in information gathering
teams. In 2016 IEEE/RSJ international conference on intelligent
robots and systems (IROS). IEEE, (pp. 5258–5265).

Khan, A., Rinner, B., & Cavallaro, A. (2016) Cooperative robots to
observe moving targets: Review, IEEE transactions on cybernet-
ics.

Kolling, A., & Carpin, S. (2007). Cooperative observation of multiple
moving targets: an algorithm and its formalization. The Interna-
tional Journal of Robotics Research, 26(9), 935–953.

Korsah, G. A., Stentz, A., & Dias, M. B. (2013). A comprehensive tax-
onomy for multi-robot task allocation. The International Journal
of Robotics Research, 32(12), 1495–1512.

Kuhn, F., Moscibroda, T., & Wattenhofer, R. (2006) The price of being
near-sighted. In Proceedings of the seventeenth annual ACM-
SIAM symposium on Discrete algorithm. Society for Industrial
and Applied Mathematics, (pp. 980–989).

LeNy, J., Ribeiro,A.,&Pappas,G. J. (2012). Adaptive communication-
constrained deployment of unmanned vehicle systems. IEEE
Journal on Selected Areas in Communications, 30(5), 923–934.

Lenzen, C., & Wattenhofer, R. (2010) Minimum dominating set
approximation in graphs of bounded arboricity. In International
symposium on distributed computing. Springer, (pp. 510–524).

123

72 Autonomous Robots (2020) 44:57–73

Li, H., Chen, G., Huang, T., & Dong, Z. (2017). High-performance
consensus control in networked systems with limited bandwidth
communication and time-varying directed topologies. IEEETrans-
actions on Neural Networks and Learning Systems, 28(5), 1043–
1054.

Linial, N. (1992). Locality in distributed graph algorithms. SIAM Jour-
nal on Computing, 21(1), 193–201.

Liu, L., & Shell, D. A. (2011). Assessing optimal assignment under
uncertainty: An interval-based algorithm. The International Jour-
nal of Robotics Research, 30(7), 936–953.

Luo, L., Chakraborty, N., & Sycara, K. (2015). Distributed algorithms
for multirobot task assignment with task deadline constraints.
IEEE Transactions on Automation Science and Engineering,
12(3), 876–888.

Morgan, D., Subramanian, G. P., Chung, S.-J., &Hadaegh, F. Y. (2016).
Swarm assignment and trajectory optimization using variable-
swarm, distributed auction assignment and sequential convex
programming. The International Journal of Robotics Research,
35(10), 1261–1285.

Naor, M., & Stockmeyer, L. (1995). What can be computed locally?
SIAM Journal on Computing, 24(6), 1259–1277.

Nemhauser, G. L., Wolsey, L. A., & Fisher, M. L. (1978). An analysis
of approximations for maximizing submodular set functions–1.
Mathematical programming, 14(1), 265–294.

Niehsen, W. (2002) Information fusion based on fast covariance
intersection filtering. In Proceedings of the fifth international con-
ference on information fusion, 2002, vol. 2. IEEE, (pp. 901–904).

Otte, M., & Correll, N. (2013). Any-com multi-robot path-planning:
Maximizing collaboration for variable bandwidth. In A.Martinoli,
F. Mondada, N. Correll, G. Mermoud, M. Egerstedt, M. A. Hsieh,
L. E. Parker, & K. Støy (Eds.), Distributed autonomous robotic
systems (pp. 161–173), Springer.

Otte, M., Kuhlman, M., & Sofge, D. (2017) Multi-robot task allocation
with auctions in harsh communication environments. In Interna-
tional symposium on multi-robot and multi-agent systems (MRS)
2017. IEEE, (pp. 32–39).

Otte, M., & Correll, N. (2018). Dynamic teams of robots as ad hoc
distributed computers: Reducing the complexity of multi-robot
motion planning via subspace selection. Autonomous Robots,
42(8), 1691–1713.

Parker, L.E.,&Emmons,B.A. (1997)Cooperativemulti-robot observa-
tion ofmultiplemoving targets. InProceedings IEEE International
conference on robotics and automation, vol. 3 (pp. 2082–2089).

Parker, L. E. (2002). Distributed algorithms for multi-robot observation
of multiple moving targets. Autonomous robots, 12(3), 231–255.

Pimenta, L. C., Schwager, M., Lindsey, Q., Kumar, V., Rus, D.,
Mesquita, R. C., & Pereira, G. A. (2009). Simultaneous cover-
age and tracking (scat) of moving targets with robot networks. In
G. S. Chirikjian, H. Choset, M. Morales, & T. Murphey (Eds.),
Algorithmic foundation of robotics VIII (pp. 85–99). Springer.

Robin, C., & Lacroix, S. (2016). Multi-robot target detection and track-
ing: Taxonomy and survey. Autonomous Robots, 40(4), 729–760.

Sung, Y., Budhiraja, A. K., Williams, R. K., & Tokekar, P. (2018) Dis-
tributed simultaneous action and target assignment for multi-robot
multi-target tracking. In 2018 IEEE International conference on
robotics and automation (ICRA) (pp. 1–9).

Suomela, J. (2013). Survey of local algorithms. ACM Computing Sur-
veys (CSUR), 45(2), 24.

Tokekar, P., Isler, V., & Franchi, A. (2014) Multi-target visual tracking
with aerial robots. In 2014 IEEE RSJ International conference on
intelligent robots and systems (pp. 3067–3072).

Tomlab: Optimization environment large-scale optimization in
matlab. http://tomopt.com/docs/quickguide/quickguide006.php,
Accessed 3 Jan 2017.

Touzet,C. F. (2000).Robot awareness in cooperativemobile robot learn-
ing. Autonomous Robots, 8(1), 87–97.

Turpin, M., Michael, N., & Kumar, V. (2014). Capt: Concurrent
assignment and planning of trajectories for multiple robots. The
International Journal of Robotics Research, 33(1), 98–112.

VanderHook, J., Tokekar, P.,& Isler, V. (2015). Algorithms for coopera-
tive active localization of static targets withmobile bearing sensors
under communication constraints. IEEETransactions onRobotics,
31(4), 864–876.

Vazirani, V. (2001). Approximation algorithms. Berlin: Springer.
Williams, R. K., Gasparri, A., Sukhatme, G. S., & Ulivi, G. (2015)

Global connectivity control for spatially interacting multi-robot
systems with unicycle kinematics. In 2015 IEEE international
conference on robotics and automation (ICRA). IEEE, (pp. 1255–
1261).

Williams, R. K., & Sukhatme, G. S. (2013). Constrained interaction
and coordination in proximity-limited multiagent systems. IEEE
Transactions on Robotics, 29(4), 930–944.

Xu, Z., Fitch, R., Underwood, J., & Sukkarieh, S. (2013). Decentralized
coordinated tracking with mixed discrete-continuous decisions.
Journal of Field Robotics, 30(5), 717–740.

Yan, Z., Jouandeau, N., & Cherif, A. A. (2013). A survey and analysis
of multi-robot coordination. International Journal of Advanced
Robotic Systems, 10(12), 399.

Young, N. E. (2001) Sequential and parallel algorithms for mixed
packing and covering. In Proceedings 42nd IEEE symposium on
foundations of computer science (pp. 538–546).

Yu, H., Meier, K., Argyle, M., & Beard, R. W. (2015). Cooperative
path planning for target tracking in urban environments using
unmanned air and ground vehicles. IEEE/ASME Transactions on
Mechatronics, 20(2), 541–552.

Zavlanos, M. M., Egerstedt, M. B., & Pappas, G. J. (2011). Graph-
theoretic connectivity control of mobile robot networks. Proceed-
ings of the IEEE, 99(9), 1525–1540.

Zhou, K., Roumeliotis, S. I., et al. (2011).Multirobot active target track-
ing with combinations of relative observations. IEEE Transactions
on Robotics, 27(4), 678–695.

Zhou,L.,&Tokekar, P. (2018).Active target trackingwith self-triggered
communications in multi-robot teams. IEEE Transactions on
Automation Science and Engineering, 99, 1–12.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Yoonchang Sung received the
B.S. and M.S. degrees from the
Department of Mechanical Engi-
neering, Korea University, Seoul,
Korea, in 2011 and 2013, respec-
tively. He is currently working
toward the Ph.D. degree with the
Department of Electrical and Com-
puter Engineering, Virginia Tech,
Blacksburg, VA, USA. His main
research interests include algorith-
mic robotics, path planning, com-
putational geometry, and coopera-
tive robotics.

123

http://tomopt.com/docs/quickguide/quickguide006.php

Autonomous Robots (2020) 44:57–73 73

Ashish Kumar Budhiraja received
the B.S. and M.S. degrees from
IIT Bombay, India and Virginia
Tech, Blacksburg, VA, USA,
respectively. He is currently work-
ing at Apple.

Ryan K. Williams is an Assis-
tant Professor in the Department
of Electrical and Computer Engi-
neering at Virginia Polytechnic
Institute and State University. He
received the BS degree in com-
puter engineering from Virginia
Polytechnic Institute and State
University and the Ph.D. degree
in electrical engineering from the
University of Southern California,
in 2005 and 2014, respectively.
His research interests include con-
trol, cooperation, and intelligence
in distributed multi-node systems,

topological methods in cooperative phenomena, and distributed algo-
rithms for optimization, estimation, inference, and learning. He
received the Viterbi Fellowship, and has been featured by various news
outlets, including the L.A. Times, and has a patent pending for his
work on high-speed AUVs. He is a member of the IEEE.

Pratap Tokekar is an Assistant
Professor in the Department of
Electrical and Computer Engineer-
ing at Virginia Tech. Previously,
he was a Postdoctoral Researcher
at the GRASP lab of University
of Pennsylvania. He obtained his
Ph.D. in Computer Science from
the University of Minnesota in
2014 and Bachelor of Technol-
ogy degree in Electronics and
Telecommunication from College
of Engineering Pune, India in
2008. He is a recipient of the
NSF CISE Research Initiation Ini-

tiative award. His research interests include algorithmic and field
robotics, and cyber physical systems, and their applications to preci-
sion agriculture and environmental monitoring.

123

	Distributed assignment with limited communication for multi-robot multi-target tracking
	Abstract
	1 Introduction
	2 Related work
	2.1 Multi-robot target tracking
	2.2 Multi-robot task assignment
	2.3 Local algorithms

	3 Problem description
	4 Distributed algorithms
	4.1 Local algorithm
	4.1.1 Local algorithm from floreen2011local
	4.1.2 Realization of local algorithm for SATA
	4.1.3 Advantages of the local algorithm

	4.2 Greedy algorithm

	5 Simulations
	5.1 Comparisons with centralized solutions
	5.2 Effect of h for the local algorithm
	5.3 Multi-robot multi-target tracking over time
	5.4 Comparison of the greedy algorithm with other CMOMMT algorithm

	6 Conclusion
	Acknowledgements
	A Proof of lemma 1
	B Proof of lemma 2
	C Greedy performs poorly for the Bottleneck variant
	References

