
Autonomous Robots (2019) 43:2011–2032
https://doi.org/10.1007/s10514-019-09848-1

Multi-robot planning with conflicts and synergies

Yuqian Jiang1 · Harel Yedidsion1 · Shiqi Zhang2 · Guni Sharon3 · Peter Stone1

Received: 3 March 2019 / Accepted: 15 March 2019 / Published online: 28 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Multi-robot planning (mrp) aims at computing plans, each in the form of a sequence of actions, for a team of robots to achieve
their individual goals, while minimizing overall cost. Solving mrp problems requires modeling limited domain resources
(e.g., corridors that allow at most one robot at a time), and the possibility of action synergy (e.g., multiple robots going
through a door after a single door-opening action). Optimally solving mrp problems is hard as it is a generalization of
the single agent planning domain which is known to be NP-hard, and frequently requires considering the states of all the
robots, resulting in an exponentially growing joint state and action space. In many mrp domains, robots encounter situations
where they have conflicting needs for constrained resources, or where they can take advantage of what each other is doing
to form synergies. In this article, we formulate the problem of multi-robot planning with conflicts and synergies (mrpcs),
and develop a multi-robot planning framework, called iterative inter-dependent planning (iidp), for representing and solving
mrpcs problems. Within the iidp framework, we develop the algorithms of increasing dependency and best alternative which
exhibit different trade-offs between plan quality and computational efficiency. Extensive experiments covering the suggested
algorithms have been performed using both an abstract-domain simulator, where we can automatically generate a variety of
domain configurations, and a practical mrpcs instantiation that focuses on multi-robot navigation. In the navigation domain,
we model plan costs with temporal uncertainty, and present a novel shifted-Poisson distribution for accumulating temporal
uncertainty over actions. In comparison to baseline approaches, our algorithms produce significant reductions in overall plan
cost, while avoiding search in the joint state space. In addition, we present a complete demonstration of the implementation
of the model on a team of real robots.

Keywords Multi-robot planning · Planning under temporal uncertainty · Intelligent mobile robotics

B Harel Yedidsion
harel@cs.utexas.edu

Yuqian Jiang
jiangyuqian@utexas.edu

Shiqi Zhang
szhang@cs.binghamton.edu

Guni Sharon
guni@tamu.edu

Peter Stone
pstone@cs.utexas.edu

1 Department of Computer Science, The University of Texas,
Austin, USA

2 Department of Computer Science, The State University of
New York, Binghamton, USA

3 Computer Science & Engineering, Texas A&M University,
Texas, USA

1 Introduction

Multi-agent planning has become increasingly important as
more and more systems have many autonomous agents inter-
acting in the same environment. Autonomous vehicles and
service robots in buildings are just a couple of examples. In
some multi-agent systems, each agent has its own goal and
planning knowledge, and generates plans to achieve its goal
while maximizing its own utility. Planning techniques such
as symbolic planning allowan agent to compute a sequence of
actions, by reasoning about action preconditions and effects,
to bring about state transitions in order to achieve a goal that is
unreachable using individual actions. For instance, the action
of going through a door into a room is preconditioned by the
robot being beside the door and the door being open; and the
effect is the robot’s position being changed to the new room.
When action costs are further incorporated into this planning

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-019-09848-1&domain=pdf
http://orcid.org/0000-0003-0327-0746

2012 Autonomous Robots (2019) 43:2011–2032

Fig. 1 Three of our Segway-based mobile robot platforms

process, agents can compute optimal plans that maximize
utility (or minimize cost).

When multiple robots share a physical environment (such
as our Segway-based robots, BWIBots Khandelwal et al.
(2017), that are shown in Fig. 1), it is necessary to model
how their plans interact with each other, to avoid conflicts
and to construct action synergies as much as possible.

The agents’ plans might interact such that their
independently-computed optimal plans become suboptimal
at runtime, due to constrained resources such as narrow cor-
ridors that allow at most one robot to pass. Figure 2 shows an
example of a conflict, where two robots need to go from S1 to
G1 and S2 to G2 respectively. If the robots act according to
independently-computed optimal plans, they will block each
other in a narrow corridor, causing a conflict.

On the other hand, communications within a team of
robots have the potential to leverage synergies in their plans
by coordinating amongst themselves. For instance, when a
robot knows its teammate is going to take an expensive door-
opening action, it makes sense for the robot to plan to follow
its teammate through the door instead of opening it sepa-
rately. This scenario is demonstrated in Fig. 3 which shows
the occupancy-grid map, where robot r1 and r2 are required
to move from S1 to G1 and from S2 to G2 respectively. The
floor is separated into two areas by two doors in the middle,
D1 and D2.Without collaboration, r1 and r2 will plan to per-
form the expensive door opening procedure independently of
each other and go through D1 and D2 respectively. The glob-
ally optimal solution is, while r1 is taking the expensive “call
for open” action, r2 moves to D1 and waits until r1 “opens”
D1 (with human help).

One of the key challenges to planning for such resource
sharing and leveraging synergy is the inherent temporal
uncertainty in the duration of robots’ actions at runtime,
which is largely overlooked in existing research. While such
conflicts can be resolved locally at runtime [e.g., two robots
detecting a conflict at runtime can “negotiate” to decide who
gives way to the other Wong and Kress-Gazit (2015)], we

argue a better solution is to avoid such conflicts at planning
time.

The contributions of this article include:1

– The formulation of the multi-robot planning with con-
flicts and synergies (MRPCS) problem;

– A novel, Iterative Inter-Dependent Planning (IIDP)
framework for coordinating single-robot plans, which is
the main contribution of this article;

– Two algorithms that implement the IIDP framework for
solving mrpcs problems;

– A model of temporal uncertainty in MRPCS problems;
– Systematic evaluations of the framework and algorithms,
including demonstrations on real robots.

iidp is generally applicable to mrpcs problems via utiliz-
ing single robot planners. However, iidp is not restricted to
specific planners, forms of noisy action durations, or appli-
cation domains. The iidp framework provides a high-level
coordination protocol for a team of planning agents, to com-
municate their plans and produce plans with overall lower
costs than independently generated plans, while efficiently
using constrained resources.

The general structure of an iidp algorithm suggests that
each robot iteratively computes and saves the conditionally
optimal plan given other robots’ current plans. Each robot
then exchanges plans with the others and re-plans accord-
ingly. The iterative “negotiation” and re-planning process
continues until the robots either reach an agreement or use
up the maximum number of iterations.

While the general iidp framework can accommodate a
diverse set of algorithms varying in the decision process they
employ to re-plan, we introduce and focus on a study of two
specific iidp algorithms in this article. The proposed iidp

algorithms have different trade-offs between computational
complexity and plan quality. The first is the best alter-

native (BA) algorithm, which aims to iteratively find the
agent with the best alternative plans, and have this agent
change its plan. The second algorithm is the increasing

dependency (ID) algorithm, which increasingly considers
the cost of interactions in a finite number of iterations. The
agents start from completely ignoring interactions with other
agents in the first iteration, and end with full consideration
of interactions in the last iteration. Intuitively, this is a multi-
round negotiation process, where the agents proceed from
independent planning to full consideration of conflict costs
and synergy benefits.

1 This article is based upon a previous conference publication (Zhang
et al. 2017). It extends the conference paper in formalizing a framework
for multi-robot planning, proposing a novel algorithm, and testing the
algorithms on larger scale problems of up to 50 agents as opposed to 3.
None of the material (including the conference paper) has appeared in
any other journal submission.

123

Autonomous Robots (2019) 43:2011–2032 2013

Fig. 2 An example showing a
conflict between the individually
optimal plans of two robots

Fig. 3 Floor map showing a
potential synergy between two
robots going from S1 to G1 and
S2 to G2 respectively. D1 and
D2 are closed doors

The most important property of iidp is that it does not
increase an mrpcs problem’s dimensionality beyond that of
a single agent and never considers the joint-agent state-action
space,while still being able to produce good quality solutions
(Sect. 4). iidp is named as being “inter-dependent” because
an important step in the implementation of iidp algorithms
calls an external algorithm that computes an optimal plan for
a robot under the condition of other robots’ current plans (i.e.,
this planning process depends on existing plans). While this
inter-dependent planning algorithm is an important compo-
nent of any iidp realizations, the iidp framework is general
and is not restricted to any specific inter-dependent planning
algorithm.

As a secondary contribution of this article, we model and
solve a specific mrpcs problem, namely multi-robot naviga-
tion, using the iidp framework. The aim of applyingmrpcs to
this specific domain includes illustrating thewhole process of
instantiating iidp, demonstrating the need of modeling tem-
poral uncertainty inmrpcs problems, comparing the two new
iidp algorithms (BA and ID), and evaluating the performance
of iidp in a real-world problem.

In both the instantiated realworld problemand the abstract
virtual domain, we observe that our iidp algorithms reduce
the overall plan cost compared to baseline algorithms. In the
experiments with real robots, the use of the iidp framework
enables a team of robots to avoid going into the same corridor
at planning time, and leverages action synergy by sharing
door-opening actions.

Although we primarily use a team of indoor mobile robots
for demonstration and evaluation purposes in this article, the
developed framework and algorithms are general enough to

be applicable to a variety of other domains. For instance, one
setting where multi-robot interaction and coordination are
crucial, is the autonomous vehicle planning domain (Dres-
ner and Stone 2008). Here conflicts can manifest as traffic
jams while synergies can be formed by platooning, which in
turn can yield energy saving, lower congestion, and improved
safety (Tsugawa and Kato 2010).

The remainder of this article is organized as follows. Sec-
tion 2 discusses existing research on multi-agent planning,
and provides context for our contribution. Section 3 defines
the mrpcs problem. Section 4 presents our iidp framework
as well as the two algorithms developed under this frame-
work. Section5provides technical details of instantiating iidp
using the specific domain of multi-robot navigation, includ-
ing modeling temporal uncertainty in navigation actions.
Section 6 details the experiment setup and results, includ-
ing demonstrations on a real multi-robot system. Section 7
concludes this article, and provides a few open problems for
future work.

2 Related work

iidp algorithms solve problems by iteratively using a two-
stage process: in the first stage, each agent employs a single
agent planner, while in the second stage the agents exchange
plans and negotiate over dependencies. We begin the review
of related work with single-agent planners followed by a
detailed discussion of multi-agent planners.

Planning was one of the earliest research areas in arti-
ficial intelligence, and aims at helping an agent to plan a

123

2014 Autonomous Robots (2019) 43:2011–2032

sequence of actions to accomplish complex tasks that are
impossible using individual actions. The key to formaliz-
ing a planning problem is the description of actions. Action
description languages (or action languages) have been devel-
oped for describing preconditions and effects of actions, and
can be used for describing planning domains. The strips lan-
guage (Fikes andNilsson 1972), as part of the Shakey project
(Nilsson 1984), is the earliest action language. We refer the
interested reader to a journal article that reviewed early action
languages (Gelfond and Lifschitz 1998), where the focus
was mainly on developing languages that are more natu-
ral and concise in describing planning domains. Nowadays,
pddl Ghallab et al. (1998) is arguably the most widely used
action language that is supported by a variety of planning
algorithms and implementations (Helmert 2006; Hoffmann
and Nebel 2001). pddl was developed for and maintained
by the International Planning Competition (ipc) community
since 1998. bc is an action language that is particularly
attractive for robotic applications because it can represent
recursive fluents, indirect action effects and defaults (Lee
et al. 2013), and bc programs can be solved using systems
such as Clingo Gebser et al. (2014). While we use bc in this
work, it should be noted that iidp, as an efficient multi-robot
planning framework, is not restricted to any action languages
or planning systems.

Multi-agent planning Multi-agent planning (map) is
a variant of the automated planning domain where plans
must be computed for multiple agents acting in a joint
state space. A line of publications offered a formal planning
language description for representing map, including multi-
agent extension of strips (Boutilier and Brafman 2001),
Multi-agent Planning Language (mapl) (Brenner 2003),
Concurrent strips (cstrips) (Oglietti and Cesta 2004),
ma- strips(Brafman and Domshlak 2008), and ma- pddl

(Kovács et al. 2012). A competition of distributed and multi-
agent planning took place in 2015 as part of the workshop
on distributed and multi-agent planning. The problems in
that competition were formulated in the ma- pddl language.
Among the solvers that participated, the adp planner (Crosby
et al. 2013) ranked first in the centralized track and the psm
planner (Komenda 2016) ranked first in the distributed track.
The problem domain for that competition was limited to sce-
narioswithmultiple agents that are not self-interested and are
working together to synthesize a joint plan that solves a com-
mon goal. All agents wish thereby for the goal to be reached
at the end of the task execution and all share a common util-
ity function. The work covered in this article, by contrast,
considers self-interested agents, each with a specific and pri-
vate goal. Moreover, the utility functions and action costs
are not assumed to be common among the different agents.
The agents’ collaboration behaviors produced in this article
are a result of the agents leveraging each other’s actions and

avoiding competing for constrained resources, where neither
is detrimental to the individual agents’ own interests.

Multi-robot symbolic planning Action languages,
including pddl, have been used for symbolic planning for
a team of robots Filippidis et al. (2012), Alur et al. (2013),
Knepper et al. (2013), Buehler and Pagnucco (2014), Wong
and Kress-Gazit (2015, 2016). However, they either do not
model possible runtime conflicts (assuming that plans com-
puted can be successfully executed to the end without any
interruptions (Knepper et al. 2013; Buehler and Pagnucco
2014) or aim at resolving conflicts locally at runtime (Fil-
ippidis et al. 2012; Alur et al. 2013; Wong and Kress-Gazit
2015, 2016). As an example of locally resolving conflicts,
two robots that compete for a narrow corridor can “negoti-
ate” to make sure one robot gives way to the other (Wong and
Kress-Gazit 2015). Such conflict-resolving actions can be
very expensive in practice, yielding locally optimal solutions.
Very recently, a time-boundedmulti-robot planning approach
was developed for a team of logistics robots (Schäpers et al.
2018). Like this article, they considered action durations via
temporal planning. Unlike this article, they did not consider
the uncertainty in action durations, and their planning system
models a limited time horizon (of 3 min) to reduce the search
space.

While iidp can be applied to multi-agent planning prob-
lems, it is particularly useful to multi-robot systems, where
a team of physical agents frequently have to avoid con-
flicts (due to limited resources) and build action synergies
when possible. In comparison to these existing methods, our
proposed iidp algorithms compute high-quality, joint plans,
while successfully avoiding computing plans in a joint space.
We also model noisy action durations, as one of the factors
that affect runtime conflicts, and avoid such conflicts (in prob-
ability) at planning time.

Multi-robot task allocation (MRTA) mrta aims at allo-
cating a set of tasks to a set of robots. mrta includes a
family of problems that can be classified based on the number
of tasks a robot can execute at a time (single-task ver-
sus multi-task), the number of robots each task requires at
most (single-robot vs. multi-robot) and if planning is needed
(instantaneous versus time-extended) (Korsah et al. 2013).
In this article, the robot team starts with each robot having a
fixed taskwith noopportunity to transfer tasks to other robots,
assuming the availability of a single-task, single-robot, time-
extended mrta algorithm. More details on the assumptions
made in this article are available in Sect. 3. In practice, it
should be noted that mrta algorithms by themselves cannot
compute symbolic plans.

Multi-robot scheduling A multi-robot scheduling prob-
lem’s input includes a set of robots and a set of tasks. The
output is a schedule that is for each task an allocation of one
or more time intervals to one or more robots (Brucker 2007;

123

Autonomous Robots (2019) 43:2011–2032 2015

Zhang and Parker 2013; Coltin and Veloso 2014). Recent
work on multi-robot scheduling further considers tempo-
ral uncertainty (in a multi-robot navigation task) (Brooks
et al. 2015). However, in scheduling algorithms, generally
a predefined and fixed set of tasks are given and need to be
scheduled whereas in planning algorithms, actions are gen-
erated to achieve a final goal. Hence scheduling algorithms
cannot be used for generating action sequences in complex
domains that require reasoning about actions.

Multi-robot probabilistic planning Contemporane-
ously with symbolic planning, (po)mdp-based planning
techniques have been extensively studied in the literature.
Existing (po)mdp-based research has studied: planning with
concurrent actions (Mausam and Weld (2008); Smith and
Weld (1999)), planning under temporal uncertainty (Guo
and Hernández-Lerma 2009; Younes and Simmons 2004),
incorporating temporal logic into navigation task planning
(Fentanes et al. 2015), and planning for multi-robot sys-
tems using a single (po)mdp (Khandelwal et al. 2015),
multiple (po)mdps (Zhang et al. 2013), and dec- pomdps
(Amato et al. 2015). Such algorithms are good at handling
non-deterministic action outcomes using probabilities and
planning toward maximizing long-term reward.

In contrast, symbolic planning techniques, such as strips,
pddl and bc, fall into a very different planning paradigm,
where the input are action preconditions and effects, non-
deterministic action outcomes are handled by plan monitor-
ing and replanning, and the output is a sequence of actions.
Therefore, symbolic planning, in comparison to (po)mdp-
based, is more suitable to problems where there are many
potential goals and human-interpretable plans are required.

Multi-robotmotion planning Existing work has investi-
gated the problem of multi-robot concurrent task assignment
and motion (trajectory) planning (Turpin et al. 2014; Ma
and Koenig 2016). Given N robots and N goal locations,
the algorithms aim to find a suitable assignment of robots to
goals and the generation of collision-free, time parameterized
trajectories for each robot. Although such motion planning
algorithms are complimentary to our multi-robot symbolic
task planning algorithm, theirmethods are applicable to prob-
lems that require only navigation actions and they do not
model noisy action durations (assuming no runtime delays).
Similar drawbacks exist when considering the task of multi-
robot path planning which has received much attention lately
(Sharon et al. 2015, 2013;Hönig et al. 2016).Moreover, such
planners usually consider the joint-agent state/action space
which limits their scalability. A prominent example is pre-
sented in Alonso-Mora et al. (2018) where an ltl encoding
of motion Raman et al. (2013) is used as a centralized map

system.

Distributed constraint optimization (DCOP) The dcop
framework (Modi et al. 2003) has been extensively used for

modeling and solving distributed multi-agent coordination
problems, ranging from virtual agents (Matsui et al. 2008),
meeting scheduling (Hoang et al. 2016), emergency vehicles
(Ferreira et al. 2009), and sensor networks (Lesser et al. 2012)
to mobile robot teams (Jain et al. 2009; Yedidsion and Zivan
2016). In this body of work, the papers that applied dcop to
real robots only considered one action at each iteration; to
the best of our knowledge no previous work has incorporated
dcop with planning so that agents reason about a sequence
of actions at every iteration.

In this article, we develop the iidp framework and algo-
rithms that compute a joint plan for a team of robots, without
computing plans in a joint search space, significantly improv-
ing the planning efficiency compared to central planning
techniques and baseline algorithms such as independent or
sequential planning.

3 Definition of MRPCS problems

In this sectionwedetail the assumptions taken to represent the
Multi-Robot planning with conflicts and synergies (mrpcs)
problem and formally define it.

Distributed system: We assume the set of robots are dis-
tributed, in the sense that each has its own goal, knowledge
representation, and the ability to plan a sequence of actions
to achieve that goal. We assume that each robot can work
on at most one task at a time and each task requires only
one robot,which corresponds to “single-robot”, “single-task”
multi-robot planning problems (Gerkey and Matarić 2004).
The tasks are not transferable among robots, and there is no
priority to one robot’s task over another’s. Agents’ tasks are
loosely coupled, such that one agent’s action can affect the
cost of another’s, but there is no action that strictly requires
the collaboration of two or more agents.

Communication: We assume that agents are able to com-
municate with each other reliably, anytime, anywhere about
resources required by their current plans (e.g., which corri-
dors are needed and when), which can be realized by directly
communicating about the agents’ plans.

Resource sharing and action synergies: Collaborations
among robots are realized via resource sharing and con-
structing action synergies. We assume the agents share the
same environment and constrained resources, e.g., corridors
that allow one robot at a time. Agents are self-interested
and are unwilling to sacrifice their utility to improve social
welfare. However, they are indifferent to taking actions that
help other agents without introducing extra costs in their own
goal achievement, such as sharing door openings or leading
a platoon.

123

2016 Autonomous Robots (2019) 43:2011–2032

Uncertainty: We assume that action outcomes are deter-
ministic, but action durations and costs are uncertain. For
instance, two robots running into each other in a narrow cor-
ridor (that probabilistically allows only one robot at a time)
can still achieve their original navigation goals, but resolv-
ing this conflict causes both robots significant extra costs (in
the form of extra time to complete navigation actions). This
setting motivates the robots to plan to avoid such conflicts.

Homogeneity: Weassume that the robots are homogeneous,
i.e., all robots share the same set of actions, and action out-
comes (deterministically or probabilistically) are the same
while being executed on different robots.

Costs: The agents estimate expected costs of their own plans
according to the current plans of other agents. Each agent can
model its own action costs and interaction costs (i.e. changes
in action costs caused by conflicts and synergies). For exam-
ple, the time for a robot to execute a navigation action at
normal speed is an individual action cost, and the time it is
blocked by another robot is an interaction cost. Interaction
costs are asymmetric, i.e., a difference in cost for one agent
in an interaction is not necessarily the same difference in
cost for its counterpart. We model collaboration failures of
constrained resources as finite costs (i.e., soft constraints).

Following the above assumptions, an mrpcs problem can
be specified in the form of 〈N ,D,A,S,G,F〉:

– N is a set of robots. |N | = N
– D is a description of the environment, including objects,
their properties, and their relations.

– A is a set of robot actions, each a ∈ A being described
by its preconditions, effects, and cost CA(a).

– S is a set of states in which each is the current state for a
robot: si ∈ S is the state of the i th robot and |S| = N .

– G is a set of goal states in which each corresponds to
a robot: gi ∈ G is the goal state of the i th robot and
|G| = N .

– T is a set of interactions in which each is a set of actions
{a0, a1, ...} that lead to conflicts or synergies when exe-
cuted at the same time. The cost of an interaction t ∈ T
is CT (t).

The domain description D includes the environmental
information that does not change over time. For instance,
two rooms being directly accessible to each other should be
included in D (whereas through-door accessibility should
not, because it can be changed by robot actions). Action
description A focuses on robot capabilities of making
changes in the domain, e.g., a door-opening action can
change a door’s property from “closed” to “open”. A robot’s
current state, s ∈ S, and goal, g ∈ G, are specified by values
of domain properties. D and A correspond to the rigid and

dynamic laws of action languages respectively (examples in
Sect. 5.1).

The overall goal of solving an mrpcs problem is to maxi-
mize overall system utilities under the assumption that agents
are self-interested, i.e., to find the user equilibrium with
the best social welfare. The means of efficiently solving an
mrpcs problem is by providing the agents with an algorithm
that will determine when and what they communicate with
each other, and when and how they plan and re-plan. The
solution is a set of plans P = {p0, p1, . . . , pN−1}, one for
each robot, where the objective is tominimizeC(P), the total
costs of actions and the expected costs of interactions:

C(P) =
N−1∑

i=0

∑

a∈pi

CA(a) +
∑

t∈T ∩P

CT (t) · Pr(t, P) (1)

where T ∩ P is the set of interactions that can be enabled by
actions in P , and Pr(t, P) is the probability that t occurs if
P is executed (with temporal uncertainties).

4 The IIDP framework and two IIDP
algorithms

Optimally solving multi-robot planning problems requires
modeling spaces of both joint states and joint actions. The
exponentially increasing number of joint actions and possi-
ble inter-dependencies of concurrent actions make optimal
multi-robot planning challenging. The complexity of multi-
robot planning is analyzed in Wagner and Choset (2015).
When we further consider noisy action costs, such as the
temporal uncertainty in action durations, themrpcs problem
becomes extremely difficult, even if the number of robots
and the length of individual plans are within a reasonable
range. In this section, we aim to provide a general solution to
Multi-Robot Planning with Conflicts and Synergies (mrpcs)
problems that cannot be solved using existing methods.

It is observed that single-robot symbolic task planning
methods typically abstract away lower-level planning such
as continuous motion planning, and focuses on finding a
sequence of higher-level actions required to achieve a goal
task. Similar to that abstraction process, our Iterative Inter-
Dependent Planning (iidp) framework for mrpcs problems
abstracts away the process of single-robot planning and
focuses on creating a mechanism that enables the agents to
efficiently reason about conditional plans. We further define
the inter-dependent cost function C(p, P M) to be a function
that estimates the sum of individual action costs of a plan p,
and the interaction costs with a set of other robots M and
their current plans P M . The implementation of C(p, P M)

requires the modeling of action preconditions, effects, and

123

Autonomous Robots (2019) 43:2011–2032 2017

costs, which is highly domain dependent and hence its devel-
opment is independent of iidp.

4.1 The general structure of an IIDP algorithm

Algorithm 1 iidp: The general framework for mrpcs prob-
lems
Input: A state si , and goal gi for robot ri .
Output: Plan pi

1: Generate initial plan pi , where si
pi−→ gi

2: while stop_condition()==false do
3: Send pi to other robots in the system
4: M = M(ri), the set of robots to consider
5: Receive P M , plans from robots in M
6: pi=compute_plan(P M)
7: end while
8: return pi

The general structure of the iidp algorithms is depicted in
Algorithm 1,

It defines an iteration-based negotiation, where in each
iteration, each agent computes a plan, sends it to the other
agents and receives theirs, then decides whether to switch to
an alternative plan. The input of iidp includes robot ri ’s initial

and goal states (si and gi). The s
p−→ g symbol represents

that plan p leads to state transitions from initial state s to
goal g. In the end of the program, plan pi is returned. The
framework assumes that all the robots concurrently run the
same algorithm. M(ri) is a function that returns a subset
of robots that ri should consider. The implementation ofM
is orthogonal to the iidp framework and is purposely left
flexible to allow domain-dependent optimization of planning
time. For example, to apply the iidp framework to a building-
wide team of robots, it is reasonable to assume interactions
can only occur among spatially close robots, and make M
return the robots that are currently on the same floor as ri .
The notation P M represents the set of plans of robots in the
subset M .

4.2 The BEST ALTERNATIVE algorithm

Algorithm 2 shows the Best Alternative algorithm.
In this algorithm, the agents reason about which one has

the best alternative plan and the one with the best alterna-
tive switches to its alternative plan2. The difference between
the inter-dependent cost of the current plan and the inter-
dependent cost of the best alternative plan for robot ri is:
δi = C(pi , P M) − C(p̂i , P M).

The stopping condition for this algorithm is realized when
no agent has a better alternative plan. Since reaching this con-

2 Ties can be broken in favor of the agent with the longest action
sequence or by any other metric.

Algorithm 2 The Best Alternative algorithm
Input: A state si , and goal gi for robot ri , and max number of iterations

Θ

Input: Max number of iterations Θ

Output: Plan pi

1: Generate initial plan pi = argminp

(
C(p, {})

)
, where si

p−→ gi

2: for each k ∈ {0, 1, . . . , Θ} do
3: Send pi to other robots in the system
4: Get the set of robots to consider M = M(ri), and receive their

plans P M

5: Generate best alternative plan p̂i = argminp

(
C(p, P M)

)
,where

si
p−→ gi

6: Compute the cost difference δi = C(pi , P M) − C(p̂i , P M)

between the current plan and the best alternative plan
7: Send δi to other robots and receive updated plans P M

8: if δi > max{δP M } then
9: Change current plan to p̂i
10: else
11: if δi == max{δP M } & ri wins tie breaking rule then
12: Change current plan to p̂i
13: end if
14: end if
15: if ∀ j ∈ N \ ri , δ j ≤ 0 then
16: break
17: end if
18: end for
19: return pi

dition cannot be guaranteed, we added a limit on the number
of iterations to ensure termination.

It should be noted that in Line 5, the operation of argmin
requires a symbolic task planner for computing a sequence of
actions while minimizing the overall plan cost. The notion of
distributed optimization through using individual best alter-
native was appropriated from the maximum gain message
(MGM) algorithm (Maheswaran et al. 2004) and its adapta-
tion to mobile agent teams (MGM_MST) with dynamically
changing constraints (Zivan et al. 2015).

4.3 The INCREASING DEPENDENCY algorithm

Algorithm 3 shows the increasing dependency algo-
rithm.

Informally, it iteratively computes and saves the con-
ditional “optimal” plan for each robot given other
robots’ current plans. In each iteration, the cost of con-
flict penalty increases (from zero in the first iteration
to its full cost in the last iteration) and the utility of
enabling a synergy increases (from 0 to full cost reduc-
tion).

Θ is an important parameter that represents how many
rounds of negotiations the robots can perform before final-
izing their plans, where a negotiation means a robot updates
its plan based on plans of (not necessarily all) its teammates.

123

2018 Autonomous Robots (2019) 43:2011–2032

Algorithm 3 The increasing dependency algorithm
Input: A state si , and goal gi for robot ri .
Input: Θ: number of rounds of “negotiations”, Θ ≥ 0
Input: N≺

j A predefined (arbitrary) order over N
Output: Plan pi

1: Generate initial plan pi = argminp

(
C(p)

)
,where si

p−→ gi

2: Send pi to other robots
3: Get the set of robots to consider, M = M(ri)

4: Receive the updated plans of M≺i , which is the subset of agents in
M who precede i according to N≺

j
5: α = 0
6: pi = argminp

(
C(p, P M≺i

, α)
)
,where si

p−→ gi

7: for each k ∈ {1, . . . , Θ} do
8: Send pi to other robots
9: Get the set of robots to consider M = M(ri), and receive their

plans P M

10: α = k/Θ

11: pi = argminp

(
C(p, P M , α)

)
,where si

p−→ gi

12: end for
13: return pi

The value of Θ influences the performance of increasing
dependency in the following way. In lines 7–12, we enter
a for-loop that has Θ + 1 iterations, where α is a negoti-
ation depth parameter that incrementally grows by 1/Θ in
each iteration (Line 10). The loop continues untilα reaches 1.
Intuitively, the negotiation depth measures howmuch a robot
considers its teammates: when α = 0, it totally “ignores” its
teammates (conflicts have no cost and collaboration failures
have high costs); when α = 1, it considers its teammates as
important as itself (costs are not discounted). Inter-dependent
planning is conducted in Line 11,wherewe compute the opti-
mal conditional plan while minimizing the conditional plan
cost given the current plans of its M≺i ⊆ M dependent team-
mates that precede it in the planning order N≺

j , which is a
predefined (arbitrary) order over N .

The difference between the increasing dependency

algorithm and the best alternative algorithm is that in the
best alternative algorithm the agents calculate alterna-
tive plans according to the full costs of plan dependencies. On
the other hand, in the increasing dependency algorithm,
agents explore the range of solutions between no depen-
dency and full dependency to detect better solutions that lie
in between these two extremes.

4.4 Illustrative examples

We make the following assumptions in the following exam-
ples:

1. Robots conflict at a node if they arrive at the same time
step (even when they are moving in the same direction).

2. Costs of conflicts are cumulative, i.e. the cost of two con-
flicts is higher than the cost of one conflict. This allows

s3s2s1

BA

C

g3g2g1

10 3

1

1

1 1

3 1

1 1
Three robots r1, r2, r3

Conflict cost = 100

Fig. 4 Example for the different behavior of the two algorithms. In this
example increasing dependency outperforms best alternative.
By using the best alternative algorithm, agents r1 and r2 conflict
and the total cost is 105, while using the increasing dependency

algorithm, results in no conflict and a solution cost of 10

the algorithm to minimize the probability of conflicts, if
not possible to avoid them completely.

3. Robot i starts at si and plans to go to gi .

An illustrative example is shown in Fig. 4 to reflect
the difference between the algorithms’ performance. In
this example increasing dependency outperforms best
alternative. Consider three robots (r1, r2, and r3) with
their respective start and goal states (si → gi). Nodes A, B
and C represent constrained states which cause conflicts if
two agents reach them at the same time step. The edges rep-
resent actions that transition from one state to another while
the numbers next to each edge represent the cost of taking
that action. Conflict costs are modeled by a very large num-
ber � 100. In the best alternative algorithm, the agents
would start by selecting their best independent plans:

r1 : s1 → A → C → g1
r2 : s2 → A → C → g2
r3 : s3 → B → g3

This set of plans creates two conflicts for robots r1 and r2
in nodes A and C . Robot r1’s best alternative is to take an
expensive action (100) directly to its goal g1. Robot r2’s best
alternative is to go through node B and still have one conflict
with robot r3. In this case only robot r1 will switch and the
resulting solution cost is 105.

In the increasing dependency algorithm, the initial
plans would be the same but as conflict costs increase to
2, agent r2 will switch to the plan that goes through node B,
followed by agent r3 switching to a direct action to g3 result-
ing in no conflict and a solution cost of 10, which is also the
optimal solution in this case.

Figure 5 provides an example where best alternative

outperforms increasing dependency. Consider two robots

123

Autonomous Robots (2019) 43:2011–2032 2019

Fig. 5 Example for the different behavior of the two algorithms. In this
example best alternative outperforms increasing dependency

(r1, r2) with their respective start and end states (si → gi).
Node A represents a constrained state which causes a conflict
if two agents reach it at the same time step. The edges rep-
resent actions that transition from one state to another while
the numbers next to each edge represent the cost of taking
that action. Conflict costs are modeled by a cost of 100 for
each robot. In the best alternative algorithm, the agents
would start by selecting their best independent plans:

r1 : s1 → A → g1
r2 : s2 → A → g2

This set of plans creates a conflict for robots r1 and r2 in node
A. Robot r1’s best alternative is to take s1 → g1 directly to
its goal with a cost of 4 resulting in δ1 = 101 − 4 = 97 .
Robot r2’s best alternative is to go directly to its goal with a
cost of 2 resulting in δ2 = 100 − 2 = 98. In this case only
robot r2 will switch and the resulting solution cost is 1+2=3,
which is the optimal solution.

In the increasing dependency algorithm, the initial
plans would be the same but in the first round of negotia-
tion, as the conflict costs increase to 5, agent r1 will switch
to the plan that goes directly to g1 incurring a cost of 4. Agent
r2 which is the second in the planning order would not switch
its plan since now it has no conflict, resulting in a solution
cost of 4, which is not the optimal solution in this case.

4.5 Baseline algorithms

A very crude baseline to compare inter-dependent planning
algorithms against is simply having the agents greedily com-
pute individual plans without considering those of other
agents (which is the initial stage of the iidp algorithm’s plan-
ning process).

A slightly more advanced baseline would be a single
sequence of inter-dependent planningwhere each agent plans
according to the plans of the agents in front of it in a set order.
We call this algorithm single order.

In fact, we can see both of these baseline algorithms as
variations of the increasing dependency algorithm.When
Θ = 0, the robots compute plans independently, because we
define α = 0 which results in the independent planning

algorithm. When Θ = 1, there is only one round of negoti-
ation which results in the single order configuration. The
performance of single order is sensitive to the order of
the robots being planned for, because a given robot consid-
ers all robots in front of it (in plan queue QM) but none of
the robots after it. An extreme case is that the N th robot’s
updated plan is not considered by any of its teammates.When
Θ > 1, there are multiple rounds of negotiations and we get
the intended increasing dependency algorithm.

Finding the best order requires going over all possible N !
orderings. As another baseline, we propose the best order

algorithm which provides the solution achieved by the best
possible sequential planning order.

Algorithm 4 The best order algorithm
Input: A state si , and goal gi for robot ri .
Input: N≺, A set of all possible N ! orderings of the elements in N
Output: Plan pi
1: for each j ∈ {0, 1, . . . , N !} do
2: N≺

j = the j-th ordering in N≺
3: if i == 0 then
4: Send pi to agent i + 1, According to N≺

j
5: else if i = N then
6: Receive pi from agent i − 1

7: pi = argminp

(
C(p,D, pi−1)

)
,where si

p−→ gi

8: Send pi to agent i + 1
9: else
10: Receive pi from agent i − 1

11: pi = argminp

(
C(p,D, pi−1)

)
,where si

p−→ gi

12: end if
13: end for
14: return pi

We present examples as evidence that neither the best

order nor increasing dependency algorithms always
finds the optimal plan.

Figure 6 shows an example where increasing depen-

dency outperforms best order (Left) and an example
of best order outperforms increasing dependency

(Right).3

In the left diagram of Fig. 6, the individual plans can
possibly conflict at nodes A and D. increasing depen-

dency successfully avoids both conflicts by suggesting plan
(s1 → A → C → g1, s2 → B → D → g2), producing
the optimal solution. best order will try two orderings:
1 → 2 and 2 → 1. single order with planning order

3 Note that in this example best alternative performs the same as
increasing dependency and sowe only refer to increasing depen-

dency.

123

2020 Autonomous Robots (2019) 43:2011–2032

Conflict cost 100

Increasing Dependency outperforms Best Order

Unless specipied otherwise edge costs are 0

s2s1

A

C

g2g1

1

B

D

1

s2s1

A

D

g2g1

B

E

1

s3

g3

C

F

2

Best Order outperforms Increasing Dependency

Fig. 6 Two examples with avoiding conflicts. The left diagram shows a
case where increasing dependency outperforms best order. The
right diagram shows a three-robot example where best order finds
the optimal plan and increasing dependency fails. Each node in the

graph represents a state of a single agent. Each edge is an action that can
be taken from the connected node. There are no self edges (the agent
can never stay in its current state). No more than one agent can be in
the same state

1 → 2 generates the plan (s1 → A → D → g1,
s2 → B → D → g2), which results in a conflict at D.
Similarly, single order with the planning order 2 → 1
generates a plan that causes a conflict at A. In this example,
increasing dependency outperforms best order.

The right diagram of Fig. 6 shows a three-robot example
where best order outperforms increasing dependency.
best order is able tofind the optimal plan (with the ordering
1 → 2 → 3): (s1 → A → D → g1, s2 → B → E → g2,
s3 → C → F → g3). increasing dependency produces
a locally optimal solution (s1 → A → D → g1, s2 → A →
D → g2, s3 → B → E → g3). r1 and r2 cannot switch
to conflict-free plans due to the plan of r3, while r3 has no
incentive to change its plan.

4.6 Complexity analysis

The complexity of the different algorithms can be analyzed
in two aspects, computation complexity and communication
complexity. The presented analysis is a function of four vari-
ables: N which is the number of robots, C which denotes the
complexity of a single inter-dependent planning operation
(C in Line 11), S R which is the complexity of a send/receive
operation in which a single robot sends out its plan to the
rest of the robots and receives their plans, andΘ which is the
negotiation depth.

1. The best alternative algorithm has O(Θ · (C +
N · S R)) complexity in the worst case since the algo-
rithm runs for Θ times at most, and at each iteration all
the robots compute their plans simultaneously (C). The

send/receive operation is multiplied by N to account for
systems where the communication is sequential.

2. The increasing dependency algorithm requires that
each robot performs one inter-dependent planning oper-
ation, and one send/receive operation at each negotiation
depth. The inter inter-dependent planning for each robot
is done in a sequential manner (one robot at a time) sum-
ming up to a total complexity of O(Θ · N · (C + S R)).

3. Thebest order algorithmhas O(N !·N ·(C+S R)) com-
plexity because for every possible order (N !), every robot,
by order (N), performs a single inter-dependent plan-
ning operation (C), and a send/receive operation (S R).
The best order algorithm is therefore not applicable to
large instances and will only be discussed in relation to
small scale examples.

Note that none of the above variants of the iidp framework
produce a contingency plan. Uncertainty in action duration
might lead to a plan’s failure during runtime. In such cases,
the iidp framework is reactivated in order to compute a valid
plan. In theory, a plan might fail at every time step resulting
in a new call to the iidp planner. In such cases, the complexity
analysis provided above should be multiplied by a factor of
T , where T is the planning horizon.

5 An instantiation of IIDP

In this section, we instantiate iidp using a multi-robot nav-
igation task. Symbolic task planning techniques are needed
because robots need to reason about between-room accessi-

123

Autonomous Robots (2019) 43:2011–2032 2021

bilities and plan to open doors as needed. The single-robot
version of this domain (without modeling noisy action dura-
tions) has been studied in existing research Khandelwal et al.
(2014), Zhang et al. (2015). In this section, we present
our symbolic planner, shifted-Poisson distributions for accu-
mulating temporal uncertainty over actions, and a novel
algorithm for computing conditional plan cost under tem-
poral uncertainty.

5.1 Single-robot symbolic planning using BC

We use action language bc Lee et al. (2013) for symbolic
planning in this work because it can formalize defaults
and recursively defined action effects (e.g., two rooms are
accessible to each other if each of them is accessible to
a third room). However, the algorithms developed in this
article are not restricted to specific action languages or sym-
bolic planners. We adapt existing formulations of bc-based,
single-robot navigation tasks Khandelwal et al. (2014),
Zhang et al. (2015) for multi-robot settings. For instance,
we use the following rules to define the ownership between
rooms and doors:

hasdoor(l1, d1). hasdoor(l1, d2). hasdoor(l2, d2). . . .

default ¬hasdoor(L, D).

where, R and D represent a room and a door respectively.
The last rule above is a default for reasoning with incomplete
knowledge: it is believed that room R does not have door D
unless there is evidence supporting the contrary.

Action description,A, includes the rules that formalize the
preconditions and effects of actions that can be executed on
each robot. We use fluents open(D), facing(D), beside(D),
and loc(L) to represent door D is open, the robot is facing
door D, the robot is beside door D, and the robot is in room
L . Robot identities are not included in the representation of
a robot’s location, loc(L), because a robot’s state does not
model the state of other robots.

Robot actions include approach(D), opendoor(D),
cross(D), and waitforopen(D), where waitforopen(D)

enables a robot to wait for another robot to open door D and
is only useful in multi-robot systems. As an example of how
actions aremodeled,we arbitrarily select action cross(D) and
present its definition as below. Crossing door D changes the
robot’s location from L1 to L2, the room on the other side of
door D. The last three rules below describe the executability,
e.g., cross(D) cannot be executed if door D is not open.

cross(D) causes ¬ f acing(D).

cross(D) causes loc(L2) if loc(L1), acc(L1, D, L2).

nonexe cross(D) if loc(L), ¬hasdoor(L, D).

nonexe cross(D) if ¬ f acing(D).

nonexe cross(D) if ¬open(D).

Given a planning goal, a planner can find many solu-
tions. We select the one that minimizes the overall cost. In
implementation, to model the progress of navigation actions
(approach, in our case), we discretize distance by represent-
ing each corridor using a set of grid cells. Accordingly, each
approach action is replaced by a sequence of actions that lead
the robot to follow waypoints. We use clingo4 for solving
bc programs (Gebser et al. 2014).

5.2 Modeling noisy action durations

In single-robot systems, following the plan generated by a
symbolic planner, such as our bc-based planner, a robot can
execute actions to optimally achieve the goal. Whenmultiple
robots share an environment, their plans might interact such
that their independently-computed optimal plans become
suboptimal at runtime. In order to leverage such interactions
toward sharing resources and constructing action synergy,
it is necessary to model the temporal uncertainty (in noisy
action durations) that propagates over actions.

This subsection presents a novel model for representing
and reasoning about temporal uncertainty in the noisy dura-
tions of navigation actions. This representation is used for
not only modeling individual actions’ noisy durations but
also accumulating the uncertainty over a sequence of actions.
In this article, we consider only the temporal uncertainty
from navigation action approach(D). Deriving the proba-
bility density function (pdf) of approach(D) builds on the
following assumptions:

1. Unless explicitly delayed, the robots move at constant
velocity v. Unless specified otherwise, v = 1 in this
article.

2. A human obstacle appears within every unit distance at
a known rate, and their appearances are independent of
each other. We use λ to denote this rate.

3. While taking action approach(D), each obstacle appear-
ance causes a delay for a known amount of time, δ.4

4. Non-navigation actions do not introduce extra uncer-
tainty at run time, and navigation actions cannot be
delayed more than once.

Following Assumptions 1 and 2, we can use a Poisson
distribution to model the number of delays caused by human
appearances in a unit time and its corresponding pdf is:

f̂ (k, λ) = λk e−λ/k! (2)

where e is Euler’s number and k is the number of delays.

4 For example, such delays can be caused by forcing the robot to stop
and say “excuse me” as is done by CoBots Veloso et al. (2015).

123

2022 Autonomous Robots (2019) 43:2011–2032

Proposition 1 If X and Y are two independent discrete ran-
dom variables with a Poisson distribution: X ∼ Poisson(λ1)

and Y ∼ Poisson(λ2), then their sum Z = X + Y follows
another Poisson: Z ∼ Poisson(λ1 + λ2) (Knill 1994).

According to Proposition 1, when a robot travels for time t
(instead of unit time), the number of delays, k′, accumulates
over time and follows another Poisson distribution with a
pdf of f̂ (k′, λ′). Following Assumption 1, parameter λ′ is a
function of traveled distance d:

λ′(d) = λ · t(d) = λ · d/v (3)

Since k′ follows a Poisson distribution, we can compute
the overall time needed for traveling a distance of d:

t = tact + tdel = d/v + k′ · δ (4)

where tact = d/v, as a linear function of distance d, repre-
sents the acting time, and tdel = k′ · δ is the delayed time.

Using Eqs. 3 and 4, we can see the overall navigation time
t follows a shifted Poisson distribution with pdf:

f
(
t, λ′(d)

) =
(
λ′(d)

) t−d/v
δ ·e−λ′(d)/

(
t−d/v

δ

)
! (5)

Figure 7a visualizes two example pdfs. For instance, it
is the most likely that traveling distance d = 50 at velocity
v = 1 takes 60 time units while modeling possible delays
(instead of 50 in obstacle-free domains). It also shows that
a longer distance produces more uncertainty in completion
time. We also collected navigation time using a real robot,
and the results shown in Fig. 7b suggest that a shifted Poisson
distribution can well represent noisy durations of navigation
actions (with parameters properly set).

We further remove the parameter of λ′ and substitute
d/v with tact , and use Dist(tact , λ′) to represent a distri-
bution over possible lengths of completion time. Modeling
noisy action durations in this way paves the way to further
investigating how uncertainty is accumulated over plans that
include a sequence of actions. For instance, tact = 50 and
λ′ = 2.5 correspond to the (blue) circle-mark curve inFig. 7a.
Since (we assume) non-navigation actions do not introduce
extra uncertainty at running time, Equation 4 can be directly
applied to modeling the distribution over possible lengths of
time consumed by a sequence of actions including potentially
both navigation and non-navigation actions. A plan of form
〈a0, a1, . . .〉 can be represented as below to further model the
distribution over possible lengths of completion time of each
action. We call p an extended plan (or simply plan).

p : 〈 (a0, tact
0 , λ′

0), (a1, tact
1 , λ′

1), . . . 〉

According to Proposition 1, the time consumed by exe-
cuting the first K actions in plan p follows a distribution of:

0 50 100 150 200 250

Time consumed (moving and delay): t

0

0.1

0.2

0.3

P
(X

=
t)

d = 50m d = 150m

(a) Noisy durations of navigation actions in simulation.

0 20 40 60 80

Time consumed (moving and delay): t

0

0.1

0.2

P
(X

=
t)

Collected traveling time data
Shifted Poisson: λ = 4, tact = 53

(b) Noisy durations of navigation actions on a real robot.

Fig. 7 a pdfs of two shifted Poisson distributions used for modeling
the noisy durations of navigation actions: v = 1, δ = 5, and λ = 0.05.
A longer distance brings more uncertainty; and bA real robot navigates
in a reasonably busy corridor (28m) for 164 times. The shifted Poisson
well models the action’s noisy durations

Dist

(
K−1∑

k=0

tk
act ,

K−1∑

k=0

λ′
k

)

Therefore, Dist(tact , λ′) represents a novel distribution
that can model the temporal uncertainty that accumulates
over a sequence of actions in robot navigation problem. Note
that other application domains may require very different
representations (pdfs) for modeling their noisy action dura-
tions, and this subsection, as an illustrative example and for
the purpose of evaluating iidp, simply presents a concise pdf
representation for navigation actions.

5.3 Computing inter-dependent plan cost: C

In a two-robot system that includes robots r and r ′, p and
p′ are the robots’ extended plans. The inter-dependent plan
cost of p′ given p is the estimate of total cost robot r ′ will
consume, if r and r ′ simultaneously execute their plans, p
and p′, respectively.Different fromsingle-robot planning,we
have to consider possible conflicts and door-sharing behav-
iors (and any conflicts or synergies in general) in computing
inter-dependent plan costs. We first compute the probability
of robot r ′’s navigation action a′ overlapping p’s navigation
action a over time (parameter λ omitted from pdfs), while

123

Autonomous Robots (2019) 43:2011–2032 2023

the overlapping in space is handled by the symbolic task
planner:

Provlp(a, a′) = 1 −
∞∫

0

∞∫

t2

f s
1 (t1) f c

2 (t2) dt1 dt2

−
∞∫

0

∞∫

t1

f c
1 (t1) f s

2 (t2) dt2 dt1 (6)

where f s
1 and f c

1 are the pdfs of starting and completion
times of action a; f s

2 and f c
2 are the pdfs of starting and

completion times of action a′.
The first double integral computes the probability of the

completion of a′ being earlier than the start of a, and the
second computes the probability of the start of a′ being after
the completion of a.5

Weuse twait (a, a′) to represent the timeof robot r ′ waiting
for r to open door D, where a′ is r ′’s action and is wait-
foropen(D).

twait(a, a′) =
∞∫

0

∞∫

t2

(t1 − t2) f c
1 (t1) f s

2 (t2) dt1 dt2 (7)

where f c
1 is the pdf of the completion time of action a; and

f s
2 is the pdf of the start time of action a′.
It is possible that robot r has finished the action of going

through door D before robot r ′ arrives. In this case, robot r ′
may have avoided closer doors and has to reopen the door.
We compute the probability of such failures:

Prfail(a, a′) =
∞∫

0

∞∫

t1

f c
1 (t1) f s

2 (t2) dt2 dt1 (8)

where f c
1 is the timeof robotn completing actiona, the action

of opening door D, and f s
2 is the time of robot r ′ starting the

action of waitforopen(D), i.e., a′.
Algorithm 5 presents our algorithm for computing inter-

dependent plan cost (in our navigation domain). While
computing the cost of waitforopen(D), we need to con-
sider both the cases that have synergy and those that failed
(Lines 6–7). Although the form of temporal uncertainty
varies significantly over different robot actions, this approach
can be easily applied to other domains for sharing limited
resource and constructing “wait-for-action”-style synergies,
as long as the pdfs of the actions’ durations are available.

5 In implementation, the integrals are replaced by summation opera-
tions, because action completions only happen at specific time instances
(e.g., Fig. 7).

Algorithm 5 Computing inter-dependent plan cost (naviga-
tion)
Input: Plan p′, whose cost will be evaluated
Input: Plan set P , on which the cost of p′ is dependent
Input: α: negotiation depth
Input: (optional configuration parameters)μ : conflict cost,ω : waitforopen(D) failure

cost, and ρ : value of time
Output: C ′: overall cost of plan p′
1: C ′=0
2: for each p ∈ P do
3: for each action pair [a, a′], where a ∈ p and a′ ∈ p′ do
4: C ′ ← C ′ + cost(a′)
5: if a is opendoor(D) and a′ is waitforopen(D) then

6: C ′ ← C ′ + ρ · twait (a, a′) ·
(
1 − Prfail(a, a′)

)

7: C ′ ← C ′ + ω ·
(
1 − α · (

1 − Prfail(a, a′))
)

8: else if a and a′ are navigation actions (and overlap in space) then
9: C ′ ← C ′ + α · μ · Provlp(a, a′)
10: end if
11: end for
12: end for
13: return C ′

6 Experiments

We have implemented iidp in two domains:

1. An abstract domain that enables testing the algorithms’
performance on large scale instances of agents, state,
action, and interaction spaces.

2. An instantiated multi-robot navigation domain where
we test both in simulation and on real robots. In this
domainwe integrate temporal uncertainty into themodel.
Simulation experiments in this domain were conducted
using a realistic multi-robot simulation environment
(gazebo Koenig and Howard 2004) and a much faster
simulator that does not have an interface for visualization
or a physics engine for simulating conflict consequences.
Noisy action durations in the abstract simulator are sam-
pled from predefined distributions.

Experiments were conducted to investigate how different
values of Θ (single order vs. increasing dependency)
affect the performance in reducing overall cost, to evaluate
the necessity of modeling noisy action durations using our
probabilistic model, and to study the performance of iidp in
systems that include varying numbers of robots.

6.1 Abstract domain simulations

In this section we test the iidp framework and algorithms on
an abstract domain. The software simulator we developed
to represent mrpcs problem was designed to enable run-
ning multiple experiments with varying numbers of agents,
and different sizes of state, action, and interaction spaces.
The simulator represents the planning domain of each agent
in a graph with states as nodes and actions as edges. An
mrpcs problem can be generated by randomly selecting state

123

2024 Autonomous Robots (2019) 43:2011–2032

Fig. 8 Total cost for different
numbers of agents. increasing
dependency and best

alternative overlap

0

20

40

60

80

100

120

140

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Co
st

Number of agents

Independent Planning

Increasing Dependency

Best Alterna�ve

Fig. 9 Percentage of cost
reduction from the
independent planning

algorithm cost

-8.0%

-7.5%

-7.0%

-6.5%

-6.0%

-5.5%

-5.0%

-4.5%

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Co
st

 R
ed

uc
�o

n

Number of agents

Increasing Dependency

Best Alterna�ve

transitions and agent interactions.6 We use the problem gen-
erator to compare the performances of the iidp algorithms
with respect to the number of agents.

The parameter setting for our experiments was chosen as
follows: the number of agents N = 2...50, the number of
states in each agent’s planning domain S = 10, the number
of actions A = 4 · S, the total number of possible interactions
|T | = N · 100. The average sequence of actions per agent
from start to end goal is 5. The increasing dependency

parameter Θ = 2 · A as well as the best alternative

parameter Θ = 2 · A. The cost of every action is 1, the
cost of every conflict is an additional 1, and the benefit of a
synergy is a reduction of 1 in the cost of the action. All costs
are per action per agent.

The algorithms that were tested are: increasing depen-

dency (ID), best alternative (BA), and independent

planning (IP). For every number of agents we generated

6 The code for our simulated environment is publicly available at
https://github.com/YuqianJiang/multi_agent_planning.

100 random problems where random elements were the start
states and end goals of the agents, the mapping of actions
to states, and the pairs of actions that had conflicts or syn-
ergies. In total there were 4900 different abstract domains
generated and all three algorithms ran on all domains. The
results of every run were recorded and averaged to compare
the algorithms’ performance as displayed in Figs. 8–11.

Figure 8 displays the total cost incurred by all the agents as
they perform their plans. Each point in the graph is an average
over 100 experiments. Both ID and BA outperform IP, with
5.7% and 5.5% average reduction respectively. These differ-
ences are statistically significant with p-value < 0.05, using
a paired T-Test. The difference between ID and BA how-
ever are not statistically significant but we do observe that
ID outperforms BA in 42 out of 49 scenarios with regards
to average cost. To demonstrate that, we present Fig. 9 that
offers a closer look at the difference in cost reduction each
algorithm has in comparison with the IP baseline.

Figure 10 shows the average number of conflicts that the
agents face. Here, ID andBAalso outperform IP significantly

123

https://github.com/YuqianJiang/multi_agent_planning

Autonomous Robots (2019) 43:2011–2032 2025

Fig. 10 Number of conflicts for
different numbers of agents

0

2

4

6

8

10

12

14

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
N

um
be

r o
f

Co
nfl

ic
ts

Number of agents

Independent Planning

Increasing Dependency

Best Alterna�ve

Fig. 11 Number of synergies
for different numbers of agents

0

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

N
um

be
r o

f S
yn

er
gi

es

Number of agents

Independent Planning

Increasing Dependency

Best Alterna�ve

with 3.8 and 4.1 conflicts on average respectively compared
to 6 conflicts for IP. Despite the fact that the difference in
the average number of conflicts between ID and BA is not
statistically significant, we do observe that ID outperforms
BA in all 49 scenarios with regards to average number of
conflicts.

Figure 11 shows the average number of synergies that the
agents face. Again, ID and BA outperform IP significantly
with 8.2 and 8 synergies on average respectively compared
to 5.7 synergies for IP. ID outperforms BA in 42 out of 49
scenarios with regards to average number of synergies.

Our conclusion from this empirical evaluation is that the
iidp algorithms are scalable and invariant to the number of
agents or the size of the domain. Both proposed algorithms
outperform a independent planning significantly, and IP has a
small advantage over BA. To test robustness of these results,
we experimented with 3 times the number of interactions and
found that the results were qualitatively similar.We therefore
continue our analysis of a practical domain with the ID algo-
rithm.

6.2 Multi-robot navigation domain

In this section, we evaluate the iidp algorithms in the multi-
robot navigation domain.

Gazebo simulation (Independent Planning versus Increas-
ing Dependency) Fig. 12 (left) shows our gazebo testing
environment. We add human walkers (right) to simulate the
process of walking people causing delays to robot navigation
actions. The floormap is divided into grid cells and taking a
symbolic action (to one of the four directions) enables the
robot to move to one of the nearby cells given no obsta-
cles. Two robots need to navigate from their initial positions
(green rectangles) to their goal positions (red ellipses). The
two robots start at the same time, and we record the comple-
tion time for each of the robots. The performance is evaluated
based on the robots’ overall completion time.

Experiments in gazebo were conducted to visualize and
validate the whole process of multi-robot plan generation
and execution, and to compare increasing dependency to

123

2026 Autonomous Robots (2019) 43:2011–2032

Fig. 12 gazebo simulation
environment (and a picture of a
human walker blocking a robot)

Fig. 13 Costs of robots R1 and R2 in 45 trials collected using gazebo
simulation environment

Table 1 Average cost consumed (time) and standard deviation from
gazebo simulation experiments (reported in Fig. 13)

Increasing dependency Independent planning

Robot-1 136.34 (13.18) 238.36 (117.04)

Robot-2 104.85 (10.74) 278.72 (112.55)

Average 120.60 258.54

a baseline that computes plans for the robots independently
independent planning. The results in the form of execu-
tion costs of two robots are shown in Fig. 13. We can see
a cluster of red circles in the bottom-left, which indicates
the increasing dependency algorithm reduces the overall
plan cost. The blue squares on the left, for instance, corre-
spond to the trials where robot R2 avoids R1 by taking a big
detour (locally optimal solution). Table 1 shows the averages
of the same set of results collected from gazebo. Consider-
ing both robots, increasing dependency (M = 1,Θ = 2)
significantly reduces the average completion time frommore
than 250 s to about 120 s.

Abstract simulation (Single Order vs. Increasing Depen-
dency) In order to run a lot more trials, we use an abstract
simulator: navigation actions’ noisy durations are sampled
from a shifted Poisson distribution (Eq. 5); conflict cost is 40;
waitforopen(D) failure cost is 12; and conflicts are possible
only if both robots are taking navigation actions.7 Figure 14
shows the domain map.

The first set of experiments in abstract simulationwas con-
ducted to evaluate how the number of rounds of negotiations
(Θ in Algorithm 3) affects the overall cost. Figure 15 reports
the results: Θ = 0 means no collaborations between robots
(baseline); Θ = 1 and Θ = 2 correspond to single order

and increasing dependency respectively. Each data point
corresponds to results from 50 trials (the same for the fol-
lowing results unless stated otherwise). For instance, when
robot R1 is delayed by 5 time units, we see increasing

dependency reduces the overall cost from more than 80 to
lower than 50, and enables R1 and R2 to share door-opening
actions. When one robot starts much earlier than the other
(two ends of these curves), the overall costs are all about 45
no matter whether collaborations are enabled or not, because
they can hardly cause conflicts or share doors. Comparing
the triangle and square curves in both subfigures, we find
that increasing dependency enables more action syner-
gies than single order (via sharing door-opening actions),
even when the overall cost reduction introduced by such syn-
ergies is small.

Analysis of temporal uncertainty Our next set of experi-
ments evaluate the need for modeling temporal uncertainty,
where the baseline does not model the noise in action
durations (optimistically assuming no delays in navigation
actions). R1 needs to move from d3 in corridor cor1 to door
d4, so the best plan for R1 is to open and go through door d3
in any case. The head start of R1 varies in a relatively small
range (± 6).

Figure 16 reports the results of these experiments. When
R1 has a head start of−1, the overall cost of our increasing

7 If two robots try to pass each other, there is a significant risk that they
will bump into each other and become entangled. In contrast, at least
in our environment, we find that most people give way to the robots by
standing close to the wall.

123

Autonomous Robots (2019) 43:2011–2032 2027

Fig. 14 Abstract simulation
environment, where action
durations are generated by
sampling from pre-specified
distributions. Doors are marked
by the letter d and corridors by
cor

Fig. 15 Planning for a
two-robot system (evaluating
Θ): R1 and R2 need to move
from d2 to d9 and from d7 to d4
respectively

-20 0 20

Head start of robot R1

50

70

90

O
ve

ra
ll

co
st

=0:
=1:
=2:

-20 0 20

Head start of robot R1

0

5

10

15

20

25

30

D
oo

r
sh

ar
in

gs

=0: IP

=1: SO

=2: ID

Fig. 16 Planning for a two-robot system (evaluating the need of mod-
eling temporal uncertainty): R1 and R2 need to move from d3 (cor1
side) to d4 and from d7 to d5 respectively

dependency algorithm is smaller than the baseline by more
than ten (reduced from more than 50 to less than 40). Focus-
ing on this performance improvement, we find robot R2 can
either open the bottom door by itself or follow the first robot
through the corridor door on the top. Without modeling tem-
poral uncertainty (baseline), R2 is not aware of the risk of
being delayed while moving upward. As a consequence, R2
will be moving to door d3 (hoping to follow R1 through door
d3), even if it is in a risky situation that a single delay on the
way will make it too late to catch up with R1’s door-opening
action. The big variance in overall cost for the baseline cor-
responds to the fact that the trials where robot R2 succeeds
in following R1 through the door and the trials where it fails

produce very different overall costs. increasing depen-

dency models the noisy action durations and enables R2 to
dynamically evaluate the uncertainty from its teammate and
itself, and is able to balance the risk and potential benefit to
select the best path.

Evaluation of the effect of Θ and M In a team that includes
more than two robots, iidp algorithms have the option to con-
sider only a subset of its teammates in conditional planning
(specified by M in Algorithm 3). This set of experiments was
conducted in a teamof three robots to evaluate how the size of
M affects the performance of iidp. Accordingly,we adjust the
value of Θ (single order vs. increasing dependency)
and the value of |M |. In this experiment, |M | = 1 means M
contains only the teammate right before ri in the arbitrary
order N≺

j . Robots R2 and R3 have different head starts
before R1’s plan execution. The subfigures of Fig. 17 report
the results of nine different head start combinations. In each
subfigure, the x-axis corresponds to one of the four increas-
ing dependency configurations, and the y-axis corresponds
to the overall cost. We do not see significant differences over
the four increasing dependency configurations in most
head start combinations. This corresponds to our expecta-
tion that, when the robots’ plans do not have (much) overlap
in time, their plan executions do not affect each other and it is
unlikely to have conflicts or construct synergy. In themiddle-
left and bottom-middle subfigures, we see considering two
other robots (instead of one) significantly reduces the cost of
robot R3 and the overall cost.

Table 2 shows the performance of the four increas-

ing dependency configurations. The reduction of average
cost by considering plans of all other robots is significant,

123

2028 Autonomous Robots (2019) 43:2011–2032

Fig. 17 Planning for a
three-robot system (overall cost
under four configurations of
increasing dependency): R1,
R2 and R3 need to move from
d1 to d9, from d6 to d4, and
from d10 to d8 (cor1 side)
respectively

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

2
1

1
2

2
1

1
2

2
1

1
2

Table 2 Mean and standard deviation values of the four configurations
in Fig. 17. Given |M | = 2, the average overall cost using increasing

dependency is significantly different from that of single order (v-
value=0.0128)

Number of teammates considered
in conditional planning

|M | = 1 |M | = 2

SO : Θ = 1 207.81 (66.24) 179.28 (9.81)

ID : Θ = 2 205.35 (62.25) 171.03 (9.99)

regardless of Θ’s value: p-value=0.03 when Θ = 1, and
p-value=0.02 when Θ = 2. Given all other robots are
considered in conditional planning, increasing depen-

dency performs significantly better than single order

(bold font). However, when only one other robot is con-
sidered, we do not see a significant difference between
increasing dependency and single order (the left two
columns). Therefore, increasing dependencywith |M | =
2 performs significantly better than all three other configu-
rations.

Robot trial Collecting statistical results using multiple
robots on navigation tasks can be difficult in practice, because
the robots sometimes take a very long time to finish a trial,
especially when the collaborations are not successful, and
robot collisions can cause physical damage to the robot plat-
forms and sometimes to the environment. However, in order
to demonstrate that our methods can be used to enable two
real robots to collaborate by constructing an action synergy,
we present an illustrative (successful) trial in the real world.

Wehave implemented the two configurations of increas-
ing dependency and all actions formalized in action lan-
guageBC, including approach(D), opendoor(D), cross(D),
and waitforopen(D), on a team of real robots.

Figure 18 shows a picture of R2 (robot on the right) wait-
ing to follow R1 (robot on the left) through door D1, using
increasing dependency.

A video of this trial is available at: https://youtu.be/

ADbH3sppLHQ.

123

https://youtu.be/ADbH3sppLHQ
https://youtu.be/ADbH3sppLHQ

Autonomous Robots (2019) 43:2011–2032 2029

Fig. 18 Using increasing dependency, two robots construct action
synergy by sharing a door-opening action: robot R1 asks for help from
a human for opening the door and is executing the gothrough action,
while robot R2 is waiting to follow R1 through the door

7 Conclusions and future work

We introduce the multi-robot planning with conflicts and
synergies (mrpcs) problem, and develop a novel, iterative
inter-dependent planning (iidp) framework and algorithms.
We propose two algorithms for iidp, increasing depen-

dency and Best Alternative. We test the algorithms in
an abstract domain which enables scaling to a large number
of robots. We also instantiate iidp on a multi-robot naviga-
tion problem with temporal uncertainty, where we introduce
a shifted Poisson distribution to represent robot navigation
delays and present a novel algorithm for computing con-
ditional plan cost. In experiments, we observe that iidp

algorithms bring significant improvements against baselines
where robots do not coordinate their plans, or coordinate
but do not model temporal uncertainty, and increasing

dependency enables more collaborative synergies and less
conflicts, compared to independent planning and sin-

gle order. Finally, we implement iidp on real robots and
present a demo where the robots share plans to realize a
synergy.

There are a number of ways to make improvements in
this line of research. For instance, Sect. 3 includes a list
of assumptions, which might not hold in some domains. A
relatively strong assumption made in this article is that the
robots can reliably communicate among the team members
with zero cost. Future work can look into scenarios where
robot communications are unreliable, delayed, or expen-
sive. The single-robot, single-task assumption, as described
in Sect. 3, can be removed in future work, e.g., to con-
sider tasks that require two robots to move a box that
is too heavy for individuals. The evaluation of our iidp

framework in the real world was primarily using a team
of mobile robots conducting navigation tasks. There are
a number of other multi-robot tasks that can be used for
evaluations, such as human guidance, dual-arm manipula-
tion, and object delivery. The developed iidp framework

was evaluated only using a homogeneous team of robots.
After implementing and evaluating the iidp framework with
homogeneous teams, natural follow-up work is to apply the
developed iidp framework to heterogeneous teams or human-
robot teams. The communication cost of human-robot teams
will likely be much higher than multi-robot systems. How-
ever, given the increasing presence of collaborative robots
in everyday environments, the potential impact of apply-
ing iidp to human-robot collaboration domains will be
significant.

Acknowledgements This work has taken place in the Learning Agents
Research Group (LARG) at the Artificial Intelligence Laboratory,
The University of Texas at Austin. LARG research is supported in
part by grants from the National Science Foundation (IIS-1637736,
IIS-1651089, IIS-1724157), the Office of Naval Research (N00014-18-
2243), Future of Life Institute (RFP2-000), DARPA, Intel, Raytheon,
and Lockheed Martin. Peter Stone serves on the Board of Directors of
Cogitai, Inc. The terms of this arrangement have been reviewed and
approved by the University of Texas at Austin in accordance with its
policy on objectivity in research.

References

Alonso-Mora, J., DeCastro, J. A., Raman, V., Rus, D., & Kress-Gazit,
H. (2018). Reactive mission and motion planning with deadlock
resolution avoidingdynamic obstacles.Autonomous Robots,42(4),
801–824.

Alur, R., Moarref, S., & Topcu, U. (2013). Counter-strategy guided
refinement of gr (1) temporal logic specifications. In Formal
Methods in Computer-Aided Design (FMCAD), IEEE, 2013, (pp.
26–33).

Amato, C., Konidaris, G., Cruz, G., Maynor, C. A., How, J. P., & Kael-
bling, L. P. (2015). Planning for decentralized control of multiple
robots under uncertainty. In 2015 IEEE International Conference
on Robotics and Automation (ICRA), (pp. 1241–1248).

Boutilier, C., & Brafman, R. I. (2001). Partial-order planning with
concurrent interacting actions. Journal of Artificial Intelligence
Research, 14, 105–136.

Brafman, R. I., & Domshlak, C. (2008). From one to many: Planning
for loosely coupled multi-agent systems. In ICAPS, 28–35.

Brenner, M. (2003). A multiagent planning language. In Proceedings
of the Workshop on PDDL, ICAPS, Vol. 3, (pp. 33–38).

Brooks, J., Reed, E., Gruver, A., & Boerkoel Jr., J. C. (2015). Robust-
ness in probabilistic temporal planning. In National Conference
on Artificial Intelligence (AAAI).

Brucker, P. (2007). Scheduling algorithms. Berlin: Springer.
Buehler, J., & Pagnucco, M. (2014). A framework for task planning in

heterogeneous multi robot systems based on robot capabilities. In
Twenty-Eighth AAAI Conference on Artificial Intelligence.

Coltin, B., & Veloso, M. (2014). Scheduling for transfers in pickup
and delivery problems with very large neighborhood search. In
Twenty-Eighth AAAI Conference on Artificial Intelligence.

Crosby, M., Rovatsos, M., & Petrick, R. P. (2013). Automated agent
decomposition for classical planning. In ICAPS, 46–54.

Dresner, K., & Stone, P. (2008). A multiagent approach to autonomous
intersection management. Journal of Artificial Intelligence
Research, 31, 591–656.

Fentanes, J. P., Lacerda, B., Krajnik, T., Hawes, N., & Hanheide, M.
(2015). Now or later? predicting and maximising success of nav-

123

2030 Autonomous Robots (2019) 43:2011–2032

igation actions from long-term experience. In IEEE International
Conference on Robotics and Automation (ICRA), (pp. 1112–1117).

Ferreira, P. R., dos Santos, F., Bazzan, A. L. C., Epstein, D., &
Waskow, S. J. (2009). Robocup rescue as multiagent task allo-
cation among teams: experiments with task interdependencies.
Autonomous Agents and Multi-Agent Systems, 20, 421–443.

Fikes, R. E., & Nilsson, N. J. (1972). Strips: A new approach to the
application of theorem proving to problem solving. Artificial intel-
ligence, 2(3), 189–208.

Filippidis, I., Dimarogonas, D. V., & Kyriakopoulos, K. J. (2012).
Decentralized multi-agent control from local ltl specifications. In
2012 IEEE 51st IEEE Conference on Decision and Control (CDC),
(pp. 6235–6240).

Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2014). Clingo
= ASP + control: Preliminary report. CoRR, abs/1405.3694.

Gelfond, M., & Lifschitz, V. (1998). Action languages. Electronic
Transactions on Artificial Intelligence, 3, 195–210.

Gerkey, B. P., & Matarić, M. J. (2004). A formal analysis and taxon-
omy of task allocation in multi-robot systems. The International
Journal of Robotics Research (IJRR), 23(9), 939–954.

Ghallab, M., Knoblock, C., Wilkins, D., Barrett, A., Christianson, D.,
Friedman, M., Kwok, C., Golden, K., Penberthy, S., Smith, D. E.,
Ying, S., Weld, D. (1998). Pddl-the planning domain definition
language. 501–510.

Guo, X., & Hernández-Lerma, O. (2009). Continuous-time Markov
decision processes. Berlin: Springer.

Helmert, M. (2006). The fast downward planning system. Journal of
Artificial Intelligent Research, 26, 191–246.

Hoang, K. D., Fioretto, F., Hou, P., Yokoo, M., Yeoh, W., Zivan,
R. (2016). Proactive dynamic distributed constraint optimiza-
tion. In Proceedings of the 2016 international conference on
autonomous agents & multiagent systems. International Foun-
dation for Autonomous Agents and Multiagent Systems, (pp.
597–605).

Hoffmann, J., & Nebel, B. (2001). The ff planning system: Fast plan
generation through heuristic search. Journal of Artificial Intelli-
gence Research, 14, 253–302.

Hönig, W., Kumar, T. S., Cohen, L., Ma, H., Xu, H., Ayanian, N., &
Koenig, S. (2016). Multi-agent path finding with kinematic con-
straints. In ICAPS, 477–485.

Jain, M., Taylor, M. E., Yokoo, M., & Tambe, M. (2009). DCOPs
meet the real world: Exploring unknown reward matrices with
applications to mobile sensor networks. In Proceedings of the
International Joint Conference on Artificial Intelligence.

Khandelwal, P., Barrett, S., & Stone, P. (2015). Leading the way: An
efficient multi-robot guidance system. In Proceedings of the 2015
International Conference on Autonomous Agents and Multiagent
Systems, (pp. 1625–1633).

Khandelwal, P., Yang, F., Leonetti, M., Lifschitz, V., & Stone, P. (2014).
Planning in Action Language BC while Learning Action Costs for
Mobile Robots. In International Conference on Automated Plan-
ning and Scheduling (ICAPS).

Khandelwal, P., Zhang, S., Sinapov, J., Leonetti, M., Thomason, J.,
Yang, F., Gori, I., Svetlik, M., Khante, P., & Lifschitz, V. et al.
(2017) Bwibots: A platform for bridging the gap between ai and
human–robot interaction research. The International Journal of
Robotics Research.

Knepper, R. A., Layton, T., Romanishin, J., & Rus, D. (2013). Ikeabot:
An autonomous multi-robot coordinated furniture assembly sys-
tem. InRobotics and Automation (ICRA), 2013 IEEE International
Conference on, (pp. 855–862).

Knill,O. (1994).Probability and stochastic processes with applications.
Overseas Press.

Koenig,N.,&Howard,A. (2004).Design anduse paradigms for gazebo,
an open-source multi-robot simulator. In Intelligent Robots and

Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ Inter-
national Conference on, Vol. 3, pp. 2149–2154.

Komenda, A., et al. (2016). Privacy-concerned multiagent planning.
Knowledge and Information Systems, 48(3), 581–618.

Korsah, G. A., Stentz, A., & Dias, M. B. (2013). A comprehensive tax-
onomy for multi-robot task allocation. The International Journal
of Robotics Research, 32(12), 1495–1512.

Kovács, D. L. (2012). A multi-agent extension of pddl3. 1.
Lee, J., Lifschitz, V., & Yang, F. (2013). Action language bc: Prelimi-

nary report. In Proceedings of the Twenty-Third international joint
conference on Artificial Intelligence, pp. 983–989. AAAI Press.

Lesser, V., Ortiz, C. L, Jr., & Tambe, M. (2012). Distributed sensor
networks: A multiagent perspective (Vol. 9). Berlin: Springer.

Ma, H., & Koenig, S. (May 2016). Optimal target assignment and
path finding for teams of agents. In International Conference on
Autonomous Agents and Multiagent Systems (AAMAS).

Maheswaran, R. T., Pearce, J. P., & Tambe,M. (2004). Distributed algo-
rithms for dcop:Agraphical-game-based approach. InParallel and
Distributed Computing Systems (PDCS), (pp. 432–439).

Matsui, T., Matsuo, H., Silaghi, M., Hirayama, K., &Yokoo,M. (2008).
Resource constrained distributed constraint optimization with vir-
tual variables. In AAAI, (pp. 120–125).

Mausam, & Weld, D. S. (2008). Planning with durative actions in
stochastic domains. Journal of Artificial Intelligence Research, 31,
33–82.

Modi, P. J., Shen, W.-M., Tambe, M., & Yokoo, M. (2003). An asyn-
chronous complete method for distributed constraint optimization.
AAMAS, 3, 161–168.

Nilsson, N. J. (1984). Shakey the robot. Technical report, SRI INTER-
NATIONAL MENLO PARK CA.

Oglietti, M., Cesta, A. (2004). Cstrips: Towards explicit concurrent
planning. InProceedings of the 3rd Italian WS on Plan. and Sched.,
9th National Symposium of Association Italiana per l’Int. Artif,
(pp. 1–13).

Raman, V., Piterman, N., & Kress-Gazit, H. (2013). Provably correct
continuous control for high-level robot behaviors with actions of
arbitrary execution durations. InRobotics and Automation (ICRA),
2013 IEEE International Conference , (pp. 4075–4081).

Schäpers, B., Niemueller, T., Lakemeyer, G., Gebser, M., & Schaub, T.
(2018). Asp-based time-bounded planning for logistics robots. In
ICAPS, (pp. 509–517).

Sharon, G., Stern, R., Felner, A., & Sturtevant, N. R. (2015). Conflict-
based search for optimal multi-agent pathfinding. Artificial Intel-
ligence, 219, 40–66.

Sharon,G., Stern, R., Goldenberg,M.,&Felner, A. (2013). The increas-
ing cost tree search for optimal multi-agent pathfinding. Artificial
Intelligence, 195, 470–495.

Smith, D. E., & Weld, D. S. (1999). Temporal planning with mutual
exclusion reasoning. IJCAI, 99, 326–337.

Tsugawa, S.,&Kato, S. (2010). Energy its: another application of vehic-
ular communications. IEEE Communications Magazine, 48(11),
120–126.

Turpin, M., Michael, N., & Kumar, V. (2014). Capt: Concurrent
assignment and planning of trajectories for multiple robots. The
International Journal of Robotics Research, 33(1), 98–112.

Veloso, M. M., Biswas, J., Coltin, B., & Rosenthal, S. (2015). CoBots:
Robust symbiotic autonomous mobile service robots. In Pro-
ceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence (IJCAI).

Wagner, G., & Choset, H. (2015). Subdimensional expansion for mul-
tirobot path planning. Artificial Intelligence, 219, 1–24.

Wong,K.W.,&Kress-Gazit, H. (2015). Let’s talk:Autonomous conflict
resolution for robots carrying out individual high-level tasks in a
sharedworkspace. InRobotics and Automation (ICRA), 2015 IEEE
International Conference , (pp. 339–345).

123

Autonomous Robots (2019) 43:2011–2032 2031

Wong, K. W., & Kress-Gazit, H. (2016). Need-based coordination for
decentralized high-level robot control. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

Yedidsion, H., & Zivan, R. (2016). Applying dcop_mst to a team of
mobile robots with directional sensing abilities. In Proceedings
of the 2016 International Conference on Autonomous Agents &
Multiagent Systems, pp. 1357–1358. International Foundation for
Autonomous Agents and Multiagent Systems.

Younes, H. L., & Simmons, R. G. (2004). Solving generalized semi-
markov decision processes using continuous phase-type distribu-
tions. In The AAAI Conference on Artificial Intelligence.

Zhang, S., Jiang,Y., Sharon,G.,&Stone, P. (2017).Multirobot symbolic
planning under temporal uncertainty. In Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems, pages
501–510. International Foundation for Autonomous Agents and
Multiagent Systems.

Zhang, S., Sridharan, M., &Washington, C. (2013). Active visual plan-
ning for mobile robot teams using hierarchical POMDPs. IEEE
Transactions on Robotics, 29(4), 975–985.

Zhang, S., Yang, F., Khandelwal, P., & Stone, P. (September 2015).
Mobile robot planning using action language bcwith an abstraction
hierarchy. In Proceedings of the 13th International Conference
on Logic Programming and Non-monotonic Reasoning (LPNMR),
Lexington, KY, USA.

Zhang, Y., Parker, L. E. (2013). Multi-robot task scheduling. In IEEE
International Conference on Robotics and Automation (ICRA),
(pp. 2992–2998).

Zivan, R., Yedidsion, H., Okamoto, S., Glinton, R., & Sycara, K. P.
(2015). Distributed constraint optimization for teams of mobile
sensing agents. Journal of Autonomous Agents and Multi-Agent
Systems, 29, 495–536.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Yuqian Jiang is a Ph.D. student
in the Computer Science Depart-
ment at the University of Texas at
Austin. Her main research inter-
ests are robotics and AI, with spe-
cific interests in planning and
learning techniques that support
service robot architectures. Yuqian
received B.S. degrees in Com-
puter Science and Mathematics
from UT Austin in 2017. Her
undergraduate honors thesis first
compares the performance of two
task planners of different
formalisms in a robot navigation

domain, and then presents an algorithm to efficiently plan for a team
of mobile robots while minimizing total expected costs.

Harel Yedidsion is currently a
postdoctoral researcher in the
Computer Science Department at
the University of Texas at Austin.
His main research interest is how
to design intelligent multiagent
systems such as teams of robots
that can efficiently cooperate to
solve tasks in a dynamic envi-
ronment. For this end he devel-
ops both central and distributed
algorithms for multiagent coordi-
nation. His work also touches on
Robot Perception, Manipulation,
Navigation, Human Robot Inter-

action, Natural Language Processing, Planning, Game Theory and
Reinforcement Learning.

Shiqi Zhang is an Assistant Pro-
fessor at the Department of Com-
puter Science, The State Univer-
sity of New York (SUNY) at Bing-
hamton. From 2016 to 2018, he
was an Assistant Professor with
Cleveland State University. From
2014 to 2016, he was a Post-
doctoral Fellow at the University
of Texas at Austin. He received
his Ph.D. in Computer Science
(2013) from Texas Tech Univer-
sity. Before that, he
received his Master’s (2008) and
BS (2006) from Harbin Institute

of Technology in China. He was a visiting student at Tsinghua Uni-
versity in 2007 and 2008, and interned at Microsoft Research Asia in
2012. Dr. Zhang’s research lies in the intersection of artificial intelli-
gence and robotics. He is particularly interested in developing algo-
rithms that integrate computational modalities of planning, reasoning,
and learning for service robots that work in human-inhabited, every-
day environments, such as homes, hospitals and offices.

Guni Sharon is an assistant profes-
sor in the department of computer
science and engineering (CSE) at
Texas A&M University. He
received his doctoral, master’s and
bachelor’s degrees in information
systems engineering from Ben-
Gurion University. Sharon’s cur-
rent work focuses on developing
and applying artificial intelligence
techniques for optimizing trans-
portation networks. Prior to join-
ing Texas A&M, he was a postdoc
in the computer science depart-
ment at University of Texas at

Austin. He is the recipient of the Outstanding Paper Award from the
Association for the Advancement of Artificial Intelligence (AAAI).

123

2032 Autonomous Robots (2019) 43:2011–2032

Peter Stone is the David Bru-
ton, Jr. Centennial Professor and
Associate Chair of Computer Sci-
ence, as well as Chair of the
Robotics Portfolio Program, at the
University of Texas at Austin. Pro-
fessor Stone’s research interests
in Artificial Intelligence include
machine learning (especially rein-
forcement learning), multiagent
systems, robotics, and
e-commerce. Professor Stone
received his Ph.D in Computer
Science in 1998 from Carnegie
Mellon University. From 1999 to

2002 he was a Senior Technical Staff Member in the Artificial Intel-
ligence Principles Research Department at AT&T Labs - Research.
He is an Alfred P. Sloan Research Fellow, Guggenheim Fellow,
AAAI Fellow, IEEE Fellow, AAAS Fellow, Fulbright Scholar, and
2004 ONR Young Investigator. In 2007 he received the prestigious
IJCAI Computers and Thought Award, given biannually to the top
AI researcher under the age of 35, and in 2016 he was awarded the
ACM/SIGAI Autonomous Agents Research Award. Professor Stone
co-founded Cogitai, Inc., a startup company focused on continual
learning, in 2015, and currently serves as President and COO.

123

	Multi-robot planning with conflicts and synergies
	Abstract
	1 Introduction
	2 Related work
	3 Definition of MRPCS problems
	4 The IIDP framework and two IIDP algorithms
	4.1 The general structure of an iidp algorithm
	4.2 The best alternative algorithm
	4.3 The increasing dependency algorithm
	4.4 Illustrative examples
	4.5 Baseline algorithms
	4.6 Complexity analysis

	5 An instantiation of IIDP
	5.1 Single-robot symbolic planning using bc
	5.2 Modeling noisy action durations
	5.3 Computing inter-dependent plan cost: mathcalC

	6 Experiments
	6.1 Abstract domain simulations
	6.2 Multi-robot navigation domain

	7 Conclusions and future work
	Acknowledgements
	References

