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Abstract

Robots can provide assistance to a human by moving objects to locations around the person’s body. With a well-chosen initial
configuration, a robot can better reach locations important to an assistive task despite model error, pose uncertainty, and other
sources of variation. However, finding effective configurations can be challenging due to complex geometry, a large number of
degrees of freedom, task complexity, and other factors. We present task-centric optimization of robot configurations (TOC),
which is an algorithm that finds configurations from which the robot can better reach task-relevant locations and handle
task variation. Notably, TOC can return one or two configurations to be used sequentially while assisting with a task. TOC
performs computationally demanding optimizations offline to generate a function that rapidly outputs the configurations
online based on the robot’s observations. TOC explicitly models the task, environment, and user, and implicitly handles error
using representations of robot dexterity. We evaluated TOC with a software simulation of a mobile manipulator (a PR2)
providing assistance with 9 activities of daily living to a user in a wheelchair and a robotic bed. TOC had an overall average
success rate of 90.6% compared to 50.4%, 43.5%, and 58.9% for three baseline algorithms based on state-of-the-art methods
from the literature. We additionally demonstrate how TOC can find configurations for more than one robot and can help with

the optimization of environments for assistance.

Keywords Mobile manipulation - Assistive robotics - Human-robot interaction - Robot autonomy

1 Introduction

Robotic assistance with activities of daily living (ADLs)
(Wiener et al. 1990) could potentially enable people to be
more independent. This may improve quality of life (Vest
et al. 2011; Andersen et al. 2004) and help address soci-
etal challenges, such as aging populations, high health care
costs, and shortages of health care workers found in the
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United States and other countries (Institute of Medicine 2008;
Janiszewski Goodin 2000).

Many ADLs involve manipulation around a person’s body.
For example, tasks related to hygiene, feeding, and bathing
often involve moving an object with respect to a person’s
body, such as an electric shaver, a spoon, or a sponge. As
such, a key challenge for assistive robots is reaching task-
relevant locations around a person’s body. In this paper,
we present task-centric optimization of robot configurations
(TOC), which enables robots to better position themselves
prior to providing assistance with ADLs. Figures 1 and 2
show the configurations selected for the cleaning legs task for
a user in bed and the shaving task for a user in a wheelchair,
respectively. Offline, TOC uses geometric and kinematic
models of the assistive task, the human, the robot, and the
environment to generate a function that rapidly estimates
where the robot should position itself given the observed
pose of a human body (see Fig. 4). Online, the robot uses this
function to decide where to position itself in order to provide
assistance with a task. In contrast to algorithms that only use
a model of the robot, TOC generates a function that selects
positions that take into account the human’s capabilities,
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Fig. 1 TOC can select a configuration for the PR2 and the robotic bed
so the PR2 can better reach task-relevant locations. This figure shows

the configuration for the task of a PR2 cleaning the legs of a human
model in a robotic bed

Fig. 2 TOC can model cooperative motion from the human, such as
the human model rotating its head

obstacles in the environment such as a bed or wheelchair, and
the task requirements. More specifically, the function outputs
one or two configurations of a robot from which the robot is
likely to reach a set of target end-effector poses around the
human body without collision, while achieving high dexter-
ity at the target poses. Each configuration includes the pose
of the robot’s base as well as other configurable parameters
selected for the task, such as the height of the robot’s arm.
Specialized assistive devices can help people with motor
impairments perform ADLs on their own (Canadian Partner-
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ship for Stroke Recovery 2015; The Wright Stuff, Inc. 2017).
Specialized robots, such as desktop feeding devices, have
been successful for a narrow range of assistive tasks when
placed in fixed and designated positions with respect to the
user (Topping and Smith 1998; Topping 1999). The choice
of where to place such robots is important, as it can impact
the robot’s ability to provide effective assistance. General-
purpose mobile manipulators have the advantage of mobility,
which may allow them to provide assistance across a wide
range of tasks, users, and environments (Chen et al. 2013).
However, this mobility introduces additional complexity. For
example, Hawkins et al. (2014) used two positions of a PR2
(a mobile manipulator made by Willow Garage) to provide
assistance with shaving both the left and right sides of the
face of a user in a wheelchair.

Our work focuses on the challenge of finding one or two
good configurations from which a robot can provide assis-
tance with activities of daily living (ADLs). ADLs are an
important category of task that exhibits substantial structure.
ADLs related to hygiene, bathing, and feeding can often be
usefully modeled as a sparse set of end-effector poses around
the human body. During assistance with ADLs, the human
body is often reclining in a bed or sitting in a chair. The
body’s pose can vary between sessions of assistance, and
can sometimes move during a task to help the robot reach
a task-relevant location. For robotic assistance with ADLs,
the tasks, the environment, the robot, and the user can often
be specified in advance. We have developed TOC to fit well
with this structure.

TOC performs an optimization with respect to a non-
smooth, simulation-based objective function. It performs
this optimization offline to generate a function that can
be applied rapidly online to select robot configurations
based on the robot’s run time observations. To mitigate the
effects of differences between the models used offline and
the real world encountered by the robot, TOC’s objective
function uses two representations of robot dexterity that
we developed, task-centric reachability (TC-reachability)
and task-centric manipulability (TC-manipulability). TC-
reachability and TC-manipulability help TOC efficiently
select robot configurations that are robust to error. TOC
optimizes its objective function, a linear combination of TC-
reachability and TC-manipulability, using covariance matrix
adaptation evolution strategy (CMA-ES) (Hansen 2006), a
derivative-free optimization algorithm from the literature that
only requires a function that can be evaluated.

We evaluated TOC in simulation with a PR2 assisting a
user with 9 assistive tasks in both a wheelchair and a robotic
bed. For our evaluations, we implemented three algorithms
based on state-of-the-art methods from the literature as base-
lines. The first used an inverse-kinematics (IK) solver to
select a configuration with a collision-free IK solution to
all task-relevant goal poses. The second and third algorithms
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used a capability map from Zacharias et al. (2007) to select
a configuration with high capability score to the goal poses.
The third algorithm also checked that a collision-free IK solu-
tion existed for each goal pose.

We ran Monte-Carlo simulations of pose estimation error
and found that TOC’s average success rate was higher than
or comparable to the other algorithms for each task. Suc-
cess in these simulations was the robot being able to find a
collision-free IK solution to all end-effector goal poses for
the task. TOC had an overall average success rate of 90.6%
compared to 50.4% for the IK solver, 43.5% for capability
map, and 58.9% for capability map with collision check-
ing. Additionally, we provide evidence that TOC’s objective
function is positively correlated with robustness to error, and
we demonstrate how TOC can be used to assist in designing
environments to improve robotic assistance. As we discuss
in detail in Sect. 5, our results suggest that TOC would out-
perform the other baseline algorithms in real-world tests in
the context of ADLs.

2 Related work

TOC relates to a number of past works on robot dexterity,
methods for selecting robot configurations, proxemics, and
assistive robotics.

2.1 Prior work from the authors

This paper relates to a previous conference paper and a three
page workshop paper from the authors (Kapusta et al. 2015;
Kapusta and Kemp 2016). In the conference paper (Kapusta
et al. 2015), we introduced task-centric initial configura-
tion selection (TCS) which used a brute-force, discretized
approach to find initial configurations for robots. TCS was
limited in the number of degrees-of-freedom it could handle
and the quality of the solutions it could find due to coarse
discretizations. In addition, TCS used an inferior objective
function with different terms and did not model the abil-
ity of the user to move his or her body. Finally, the offline
component of TCS output sets of configurations for online
optimization that could be large in size. This is in contrast
to TOC, which outputs an approximate function for rapid
online use that requires no further optimization.

In our brief three page workshop paper (Kapusta and
Kemp 2016), we presented a preliminary version of TOC
with minimal content, including limited descriptions, evalu-
ation, and related work. We have substantially improved the
implementation of TOC that we now present. We also pro-
vide a thorough evaluation that compares TOCs performance
against related algorithms in the literature and substantially
more thorough descriptions of the algorithm and related
work.

2.2 Representations of robot dexterity

Many metrics have been developed to quantify the kinematic
dexterity of robot manipulators. These metrics can be broadly
divided into those that use the manipulator’s Jacobian, J(q)
(Spong et al. 2006) and those that do not. These metrics
can also be divided into those that find global measures (a
metric for the robot irrespective of joint configuration) and
those that find local, configuration-dependent measures of
dexterity. Global dexterity metrics are often used for robot
design (Stocco et al. 1998; Hammond and Shimada 2011). As
we are focused on dexterity measures to assist in positioning
existing robots, we will focus on discussing local metrics.
Yoshikawa (1984) proposed the local Jacobian-based metric
called measure of manipulability (or just, manipulability),
m(q), shown in Eq. (1).

m(q) = /det(J(q)J (@)") ey

Geometrically, manipulability is proportional to the volume
of the manipulability ellipsoid of the manipulator, which is
the volume of Cartesian space moved by the end effector
for a unit ball of movement by the arm’s joints. This metric
can be useful when assessing kinematic dexterity between
different configurations of the same robot. However, its scale
and order dependencies make comparison between different
robot morphologies challenging.

Other dexterity measures were developed that address
some of the issues of using manipulability (Klein and
Blaho 1987). Kim and Khosla (1991) proposed another local
Jacobian-based metric that we refer to in this paper as kine-
matic isotropy, A(q), shown in Eq. (2).

Vdet(J (@) J (@T)

(trace(](q)](q)T)>
a

Alg) = @

Kinematic isotropy uses the manipulability term (shown
in Eq. 1) with an alteration to remove order dependency and
divided by a term to remove scale dependency. Order is the
degrees of freedom (DoF) of the Cartesian space of interest
[e.g., SE(2) or SE(3)]. For a planar robot, the order would be
three [the degrees of freedom of SE(2)] if translations are all
in a 2D plane and in-plane rotations are considered. For the
case of tasks in 6D space [position and orientation: SE(3)],
the order is six [the degrees of freedom of SE(3)].

Unlike manipulability, the values of kinematic isotropy
always range from O to 1. This may allow methods that
use kinematic isotropy to be applied to new robot platforms
more easily. In our work we modified kinematic isotropy,
adding a weighting term to create what we call joint-limit-
weighted kinematic isotropy (JLWKI). We use JLWKI in
our task-centric manipulability (TC-manipulability) defined
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in Sect. 3.7. TC-manipulability represents the kinematic dex-
terity of the robot for a task (a set of goal poses) from a set
of one or more positions of the robot.

An important limitation to some Jacobian-based measures
of dexterity is their ignorance of many relevant features of the
workspace, such as joint limits and collisions. The manipu-
lability ellipsoid calculated from the Jacobian suggests that
the end effector can move in ways that may be constrained
by joint limits. Many researchers have proposed various
ways to include these features [joint limits: Tsai (1986) and
Chan and Dubey (1995); velocity limits: Lee (1997); torque
limits: Hammond III and Shimada (2009)] into weighting
terms. Vahrenkamp et al. (2012) created what they called an
extended manipulability measure by modifying the Jacobian
to include weights on joint limits, on proximity to self-
collision, and on proximity to collision with the environment.
Many of these methods apply their weighting terms directly
to manipulability or indirectly by modifying the Jacobian,
which is used in manipulability. JLWKI differs from other
measures of dexterity, using a distinct weighting function on
joint limits and applying it to kinematic isotropy. JLWKI,
does not include costs on proximity to collision because we
found that calculating these costs increases the computation
time of TOC excessively.

Zacharias et al. (2007) introduced a method for represent-
ing manipulator dexterity without using Jacobians, which
they use to score the workspace of a robot, creating what
they call a capability map. To create the capability map they
discretize space around the robot into 3D points and dis-
cretize the range of possible orientations around each 3D
point. The capability score (also known as reachability score)
is the number of orientations for which the robot has a valid
IK solution. A way to interpret the meaning of this score is, if
a goal pose is located at the 3D location, the capability score
is similar to the probability that the manipulator can achieve
the pose.

2.3 Selecting robot configurations for mobile
manipulation

Prior research has investigated how to select configurations
for a mobile robot. A common method is to address the prob-
lemusing IK solvers (Diankov 2010; Beeson and Ames 2015;
Kumar et al. 2010; Smits 2006). The entire kinematic chain
from end effector to the robot’s base location may be solved
using IK (Gienger et al. 2005; Grey etal. 2016). Alternatively,
sampling-based methods may be used to find robot base poses
that have valid IK solutions, often as part of motion plan-
ning (Elbanhawi and Simic 2014; Stilman and Kuffner 2005;
Lindemann and LaValle 2005; Garrett et al. 2015; Diankov
etal. 2008). TOC also uses a sampling-based search method,
specifically CMA-ES, to perform its optimization of robot
configurations.

@ Springer

By relying solely on IK to ensure that the robot can
reach the goals, these prior methods are dependent on accu-
rate models. Many of these methods are fast, but may fail
if there is modeling or state estimation error. Additionally,
there are often many robot configurations with valid IK solu-
tions that cannot be distinguished using only IK, as shown
in Fig. 3 (left). All locations in green have collision-free
IK solutions to all goals, but some may result in higher
success rates than others. Success is the robot being able
to reach all goals despite state estimation error. TOC uses
task-centric manipulability to differentiate those configu-
rations, as shown in Fig. 3 (right). We show in Sect. 4.4
that higher TOC score is correlated with improved perfor-
mance for configurations that have collision-free IK solutions
to all goals. Those results provide evidence that, using
task-centric manipulability, TOC is more robust to state esti-
mation error. Additionally, TOC can find more than one
robot configuration for a task. We implemented a standard
IK sampling-based method as a baseline for comparison, as
described in Sect. 4.2.

A body of work is based on the capability map from
Zacharias et al. (2007). Capability-map-based methods are
robot-centric and task-agnostic; they are generated offline
for the robot’s manipulator and applied to tasks online. They
typically select the robot base position by overlapping the
capability map with end-effector goal poses and maximizing
the average capability score (Zacharias et al. 2009; Porges
et al. 2014; Leidner et al. 2014). Dong and Trinkle (2015)
altered the capability map by creating an orientation-based
capability map and extending the map for tools on the robot’s
end effector.

In contrast with our method, existing capability-map-
based methods do not consider collisions with the envi-
ronment in their offline computations because they do not
model the environment. Collisions are only considered at
runtime to eliminate robot base locations in collision or that
lack collision-free IK solutions. Simply selecting the robot
base location with highest capability map score is fast, but
searching for a collision-free location can take more time.
Capability maps are often used to provide a sample of base
poses that can each reach all goal poses without considera-
tion of collisions. The base poses can then be filtered based
on task constraints. Capability-map-based methods typically
only find a single location for a robot for a task, but our
method can find multiple robot configurations. We imple-
mented two capability-map-based methods as baselines for
comparison, based on Zacharias et al. (2009), as described
in Sect. 4.2.

Another body of work extends the capability map by
inverting it, creating an inverse-reachability map. While a
capability map scores end-effector poses with respect to a
robot base pose, the inverse-reachability map scores robot
base poses with respect to an end-effector pose. As with
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Fig. 3 TOC differentiates between robot configurations that have
collision-free IK solutions to all goal poses. This differentiation allows
TOC to better select good robot configurations. The figure visualizes
two scoring methods, showing the score for discretized PR2 base poses.
Z-rotation is sampled every 45° from 0° to 360°, and the best score is

the capability map, the inverse-reachability map is generated
offline for the robot’s manipulator and can be used quickly
online. For an end-effector 3D position, discretized robot
base poses are scored based on the capability map score to
that 3D position.

The inverse-reachability map is used to rapidly sam-
ple a robot base position that can reach a set of goal
end-effector poses (Diankov and Kuffner 2008; Burget and
Bennewitz 2015). Vahrenkamp et al. (2013) used an alterna-
tive representation of the robot’s dexterity from their previous
work (Vahrenkamp et al. 2012) that uses 6D poses in the
workspace. They invert that workspace representation to cre-
ate what they call an Oriented Reachability Map (ORM).
ORM, like the inverse-reachability map, scores robot base
poses based on the extended manipulability measure of each
6D pose in the manipulator’s discretized workspace. When
searching for a robot base pose for a task, they sample in
series from the ORM using the map’s score as a sampling
weight. If the sampled robot base pose has collision-free
IK solutions to the goal end-effector poses, they use that
base pose; if not they re-sample. They propose methods
to incorporate task-specific information in their extended
manipulability measure (and thus into the ORM), and to
calculate the ORM map online through what they call lazy-
ORM.

Inverse-reachability-based methods and ORM differ from
our work in a few ways. These methods are typically used

Score 0 - 1.00
0.00

Score 1.00 - 1.04

1.00
Scoring using

1.04
TOC

1.0

0.5

0.0

Y-Axis Direction (m)

-1.0

0.0 0.5 1.0 1.5 2.0
X-Axis Direction (m)

shown (left) using the percentage of goals with collision-free IK solu-
tions and (right) TOC, for the mouth wiping task in the robotic bed
environment, with the bed raised 20 cm and at 45°. The color represents
the best score for that 2D position of the PR2. 0 means no goals and
> 1 means all goals have collision-free IK solutions

in task-agnostic and robot-specific ways to facilitate appli-
cations of the robot to new tasks. Notably, these methods
only find a single location for a robot for a given task, rather
than multiple robot configurations. TOC also explicitly mod-
els features and parameters of the environment and user that
may be important to assistive tasks. Details on this modeling
is found in Sects. 3.5 and 3.6.

Most previous task-centric methods use simulation of the
task, with explicit error modeling, to evaluate robot base
poses. Hsu et al. (1999) presented a task-specific method for
selecting a place for an industrial robot manipulator to per-
form a series of tasks amidst clutter. They used randomized
path planners to generate collision-free paths for the arm and
they randomly perturbed the robot position to find positions
from which the tasks can be performed quickly.

Stulp et al. (2009) presented a task-centric method for
finding areas in which to place a mobile manipulator where
itcan successfully perform a grasping task. They used Monte-
Carlo simulation of error in the location of the object to
be grasped to find base positions with high success rates.
They simulated performance of the entire task including,
navigation, motion planning and motion execution. For real-
time base position selection, they convolved uncertainty in
robot location with base position scores to provide an area
of high-success probability. They used their method to select
a 2D position of the robot base for a grasping task. These
task-centric methods that explicitly model error and fully
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simulate task performance have only been used to select a
few degrees of freedom in static environments, and can only
select a single robot configuration for a task. In contrast, TOC
uses faster, simpler simulations and implicitly handles error.
TOC selects more degrees of freedom in configurable envi-
ronments, and, again, can select multiple robot configurations
for a task.

2.4 Human-robot proxemics

Several bodies of work have examined the proxemics of
human-robot interactions (Walters et al. 2011, 2009; Mumm
and Mutlu 201 1; Takayama and Pantofaru 2009; Walters et al.
2005).

Proxemics is the study of the spatial requirements of
humans (e.g., the amount of space that people feel they
should have between themselves and others). These works
look at acceptable interpersonal distances between humans
and robots in social settings. Various works have used the
concepts of human—robot proxemics to inform a robot when
performing tasks. These works coupled task performance
concepts with scoring methods based on proxemics to select
base positions and paths for the robot and item handover loca-
tions (Sisbot et al. 2010; Mainprice et al. 2011; Sisbot et al.
2006, 2007). Proxemics might suggest that placing the robot
in front of the person at some minimum distance is preferred
over other locations.

Kruse et al. (2013) presented a thorough survey of human-
aware robot navigation. In contrast, TOC does not consider
proxemics or social factors; it instead focuses on kinematic
aspects of the task. While proxemics is often used to consider
navigation problems, TOC focuses exclusively on selecting
the configuration for the task, which can serve as a goal pose
for navigation.

2.5 Assistive robots

Researchers have investigated the use of mobile manipulators
as assistive devices (Dario et al. 1999; Schaeffer and May
1999; Graf et al. 2009; Bien et al. 2004; Jain and Kemp 2010;
Hawkins et al. 2014).

We seek to further empower assistive mobile manipula-
tors by autonomously selecting configurations from which
they can better provide assistance. This autonomy might
improve task performance and decrease cognitive workload
for teleoperated assistive systems, as from Grice and Kemp
(2016). In this work, we have used a model of a robotic bed
that matches Autobed, a robotic modified hospital bed from
Grice et al. (2016). We have shown how TOC can optimize
the configuration of the bed, allowing improved assistance
from a mobile manipulator as part of a collaborative assis-
tive system, as from Kapusta et al. (2016). This capability is
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demonstrated in our evaluations in the robotic bed environ-
ment in Sect. 4.2.

3 Task-centric optimization of robot
configurations (TOC)

As mentioned in Sect. 1, key features of task-centric opti-
mization of robot configurations (TOC) are its task-centric
approach, representations of robot dexterity, selection of mul-
tiple configurations for a task, and framework that splits
offline and online computation. TOC is suitable for situations
when tasks and environment layouts are known beforehand
and we would like to configure the robot for these tasks such
that the robot is successful despite variations between models
and reality. By taking a task-centric approach, TOC is able
to use task-specific knowledge, such as explicit modeling of
task-relevant parameters, to better select configurations. We
will first explain the goal of TOC. Afterwards we describe
the nomenclature used in the remainder the paper. We then
explain the framework of TOC, details of its features, and
specifics of our implementation.

3.1 TOC goal: selecting good configurations

The goal of TOC is to select a good set of one or two con-
figurations for a robot to perform a task without additional
adjustments. But what constitutes a good robot configura-
tion? In this paper we use the term robot configuration as
a more general term for the pose of the robot’s base, so it
can include additional relevant parameters. For example, for
a PR2, the robot configuration might be the position and ori-
entation of the robot’s mobile base as well as the z-axis spine
height of the robot. If the PR2 were operating in a room with
a robotic bed, the degrees of freedom (e.g., the height of the
bed) of the bed could be included in the robot configuration.

While all of the empirical results we present produce one
or two configurations, for our formal treatment we allow the
number of robot configurations to be greater than two. We
consider robot configurations in sets that can be of cardinality
1 or greater; the robot can complete the entire task by adopt-
ing all configurations in the set in any order. With a good set
of configurations, the robot is more likely to be able to com-
plete the task successfully. We judge the robot’s ability to
perform the task from a set of robot configurations with one
measure: if it can reach all goal poses collision-free with its
end effector. Various forms of error, such as modeling error
or state estimation error, may cause the robot to be unable
to perform the task. Because the robot does not know how
the modeling and state estimation error will manifest apriori,
from a good set of robot configurations, the robot should be
able to perform the task despite such error.
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3.2 Nomenclature

t: A task identifier

Ny The number of goal poses for task ¢

q: A joint configuration of the robot arm. ¢ € R",
where n is the number of DoF of the arm

qi: The value for joint i in joint configurationq, g € ¢

g~ ,q": A list of the minimum and maximum values,

respectively, for the joints of a robot’s arm.
q; » q;r: The minimum and maximum values, respectively,
for joint i of a robot’s arm.
r: A set of robot configurations of cardinality > 1,
r = {r1,r,...,ry}, where n is the number of
robot configurations in set r. We used n € {1, 2}
in our implementation of TOC for our evaluation.
The estimated optimal robot configurations given
current observations, the output of the online por-
tion of TOC.
h: The set of uncontrollable parameters, discretized
into {hy, hy, h3, ...}

h: The uncontrollable parameters observed and esti-
mated at run time, the input to the online portion
of TOC.

b: The set of free parameters, discretized into {b1, b,
b3, ...}

p: Set of position and orientation end-effector goal

poses p € R®. p depends on ¢, i, and b, but we do
not explicitly denote these dependencies in order
to simplify our notation. p = {p1, p2, ..., pn,}.
Spoxt Set of IK joint configuration solutions to goal p
fromrobot configurationr, s, x =1{q,q>, ..., 4,},
where n is the number of IK solutions
a: The order of the robot arm. In our case, 6.

J(@)

The Jacobian of the arm in joint configuration ¢
A(g): The kinematic isotropy for the arm in joint config-
uration ¢
f: A function that takes /1 as input and outputs 7.

TOC generates f offline and applies it online.

3.3 Framework

Figure 4 shows the framework of TOC for our implemen-
tation described in Sect. 4 for a person on a robotic bed.
TOC is split into an offline portion, which includes most of
its computation, and an online portion. Offline, it performs
the optimization of robot configurations and approximates a
function that can be used online to select robot configura-
tions for a task. The optimization takes as input task-relevant
models (e.g., task, robot, user, and environment models) and
a sample of the uncontrollable parameters (e.g., the position
of the human model on the bed), 4. It outputs an optimized
robot configuration, r, for that 4. The 4 inputs and r outputs

Robots, Human, & Environment Models

=
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- ‘
L
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Task Model

Human Poses @&
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e of robot Goal Poses
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Approximate
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Current
Human Pose, /i

Fig.4 This is a visualization of TOC’s framework. The offline portion
of TOC takes as input task-relevant models and samples of the uncon-
trollable parameters and outputs optimized robot configurations. It then
approximates a function that is used online to estimate the optimal robot
configurations given the current, observed uncontrollable parameters

Estimated Optimal
Configurations, *

Online

of the optimization are used to approximate the function,
f that takes as input the observed estimated uncontrollable
parameters, h and outputs the estimated optimal configura-
tions, 7*. The function f is applied online, at run time. The
estimated optimal configurations, 7" should allow the robot
to perform the task despite errors in state estimation (e.g.,
estimating h) and in modeling (e.g., models do not exactly
match reality).

3.4 Task modeling

Our aim with task modeling is to create a representation that
allows TOC to efficiently evaluate a robot’s ability to perform
a task. There are many tasks that consist of manipulation of
small objects or tools around a person’s body, that we expect
can be well modeled by a set of goal poses (Cartesian posi-
tions and quaternion orientations) with respect to relevant
reference frames. We manually model each task as a sparse
set of poses for the robot’s end effector. For example, Fig. 5
shows the eight goal poses with respect to the human model’s
head that make up our model of a shaving task. We assume
that if the robot can reach all goal poses, it is likely to be
able to perform the task. However, we expect there to be dif-
ferences between the models and the real tasks. We consider
these discrepancies to be a form of modeling error that TOC
accounts for when selecting robot configurations.

3.5 Environment modeling

Using its environment model, TOC finds robot configura-
tions that avoid collisions with obstacles, such as a bedside
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Fig. 5 The manually selected goal poses for the shaving task. Each
arrow represents a 6-DoF end-effector goal pose (a position and an
orientation) with respect to the head. This shows views from the front
and side

table or walls. TOC can use different resolutions for its envi-
ronment model depending on the needs of the task. A room
could be be represented simply as a wall behind the bed, as
shown in Fig. 1, or it could contain models of furniture and
other potential obstacles. The resolution of each object model
could range from a block to a detailed mesh. TOC uses three
types of objects to model the environment:

— Fixed objects
— Controllable movable/configurable objects
— Uncontrollable movable/configurable objects

The object types are distinguished by parameters that
define them. Fixed objects are static objects in the world that
cannot be moved and must be avoided by the robot. Their
shapes, poses, and configurations are static. The other two
types of objects are configurable, having some parameters
that may be changed, such as their pose in the environment
or their configuration (e.g., the height of an adjustable bed).

We add the configuration of the controllable movable/
configurable objects to the robot configuration space that
TOC optimizes, as the robot can control their configurations.
An example of a controllable object is an adjustable bed.

For uncontrollable movable/configurable objects, TOC
samples the possible configurations of the objects and then
optimizes robot configurations for each sample. At run
time, the robot observes the configurations of uncontrollable
objects and uses these observations to select robot configu-
rations. An example of an uncontrollable object is a bed, or
more specifically, the position of a bed with respect to the
walls of the room. The bed’s position in the room could be
moved by a person prior to the robot starting the task, but is
not easily adjusted by the robot.

Using controllable and uncontrollable movable objects,
TOC can suggest alterations to the environment that may
improve task performance. Uncontrollable movable objects
can also be used to generate robot configurations for possible
states of the environment. This may be beneficial for envi-
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ronments, such as hospitals, where there are a few possible
room layouts, but the robot may not know which layout will
be relevant until it reaches the room.

Because TOC does not include a cost in proximity to col-
lision between the robot and the environment in its objective
function, we include a margin of safety in the environment
model by expanding the environment model (we used ~ 3 cm
in our evaluations). This safety margin reduces the risk of
collision in the case of model or state estimation error, with-
out having to explicitly include closeness to collision in the
objective function.

3.6 User modeling

TOC’s user model can be customized for a user to better
locate relevant parts of the body, and to allow more accu-
rate collision-checking. In our evaluation of TOC, we used a
mesh model of a human designed around a 50 percentile male
from Tilley (2002), shown in Fig. 1. TOC uses three types of
parameters for the human model’s joint configuration:

— Environment-driven parameters
— Uncontrollable parameters
— Free parameters

Environment-driven parameters are dependent on the state
of the environment model. As such, the extent to which the
robot can control them depends on the robot’s control of the
environment. For example, a human model’s configuration
would depend on the angle of the backrest of an adjustable
bed, and the robot may be able to control the backrest.

Uncontrollable parameters of a human model are treated
similarly to uncontrollable movable objects. For uncontrol-
lable parameters, TOC samples the possible configurations
of the human model and then optimizes robot configurations
for each sample. At run time, the robot observes the con-
figuration of the human body and uses this observations to
select robot configurations. An example of an uncontrollable
parameter is the position of the human model on the bed, if
the robot is unable to shift the body on the bed.

Free parameters represent degrees of freedom that TOC
assumes the person will cooperatively and voluntarily con-
trol to help the robot reach the goal poses. The robot cannot
control these parameters, but can assume that the person will
modify them cooperatively. An example of a free parameter
we used is the user’s head rotation. Figure 2 shows a con-
figuration of the PR2 in which the cooperative motion of
the human’s head allows the robot to reach all goals for the
shaving task in a wheelchair.

Just as with the environment model, we include a margin
of safety in the human model by expanding the model.



Autonomous Robots (2019) 43:2033-2054

2041

3.6.1 Additional user customization

TOC can consider additional customizations for the user’s
needs or preferences. For example, a user may prefer certain
angles of the bed’s head rest for feeding tasks. This prefer-
ence can be represented as limitations or costs on the robot’s
configuration space.

3.7 Configuration scoring

Implicitly handling variation and error is a key aspect of TOC,
because its heavy computation is performed offline for mod-
els that may differ from reality. TOC uses two metrics that we
have developed to estimate how well the robot will be able
to perform the task from a set of configurations: task-centric
reachability (TC-reachability) and task-centric manipulabil-
ity (TC-manipulability).

3.7.1 Task-centric reachability

Task-centric reachability (TC-reachability), Ryeach, is the
percentage of goal poses to which the robot can find a
collision-free IK solution from robot configurations, r, for a
task ¢ and uncontrollable parameters %, as shown in Eq. (3).

N;
1
Rreach(r,t,h) = | — F(r, , 3
reach (T 1, 1) <N,>,§r3‘%’éb (. pr) 3)
where
F(r,p)=1 Vs, , #9,
and )

F@r,p)=0 Vs, ,=40.

Recall that p depends on ¢, &, and b, but we omit those for
simplicity in writing and N; is the number of goal poses for
task 7. Note that s, ;,, # ¥ means that the IK solver can
find a collision-free solution to the goal pose py from robot
configuration, r.

TC-reachability is related to using an IK solver with
collision checking, but with the additional functionality of
evaluating sets of robot configurations.

3.7.2 Task-centric manipulability

Task-centric manipulability (TC-manipulability), Rmanip, is
related to the average kinematic dexterity of the arm when
reaching the goal poses. It is defined here differently from
our previous works, such as in Kapusta et al. (2015). After
computing TC-reachability, computing TC-manipulability is
very efficient, since it uses a computationally simple dexterity

measure and the same collision-free IK solutions found while
computing TC-reachability.

The TC-manipulability score is based on kinematic
isotropy (Kim and Khosla 1991), shown in Eq. (2). Kine-
matic isotropy only considers the Jacobian of the arm in a
configuration, ignoring potentially relevant properties of the
robot arm, such as joint limits. When at a joint limit, the arm
cannot move in one direction, effectively halving the move-
ment of that joint. Hammond III and Shimada (2009) used
torque-weighted global isotropy index and torque-weighted
kinematic isotropy to estimate the dexterity of a robotic arm
given joint torques and torque limits. Vahrenkamp et al.
(2012) investigated configuration-based weighting functions
to create what they call an augmented Jacobian that they
use in manipulability. We have similarly modified kinematic
isotropy to consider joint limits by scaling the manipulator’s
Jacobian by an n x n diagonal joint-limit-weighting matrix
T, where

w1 0 0
Tg)=|o0 . o | Q)
0 0 w,

and where 7 is the number of joints of the manipulator. The
transmission weight, w;, in T is defined as

w; = 1-— ¢K
where

q; —lg; —qi +q; |
= 1
K )»ql-r + (6)

and

ai = %(qf” — ;).
We set w; = 1 forinfinite roll joints. The variable ¢ is a scalar
that determines the maximum penalty incurred when joint g;
approaches its maximum and minimum values, ql.+ and g; ,
and A determines the shape of the penalty function. We used
a value of 0.5 for ¢ and 0.05 for A. This weighting function
and the values for ¢ and A were selected to halve the value of
the kinematic isotropy at joint limits, have little effect in the
center of the joint range, to begin exponentially penalizing
joint values beyond 75% of the range, and to operate as a
function of the percentage of the joint range. Figure 6 shows
the value of w; as a function of the joint value as a percentage
of its joint range.

We then define joint-limited-weighted kinematic isotropy
(JLWKI) as

Vet @ T @) J @) (7

JLWKI(q) = :
@ (1)wace @T @I @7
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Fig. 6 A plot of the joint-limit weighting function ranging from the
maximum joint value to the minimum joint value

We use a function, G, to find the maximum value of
JLWKI(q) for robot configuration r and goal pose p, where

G(r, p) = max JLWKI(q) Vs, # .
q<Sr,p

and (8)
G@r,p)=0 Vs, ,=0.

We finally define TC-manipulability, Riyanip, as

N
Reaniprs 1.1 = (37 G(r, pr). 9
manip(F, 1, 1) = (& k;rgli)é LG pio) ©)

3.8 Optimization method

TOC’s optimization takes as input task-relevant models for
task, 7, and samples of the uncontrollable parameters, /. It
outputs an optimized set of robot configurations, r. TOC runs
this optimization for samples of the uncontrollable parame-
ters for each task.

3.8.1 Objective function

Each discretized value, h;, of the uncontrollable parameters,
h, has an associated solution set of robot configurations, r;.
To find r;, TOC searches the robot configuration space to
maximize its objective function, a linear combination of TC-
reachability and TC-Manipulability, shown in Eq. (10).

arg max o Rreach (i, 1, hi) + BRumanip(ri, t, h;) (10

ri

Both TC-reachability and TC-manipulability range from
0to 1, allowing them to be directly compared in the objective
function. We selected a value of 1 for . We chose to define

B as

B(r) = (0.1)(0.95)"! (11)
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where 7 is the cardinality of r.

In our implementation of TOC the cardinality of r was 1
or 2. These definitions of « and 8 emphasize the importance
of reaching goals over having high dexterity at goals, and
includes a small penalty in the objective function’s value for
using more configurations. For tasks with fewer than 10 goals
(as in all tasks we implemented), the objective function’s
value for a set of configurations that can reach more goals
will always be greater than one that can reach fewer goals. In
other word, reaching another goal is always more important
than increased dexterity.

TC-manipulability serves to impose preferences over con-
figurations that reach the same number of goals. There are
often many configurations that can reach all goals. As an
example, we compare TOC to a standard method from the
literature: using an IK solver with a collision checker to find
arobot configuration that can reach all goals. Figure 3 shows
the difference in scoring between using the existence of IK
solutions for scoring and using TOC for scoring for a task
for a user in bed. Figure 3 (left) shows that many poses of the
robot’s base have the same score, each having collision-free
IK solutions to all goals. Figure 3 (right) shows scoring using
TOC, where TC-manipulability allows additional differentia-
tion between robot base poses that can reach all goals. Higher
TC-manipulability is correlated with mean accuracy (per-
centage of goals that are reachable), as we show in Sect. 4.4.

3.8.2 Optimization algorithm

The space of the objective function can be highly nonlinear
and challenging to search. The objective function does not
have an analytical gradient and estimating its gradients can
be computationally expensive. There are several derivative-
free optimization algorithms that could be applied to this
problem. A simple method would be to uniformly sample
the space and select the configuration with highest objective
function value. However, uniform sampling performs poorly
as the dimensionality of the space increases, and we found
that coarse sampling of the space often resulted in poor con-
figurations.

Tan et al. (2011) used Covariance Matrix Adaptation Evo-
lution Strategy (CMA-ES) (CMA 2018; Hansen 2006) to
design a controller for articulated bodies moving in a hydro-
dynamic environment, which inspired our use of CMA-ES.
TOC optimizes the objective function using CMA-ES, which
works well for derivative-free optimization. TOC jointly opti-
mizes the set of configurations, so the dimensionality of the
search space is m x n, where m is number of configurations
and n is the number of degrees of freedom being optimized.
We used a heuristic when both Ryeach and Rmanip are zero
that pushes the search toward configurations that may have
non-zero Rreach and Rmanip. If the distance from the robot
to all goals is larger than the maximum reach of the robot,
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the heuristic subtracts a value proportional to the extra dis-
tance. If the robot’s base is in collision with the bed or the
wheelchair, the heuristic subtracts a value proportional to the
depth of penetration of the base with the object.

3.9 Approximate function

Offline, TOC generates a function that takes as input an
estimation of the uncontrollable parameters, fz such as the
location of the person on the bed, and outputs estimated opti-
mal robot configurations, #*. At run time, TOC applies this
function to the observed, estimated uncontrollable parame-
ters. For this paper, we used K-nearest neighbor (K-NN) with
K =1 (hence, 1-NN) as the function, f. We trained the 1-
NN algorithm from Pedregosa et al. (2011) with a set of (&,
r) pairs and it returns as 7~ the r for the & that is closest to h.
The algorithm creates a rapidly explorable data structure fit
to the data for faster computation of the nearest neighbor. In
our implementations of TOC we trained the 1-NN on fewer
than 20 (h, r) pairs for each task and found that the 1-NN
would return 7* in less than 1 s running in a single thread
on a a 64-bit, 14.04 Ubuntu operating system with 8 GB
of RAM and a 3.40 GHz Intel Core 17-3770 CPU. The use
of other methods to approximate this function could merit
further investigation.

4 Evaluation
4.1 Implementation

We manually created models for 9 assistive tasks associ-
ated with activities of daily living (ADLSs): shaving, feeding,
wiping the mouth, cleaning both arms, cleaning both legs,
and scratching the left/right upper arm, and left/right knee
(each scratching task was considered separately). We chose
these tasks as representative of various activities for which
a robot like the PR2 could provide assistance to a user with
motor impairments. Previous work has noted that these types
of tasks may be useful for those with severe motor impair-
ments (Wiener et al. 1990; Chen et al. 2013). As described in
Sect. 3.4, task models consisted of a set of end-effector goal
poses, each of which specified a position and orientation. We
defined each goal pose with respect to a relevant reference
frame (e.g., the head for shaving, or the shoulder for scratch-
ing the upper arm), so they move appropriately as the model
parameters change (e.g., the height of the bed or the pose of
the human body).

As an example, Fig. 5 shows the eight goal poses with
respect to the human model’s head that we selected to model
the shaving task. For simplicity, we limited tasks to one-
handed tasks and only allowed the robot to use its left arm
in our evaluations. In our implementation, we allowed TOC

to search for sets of robot configurations of cardinality 1 or
2. When exploring multiple robot configurations for a task,
we assume the robot can move from one configuration to
another.

We ran all simulations in OpenRAVE (OpenRAVE 2018;
Diankov and Kuffner 2008), for which we created environ-
ment models with a PR2 robot and a model of an average
male human placed either in a wheelchair or in a robotic bed.
The robotic bed is a controllable configurable object (see
Sect. 3.5) and TOC includes the bed’s configuration as part
of the robot’s optimized configuration, r. The bed’s config-
uration is 2-DoF, the height of the bed and the angle of the
backrest. The human model dimensions come from Tilley
(2002). The PR2 is a mobile manipulator made by Willow
Garage with two 7-DoF arms. The models we created for
the robotic bed and the wheelchair match Autobed, a modi-
fied Invacare 54011VC full electric hospital bed (Grice et al.
2016) and a Sunrise Medical Quickie 2 wheelchair with over-
lap table, respectively. The casters on the bed and wheelchair
are represented by swept volumes. For the wheelchair, we
removed the part of the casters’ swept volumes that extends
to the sides of the chair to increase free space around the
chair. We assume that the user would ensure that the casters
are not pointing out from the chair.

Figure 7 shows the configurations selected by our imple-
mentation of TOC for each task, given the observation, fz,
that the human model was positioned in the center of the bed
or wheelchair.

The robotic bed environment has the bed in front of a
wall, to emulate how beds are often positioned in rooms. The
robotic bed can raise up to 25 cm and can increase the angle
of its head rest up to 75°. For the wheelchair environment we
gave the human model the ability to rotate its head up to 45°
in either direction about the Z-axis. Figure 2 shows the head
rotated 45°.

The robotic bed environment and the wheelchair environ-
ment demonstrate many of the functionalities of the TOC
framework. The robotic bed environment demonstrates how
TOC can select configurations for multiple robots in the envi-
ronment, since each optimized configuration includes the
configuration for the PR2 and the robotic bed. TOC treats
additional robots the same as controllable objects, adding
their parameters to the robot configuration, as it does with
the robotic bed’s parameters. TOC considers the position in
the X-Y plane (see Fig. 3) of the human on the bed as an
uncontrollable parameter (2-DoF) and considers the joint
configuration of the human model as environment-driven
parameters. The wheelchair environment demonstrates how
TOC can make use of free parameters in the user model. TOC
considers the rotation of the human model’s head as a free
parameter, which results in solutions that assume the human
will move his or her head to help the robot reach goal poses.
The remainder of the human model’s joint configuration are
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Fig. 7 Visualization of the robot configurations selected by TOC for
each task. Two images are used when TOC selected two configurations
for a task. Images of configurations for the robotic bed environment:
a cleaning arms config #1, b cleaning arms config #2, ¢ scratching
left upper arm, d scratching right upper arm, e cleaning legs, f wip-
ing mouth, g shaving config #1, h shaving config #2, i scratching left

environment-driven and set the human in a seated pose in the
chair.

4.2 Evaluation against baselines

We compared the performance of TOC against three base-
line algorithms based on state-of-the-art methods in Monte
Carlo simulations that added Gaussian error to the human
model’s position and the robot’s base pose. Error in the
human model’s position is comparable to a robot having error
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knee, j scratching right knee, k feeding. Images of configurations for
the wheelchair environment: 1 arm cleaning config #1, m arm cleaning
config #2, n scratching left upper arm, o scratching right upper arm,
p wiping mouth, q shaving, r scratching left knee, s scratching right
knee, t feeding

in its estimate of a person’s body pose, which is a form of
state estimation error. Error in the robot’s base pose is com-
parable to errors that could occur when a robot attempts to
navigate to a configuration, which could be due to a variety
of causes.

Each method in our evaluation estimated an optimal set
of robot configurations, 7, given the observation, ﬁ, that
the human model was positioned in the center of the bed or
wheelchair. Since the human model was always perceived to
be in the same place, a function that maps observations to
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robot configurations was not required. The simulated PR2
was moved to the chosen base configuration and error was
added to its position and orientation. From that pose, Open-
RAVE attempted to find a collision-free IK solution to each
goal pose defined with respect to the true pose of the human
model’s body.

The goals are sparse, so each goal is important to a task.
We considered a trial successful if, from the robot config-
urations selected by the method, OpenRAVE could find a
collision-free IK solution to all goal poses despite the error
introduced in the Monte Carlo simulation. Otherwise, the trial
was deemed a failure. We performed this evaluation for all 9
modeled tasks in both environments, except for the cleaning
legs tasks with the wheelchair environment, since the table
blocks access to the human model’s thighs.

All introduced error was normally distributed around O.
For the robotic bed environment, the standard deviation for
the human’s pose was 2.5cm translation in the global X
direction and 5.0cm translation in the global Y direction.
These axes match those shown in Fig. 3. We used smaller X
error because for larger negative X error the human model
would penetrate the backrest of the bed and some goals would
become unreachable. Rotations of the human in bed were not
considered.

For the wheelchair environment, the standard deviation
for the human’s pose was 2.5 cm translation in the global X
direction, 5.0 cm translation in the global Y direction, and 5°
rotation about the human head’s Z axis. These axes match
those shown in Fig. 12. We used smaller X error because
for larger negative X error the human model would pene-
trate the backrest of the bed and some goals would become
unreachable. The standard deviation for the PR2’s position
was 1.0cm in the global X and Y directions and 5° rotation
about the robot’s Z axis. We selected these error distributions
from typical error in human pose estimation and PR2 servo-
ing in our previous work (Kapusta et al. 2016). As described
in Sects. 3.5 and 3.6, models used while optimizing robot
configurations had a small safety margin of ~ 3 cm. Models
used during testing had no safety margin.

To more fairly compare the methods, we used the same
seeds for all of the CMA-ES optimizations and the Monte-
Carlo simulations. For the CMA-ES optimization, all meth-
ods were given a population size of 40, a maximum number of
iterations of 1000, and the opportunity to restart with double
the population if the optimization ran out of iterations before
converging within some tolerance. All methods also had the
same heuristics for driving the search towards configurations
that may have collision-free IK solutions. Additionally, all
methods used the same IK solver from OpenRAVE using the
same default parameters. The dimensionality of the search
space for TOC was 12 (6-DoF x 2 configurations) and 8
(4-DoF x 2 configurations) for the bed and the wheelchair
environment, respectively. The dimensionality of the search

space for the baseline algorithms was 6 (6-DoF x 1 config-
uration) and 4 (4-DoF x 1 configuration) for the bed and the
wheelchair environment, respectively.

We assigned appropriate bounds on parameters based on
the environment (e.g., slightly beyond reach of the bed). We
initialized the parameters to aid coverage in the search, giving
two initial locations, one position on one side of the bed or
wheelchair and one on the other side. Baseline methods were
allowed two searches, one for each initialization, and we used
the single best configuration. TOC jointly optimized its two
configurations from their respective initialization locations.
Thus, all methods were given comparable initializations and
bounds.

4.2.1 Baselines

To compare against TOC, we implemented three baseline
algorithms based on state-of-the-art methods from the liter-
ature, one based on IK and two based on the robot capability
map. An overview of these and other related methods from
the literature can be found in Sect. 2. These methods used
optimization to select a single configuration for both the PR2
and the robotic bed and made use of the human model’s free
parameter (head rotation) in the wheelchair environment. The
main way in which the baseline methods differed from TOC
are their objective functions and their use of only a single
robot configuration.

Inverse-kinematics (IK) solver-based baseline IK solver-
based methods to select a robot base pose for a task are
common in the literature. The method we implemented used
CMA-ES to search for a robot configuration from which the
robot has a collision-free IK solution to all goal end-effector
poses. We used the IKFast module within the OpenRAVE
simulation environment to determine if a collision-free IK
solution existed for each robot configuration.

Capability map-based baselines Various methods from the
literature use the capability map Zacharias et al. (2007).
We implemented two baseline methods roughly based on
Zacharias et al. (2009). For these methods we first created
a capability map using OpenRAVE’s kinematic reachability
module using its default parameters (OpenRAVE 2018). To
create the capability map, the module discretized 3D space
around the robot’s arm into 3D points and discretized the
range of possible orientations around each 3D point. The
map was created using OpenRAVE’s default parameters,
discretizing 3D space into 4 cm intervals and sampling orien-
tation at an average quaternion distance of 0.5. The capability
score (also known as reachability score) for each point is the
percentage of orientations for which the robot has a valid
IK solution. These scores are calculated offline and saved.
These two methods use CMA-ES to search for a robot con-
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figuration that maximizes the average capability score for
all goal poses. The score of a goal pose is the score of the
closest 3D point from the capability map. The first capabil-
ity map-based baseline considered capability scores without
regard to the environment. The second gave goal poses a 0
score if a collision-free IK solution could not be found to that
pose in the environment. Although the method with collision-
checking might be expected to dominate the method without
collision checking, performance can vary due to random sam-
pling in the capability map, in the optimization algorithm
(CMA-ES), and in the Monte Carlo simulation.

4.2.2 Results

The results for each task for the robotic bed and wheelchair
are shown in Figs. 8 and 9, respectively. TOC’s average suc-
cess rate was higher than or comparable to baseline methods
in all tasks. Numbers in boldface were significantly different
from the TOC result (p < 0.01 in a Wilcoxon Rank-Sum
test).

TOC had an overall average success rate of 90.6%, com-
pared to 50.4% for the IK solver, 43.5% for the capability
map, and 58.9% for the capability map with collision check-
ing. The overall differences between the baseline results and
TOC were statistically significant (p < 0.01 in a Wilcoxon
Rank-Sum test). TOC chose to use a single configuration for
all tasks other than the shaving and cleaning arms tasks in this
environment in the bed environment and it used a single con-
figuration for all but the cleaning arms task in the wheelchair
environment.

TOC achieved significantly higher success rates (p <
0.01 in a Wilcoxon Rank-Sum test) for some tasks for which
it used only one configuration and for tasks for which it used
two configurations. This result suggests that the benefit from
TOC comes from more than using two configurations over
one. For tasks that seemed to require more than one robot con-
figuration, baseline methods failed; they could only select a
single configuration. TOC jointly optimizes 2 configurations,
allowing it to succeed in these challenging tasks.

4.3 Quantifying robustness

In Figs. 10, 11 and 12 We visualize the robustness of robot
configurations selected by TOC for the shaving and clean-
ing arms tasks in the two environments. These figures show
the percentage of goal poses that have collision-free IK solu-
tions (indicated by the color) for varying error in the human
model’s position on the bed or wheelchair (the X-Y axes).
The goal poses are update to the true human model’s posi-
tion. Notable in these figures is the success region in blue,
where all goals are reachable, as well as how the two con-
figurations combine to reach all goals. For pose estimation
error in the success region, the PR2 would still be able to
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successfully perform the task. TOC opted to use two con-
figurations for each of the tasks shown. The success region
is large and surrounds the origin for shaving and cleaning
arms in bed, which is why 100% of the trials were successful
for these tasks in Fig. 8. The success region is less centered
around the origin for the cleaning arms task in the wheelchair,
hence its lower percentage of successful trials in Fig. 9. The
Monte Carlo simulations randomly sampled in these, as well
as other, degrees of freedom and sampling outside the suc-
cess region results in a failed trial. These figures suggest that
the task may be easier for the robot to perform for a person in
bed. Closer observation of the task shows that, because the
wheelchair is tall, the goal poses for the cleaning arms task
are vertically higher in the PR2’s workspace and the arm has
relatively low JLWKI when reaching those goals.

4.4 Evaluation of TOC objective function

TOC searches for a set of robot configurations that maxi-
mizes its objective function, which we will call its score for
simplicity. The assumption therein is that higher values of
the score are correlated with better robot configurations that
are more robust to error. To test this assumption, we evalu-
ated the relationship between the TOC score and the accuracy
(the percentage of goals that are reachable) for robot config-
urations in the same evaluation described in Sect. 4.2. Note
that we chose to compare against accuracy in this evaluation
because it can convey more information than success, which
is binary. A similar correlation can be seen for success. For
the wiping mouth task in the robotic bed, we sampled robot
configurations with TC-reachability of 1 (i.e., all goal poses
have collision-free IK solutions) and compared their mean
and variance in accuracy over 200 Monte Carlo simulations
with their TOC score. Figure 13 shows the results of the
analysis. Higher TOC score is correlated with accuracy and
inversely correlated with variance in accuracy.

5 Discussion

In our evaluation, we used simulations to provide empiri-
cal evidence that TOC outperforms baseline methods based
on state-of-the-art methods from the literature in the context
of robotic assistance with ADLs. Each trial was only con-
sidered successful if IK solutions were found for all of the
end-effector poses associated with a task. Consequently, a
failure implied that a simulated robot would fail to find tra-
jectories to reach all the locations and also makes it unlikely
that a real robot would find trajectories to reach all the loca-
tions. The main weakness of our model for evaluation is that
a simulated or real robot might not be able to find a trajectory
to an end-effector pose for which an IK solution exists. So,
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TOC outperforms or is comparable to other methods for robotic bed assistance
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Fig. 8 Comparison of performance between TOC and three baseline
methods averaged over 200 Monte-Carlo simulations of error in the
human model’s position and the robot’s base pose for tasks in the robotic
bed environment. Numbers in boldface were significantly different from

the TOC result (p < 0.01 in a Wilcoxon Rank-Sum test). Error bars
show one standard deviation. TOC chose to use a single configuration
for all tasks other than the shaving and cleaning arms tasks in this envi-
ronment. Baseline methods could only select a single configuration

TOC outperforms or is comparable to other methods for robotic wheelchair assistance
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Fig. 9 Comparison of performance between TOC and three baseline
methods averaged over 200 Monte-Carlo simulations of error in the
human model’s position and the robot’s base pose for tasks in the
wheelchair environment. Numbers in boldface were significantly differ-

ent from the TOC result (p < 0.01 in a Wilcoxon Rank-Sum test). Error
bars show one standard deviation. TOC chose to use a single configura-
tion for all tasks other than the cleaning arms task in this environment.
Baseline methods could only select a single configuration
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Accuracy with Human Pose Error for Shaving Task in Robotic Bed
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Fig. 10 Visualization of the robustness of TOC’s selected configura-
tions for the shaving task in the robotic bed. (Top) Percentage of goals
reached from the first, second, and both configurations for error in 1cm
increments in the x—y position of the human model. (Bottom) The first

2

while a failure strongly implies a failure in reality, a success
only implies a high likelihood of success in reality.

One can construct situations that would result in the robot
not being able to reach IK solutions. One might also be able
to construct a contrived situation that would unfairly bias the
results in favor of TOC via IK solutions that are unreachable.
However, the nature of ADLs makes this type of bias in our
results unlikely due to the geometric structure of the tasks.
When the human body is sitting or reclining on a wheelchair
or bed, there is typically substantial free space above the
body and furniture permitting solutions that involve the arm
reaching from above or reaching out directly to obtain end-
effector poses with associated IK solutions.

When working with real robots in the context of providing
assistance with ADLs, as in Hawkins et al. (2014) and Grice
and Kemp (2018), we have encountered challenges when
attempting to find poses for the mobile base by trial and
error. Consequently, we pursued research that led to TOC,
which addresses this issue. In contrast, we have not encoun-
tered difficulties when selecting an initial configuration of
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and second configurations of the PR2, and the two configurations com-
bined on the right. Color is necessary to interpret this figure. The blue
region represents when all goals can be reached (Color figure online)

the robot’s arm, and we chose not to address optimization of
the arms initial configuration. Incorporating the robot arm’s
initial configuration and tests for the existence of trajectories
with which to reach IK solutions would be possibilities for
future work, although in the context of ADLs, the additional
computation involved might not be justified.

5.1 Limitations

Although the framework of TOC allows it to jointly optimize
more than two robot configurations, we limited our evalu-
ation to two configurations. We made this choice because
we found that more than two robot configurations were not
needed for any of the tasks. Jointly optimizing more config-
urations would increase TOC’s computational requirements,
since the dimensionality of the search space is m x n, where
m is number of configurations and » is the number of degrees
of freedom. For our bed environment m = 2 and n = 6. For
our wheelchair environment m = 2 and n = 4.
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Accuracy with Human Pose Error for Cleaning Arms Task in Robotic Bed
% Goals with Valid IK Solution

0%
1st config

Y-Axis Human Pose Error (m)

—03 —02 —01 00 01 02
X-Axis Human Pose Error (m)

-03 -0.2 -0.1 00 01 0.2
X-Axis Human Pose Error (m)

Y-Axis Human Pose Error (m)

-03 -0.2 -0.1 00 01 O.
X-Axis Human Pose Error (m)

2

0.3

Fig. 11 Visualization of the robustness of TOC’s selected configura-
tions for the arm cleaning task in the robotic bed. (Top) Percentage of
goals reached from the first, second, and both configurations for error
in 1 cm increments in the x—y position of the human model. (Bottom)

We hand designed the task models for our evaluation in
simulation based on our real-world experience with assistive
robots. While we expect them to be sufficient to support real-
world assistance, we have not formally evaluated them. We
modeled all of the tasks using sets of 6-DoF goal poses, yet
some tasks, such as a sponge bath, could be less sensitive to
the end effector’s orientation.

Although we only implemented and evaluated TOC on a
PR2 in simulation, we expect that the method may be transfer-
able and generalizable to other robots. A feature of kinematic
isotropy, used in TOC’s objective function, is that it is inde-
pendent of scale and order. Ryeach and Rmanip should remain
between 0 and 1 for all robots. As a result, the values of the
terms in the objective function may be used on new robots
without modification.

5.2 Relevance to other tasks

We specifically developed TOC to support robotic assistance
with ADLs. We expect that it could be useful for other types

The first and second configurations of the PR2, and the two configura-
tions combined on the right. Color is necessary to interpret this figure.
The blue region represents when all goals can be reached (Color figure
online)

of tasks, but the extent to which it would be suitable for
other domains is an open question. Also, TOC is not well
suited for all ADLs. For example, it is unclear how one
would model some dressing tasks using a set of end-effector
poses with respect to the person’s body. TOC and this type
of model might be useful for assistance with a small article
of somewhat rigid clothing like a baseball cap or a slipper.
However, this type of model appears insufficient for active
assistance with a larger article of compliant clothing, such as
a sweatshirt, which depends on end-effector trajectories and
the physics of garments interacting with the human body.

5.3 Collisions

Joint-limit-weighted kinematic isotropy, the foundation of
our TC-manipulabilty score, does not account for environ-
mental constraints. There may be value in preferring joint
configurations away from obstacles. Explicitly penalizing
proximity to collisions in the objective function, as was done
by Vahrenkamp et al. (2012), might be a way to mitigate this
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Fig. 12 Visualization of the robustness of TOC’s selected configura-
tions for the arm cleaning task in the wheelchair. (Top) Percentage of
goals reached from the first, second, and both configurations for error
in 1 cm increments in the x—y position of the human model. (Bottom)

issue at the cost of additional computation time. More gen-
erally, the inclusion of additional terms in TOC’s objective
function, such as to represent distance from obstacles, prox-
emics, or user preference, should be possible and may merit
future work.

In our evaluation, TOC’s offline optimization mitigated
the risk of collisions by using a safety margin on the environ-
ment and user models. This comes at the cost of decreasing
the valid search space and eliminating valid solutions. For
example, Grice et al. (2013) found that contact can be both
beneficial and acceptable during robotic assistance. Allow-
ing contact can increase the space of reachable poses, and
there are methods for controlling contact safely (Killpack
et al. 2016).

5.4 Computational efficiency

On average, TOC took 70 minutes, the IK solver baseline
took 6 minutes, the capability map took 1.5 minutes, and the
capability map with collision took 34 minutes on average.
All computations were performed using a single thread on a
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Fig.13 The TOC score is positively correlated with accuracy and nega-
tively correlated with variance in accuracy. For this figure, collision-free
IK solutions were found to all goals results in TOC scores above 1.0.
The amount above 1.0 is the weighted TC-manipulability score for the
configuration

a 64-bit, 14.04 Ubuntu operating system with 8 GB of RAM
and a 3.40 GHz Intel Core i7-3770 CPU. These particular
durations would all be excessively long for a robotic system
intended to provide assistance with ADLs. With more effi-
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cient software and improved hardware, the IK solver could
potentially be fast enough for online use, although its per-
formance in our tests was relatively poor. The other methods
require substantially more computation, but perform signifi-
cantly better. All of the baseline methods could be used with
the TOC framework to generate training pairs offline in order
to generate an approximate function for efficient online use.
Also, all algorithms in our evaluation used CMA-ES to opti-
mize the robot configurations. Other optimization algorithms
could result in different performance and timing.

5.5 Design application

TOC could potentially be used to assist in the design of envi-
ronments. For example, in our evaluations with the robotic
bed, TOC selected a configuration for the bed by including
the bed’s DoF in the robot configuration. Although we con-
sidered the bed to be a robotic bed under control of the robot,
one could instead allow TOC to control features of the envi-
ronment that can be altered by humans, such as the placement
of the bed in the room. For example, we have found that for
the shaving task, if there is sufficient space behind the bed,
the PR2 can perform the task from a single configuration
instead of requiring two configurations. Figure 14 shows the
configuration found by TOC for shaving in the robotic bed

Y-Axis Human Pose Error (m)
% Goals with Valid IK Solution

-0.3-0.2-0.1 0.0 0.1 0.2 0.3
X-Axis Human Pose Error (m)

Fig. 14 The PR2 can perform the shaving task on the human model in
bed from a single location if there is no wall behind the bed. (Top) the
configuration TOC selected (bottom) a visualization of the robustness
to error in the human model’s pose on the bed for this configuration

without a wall and visualizes the robustness to error in the
pose of the human model.

6 Conclusion

In this work, we have presented task-centric optimiza-
tion of robot configurations (TOC), a method to select
one or two configurations for robots to assist with tasks
around a person’s body. TOC uses TC-reachability and TC-
manipulability, metrics that we have developed, to represent
the robot’s dexterity, and implicitly handle error. TOC is
particularly suitable for robotic assistance with activities of
daily living (ADLSs) that can be well-modeled as a set of end-
effector poses attached to the human body. We have shown
that TOC can determine a set of one or two robot configu-
rations from which the robot can perform a task well. TOC
performs the bulk of its computation offline using models of
the task, robot, environment, and person to generate a func-
tion that rapidly (< 1 s) estimates the optimal set of robot
configurations for a task given observations at runtime. We
provide evidence that configurations selected by TOC are
robust to errors between the models used offline and obser-
vations at run time. We created 9 models of assistive tasks to
test our system in simulation and showed that for each task
TOC’s average success rate was higher than or comparable
to three baseline algorithms based on state-of-the-art meth-
ods from the literature. TOC had an overall average success
rate of 90.6% compared to 50.4%, 43.5%, and 58.9% for the
baseline methods.
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