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Abstract
Learning complex physical tasks via trial-and-error is still challenging for high-degree-of-freedom robots. Greatest challenges
are devising a suitable objective function that defines the task, and the high sample complexity of learning the task.We propose
a novel active learning framework, consisting of decoupled task model and exploration components, which does not require
an objective function. The task model is specific to a task and maps the parameter space, defining a trial, to the trial outcome
space. The exploration component enables efficient search in the trial-parameter space to generate the subsequent most
informative trials, by simultaneously exploiting all the information gained from previous trials and reducing the task model’s
overall uncertainty. We analyse the performance of our framework in a simulation environment and further validate it on a
challenging bimanual-robot puck-passing task. Results show that the robot successfully acquires the necessary skills after
only 100 trials without any prior information about the task or target positions. Decoupling the framework’s components also
enables efficient skill transfer to new environments which is validated experimentally.

Keywords Active learning · Parameterised movements · Parameter space exploration · Bimanual manipulation

1 Introduction

The motivation for this work comes from the approach
humans take when learning complex tasks such as acquiring
new skills, using new tools or learning sports. Most of their
learning process is centred around trials and errors (Newell
1991). These trials do not necessarily lead directly to accom-
plishing the task, but eventually a confident task execution is
learned (Pugh et al. 2016). For robot learning, each trial can
be uniquely defined, i.e. parameterised, by a set of movement
parameters (Ijspeert et al. 2013) which means that perform-
ing a trial is equivalent to selecting a point in the movement
parameter space and evaluating it.

In this paper, we focus on a problem of learning a task
through trial and error,where a task can be executed by select-
ing an appropriate point in the movement parameter space.
Our aim is to develop a sample-efficient approach that avoids
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trials which are not useful, by not doing random or exhaus-
tive exploration during learning, intended for systems where
trial execution is expensive. Moreover, during the learning
phase, we do not provide any prior information about the
task (e.g. goal position or cost function) or the environment
to the agent, in order to reduce inputted domain knowledge
and aim to make the approach “task-agnostic”.

To this end, we introduce a novel iterative and online
active-learning approach, which performs informed search
in the movement parameter space defining the trials, in
order to sample datapoints. The proposed learning frame-
work consists of a task model and an exploration component.
The task model is implemented as a Gaussian Process (GP)
Regression (GPR) (Rasmussen and Williams 2006) function
that maps the movement parameters as inputs, to the trial
outcomes as outputs. The exploration component performs
search in the movement parameter space to find a parame-
ter vector that encodes a subsequent most informative trial
for the task model. This component represents a composite
query strategy in the Active Learning parlance, obtained via
probabilistic modelling of previous trial data and uncertainty
inherent to the GPR taskmodel. It is implemented as a proba-
bility distribution over the movement parameter space, from
which parameter vectors are sampled. During the learning
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phase, the exploration component iteratively finds datapoints
in the parameter space used to fit the task model and thus
lower the task model’s posterior uncertainty. Actual perfor-
mance of the trial outcomes, i.e. cost function, is not used
by either component as the desired target outcomes are not
provided. This renders the components independent from a
specific task requirement.

For transfer we consider tasks which can be different but
have the same interface, i.e. response, from the environment,
and the same parameter space. Meaning, the exploration and
sampling of the datapoints for the task model is indepen-
dent of a particular task and related to the agent’s kinematic
model. Therefore, the same exploration sequence would be
applied in different environments. Since the exploration com-
ponent maintains the information about the successful trials,
these trials can be directly reproduced (transferred) in dif-
ferent environments, in order to gather data and fit the task
model for the new environment. As a consequence, new task
models can be learned from scratch with significantly less
trial evaluations.

To present and analyse the performance of the proposed
framework we use the MuJoCo (Todorov et al. 2012) sim-
ulation environment as well as a physical robot. Both the
simulated and real robot task are similar, in that they employ
an agent which tries to learn how to move another object
(puck) to arbitrary locations using its body.During the testing
phase, the agent is presented with a set of previously-unseen
arbitrary target positions. It is expected to automatically gen-
erate an appropriate movement action, based on the learned
task model, to hit the puck so that it lands on the target. This
is the actual task that the agent needs to perform well. For
evaluation on the real robot we have selected the ice hockey
puck-passing task, as shown in Fig. 1. We selected this par-
ticular task as it is interesting for its complexity: (i) it requires
dual-arm coordination, (ii) there is a non-trivial extension of
the robot’s kinematic model via the ice hockey stick, and (iii)
the surface friction and stick-surface contactmodels are quite
difficult to model.

The proposed approach requires very little prior knowl-
edge about the system: no previous task knowledge (strate-
gies, desired movements, etc.), prior kinematic (stick and
joint constraints) nor environment (surface friction, con-
tact forces, etc.) models are provided. No demonstrations
or expert human supervision are necessary. The number of
input parameters is given (which represent the displacement
of each degree of freedom) and their ranges, without contex-
tual information regarding their influence or importance.

To summarise, the main contributions of this work are:

– The probabilistic framework for trial-and-error robot task
learning, based on a task-agnostic and sample-efficient
search of the trial parameter space. This is achieved

Fig. 1 Experimental setup: robot DE NIRO uses both arms to maneu-
ver the ice hockey stick and learns the skills needed to pass the puck
(blue) to user-specified target positions (green). Estimation of the polar
coordinates θ and L is done using the head-mounted Kinect camera.
The red line in the bottom is parallel to the robot heading direction and
is the zero-angle reference axis (Color figure online)

through the exploration componentwhich is a novel com-
posite query function consisting of the model uncertainty
and the penalisation function.

– As a consequence of decoupling the task model and
exploration components, efficient task transfer to new
environments is possible, as shown experimentally. The
robot successfully learns the taskmodels in the new envi-
ronments in significantly less trials, by executing only
successful trials generated in the previous environment.

The rest of the paper is organised as follows: Sect. 2 gives
an overview of the related work. Section 3 formulates the
problem we are addressing and in Sect. 4 we present the
proposed framework. The proof of concept on a simulated
task is given in Sect. 5, and robot experiment is presented
and results are discussed in Sect. 6. Finally, we conclude and
discuss the future directions in Sect. 7.

2 Literature review

2.1 Active learning and Bayesian optimisation

The proposed approach can be characterised as an Active
Learning (AL) approach (Settles 2012), a field similar to
BayesianOptimisation (BO) (Mockus 1994) andExperimen-
tal Design (ED) (Santner et al. 2013). The purpose of these
approaches is to efficiently gather datapoints used to fit a
model, which are most informative about the underlying data
distribution. Such datapoins enable learning a good model in
a sample-efficient way. The idea behind ED is that all the
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datapoints are defined offline, before the execution, which
limits the flexibility of the approach. The difference between
AL and BO is rather subtle but important, which is why we
focus more on them in this section. Both approaches model a
low-fidelity surrogate function, which is usually obtained as
a posterior over the unknown function. The mean and vari-
ance of this surrogate function are used, through a set of rules,
in order to query a new input from the domain to evaluate
the unknown true function over. In BO terminology, this set
of rules is called an Acquisition Function, while in AL it is
called a Query Strategy. In BO the function that is evalu-
ated needs to be optimised, while in AL the query strategy
is actually a mechanism for obtaining labels for input data
to further improve the function estimate. Therefore, the end-
goal of BO is to optimise an underlying function (whence the
name), while for AL it is not. Consequentially, the nature of
the acquisition and query functions slightly differ as in BO
they also need to improve the evaluated function’s value. The
query function in AL focuses solely on querying inputs that
will be most informative for a supervised learning problem,
and minimise the uncertainty in such a model. Such query
functions do not have explicit exploitation components, as
opposed to their counterparts in BO, thus no explicit func-
tion optimisation is being done.

Some of the most popular BO Acquisition Functions
are: probability of improvement (Kushner 1964), expected
improvement (Močkus 1975), GP upper confidence bound
(GP-UCB) (Srinivas et al. 2010), entropy search (Hennig
andSchuler 2012) and predictive entropy search (Hernández-
Lobato et al. 2014). The objective function usually quantifies
the model performance on a specific task. If the acquisition
function needs to “know” the actual value of an objective
function in order to select the next parameter to evaluate,
this selection inherently carries task information embedded
in the objective function. As opposed to BO, our proposed
approach tries to avoid this. Several interesting examples in
the literature use BO in robotic applications (Lizotte et al.
2007; Martinez-Cantin et al. 2009; Tesch et al. 2011; Calan-
dra et al. 2016).

When AL Query Functions are implemented with GPs,
similarly to BO acquisition functions, they provide
uncertainty-based exploration (Seo et al. 2000; Kapoor et al.
2007; Kroemer et al. 2010; Rodrigues et al. 2014). However,
they do not necessarily need to rely on the surrogate’s poste-
rior, one example being empirically estimating the learning
progress (Lopes et al. 2012) which requires performance
evaluation. Other examples include uncertainty sampling
introduced byLewis andGale (1994), similar to our approach
where the authors use the classifier prediction uncertainty.
However, our uncertainty measure is derived from the GP
posterior distribution and combined with the penalisation
function. Another interesting approach to querying is based
on maintaining multiple models for prediction and select-

ing those points over whose prediction the models disagree
the most Bongard and Lipson (2005) which is related to the
notion of query by committee (Seung et al. 1992). Otte et al.
(2014) and Kulick et al. (2015) present examples of apply-
ing AL to robotics, mostly for learning the parameters of the
controller byprobing environment interactions.Other robotic
applications include Thrun and Möller (1992), Daniel et al.
(2014), Dima et al. (2004), Baranes and Oudeyer (2013) and
Kroemer et al. (2010) where AL helps relieve the sample
complexity—one of the main limitations imposed by hard-
ware for robotic experiments. Most of the above-mentioned
AL sample query strategies, which rely on prediction uncer-
tainty, do not take into account the actual order of acquiring
datapoints explicitly, which is important to understand the
boundaries within the parameter space. This is particularly
needed in robotics, where physical constraints play a cru-
cial role. Therefore, we explicitly include such information
within our exploration component. Including safety con-
straints within the BO framework has been done through the
optimisation constraints in the objective function (Englert
and Toussaint 2016; Berkenkamp et al. 2016). Gelbart et al.
(2014) and Schreiter et al. (2015) model safety constraints as
a separate GP model, but this approach requires additional
computational resources.

There have been several approaches in the literature
employing GPs to learn mapping functions similar to our
task model (Nguyen-Tuong et al. 2009; Nemec et al. 2011;
Forte et al. 2012). The latter two generate full trajectories
encoded via DMPs and introduce constraints that guide the
new policy to be close to the previously demonstrated exam-
ples in the trajectory database.

2.2 Parameter space exploration

The concept of good exploration strategies is crucial in super-
vised learning, as well as RL, where it can improve sample
selection and sample-efficiency. Several authors argue the
importance of exploration and benefits of moving it directly
to the parameter space, as opposed to e.g. action space
in RL. This can reduce the variance caused by noisy tra-
jectories, and generally avoids premature convergence to
suboptimal solutions (Rückstiess et al. 2010; Plappert et al.
2017). Evolutionary Strategy-based methods Hansen et al.
2003; Heidrich-Meisner and Igel 2009; Wierstra et al. 2014;
Salimans et al. 2017) introduce noise in the parameter space
to guide exploration, acting as a black-box optimiser, but
have poor sample-efficiency.

The main inspiration for the proposed work is to shift
away from the common utilitarian paradigm of task learning
through optimising some utility (cost) function. Some of the
approaches in this direction develop exploration which tends
to be decoupled from the actual task definition embodied in
the cost function. A recent parameter space search approach
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Fig. 2 Diagrams comparing the information flow in the a supervised
learning paradigm (maps outcome to control parameter) and b proposed
informed search approach (maps control parameter to outcome). Solid

line is the data pipeline, while the dashed line indicates updates. The
orange box is the task execution, i.e. environment interaction

uses the notion of curiosity Pathak et al. (2017) where an
intrinsic curiosity module is implemented to promote explo-
ration, by learning to distinguish changes in the environment
caused by the agent from randomones. TheQualityDiversity
(Pugh et al. 2016) family of approaches such as MAP-elites
(Mouret and Clune 2015; Cully et al. 2015) and Novelty
Search with Local Competition (Lehman and Stanley 2011b)
perform exploration by encouraging diversity in candidate
behaviours and improving fitness over clusters of behaviours
in the behaviour space. However, in our presented problem
formulation we do not aim to derive diverse behaviours,
rather to find those for which the system is uncertain about
and which avoid dangerous situations. More importantly,
there is no notion of relative task fitness involved, as the
proposed exploration component of our method generates
points which are informative for the model, unrelated to
their actual fitness as the fitness is task specific. The notion
behind the proposed framework is akin to the concept of
objective-free learning Lehman and Stanley (2011a) which
promotes diversifying the behaviours as an alternative to hav-
ing the objective as the only mean of discovery, which can
in fact lead to deceptive local optima (Pugh et al. 2016). As
opposed to promoting novelty, our approach actually selects
behaviours which are most useful for the task model. Meth-
ods relying on techniques like Motor Babbling (Demiris and
Dearden 2005; Kormushev et al. 2015), Goal Babbling (Rolf
et al. 2010) and Skill Babbling (Reinhart 2017) can learn
the robot’s forward/inverse model by iteratively perform-
ing random motor commands and recording their outcomes.
However, these methods are usually data-inefficient due to
random exploration. Kahn et al. (2017) use neural networks
with bootstrapping and dropout, to obtain uncertainty esti-
mates of the observations for predicting possible collisions
and adapting the robot control accordingly. These estimates
are not further used to explore alternative control policies.
Deisenroth et al. (2015) show that using GPs within model-
based Reinforcement Learning (RL) helps in improving the
sample-efficiency of learning the task. The posterior mean
and variance are used to address the exploration/exploitation
trade-off during policy learning. Still, the above-mentioned
approaches require an explicit cost function optimised by
the agent in order to learn the task. Learning robotic tasks
with complex kinematics, by exploring the low-level control

space is presented inKormushev et al. (2015).Additional ele-
ments such as links and leverage points are incorporated into
the original kinematic chain to skew the mapping of motor
torques to end-effector pose. The robot adjusts to thesemodi-
fications, without an explicit model of the robot’s kinematics
or extra links provided, but such approach would have diffi-
culties when scaled.

2.3 Bimanual skill learning

There are few examples in the literature of learning to
play bimanual ice hockey, but none of them simultane-
ously address: bimanual manipulation, and using a tool
which distorts/modifies the original robot kinematics. Rel-
evant example of single-arm robot learning to play hockey
using RL is presented in Daniel et al. (2013) where the robot
learns to send the puck into desired reward zones and gets
feedback after each trial. Kinaesthetic teaching is required to
extract the shape of the movement which is then improved.
Recently, Chebotar et al. (2017) combined model-free and
model-based RL updates to learn the optimal policy that
shoots the puck to one of the three possible goals. The tracked
puck-to-goal distance is used within the cost function to pro-
vide reward shaping. Our approach differs from the above
two, because during the training phase no information about
the goal nor the environment is provided.

3 Problem formulation andmovement
parameterisation

The main problem we are trying to solve is efficient high-
dimensional parameter search. We employ the proposed
exploration component, to search for movement parameter
datapoints used to fit our task model component. The goal
is to eventually have a good model performance during test-
ing, on the task of reaching the desired outcomes. Figure 2
compares the information flow diagrams for the standard
supervised learning paradigm and our proposed approach.
The model outputs a control (e.g. movement) parameter vec-
tor, given an input, and the trial outcome is the produce of this
output when applied in the environment. The performance
metric is a cost function comparing trial outcome and target
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desired outcome, and is used in supervised learning (Fig. 2a)
to update the model. In our case (Fig. 2b), the “input” can
be seen as the whole movement parameter space from which
themodel samples and outputs amovement parameter vector.
The proposed approach does not use the model performance
metric to update the model, rather the trial outcome, since
desired outcomes are not provided nor needed. To demon-
strate the proposed approach, we consider a task in which
the agent needs to perform a movement that displaces its
body from a fixed initial configuration. This movement can
potentially lead to a contact with another object (e.g. a puck)
moving this object to a certain location. One such executed
event is called a trial. Themovement of the object is governed
by the dynamical properties of the environment (object mass,
surface friction coefficient, obstacles etc)which are unknown
to the agent. The only feedback that the agent receives, is
whether the movement it performed successfully made con-
tact with the object (successful trial) or not (failed trial), and
in the former case, what is the final resting position of the
object (i.e. trial/task outcome).

The action that the agent performs is defined by a vector
of D movement parameters x = [�q1, . . . ,�qD−1, s] that
define the whole motion sequence as a “one-shot” action.
This movement parameter vector contains the displacements
�q for each of the actuators w.r.t. a fixed starting configu-
ration, and the speed of the overall action execution s. We
assume that there already exists a position controller that
translates the goal position to a trajectory. The set of all
movement parameter vectors that encode actions (trials) is
the movement parameter space. Even though this space is
continuous, we discretise it to obtain a finite set of possi-
ble combinations. This allows us to perform fast and exact
inference over the parameter space, without the need for
approximate inference methods. In the simulation experi-
ments we use revolute joints so the parameters are given in
radians. Their units are the same even though their ranges
might be different. The same holds in robotic experiments
where the parameters are displacements in the Cartesian
space measured in centimeters, with the exception of the
wrist angle which is in radians. Although the wrist angle
has different units, the effect it causes can be comparable
to the displacements in centimeters. After the trajectory has
been executed, in case of a successful trial, the obtained trial
outcome can be any value (both continuous or discrete) and is
used to fit the taskmodel component. Both the successful and
failed trials contribute to the exploration component. Under
such a setup, the agent does not optimise for a particular task
performance, but rather tries to avoid failed trials.

4 Proposed approach

The base assumption of our approach is that similar move-
ment parameter vectors result in similar trial outcomes.

Therefore, the task regression mapping function is smooth,
without hard discontinuities, i.e. Lipschitz continuous. In
order to provide a sufficiently diverse sample distribution
for the regression model to create a generic mapping during
training, successful trials are necessary, i.e. agent needs to
move the object. The main challenge is selecting the trial
to evaluate next which will lead to the highest informa-
tion gain. The proposed approach consists of two decoupled
components updated using previous experience, i.e. previ-
ous trials—the taskmodel and exploration components. They
are implemented as functions over the movement parameter
space, mapping each movement parameter vector to a cer-
tain value. The mathematical formulation, together with the
underlying intuition behind the task model and exploration
components is given in Sects. 4.1 and 4.2, respectively.

4.1 Taskmodel component

The task model component uses the information from
scarce successful trials, and creates a mapping between
the movement parameter space (X) as input, and the trial
outcomes—puck’s final position (θpuck, L puck) as output.
This component creates two independent task models for
each of the puck’s polar coordinates, angle and distance (as
depicted later on in Sect. 5 in Fig. 7a, b, respectively). To this
end, we use GPR as it generalises well with limited func-
tion evaluations, which in our case are the successful trials
executed on the robot. Using the notation from the previous
section, let us define a point in themovement parameter space
x ∈ IRD . The main assumption is that for any finite set of N
points X = {xi }Ni=1, the corresponding function evaluations
(in our case trial outcome) at these points can be considered
as another set of random variablesF = { fxi }Ni=1, whose joint
distribution is a multivariate Gaussian:

F ∼ N (μ(X), K (X, X))

where μ(xi ) is the prior mean function and K (xi , x′
i ) is the

kernel function for some pair of parameter vectors xi , x′
i .

When applied to all the pairs from X the kernel produces
the matrix of covariances K . Having a joint probability of
the function variables, it is possible to get the conditional
probability of some parameter vector’s evaluation fx�

i
given

the others, and this is how we derive the posterior based on
observations from the trials. In our case, X� is the set of
movement parameter vectors which led to successful trials
during the training phase. Set X contains all the possible
parameter combinations, since we need to perform inference
over the whole parameter space in order to obtain the task
models. We define the extended joint probability as below,
and use matrix algebra to deduce the posterior:
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[
fX�

fX

]
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0,

[
K�� K�

T

K� K

])

p( fX | fX� , X, X�) ∼ N (K�K��
−1 fx,

K − K�K��
−1K�

T )

(1)

We assume a mean of 0 for our prior as we do not want
to input any previous knowledge in out task model. Sim-
ilarly to K , K�� is the matrix of covariances for all the
pairs from the set X�, and K� gives us the similarity of the
sucessful parameter vectors X� to each point in the param-
eter space X . Within the kernel definition we also consider
zero mean Gaussian noise, ε ∼ N (0, σ 2

ε ), to account for
both modelling and measurement inaccuracies. We evalu-
ated the performance using the squared exponention (SE),
Matern 5/3 and the rational quadratic (RQ) kernels. The best

performing kernels are SE: K SE (x, x′) = σ 2
f e

(
− d2

2σl

)
and

RQ: K RQ(x, x′) = σ 2
f

(
1 + d2

2ασ 2
l

)−α

, and these results are

presented in Fig. 6. The distance measure d is defined as
the Euclidean distance between the points in the parame-

ter space d(x, x′) = ∥∥x − x′∥∥ =
√∑D

j=1(x j − x ′
j )
2. Even

though the concept of a distancemetric in a high-dimensional
space is not straightforward to decide and interpret,we opt for
the Euclidean distance based on the discussion from Aggar-
wal et al. (2001) who argue that in problems with a fixed
high dimensionality, it is preferable to use a lower norm.
Moreover, the presented kernel showed good empirical per-
formance. From the similarity measure given by the kernel
we get that for the points which are far away from each other,
will have a higher variance associated with their prediction.
The coefficients α = D/2, σ 2

f and σ 2
l are the scaling param-

eter, variance and the lengthscale of the kernel, respectively.
The advantage of GPR is that for every point for which

we estimate the posterior distribution, we know its mean and
variance. The means are interpreted as the current task mod-
els’ predictions, and the variance as their confidence about
these predictions. Therefore, regions of the parameter space
which are farther away from the training points, will have
a higher variance and thus the uncertainty about their pre-
dictions is higher. After each new successful trial, we can
re-estimate the posteriors over the whole movement param-
eter space, in order to update both task models, and their
uncertainty. The inference is memory demanding but exe-
cutes in seconds on a workstation with a GTX 1070 GPU.

Even though it is possible to learn the GPR hyperpa-
rameters from data, we do not perform this because of: (i)
Low number of samples; as the main goal of our approach
is sample-efficiency, having a low number of samples and
learning the hyper parameters with the marginal likelihood
is very likely to give overfitting results (at least several dozens
of samples are needed to learn something meaningful (Cully

et al. 2015)). (ii) Search instability; the order of acquiring
samples is important and each subsequent point in the search
depends on the previous ones. Changing the GPR hyperpa-
rameters after each step, would cause large variance in the
sample acquisitions which may lead to instability. Therefore,
we do extensive search of the hyperparameters, but keep them
fixed throughout the training phase.

4.2 Exploration component

The exploration component exploits all the past trial infor-
mation, in order to obtain the selection function that guides
the movement parameter search and selection process. The
elements contributing to the selection function are the infor-
mation about the unsuccessful trials, expressed through a
penalisation function, and the GPR model uncertainty. Since
the movement parameters used as inputs for GPR are the
same for both the distance and angle task model, their cor-
responding GPR uncertainty will also be the same. The
penalisation function and the GPR model uncertainty are
represented as improper density functions (IDF), since their
values for each point in the parameter space are in the range
[0, 1] but they do not sum to 1. Therefore, multiplying these
two functions acts as a kind of particle filter. Since we are
interested in the relative “informativeness” of each point in
the parameter space when sampling the next trial, the actual
absolute values of these functions do not play a crucial role.
An example of these IDFs is visualised in Fig. 3.

Penalisation IDF (PIDF) probabilistically penalises regions
around the points in the movement parameter space which
have led to failed trials. This inhibits repetition and reduces
the probability of selecting parameters leading to failed trials.
In our experiments, a trial is failed if the agent does not move
the object. Additionally, in the simulation experiment, the
trial is stopped if the agent contacts (hits) the wall. In the
robotic experiment, fail cases are also when:

– Inverse kinematic solution cannot be found for the dis-
placements defined by the movement parameters.

– The displacements would produce physical damage to
the robot (self collision, ignoring the stick constraint or
hitting itself with the stick).

– Mechanical fuse breaks off due to excessive force.
– Swing movement misses the puck (no puck movement).

The PIDF is implemented as a mixture of inverted D-
dimensional Gaussians (MoG) (2), as they consider all failed
trials evenly. Gelbart et al. (2014) and Englert and Tous-
saint (2016) chose GP for this, however, MoG provide better
expressiveness of multiple modes in a distribution. PIDF is
initialised as a uniform distribution pp(X) ≡ U(X). The
uniform prior ensures that initially all the movement actions
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Fig. 3 The components used to generate movement parameters vectors
that define the trials. The figures show: a penalisation function which
inhibits the unsuccessful movements, i.e. failed trials, b task model
uncertainty, and c selection function combines the previous two func-
tions in order to get the distribution from which the parameter vector

is sampled. The visualisation of the 6-dimensional parameter space is
done by fixing the remaining parameters and showing the variance of
the model w.r.t. the wrist angle and right hand displacement along the
x-axis

have an equal probability of being selected. Each of the
K � N evaluated trials is represented by a Gaussian with a
meanμP

k coinciding with the parameter vector xk associated
with this trial. Coefficient cov is the covariance coefficient
hyperparameter. Covariance matrix�P

k is a diagonal matrix,
calculated based on how often does each of the D parameters
take repeated values, considering all the previous failed trials.
This is implemented by using a counter for each parameter.
In this way, the Gaussians have a smaller variance along the
dimensions corresponding to the parameters with frequently
repeating values, thus applying higher penalisation and forc-
ing them to change when ‘stuck’. Parameters with evenly
occurring values have wider Gaussians.

This procedure inhibits the selection of parameter values
which are likely to contribute to failed trials, and stimulates
exploring new ones. Conversely, the parameter vector lead-
ing to a successful trial is stimulated with a non-inverted
and high variance Gaussian, which promotes exploring
nearby regions of the space. PIDF can be interpreted as
p(successful_trial | uncertain_trial) i.e. the likelihood that
the parameter vector will lead to a successful trial given that
the model is uncertain about it.

pp(X) = U(X) +
K∑

k=1

φkN (μP
k , cov�),

{
φk = − 1,� = �P

k failed trial

φk = + 1,� = I successful trial

(2)

Model uncertainty IDF (UIDF) is intrinsic to GPR (3) and
is used to encourage the exploration of the parameter space
regions which aremost unknown to the underlying taskmod-

els. UIDF is updated for both successful and failed trials, as
the exploration does not depend on the actual trial outcomes.

pu(X) = K − K�K��
−1K�

T (3)

Selection IDF (SIDF) combines the information provided by
the UIDF, which can be interpreted as the prior over unevalu-
atedmovements, and the PIDF as the likelihood of improving
the task models. Through the product of PIDF and UIDF,
we derive SIDF (4), a non-parametric distribution used as a
query function, as the posterior IDF from which the optimal
parameter vector for the next trial is sampled.

psel(X) ∝ pp(X)pu(X) (4)

The trial generation and execution are repeated iteratively
until the stopping conditions are met. Since we are not min-
imising a cost function, the learning procedure can be stopped
when the average model uncertainty (i.e. entropy) drops
below a certain threshold. This can be interpreted as stop-
ping when the agent is certain that it has learned some task
model. The pseudocode showing the learning process of the
proposed framework is presented in Algorithm 1.

4.3 Learned taskmodel evaluation

In order to evaluate the performance during the testing phase,
it is necessary for the angle θ(x) and distance L(x) taskmod-
els to be invertible. Given the target coordinates (desired trial
outcome), a single appropriate movement parameter vector
x̂ defining the swing action that passes the puck to the tar-
get needs to be generated. It is difficult to generate exactly
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Algorithm 1 Task and Exploration component learning
1: Inputs:

movement parameter space: X
2: Initialize:

PIDF ← �0
UIDF ← 1

3: repeat
	 Following Eq. (4)

4: SIDF ← PIDF × UIDF
	 Sample movement parameter vector

5: xt ∼ SIDF
	 Trial execution on the robot

6: trial_outcome, θpuck , L puck = EXECUTE_TRIAL(xt )
7: if trial_outcome = failed then
8: �P

k [xt ] += 1
	 Following Eqs. (2) and (3), respectively

9: PIDF −= N (xt , cov�P
k )

10: UIDF = GPR(xt )
11: else
12: �P

k [xt ] −= 1
	 Following Eqs. (2) and (3), respectively

13: PIDF += N (xt , covI)
14: θx , Lx , UIDF = GPR(xt , θpuck , L puck)

15: end if
16: until stopping_conditions

one unique parameter vector which precisely realises both
the desired coordinate values θd and Ld . Therefore, the one
which approximates them both best and is feasible for robot
execution is selected.

This is achieved by taking the parameter vector which
minimises the pairwise squared distance of the coordinate
pair within the combined model parameter space, as in (5).
Additional constraint on the parameter vector is that its cor-
responding PIDF value has to be below a certain threshold ε

to avoid penalised movements.
In our numerical approach, this is done iteratively over the

whole parameter space, and takes a couple of miliseconds
to run. Alternatively, obtaining the optimal parameter vector
could be achieved using any standard optimisation algorithm.
More importance can be given to a specific coordinate by
adjusting the weighing factor δ.

x̂ = argmin
x

(√
(1 − δ)(θ(x) − θd)2 + δ(L(x) − Ld)2

)

subject to: pp(x) < ε

(5)

4.4 Task transfer

After the task model is learned, if we were to repeat the
approach in a different environment, the algorithmwould still
generate the same trials, both successful and failed. The new
environment can be considered as a different task as long as
the parameter space stays the same, but the trial outcomes val-
ues change. This is possible due to the fact that the proposed

approach does not take into account the actual puck posi-
tion values when generating subsequent trials, but rather the
binary feedback whether the trial was successful or failed. To
reiterate, only the successful trials contribute to forming the
task models as they actually move the puck, while the failed
trials are inherent to the robot’s physical structure. Therefore,
we can separate the failed and successful trials, and execute
only the latter in the new environment in order to retrain the
task models. This significantly reduces the amount of trials
needed to learn the skill in a new environment, because usu-
ally while exploring the parameter space the majority of the
trials executed are failed. Experimental validation of the task
transfer capability of the proposed approach is presented in
Sect. 6.3.

5 Simulation experiments and analysis

In order to present and analyse in detail the performance
of the proposed approach on a simple task, we introduce
the MuJoCo ReacherOneShot environment and evaluate the
approach in simulation. We introduce two variants of the
environment, with a 2-DOF agent consisting of 2 equal links,
and a 5-DOF agent consisting of 5 equal links in a kinematic
chain structure, as depicted in Fig. 4. The environment con-
sists of an agent acting in a wall-constrained area, with the
initial configuration of the agent and the puck location above
it fixed. This environment is a physical simulation where
the contacts between each of the components are taken into
account, as well as the floor friction. Contact between the
puck and the agent makes the puck move in a certain direc-

(a) (b) (c)

Fig. 4 The MuJoCo ReacherOneShot-2link (top row) and
ReacherOneShot-5link (bottom row) environments used for simu-
lation. The links are shown in different colours for clarity, the walls
are black and the puck the agent needs to hit is blue. Column a shows
the initial position, b a training trial (no targets given) and c the testing
phase with the testing area and sample targets in green (Color figure
online)
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Fig. 5 Comparison of the sample selection progress for both the pro-
posed informed approach (top row) and the random counterpart (bottom
row), up to the 70th trial on a 10 × 10 parameter space. The

⊗
sym-

bols represent failed trials while © are the successful trials. The grid

colours represent the probability of selecting a particular point, with
green being 0 and yellow 1. For the random approach the probabili-
ties are not applicable as all points are equally probable to be sampled
(Color figure online)

tion, while the collision between the agent and the wall stops
the simulation experiment and the trial is classified as failed.

The agent learns through trial and error how to hit the
puck so it moves to a certain location. The hitting action
is parameterised, with each parameter representing the dis-
placement of a certain joint w.r.t. the initial position, and is
executed in a fixed time interval. During the training phase,
the agent has no defined goal to which it needs to optimise,
but just performs active exploration of the parameter space
to gather most informative samples for its task model. We
have chosen this task as it is difficult to model the physics
of the contacts, in order to estimate the angle at which the
puck will move. Moreover, the walls on the side act as an
environmental constraint to which the agent must adapt.

5.1 Experiment with 2-link agent

In order to properly visualise all the components of the pro-
posed framework to be able to analyse them, we introduce a
2-link agent with only two parameters defining the action.
The range of base-link joint ( joint_0) is ± π

2 , while for
the inter-link joint ( joint_1), the range is ±π radians. The
action execution timeframe is kept constant, thus the speed
depends on the displacements.

To demonstrate the efficacy of the proposed informed
search approach, we compare and analyse its trial selec-
tion process to random trial sampling. We show this on a
crude discretisation where each joint parameter can take one
of 10 equally spaced values within its limits, producing the
parameter space of 100 elements. Figure 5 shows side-by-
side the trial selection progress up to the 70th trial, for both
the proposed informed approach and the random counter-

part. In the beginning both approaches start similarly. Very
quickly, the proposed informed approach appears to search
in a more organised way, finding the ‘useful region’ of the
parameter space that contains successful trials and focuses its
further sampling there, instead of the regions which produce
the failed trials. After 50 trials we can see that the distri-
bution of the points is significantly different for the two
approaches even in this simple low-dimensional example.
The number of sampled successful trials with the proposed
informed approach is 16, as opposed to 11 obtained by the
random approach, while the remaining are failed which do
not contribute to the task models. This behaviour is provided
by the PIDF which penalises regions likely to lead to failed
trials, and the sampling in the useful region is promoted by
the UIDF which seeks samples that will improve the task
model. We note that the highest concentration of the failed
trials from the informed approach is actually in the border
zones, around the useful region and at the joint limits. These
regions are in fact most ambiguous and thus most interesting
to explore. After the 70th trial, the informed approach already
sampled all the points that lead to successful trials, and the
next ones to be sampled are on the border of the useful region
as they are most likely to produce further successful trials.
Conversely, the random approach would need at least 6 more
samples to cover the whole useful region.

We further analyse the proposed approach by discussing
the role of the hyperparameters and their influence on the
performance. For this purpose, the two joint angle ranges
are discretised with the resolution of 150 equally spaced val-
ues, which creates a much more complex parameter space
of 22,500 combinations, over which the task models need to
be defined. This finer discretisation makes the search more
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(a) (b)

Fig. 6 Performance of the top performing hyperparameters on the test set after each trial, for 150 trials. The models that are better at lowering the
Euclidean error are shown in a while those minimising the number of failed cases are shown in b, for both the informed and random approach
(Color figure online)

difficult and emphasises the benefits of the informed search
approach. To analyse the task model performance as the
learning progresses, after each trial we evaluate the current
taskmodels on the test set. This is only possible in simulation,
because testing on a real robot is intricate and time consum-
ing. We perform the evaluation on 140 test target positions,
with 20 values of the angle ranging from − 65◦ to 30◦ with
5◦ increments, and 7 values of the distance starting from
5 to 35 distance units from the origin, as shown in Fig. 4.
The test error is defined as the Euclidean distance between
the desired test target position, and the final resting posi-
tion of the object the agent hits when executing the motion
provided by the model. For the test positions which are com-
plicated to reach and the learned task model cannot find the
proper inverse solution, we label their outcomes as failed,
exclude them from the average error calculation and present
themseparately. Figure 6 features plots showing the influence
of different hyperparameter values, where PIDF covariance
coefficients (cov), kernel functions (kernel) and the kernel’s
lengthscale (σ 2

l ) parameter are compared. The top plots show
the mean Euclidean error, middle plots the error’s standard
deviation over the test set positions and the lower ones show
the number of failed trials. The PIDF covariance values tested
are 2, 5, 10 and 20 and they correspond to the width of the
Gaussians representing failed trials in the PIDF. Making the
covariance smaller (widerGaussian) leads to fastermigration
of the trial selection to the regions of the parameter space

leading to successful trials. This hyperparameter does not
affect the random approach as the random approach does not
take into account the PIDF. Regarding the kernel type and its
lengthscale hyperparameter, this affects the task model for
both the proposed informed approach and the random trial
generation. Smaller lengthscales imply that the influence of
the training point on other points drops significantly as they
are farther away from it, and thus the uncertainty about the
model predictions for these other points raises quicker than
with larger lengthscales. The actual effect is that the UIDF
produces much narrower cones around trial points for small
lengthscale values, which promotes sampling other points in
the vicinity of the successful trials. In order to define the best
performing model, we need to take into account the met-
rics presented in the plots in Fig. 6. Thus, models which do
not produce failed tests and also have the minimal Euclidean
error are required. Based on this criteria, both informedmod-
els from Fig. 6b, showed superior performance. However,
for visualisation purposes, in Fig. 7 we show the learned task
models and the final selection function of the best performing
informed model together with its random counterpart from
Fig. 6a at trial 50, having the same hyperparameters (RQ
kernel with σ 2

l = 0.01 and cov = 5). Moreover, in the same
figure we present the evaluation of these models on 140 test
target positions in the form of a heatmap together with the
error mean. The failed test cases are shown in dark blue.
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(a) (b) (c) (d)

Fig. 7 Comparison of the informed (top row) and random (bottom row)
approach with the 2-link simulated agent at trial 50. The hyperparam-
eters used are: RQ kernel with σ 2

l = 0.01 and cov = 5. Column a
shows the learned angle task models, b distance models, c SIDF used to
generate trials, where

⊗
represent failed trials and © successful ones,

with the colourmap indicating the probability of selecting the next trial.

Column d shows the performance on 140 test target positions with the
colourmap indicating the Euclidean error for each of the test cases. The
mean error (excluding unreachable positions) is indicated on the colour-
bar for both approaches. Notice that for the random approach there are
12more unreachable positionsmarked in dark blue (Color figure online)

In Fig. 7 we can see how the SIDF was shaped by the
penalisation function and the model uncertainty. The PIDF
influenced the trial sampling to move away from the regions
leading to failed trials, and focus on the region where the
informative samples are, similarly to the previous experiment
shown in Fig. 5. Furthermore, we can again see that most of
the failed trials are in fact at the border between the failed and
successful trial regions, as well as at the joint limits, which
are the areas that need to be explored thoroughly.

Regarding the learned task models, we can see a clear
distinction in the angle model that defines whether the puck
will travel to the left (positive angle) or to the right (nega-
tive angle) and joint_0 influences this the most. The other,
joint_1 mostly influences the intensity of the angle, i.e. how
far will the puck move. This is possible because the joint
space has a continuous nature which implies that the sam-
ples which are close in the parameter space produce similar
performance. In the case of the learned anglemodel, it is easy
to see the difference between what the informed and random
approaches learned. While for the informed approach it is
clear that the positive values of the joint_0 parameter lead
to the positive angle values, within the random approach this
relationship does not hold.

5.2 Experiment with 5-link agent

Wefurther evaluate theperformanceof theproposed approach
on a more complex task by using a 5-link agent as depicted
in Fig. 4. The parameter space is 5 dimensional, discretised
with 7 values per parameter dimension. The action execution

speed, base-link and inter-link joint ranges are as described in
the previous section. Even though the discretisation is crude
as mentioned in Sect. 3, we show the task is learned effi-
ciently and shows good empirical performance. We evaluate
the performance of the proposed informed search w.r.t. a ran-
dom sampling approach.We also add an ablative comparison
with the case where the PIDF is not included in the explo-
ration component, but just the UIDF. UIDF uses the GPR
model’s variancewhich can be considered proportional to the
entropymeasure, as the entropy of aGaussian is calculated as
a 1
2 ln(2πeσ

2), where the log preserves themonotonicity and
the variance is always positive. In addition to this,we evaluate
the performance of a modified version of the state-of-the art
BO method presented in Englert and Toussaint (2016). Our
problem formulation does not provide an objective function
evaluations needed in BO, because themovement parameters
are notmodel parameterswhich influence thefinalmodel per-
formance. Instead of the model performance, we provide the
decrease in model uncertainty as a measure of performance
which is dependent on the movement parameter selection.
This setting is then in line with our problem formulation and
represents a goodmethod for comparison. In Fig. 8awe show
the mean (solid line) and standard deviation (shaded area) of
the test performance error as well as number of failed test tri-
als, basedon several top performinghyperparameters.Below,
in Fig. 8b, we show the heatmaps with errors for each test
target position, at trials 30, 50, 100 and 300.

First significant observation, which was not obvious in
the 2-link example, is that the random approach needs to
sample almost 40 trials before obtaining a partially useful
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(a)

(b)

Fig. 8 Performance of various hyperparameters on the test set after
each trial, for 300 trials. In a the plots show the mean and the standard
deviation of the test Euclidean error, averaged over the 5 best performing
models of the (orange) informed approach ( cov = 5, RQ kernel with
σ 2
l = 0.01; cov = 10, RQkernelwithσ 2

l = 0.001; cov = 10, SE kernel
with σ 2

l = 0.001; cov = 20, RQ kernel with σ 2
l = 0.001; cov = 20, SE

kernel with σ 2
l = 0.01), (green) random approach runs over 5 different

seeds, top 3 performing (red) UIDF-only exploration approaches ( all

using RQ kernel with σ 2
l = 0.01, σ 2

l = 0.001 and σ 2
l = 0.001) and

(blue) the modified BO approach from Englert and Toussaint (2016)
(showing all combinations of RQ and SE kernels with σ 2

l values: 0.01,
0.001, 0.0001). The heatmaps in b show actual test errors for each of
the 140 test positions at trials 30, 50, 100 and 300, using the best per-
forming instance of each of the models. The legend colormap show the
average values for each approach (Color figure online)
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Fig. 9 An example of a successful trial executed during the training phase. The blue arrow points to the puck (Color figure online)

task model, while the informed approach needs less than 5
trials. It is important to emphasise that the parameter space
contains 75 = 16,807 elements, which could cause infe-
rior performance of the random approach. Secondly, we can
see from the graph that even after 300 trials the informed
approach demonstrates a declining trend in the test error
mean and standard deviation, while the random approach
stagnates. The uncertainty-only-based exploration approach
finds a simple well-performing task model after only few
trials, even slightly outperforming the informed approach.
However, this approach is unstable and very sensitive to
hyperparameter choice. This can be explained byUIDFbeing
hardware-agnostic and not taking into account failed trials,
but purely exploring the parameter space. The modified BO
approach (Englert and Toussaint 2016), as expected, shows
good and consistent performance. Also, it can be seen that
it is not sensitive to hyperparameter change as the variance
in performance for different settings is low. Unilke with our
proposed approach, at the end of the learning phase when
testing the models, there are still some test target positions
which are not reachable by this model. By adding this new
experiment, we compared to amethod that enforces the feasi-
bility of the parameters as a constraint in the cost function. As
opposed to having an explicit constraint selecting only suc-
cessful trial parameters, our proposed approach implements
a soft (probabilistic) constraint through the PIDF, which still
allows sampling of failed trials occasionally. This allows us
to obtain datapoints at the borders of the feasible regions
which are useful for the task model.

6 Robot experiment and analysis

To evaluate our proposed approach on a physical system
we consider the problem of autonomously learning the ice-
hockey puck-passing task with a bimanual robot.1 We use
robot DE NIRO (Design Engineering Natural Interaction
RObot), shown in Fig. 1. It is a research platform for biman-
ual manipulation and mobile wheeled navigation, developed

1 The video of the experiments is available at https://sites.google.com/
view/informedsearch.

in our lab. The upper part is a modified Baxter robot from
Rethink Robotics which is mounted on a mobile base via
the extensible scissor-lift, allowing it to change the total
height from 170 to 205 cm. The sensorised head includes
a Microsoft Kinect 2.0 RGB-D camera with controllable
pitch, used for object detection. DE NIRO learns to hit an ice
hockey puck with a standard ice hockey stick, on a hardwood
floor and pass it to a desired target position. We are using a
right-handed stick which is 165 cm long and consists of two
parts: the hollow metal stick shaft and the curved wooden
blade fitted at the lower end. The standard (blue) puckweighs
approximately 170 g. To enable the robot to use this stick, we
have equipped its end-effectorswith custompassive joints for
attaching the stick. A universal joint is mounted on the left
hand, while the spherical joint is installed on the right (refer
to Fig. 1). This configuration inhibits the undesired idle roll
rotation around the longitudinal stick axis, while allowing
good blade-orientation control. The connection points on the
stick are fixed, restricting the hands from sliding along it.
This imposes kinematic constraints on the movement such
that the relative displacement of the two hands along either
axis cannot be greater than the distance between the fixture
points along the stick. Due to the right-handed design of the
ice hockey stick, the initial position of the puck is shifted to
the right side of the robot and placed approximately 20 cm
in front of the blade. We monitor the movement effect on
the puck using the head-mounted Kinect camera pointing
downwards at a 45◦ angle. A simple object-tracking algo-
rithm is applied to the rectified RGB camera image in order
to extract the position of the puck and the target. For calculat-
ing the polar coordinates of the puck, the mapping from pixel
coordinates to the floor coordinates w.r.t. the robot is done by
applying the perspective transformation obtained via homog-
raphy. All elements are interconnected using ROS (Quigley
et al. 2009).

6.1 Experiment description

Thepuck-passingmotion that the robot performs consists of a
swingmovement,making the contactwith the puck and trans-
ferring the necessary impulse to move the puck to a certain
location (as shown in Fig. 9). The robot learns this through
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trial and error without any target positions provided during
the training phase, just by exploring different swing move-
ments in an informed way and recording their outcomes.
The trajectory is generated by passing the chosen parameters
(displacements) that define the goal position, to the built-in
position controller implemented in the Baxter robot’s API.

During the training phase, the generated swing movement
can either be feasible or not for the robot to execute. If fea-
sible, the generated swing movement can potentially hit the
puckwhich then slides it from the puck’s fixed initial position
to some final position which is encoded via polar coordinates
θ and L , as shown in Fig. 1. Such a trial is considered success-
ful and contributes to the task models. If the swing misses
the puck, the trial is failed. Other cases in which a trial is
considered failed are defined in Sect. 4.2.

During the testing phase, the robot is presented with target
positions that the puck needs to achieve, in order to evaluate
the task model performance. The target is visually perceived
as a green circle which is placed on the floor by the user
(Fig. 1). Having received the target coordinates (θd and Ld ),
the robot needs to apply a proper swing action (x̂) that passes
the puck to the target.

Each trial consists of a potential swing movement which
is encoded using a set of movement parameters. We pro-
pose a set of 6 movement parameters which are empirically
chosen and sufficient to describe a swing. The movement
parameters represent the amount of relative displacement
with respect to the initial arm configurations. The displace-
ments considered are along the x and y axes of the robot
coordinate frame (task space) for the left (lx , ly) and right
(rx , ry) hands, the joint rotation angle of the left wrist (w),
and the overall speed coefficient (s) which defines how fast
the entire swing movement is executed. The rest of the joints
are not controlled directly. In this way the swing move-
ment is parameterised and can be executed as a one-shot
action. In the proposed setup, the parameters take discrete
values from a predefined fixed set, equally spaced within
the robot’s workspace limits. The initial configuration of
the robot arms and the ranges of the movement parameter
values are assigned empirically. Even though the approach
could be extended to autonomously detect the limits for the
parameters, it is done manually in order to reduce the pos-
sibility of damaging the robot while exploring the edges
of the parameter space. This implicitly reduces the number
of learning trials, especially the failed ones. However, this
parameter definition does not lead to any loss of generality
of the framework and preserves the difficulty of the chal-
lenge. Although the robot’s kinematic model is implicitly
used for the movement execution, via the inverse kinematics
in the position controller, this information is not used within
our framework. The discretisation resolution of the parame-
ter values inside the range is due to the numerical approach
to obtaining the task models whose domain is the whole

Fig. 10 Plot showing the decrease of GPR models’ uncertainty with
the number of trial evaluations

movement parameter space. The assigned parameter value
sets are (in meters): lx = {− 0.3,− 0.2,− 0.1, 0, 0.1}, ly =
{− 0.1,− 0.05, 0, 0.05, 0.1}, rx = {0, 0.042, 0.085, 0.128,
0.17}, ry = {− 0.1, 0.05, 0.2, 0.35, 0.5}, w = {− 0.97,
− 0.696,− 0.422,− 0.148, 0.126, 0.4} and s = {0.5,
0.625, 0.75, 0.875, 1.0}. This produces a parameter space of
size 6 × 55 = 18,750. The GPR generalises well despite
the crude discretisation. The parameter values are consid-
ered normalized as they are in the range [− 1, 1].

The training phase consisted of 100 trials of which 24
were successful and contributed to the task models. The rest
of the failed trials did not contribute to the task model explic-
itly, rather implicitly, through the exploration component.
The stopping criterion is when the model’s average uncer-
tainty drops below 10% and the last 5 updates do not lead to
more than 0.5% improvement each. Further trials and uncer-
tainty reduction would not make sense as it depends on the
inherent task uncertainty which is hard to quantify. This task
uncertainty is affected by the system’s hardware repeatabil-
ity and noise in the trial outcome amongst others. Figure 10
shows the uncertainty decrease over the sampling progress,
and this can be interpreted as a learning curve showing how
our taskmodel decreases its uncertainty about its predictions.
The overall training time including resetting is approximately
45 min. Figure 11a, b show the angle and distance models
learned based on the datasamples from 24 successful trials.
For visualisation purposes we slice the model and display it
along two of the six dimensions.We visualise rx andw, while
the remaining parameters are fixed with values: lx = − 0.3,
ly = 0.1, ry = 0.35 and s = 1.0, which is equivalent to a
backward motion of the left hand and a full speed swing. The
angle model in Fig. 11a shows how the wrist rotation angle
greatly affects the final angle of the puck, for this particular
swing configuration. This is in line with how professional
hockey players manipulate the puck by rotating their wrist.
The right hand displacement along the robot’s x-axis does
not contribute as much. The distance model in Fig. 11b
shows more complex dependencies, where the right hand
displacement has a high positive correlation with the final
puck distance for positive wrist angles. As the wrist angle
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Fig. 11 GPR task models learned during training based on successful
trial data; learned task model for the a angle and b distance

value decreases, so does the influence of rx . The range of
motions that the puck achieves after training are from 0◦ to
25◦ for the angle, and the distance from 50 to 350 cm.

As a side note, one option could be to prune all the failed
trials in simulation and perform only the successful ones on
the robot. However, this would require having a precise kine-
matic model of the robot including the hockey stick and the
passive joints which is not straightforward to model.

6.2 Experiment results and discussion

The essential interest here is to evaluate the main contribu-
tions: the informed search approach, and its application to
efficient task transfer. The hypothesis is that the proposed
approach needs significantly less trials to learn a confident
and generalisable task models, because the trials generated
in this manner are the most explanatory for the model.

To quantitatively assess the task model performance of
our approach, we analyse the test execution accuracy, i.e. the
ability to reach previously unseen targets.2 During testing,
the robot is presented with a target position (green circle as
in Fig. 12) and required to generate appropriate movement
parameters for a swing action that will pass the puck to the
target. We evaluate the accuracy using 28 different target
positions, placed in the mechanically feasible range with 4
increments of the angle {0, 10, 15, 20}, and 7 of the distance
{100, 120, 150, 175, 200, 250, 300}. These coordinates have
not necessarily been reached during training. For specific
target coordinates, the model is inverted to give an appropri-
ate and unique movement parameter vector, as described in
Sect. 4.3. The final repeatability is the one achievable by the
robot hardware (± 5 cm) and is consistent.

Firstly, we compare the results of our approach to those
of a model learned from randomly generated trials. We gen-
erated 100 random points in the movement parameter space
whichwere evaluated on the robot and used to create theGPR

2 The code and experiment data will be made available on the project
website upon publication.

Fig. 12 View from the Kinect camera during the testing phase. The
error e is the measured Euclidean distance between the puck and the
target position, during the a best and b worst hit cases

taskmodels.We produced 5 such randommodels with differ-
ent initial seeds, verified their performance on the test target
set and averaged the results (see Table 1). As shown, our
model is on average twice as accurate and more importantly,
almost three times more confident, based on the standard
deviation, than the models produced by random search. This
demonstrates that the informed search selects training points
which provide the model with better generalisation capabili-
ties. We did not consider the grid search approach, as it is not
feasible to evaluate all 18,750 movement parameter combi-
nations. Regarding the performance in the related work, in
Daniel et al. (2013) the puck is sent to a target zone of 40 cm
in width, while in Chebotar et al. (2017) there are only three
fixed 25 cm-wide goals, in which the execution is deemed as
successful. From the results, our method on average achieves
better accuracy over 28 previously unseen target positions.

Secondly, we compare our approach to human-level per-
formance. We asked 10 volunteers who had no previous ice
hockey experience and 4 members of the college ice hockey
club to participate, under the same settings as the robotic
counterpart. The volunteers were placed at the same fixed
position as the robot to maintain equal distance from the test
targets, and the puck had the same starting position. No addi-
tional guidance was given regarding the stance, but they were
shown in which regions of the stick they should place their
grip in order to be comparable with the robot. The volunteers
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Table 1 Performance
comparison of the achieved
accuracy in Euclidean distance
between the puck and the target,
averaged over 28 test target
positions

Movement generation method Mean (cm) STD (cm)

“Original” environment (blue puck, hardwood floor)

Informed search 29.48 16.33

Random search 64.18 45.72

Inexperienced volunteers 32.16 27.82

Experienced volunteers 22.96 18.07

New environments

“Original” model (blue puck, marble floor) 66.18 50.75

Re-trained model (blue puck, marble floor) 43.73 37.08

“Original” model (red puck, marble floor) 63.4 41.85

Re-trained model (red puck, marble floor) 38.32 31.05

had 24 practice shots to get accustomed to the stick, puck
and the surface. After, they were presented with the same test
target positions, and their averaged results are presented in
Table 1. We have to emphasise that such a comparison is not
straightforward to analyse: this task is difficult for a human
as it requires repeatability in the arm control and hand-eye
coordination; although the inexperienced subjects have not
practiced hockey previously, through their lifetime they have
developed a good general notion of the physical rules and
limb control. The inexperienced volunteers achieve slightly
worse accuracy, yet the variance among the subjects is high,
which could be attributed to their various skillsets that are
more or less akin to ice hockey. Experienced volunteers per-
formed better than the robot and this can be explained with
their domain knowledge. Even with a small sample size the
within-group variance is low. By observing the heatmaps of
these tests (Fig. 13) we can see the performance on each
of the 28 test target position individually, averaged over all
the candidates.It is noticeable that the human volunteers are
more confidentwith targets that are closer, and to some extent
the random approach as well. For the informed approach no
such obvious pattern has emerged.

Fromqualitative observationswe deduce that the inexperi-
enced volunteers also need less time to acquire the basic skill
level necessary to perform this task efficiently. This includes
adjusting their grip and swing technique after a couple of tri-
als, so it resembles that of experienced volunteers. We also
note that several inexperienced volunteers who showed good
performance, discovered that sliding the puck in the blade
on the ground improves the accuracy. This technique was
employed by all experienced volunteers and was also learned
by the robot.

6.3 Task transfer

We demonstrate the task transfer aspect of the proposed
framework by re-learning the task model for different envi-
ronments. In this experiment we consider a task new, if it

Fig. 13 Heatmaps showing the Euclidean distance error (in cm) over
the test target positions, for tests in the upper part of Table 1

has a significantly different environment model, such as the
object shape or weight and the floor friction. The main idea
is that the trials generated are intrinsic to the robot hardware
and are independent of the environment. Consequently, if the
robot is placed on a different surface and given a ball instead
of the puck, it would still generate the same trial movements.
However, if the stick or other parts of the robot’s kinematic
chain change significantly, this might not hold anymore. In
that case, the training phase would have to be done from
scratch as different kinematics generate different failed trial
cases which need to be accounted for. Thus, if the kinematics
are the same we just need to replicate the successful trials,
and gather datapoints for the new environment-specific task
model. Therefore the robot can adapt and perform the task
in a new environment by executing only the set of 24 move-
ment parameter vectors that generated successful trials in
the “original” training session (standard puck on hardwood
floor), not all 100 trials. The successful trials are indepen-
dent of the environment and provide samples for the GPR
task models. After executing the 24 trials and obtaining the
trial outcomes, the actual model update is done in batch with
the 24 datapoints, so the learning happens instantaneously.
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Fig. 14 Task transfer experimental setup on the marble floor, using the
a standard ice-hockey puck made from vulcanised rubber (blue), and b
a lighter puck made of wood (red) (Color figure online)

The new environments we consider are the marble floor
which has a higher friction coefficient than the hardwood
floor, and a wooden puck (red puck) which is lighter than
the standard puck (approx. 80 g). The experimental setup for
the task transfer is presented in Fig. 14. Successful trials are
executed by the robot on the new surface, using both pucks.
Two new task models are learned, evaluated on the test target
set, and the results are shown in Table 1. As a benchmark,
we show results of directly transferring the model learned
in the “original” environment. The decrease in accuracy can
be explained due to the higher friction and thus decreased
sensitivity, where changes in the movement parameters have
a lower impact on the puck position. Therefore, not all test
positions could be achieved. However, we see that using the
blue puck as in the “original” setup, on the newfloor performs
worse than the lighter (red) puck, which can be explained by
the fact that a lighter puck on a higher-friction (marble) floor
acts as an equivalent to a heavier puck on a lower-friction
(hardwood) floor. Even though completely new task models
are learned after only 24 trials, the average accuracy is still in
line with the literature examples and outperforms the random
case by more than 20 cm on average.

7 Conclusion and future directions

We have presented a probabilistic framework for learning
the robot’s task and exploration models based solely on its
sensory data, by means of informed search in the movement
parameter space. The presented approach is validated in sim-
ulation and on a physical robot doing bimanual manipulation
of an ice hockey stick in order to pass the puck to target posi-
tions. We compared our informed trial generation approach
with random trial generation, as well as twomore approaches
in simulation, and showed superior performance of our pro-
posed approach. In the robotic experiment, the robot learns

the task from scratch in approximately 45 min with an accu-
racy comparable to human-level performance and superior
to similar experiments in the literature. Additionally, through
our framework we demonstrated that the agent is capable of
re-learning the task models in different new environments in
significantly less time.

Future directions of the research include exploring the
applicability of this approach to sequential tasks through the
informed search in the policy or DMP parameter space. In
particular with the emphasis on adapting the approach to
continuous movement parameter spaces.
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