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Abstract
Many exciting robotic applications require multiple robots with many degrees of freedom, such as manipulators, to coordinate
their motion in a shared workspace. Discovering high-quality paths in such scenarios can be achieved, in principle, by
exploring the composite space of all robots. Sampling-based planners do so by building a roadmap or a tree data structure
in the corresponding configuration space and can achieve asymptotic optimality. The hardness of motion planning, however,
renders the explicit construction of such structures in the composite space of multiple robots impractical. This work proposes
a scalable solution for such coupled multi-robot problems, which provides desirable path-quality guarantees and is also
computationally efficient. In particular, the proposed dRRT∗ is an informed, asymptotically-optimal extension of a prior
sampling-based multi-robot motion planner, dRRT. The prior approach introduced the idea of building roadmaps for each
robot and implicitly searching the tensor product of these structures in the composite space. This work identifies the conditions
for convergence to optimal paths inmulti-robot problems, which the prior methodwas not achieving. Building on this analysis,
dRRT is first properly adapted so as to achieve the theoretical guarantees and then further extended so as to make use of
effective heuristics when searching the composite space of all robots. The case where the various robots share some degrees
of freedom is also studied. Evaluation in simulation indicates that the new algorithm, dRRT∗ converges to high-quality paths
quickly and scales to a higher number of robots where various alternatives fail. This work also demonstrates the planner’s
capability to solve problems involving multiple real-world robotic arms.

Keywords Multi-robot motion planning · Multi-robot problems · Motion planning · Asymptotic optimality · Sampling-based
motion planning · Multi-arm motion planning
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1 Introduction

A variety of robotic applications, ranging from manufac-
turing to logistics and service robotics, involve multiple
robotic systems operating in the same workspace. In tradi-
tional, industrial domains, such as car manufacturing, the
environment is fully known and predictable. This allows the
robots to operate in a highly scripted manner by repeating
the same predefined motions as fast as possible. New types
of tasks, however, require robotic manipulators that com-
pute high-quality paths on the fly. For instance, a team of
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Fig. 1 Planning in a coupled manner for multiple high-dimensional
robots is a computationally challenging problem that motivates this
work.The image shows an instance of amotionplanningproblemsolved
by the proposed approach. It involves 4 robotic arms, eachwith 7degrees
of freedom, operating in a shared workspace. The arms need to move
simultaneously from an initial to a goal configuration

robotic arms can be tasked to pick and sort a variety of
objects that are dynamically placed on a common surface.
Multiple challenges need to be addressed in the context of
such applications, such as detecting the configuration of the
objects and grasping. This work deals with the multi-robot
motion planning (MMP) problem (Wagner and Choset 2013;
Gravot and Alami 2003a; Gharbi et al. 2009) in the context
of such setups, i.e., computing the paths of multiple, high-
dimensional systems, such as robotic arms, that operate in a
shared workspace, as shown in Fig. 1. The focus is to solve
MMP in a computationally efficient way as well as in a cou-
pled manner, which allows to argue about the quality of the
resulting paths.

Planning for multiple, high-dimensional robotic systems
is quite challenging. Themotion planning problem is already
computationally hard for a single robot (Canny 1988) that is
a kinematic chain of rigid bodies. Thus, most approaches
for multi-robot motion planning either quickly become
intractable as the number of robots increases or alternatively
sacrifice completeness and path quality guarantees. In partic-
ular, problem instances are especially hard when the robots
operate in a shared workspace and in close proximity. In this
case, it is not easy to reason for the robots in a decoupled
manner. Instead, it is necessary to operate in the composite
configuration space of all robots. The space requirements,
however, for solving motion planning instances increase
exponentially with problem dimensionality. The composite
space of all robots in MPP instances is typically very high-

dimensional to explore in a comprehensive and resolution
complete manner, such as discretizing it with a grid and
searching over it.

Sampling-based planners aim to help with such dimen-
sionality issues by approximating the connectivity of the
underlying configuration space. They construct graph-based
representations, such as a roadmap or a tree data structure,
which store collision free configurations and paths through
a sampling process. Under certain conditions regarding the
density of the corresponding graph, sampling-based planners
can provide desirable path quality guarantees. Specifically,
they achieve asymptotic optimality, i.e., as the sampling pro-
cess progresses, the best path on the graph converges to the
optimal one in the original configuration space.Nevertheless,
even sampling-based planners face significant space chal-
lenges in the context ofMPP problem, such as the one shown
in Fig. 1, which corresponds to a 28-dimensional space. In
particular, it becomes infeasible with standard, asymptoti-
cally optimal sampling-based planners to explicitly store a
graph in the corresponding space that will allow the discov-
ery of a solution in practice. This is due to the large number
of samples required to cover an exponentially larger vol-
ume as the dimensionality of the underlying space increases.
Asymptotically optimal planners must maintain in the order
of logn edges per sample, where n is the number of sam-
ples. Thus, when planning for high-dimensional systems, the
space requirements of the corresponding roadmaps surpass
the capabilities of standard workstations rather quickly.

A previously proposed sampling-based planner specif-
ically designed for multi-robot problems, called dRRT
(Solovey et al. 2015a), achieved progress in this area by
leveraging an implicit representation of the composite space
in order to provide both completeness and efficiency. This
implicit representation is a graph, which corresponds to
the tensor product of roadmaps explicitly constructed for
each robot. This allows finding solutions for relatively
high-dimensional multi-robot motion planning problems.
Nevertheless, this priormethoddid not provide anypath qual-
ity guarantees.

One key contribution of this work is to show that the
structure of this implicit representation is guaranteed (asymp-
totically) to contain the optimal path for a set of robots
moving simultaneously. Nevertheless, defining an implicit
graph that contains a high-quality solution does not guarantee
that thefinal solution is optimal unless the searchprocess over
this graph is appropriate. While a provably optimal search
approach, such as A*, could be implemented to search this
graph, the extremely large branching factor of the implicit
roadmap makes this prohibitively expensive, especially in
the context of anytime planning. Instead, this work lever-
ages the observation that a sampling-based method inspired
by RRT∗, which maintains a spanning tree over the underly-
ing implicit graph, will return optimal solutions if it allows
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rewiring operations during the spanning tree construction.
Namely, it must converge to the tree with all of theminimum-
cost paths starting from the initial query state to each other
node in the graph. Further, this work shows that for a broad
range of cost functions over paths in this graph can be used
while still guaranteeing the proposed dRRT∗ approach will
asymptotically converge towards such a tree.

This paper is an extension of prior work (Dobson et al.
2017), which introduced an initial version of the dRRT∗
and the sufficient conditions for generating an asymptoti-
cally optimal planner in this context. The current manuscript
provides the following extensions:

– A more thorough analysis that shows that the desirable
guarantee can be achieved for an additional distancemet-
ric for multi-robot motion planning;

– A more detailed description of the method, which has
been further improved for computational efficiency pur-
poses through the appropriate incorporation of heuristics;

– The method has been extended to handle systems with
shared degrees of freedom, as shown in related work
(Shome and Bekris 2017).

– The experimental section has been extended to include
the new methods as well as demonstrations on physical
platforms.

The following section summarizes related prior work on
the subject before Sect. 3 introduces the problem setup.
Section 4 describes the underlying structure of the implicit
tensor-roadmap and the previous method dRRT (Solovey
et al. 2015a). The changes to dRRT necessary to achieve
asymptotic optimality and computational efficiency, which
result to the proposed algorithm dRRT∗ are presented in
Sect. 5. An analysis of the properties of themethod are show-
cased in Sect. 6. Themethod is extended, in Sect. 7 to systems
with shared degrees of freedom.Section 8 evaluates themeth-
ods experimentally and demonstrates their performance.

2 Prior work

The multi-robot motion planning problem (MMP) is noto-
riously difficult as it involves many degrees of freedom,
and consequently a vast search space, as each additional
robot introduces several additional degrees of freedom to
the problem. Certain instances of the problem can be solved
efficiently, i.e., in polynomial run time, and in a complete
manner, at times evenwith optimality guarantees on the solu-
tion costs (Turpin et al. 2013; Adler et al. 2015; Solovey
et al. 2015b). However, in general MMP is computationally
intractable (Hopcroft et al. 1984; Spirakis and Yap 1984;
Solovey and Halperin 2016; Johnson 2018).

DecoupledMMP techniques (Erdmann andLozano-Perez
1987; Ghrist et al. 2005; LaValle and Hutchinson 1998; Peng
and Akella 2004; Van Den Berg and Overmars 2005; Van
Den Berg et al. 2009) reduce search space size by parti-
tioning the problem into several subproblems, which are
solved separately. Then, the different solutions are combined.
These methods, however, typically lack completeness and
optimality guarantees. While some hybrid approaches can
take advantage of the inherent decoupling between robots
and provide guarantees (Van Den Berg et al. 2009), they are
often limited to discrete domains. The problem is more com-
plex when the robots exhibit non-trivial dynamics (Peng and
Akella 2005). Collision avoidance or control methods can
scale to many robots, but lack path quality guarantees (Van
Den Berg et al. 2011; Tang and Kumar 2015).

In contrast to that, centralized approaches (Kloder and
Hutchinson 2005; O’Donnell and Lozano-Pérez 1989; Salz-
man et al. 2015; Solovey et al. 2015a; Svestka and Overmars
1998; Wagner and Choset 2013) usually work in the com-
bined high-dimensional configuration space, and thus tend to
be slower than decoupled techniques. However, centralized
algorithms often come with stronger theoretical guarantees,
such as completeness. Through the rest of this sectionwewill
consider centralizedmethods,with an emphasis on sampling-
based approaches.

Sampling-based algorithms for a single robot (Kavraki
et al. 1996; LaValle andKuffner 1999; Karaman and Frazzoli
2011) can be extended to the multi-robot case by considering
the fleet of robots as one composite robot (Gildardo 2002).
Such an approach suffers from inefficiency as it overlooks
aspects of multi-robot planning, and hence can handle only a
very small number of robots. Several techniques tailored for
instances of MMP involving a small number of robots have
been described (Hirsch and Halperin 2004; Salzman et al.
2015).

In previous work (Solovey and Halperin 2014), an exten-
sion of MMP was introduced, which consists of several
groups of interchangeable robots. At the heart of the algo-
rithm is a novel technique where the problem is reduced
to several discrete pebble-motion problems (Kornhauser
et al. 1984; Luna and Bekris 2011; Yu and LaValle 2013).
These reductions amplify basic samples into massive col-
lections of free placements and paths for the robots. An
improved version (Krontiris et al. 2015) of this algorithm
applied it to rearrange multiple objects using a robotic
manipulator.

Previous work (Svestka and Overmars 1998) introduced a
different approach,which leverages the following fundamen-
tal observation: the structure of the overall high-dimensional
multi-robot configuration space can be inferred by first
considering independently the free space of every robot,
and combining these subspaces in a meaningful manner
to account for robot-robot collisions. They suggested an
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approach which combines roadmaps constructed for indi-
vidual robots into one tensor-product roadmap Ĝ, which
captures the structure of the joint configuration space (see
more information in Sect. 4).

Due to the exponential nature of the resulting roadmap,
this technique is only applicable to problems that involve a
modest number of robots. A recent work (Wagner andChoset
2013) suggests that Ĝ does not necessarily have to be explic-
itly represented. They apply their M∗ algorithm to efficiently
retrieve paths over Ĝ, while minimizing the explored por-
tion of the roadmap. The resulting technique is able to cope
with a large number of robots, for certain types of scenar-
ios. However, when the degree of simultaneous coordination
between the robots increases, there is a sharp increase in the
running time of this algorithm, as it has to consider many
neighbors of a visited vertex of Ĝ. This makes M∗less effec-
tive when the motion of multiple robots needs to be tightly
coordinated.

Recently a different sampling-based framework for MMP
was introduced, which combines an implicit representation
of Ĝwith a novel approach for pathfinding in geometrically-
embedded graphs tailored for MMP (Solovey et al. 2015a).
The discrete-RRT (dRRT) algorithm is an adaptation of the
celebrated RRT algorithm for the discrete case of a graph,
and it enables a rapid exploration of the high-dimensional
configuration space by carefully walking through an implicit
representation of the tensor product of roadmaps for the
individual robots (see extensive description in Sect. 4).
The approach was demonstrated experimentally on scenar-
ios that involve as many as 60 DoFs and on scenarios
that require tight coordination between robots. On most of
these scenarios dRRT was faster by a factor of at least
ten when compared to existing algorithms,including the
aforementioned M∗.

Later, dRRT was applied to motion planning of a free-
flying multi-link robot (Salzman et al. 2016). In that
case, dRRT allowed to efficiently decouple between costly
self-collision checks, which were done offline, and robot-
obstacle collision checks, by traversing an implicitly-defined
roadmap, whose structure resembles to that of Ĝ. dRRT has
also been used in the study of the effectiveness of metrics for
MMP, which are an essential ingredient in sampling-based
planners (Atias et al. 2017).

The current work proposes dRRT∗ and shows that it is
an efficient asymptotically optimal extension of the previ-
ously proposed dRRT. The dRRT∗ framework is an any-
time algorithm, which quickly finds initial solutions and
then refines them, while ensuring asymptotic convergence
to optimal solutions. Simulations show that the method
practically generates high-quality paths while scaling to
complex, high-dimensional problems, where alternatives
fail.

3 Problem setup and notation

We start with a definition of the problem. Consider a shared
workspace with R ≥ 2 holonomic robots, each operating in a
d-dimensional configuration space Ci ⊂ R

d for 1 ≤ i ≤ R.
For a given robot i , denote its free space, i.e., the set of all
collision free configurations, by C

f
i ⊂ Ci , and the obstacle

space by C
o
i = Ci \ Cf

i .

The composite configuration space C = ∏R
i=1 Ci is the

Cartesian product of each robot’s configuration space. That
is, a composite configuration Q = (q1, . . . , qR) ∈ C is an
R-tuple of robot configurations. For two distinct robots i, j ,
denote by I ji (q j ) ⊂ Ci the set of configurations of robot i ,
which lead into collision with robot j at its configuration q j .
Then, the composite free space Cf ⊂ C consists of config-
urations Q = (q1, . . . , qR) in which robots do not collide
with obstacles or pairwise with each other. Formally:

• qi ∈ C
f
i for every 1 ≤ i ≤ R;

• qi /∈ I ji (q j ), q j /∈ I ij (qi ) for every 1 ≤ i < j ≤ R.

The composite obstacle space is defined as Co = C \ Cf.
Multi-robot planning is concerned with finding (collision-

free) composite trajectories of the form Σ : [0, 1] → C
f. Σ

is an R-tuple (σ1, . . . , σR) of single-robot trajectories σi :
[0, 1] → Ci .

This work is concerned with producing high-quality
trajectories, which minimize certain cost functions. In par-
ticular, we consider three cost functions cost(·), which are
presented below. Let Σ = (σ1, . . . , σR) be a composite tra-
jectory. For the following, ‖·‖ denotes the standard arc length
of a curve:

• The sum of path lengths: cost(Σ) = ∑R
i=1 ‖σi‖.

• The maximum path length: cost(Σ) = maxi=1:R ‖σi‖.
• The Euclidean arc length of Σ : cost(Σ) = ‖Σ‖

This work presents dRRT∗ as an efficient, anytime solu-
tion to the robustly-feasible composite motion planning
(RFCMP) problem:

Definition 1 (RFCMP) Given R robots operating in com-
posite configuration space C = ∏R

i=1 Ci , and for a given
query S = (s1, . . . , sR), T = (t1, . . . , tR), an RFCMP
problem is one which yields a robustly-feasible trajectory
Σ : [0, 1] → C

f and Σ(0) = S,Σ(1) = T . Namely, there
exists a fixed constant δ > 0 such that ∀ τ ∈ [0, 1], X ∈ C

o

it holds that

‖Σ(τ) − X‖ ≥ δ.

One of the primary objectives of this work is to provide
asymptotic optimality in the composite configuration space
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Fig. 2 Given the individual robot roadmaps Gi and G j shown on the

left, the tensor product roadmap Ĝi, j arises, which is shown on the right.
For each pair of nodes, where one is selected fromGi and the other from
G j , a node is defined in Ĝi, j . Two nodes in the tensor-product roadmap
share an edge if their constituent nodes in the individual robot roadmaps
also share an edge. For instance, nodes 1A and 3C do not share an edge
in Ĝi, j because nodes 1 and 3 do not share an edge in Gi

without explicitly constructing a planning structure in this
space.

Definition 2 (Asymptotic Optimality) Letm be the time bud-
get of the algorithm and a robustly optimal solution Σ(m) of
cost c∗ is returned after time m, then asymptotic optimality
is defined as ensuring that the following holds true for any
ε > 0.

lim
m→∞Pr

[
cost(Σ(m)) ≤ (1 + ε)c∗] = 1.

4 Algorithmic foundations

This section provides a detailed description of the discrete-
RRT (dRRT) method (Solovey et al. 2015a), which is the
basis of our method presented in Sect. 5. dRRT was posed
as an efficient way to search an implicitly defined tensor-
product roadmap, which captures the structure of C without
explicitly sampling this space.

4.1 Tensor-product roadmap

Here we provide a formal definition of the tensor-product
roadmap that dRRT is designed to explore. For every robot
1 ≤ i ≤ R construct a PRM graph (Kavraki et al. 1996),
denoted by Gi = (Vi ,Ei ), which is embedded in C

f
i . That

is,Gi can be viewed as an approximation of Cf
i and encodes

collision free motions for robot i . The construction of Gi

is determined by two parameters n and rn , which represent
the number of samples, and the connection radius, respec-
tively. As will be discussed in the following sections, it is
necessary the roadmaps G1, . . . ,GR to be constructed with

certain range of parameters to guarantee asymptotic optimal-
ity of the new planners (Sect. 5).

Define the tensor-product roadmap, denoted by Ĝ =
(V̂, Ê), as the tensor product between G1, . . . ,GR (see
Fig. 2). Each vertex of Ĝ describes a simultaneous place-
ment of the R robots, and similarly an edge of Ĝ describes
a simultaneous motion of the robots. Formally, V̂ =
{(v1, v2, . . . , vR) : ∀ i, vi ∈ Vi } is the Cartesian prod-
uct of the nodes from each roadmap Gi . For two vertices
V = (v1, . . . , vm) ∈ V̂, V ′ = (v′

1, . . . , v
′
m) ∈ V̂, the edge

set Ê contains edge (V , V ′) if ∀i ∈ [1, R] : vi = v′
i or

(vi , v
′
i ) ∈ Ei .1 Note that by the definition of G1, . . . ,GR ,

the motion described by each edge E ∈ Ê represents a path
for the R robots in which the robots do not collide with obsta-
cles. However, collisions between pairs of robots still may
be possible.

It is important to note that the tensor-product roadmap
has ‖V̂‖ = ∏R

i=1 ‖V̂i‖ vertices. Given the neighborhood of
a node vi in Gi as Adj(vi ,Gi ), the size of the neighbor-
hood of a node v = {v1 . . . vR} in Ĝ is ‖Adj(v, Ĝ)‖ =
∏R

i=1 ‖Adj(vi ,Gi )‖. Using the much smaller G1, . . . ,GR

to construct Ĝ online is computationally beneficial.
The presented algorithms share a common set of input and

output parameters, such as the configuration space decom-
positions, which are predefined. In practice, the algorithms
use pre-computed roadmaps in each constituent space online.
The collision volumes that correspond to the robot and obsta-
cles in the scene are also used online for validation. The
algorithms output a trajectory in the configuration space of
all robots,which is collision freewith all obstacles and among
robots.

4.2 Discrete RRT

An explicit construction of Ĝ is possible in very limited set-
tings that either involve few robots, e.g., R = 2, or when
the underlying single-robot roadmaps have few vertices and
edges. However, in general it is prohibitively costly to fully
represent it due to its size, which grows exponentially with
the number of robots, in terms of the number of vertices.
Moreover, in some cases it may be even a challenge to rep-
resent all the edges adjacent to a single vertex of Ĝ, as there
may be exponentially many of those.

ThedRRT algorithm enjoys the rich structure that Ĝ offers
(see Sect. 6) without explicitly representing it. In particu-
lar, it gathers information on Ĝ only from the single-robot
roadmaps G1, . . . ,GR .

Similarly to the single-robot planner RRT (LaValle and
Kuffner 1999), dRRT grows a tree rooted at the start state

1 Notice this difference from the original dRRT (Solovey et al. 2015a)
so as to allow edges where some robots remain motionless.
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Fig. 3 aThemethod reasons over all neighborsq ′ ofq so as tominimize
the angle � q (q ′, q ′′). bOd (·, ·) finds graph vertex V new by minimizing
angle � V near (V new, Qrand). c, d V nearand Qrandare projected into each
robot’s C-space to find vnewi and vnewj , respectively, which minimize

both �
vneari

(vnewi , qrandi ) and �
vnearj

(vnewj , qrandj )

of the given query (Line 1). dRRT restricts the growth of its
tree T to the tensor-product roadmap Ĝ in contrast to RRT,
which explores the entire space C. That is, T is a subgraph
of Ĝ, and T ⊂ C

f.
The high level operations of the dRRT approach are out-

lined inAlgorithm1.The approachwill iterate until a solution
is found or the time limit is exceeded (Algorithm 1, Line 2),
beginning with performing a fixed number nit expansion
steps at the beginning of each iteration (Lines 3, 4). This
expansion process is outlined in Algorithm 2. The approach
then checks to see if there is a connected path to the target
(Line 5), and once a path is found, it is returned (Lines 6, 7).

The expansion procedure begins by drawing a random
sample Qrand ∈ C (Line 1). It then finds the nearest neighbor
V near in the tree (Line 2) and then selects a neighbor V new,
such that (V near, V new) ∈ Ê, according to a direction oracle
functionOd (Line 3). Then, if V new is not in the tree (Line 4),
it is added to the tree (Line 5) and an edge from V near to V new

is also added (Line 6).
We now elaborate on Od . Given V near, Qrand, the ora-

cle returns a vertex V new ∈ V̂ that is the neighbor of V near

(in Ĝ) found in the direction of Qrand. The crux of the
approach is that Od can come up with such a neighbor effi-
ciently without relying on explicit representation of Ĝ. Let
Q, Q′, Q′′ ∈ C and define ρ(Q, Q′) to be the ray through
Q′ starting at Q. Then, denote � Q(Q′, Q′′) as the mini-
mum angle between ρ(Q, Q′) and ρ(Q, Q′′). Denote by
Adj(V near, Ĝ) the set of neighbor nodes of V near in Ĝ, i.e.,
for every V ∈ Adj(V near, Ĝ) it holds that (V near, V ) ∈ Ê.
Then

Od(V
near, Qrand) = argmin

V∈Adj(V near,Ĝ)

� V near(Qrand, V ).

The implementation of Od (Algorithm 5) proceeds in the
following manner (see a two-robot case illustrated in Fig. 3).
Let Qrand = (qrand1 , . . . , qrandR ), V near = (vnear1 , . . . , vnearR ).

Algorithm 1: dRRT(Ĝ, S, T , nit)

1 T.init(S);
2 while time.elapsed() < time_limit do
3 for i : 1 → nit do
4 Expand(Ĝ,T);

5 π ← Connect_to_Target(Ĝ,T, T );
6 if π �= ∅ then
7 return Trace_Path(T, T );
8 return ∅

Algorithm 2: Expand(Ĝ,T)

1 Qrand ← Random_Sample();
2 V near ← Nearest_Neighbor(T, Qrand);
3 V new ← Od(V near, Qrand);
4 if V new /∈ T then
5 T.Add_Vertex(V new);
6 T.Add_Edge(V near, V new);

For every robot 1 ≤ i ≤ R, the oracle extracts from Gi

the neighbor vnewi of vneari , which minimizes the expres-
sion �

vneari
(qrandi , vnewi ). Notice that such a search can be

performed efficiently as it only requires to traverse all the
neighbors of vneari in Gi . The combination of all vneari yields
V near.

As in RRT, dRRT has a Voronoi-bias property (Lin-
demann and LaValle 2004). Showing that dRRT exhibits
Voronoi bias is slightly more involved compared to the
basic RRT. This is illustrated in Fig. 4. To generate an edge
(V , V new), random sample Qrand must be drawn within the
Voronoi cell of V , denoted as Vor(V ) (Fig. 4a) and in the
general direction of V new, denoted as Vor′(V ) (Fig. 4b).
The intersection of these two volumes: Vol(V ) = Vor(V ) ∩
Vor′(V ), is the volume to be sampled so as to generate
V newvia V near as shown in Fig. 4.

The high-level loop of the algorithm remains similar
across the method variants. The input parameter nit denotes
how many times the tree is expanded before the algorithm
checks whether a solution has already been discovered. If
nit = 1, this check is performed every iteration. If tracing the
path is an expensive operation—typically it corresponds to a
heuristic search process over the tensor product roadmap—
then the implementer can choose to use a higher value.

5 Asymptotically optimal discrete RRT

This section outlines two versions of the proposed asymp-
totically optimal variant of the dRRT method. The first is a
simple uninformed approach, which relies on the fact that to
provide asymptotic optimality, it is sufficient to use a sim-
ple rewiring scheme. This simplified version will be called
the asymptotically-optimal dRRT (ao-dRRT). For the sake
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Fig. 4 a The Voronoi region
Vor(V ) of vertex V is shown
where if Qrand is drawn, vertex
V is selected for expansion. b
When Qrand lies in the
directional Voronoi region
Vor′(V ), the expand step
expands to V new. c Thus, when
Qrand is drawn within volume
Vol(V ) = Vor(V ) ∩ Vor′(V ),
the method will generate V new

via V

of algorithmic efficiency however, a second, more advanced
version is also proposed referred to as dRRT∗. To summa-
rize the algorithmic contributions of the current work over
the original dRRT:

– dRRT∗ performs a rewiring step to refine paths in the
tree, reducing costs to reach particular nodes.

– dRRT∗ is anytime, employing branch and bound pruning
after an initial solution is reached.

– dRRT∗ promotes progress towards the goal during tree
node selection.

– dRRT∗ employs an informed expansion procedure Id

capable of using heuristic guidance.

5.1 ao-dRRT

This section outlines ao-dRRT, an asymptotically optimal
version of the dRRT algorithm which has been minimally
modified to guarantee asymptotic optimality. At a high-level
the approach uses a tree re-wiring technique reminiscent of
RRT* (Karaman and Frazzoli 2011).

Algorithm 3 outlines ao-dRRTwhich iteratively expands
a tree T over Ĝ given a time budget (Algorithm 3, Line 2),
performing nit consecutive calls to Expand_ao-dRRT
(Lines 3, 4). Then, the method attempts to trace the path
π which connects the start S with the target T (Line 5). If
such a path is found and is better than πbest, it replaces πbest

(Lines 6, 7). πbest is returned after the time limit is reached
(Line 8).

Algorithm 3: ao-dRRT(Ĝ, S, T , nit)

1 πbest ← ∅, T.init(S);
2 while time.elapsed() < time_limit do
3 for i : 1 → nit do
4 Expand_ao-dRRT(Ĝ,T);

5 π ← Connect_to_Target(Ĝ,T, T );
6 if π �= ∅ ∩ cost(π) < cost(πbest) then
7 πbest ← Trace_Path(T, T )

8 return πbest

Algorithm 4: Expand_ao-dRRT(Ĝ,T)

1 Qrand ← Random_Sample();
2 V near ← Nearest_Neighbor(T, Qrand);
3 V new ← Od(V near, Qrand);
4 if V new /∈ T then
5 T.Add_Vertex(V new);
6 T.Add_Edge(V near, V new);
7 else
8 T.Rewire(V near, V new);

Algorithm 5: Od(V near, Qrand, Ĝ)

1 for i : 1 → R do
2 vnewi ← argmin

v∈Adj(vneari ,Gi )

�
vneari

(qrandi , v) ;

3 return V new

The expansion procedure for ao-dRRT is very similar to
the original dRRTmethod, and is outlined in Algorithm 4. It
begins by drawing a random sample in the composite con-
figuration space (Line 1), and then finds the nearest neighbor
V near to this sample in the tree (Line 2). It then selects a
neighbor V new according to the oracle function Od (Algo-
rithm 5). This is the same oracle that is used in dRRT that
tries to select a neighbor of V near most in the direction of
Qrand. Then, if V new is not in the tree (Line 4), it is added
to the tree (Line 5) and an edge from V near to V new is also
added (Line 6). Where this expansion step differs is that if
V new is already in the tree (Line 7), the method performs a
rewiring step (Line 8) to check to see if the path to V new is
of lower cost than the existing one.

The method would be similar to dRRT in terms of the
samples that constitute the tree, however ao-dRRT improves
the solution cost with iterations and finds better solutions
compared todRRT. It is however desirable to focus the search
in order find the initial solution quickly, while preserving
solution quality improvement over time.
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5.2 dRRT∗

Themain body of the informed dRRT∗ algorithm is provided
in Algorithm 6. The proposed method is an improvement
on top of ao-dRRT, that preserves the asymptotic optimal-
itywhile benefiting computationally frombranch-and-bound
pruning once a solution is found, greedy child propagations
during node selection, and heuristic guidance during expan-
sions.

The key insight behind the algorithmic improvements is
the fact that by virtue of the structure of the tensor-product
roadmap Ĝ, there readily exists a usable heuristic measure
H in the constituent roadmaps Gi . The shortest path on a
constituent roadmap to the goal T can be used as a heuristic
to guide the tree.

If there is no robot interaction introduced by the individual
robot shortest paths, such a path comprising of the individual
shortest paths is a solution that suffices. In cases of interac-
tion between the robots, a shortest path is expected to deviate
locally in regions of interaction. The best a robot can do from
any constituent roadmap vertex is to follow the shortest path
to the goal on the constituent roadmap. Although domain-
specific heuristics can be also applied to the algorithm, it
should be noted that in the currently proposed method, the
purpose of the heuristic is to primarily discover an initial
solution as quickly as possible. This in turn helps branch-
and-bound kick in and further focuses the search once a
bounding cost is ascertained from the initial solution.

At a high level, Algorithm 6 follows the structure of
ao-dRRT. The only change is that the outer loop keeps track
of the tree node being added as V last and passes it on to
the next call to the Expand_dRRT∗ subroutine. The use of
this information to apply heuristic guidance is detailed in the
description of the function.

Algorithm 7 outlines the expansion step. The default
behavior is summarized inAlgorithm 7, Lines 1–3, i.e., when
no V last is passed as argument (Line 1). This operation cor-
responds to an exploration step similar to RRT, i.e., a random
sample Qrand is generated inC (Line 2) and its nearest neigh-
bor V near inT is found (Line 3). If the last iteration generated
a node V last that was closer to the goal relative to its parent,
then V last is provided to the function. In this case (Line 4–6)
Qrand is set as the target configuration T , and V near is selected
as V last. This constitutes the greedy child propagationswhich
promotes progress towards the goal.

Informed expansion Id The expansion procedure in Algo-
rithm 8 replaces the oracle in dRRT. It switches between dis-
tinct guided and exploratory behaviors according to whether
qrandi attempts to drive the expansion towards the target T
or not. When the method uses heuristic guidance (Fig. 5),
among all the neighbors of vneari on a constituent roadmap
Gi ,Adj(vneari ,Gi ), the onewith the best heuristicmeasureH

Algorithm 6: dRRT∗(Ĝ, S, T , nit)

1 πbest ← ∅, T.init(S), V last ← S;
2 while time.elapsed() < time_limit do
3 for i : 1 → nit do
4 V last ← Expand_dRRT∗(Ĝ,T, V last, T );

5 π ← Connect_to_Target(Ĝ,T, T );
6 if π �= ∅ ∩ cost(π) < cost(πbest) then
7 πbest ← Trace_Path(T, T )

8 return πbest

Algorithm 7: Expand_dRRT∗(Ĝ,T, V last, T )

1 if V last = ∅ then
2 Qrand ← Random_Sample();
3 V near ← Nearest_Neighbor(T, Qrand);
4 else
5 Qrand ← T ;
6 V near ← V last;

7 V new ← Id(V near, Qrand, Ĝ, T );

8 N ← Adj(V new, Ĝ) ∩ T;
9 V best ← argmin

V∈N
cost(V ) + cost(L(V , V new));

10 if V best = ∅ then return ∅;
11 if cost(V new) > cost(πbest) then return ∅;
12 if V new /∈ T then
13 T.Add_Vertex(V new);
14 T.Add_Edge(V best, V new);
15 else T.Rewire(V best, V new) ;
16 for V ∈ N do
17 if cost(V new) + cost(L(V new, V )) <

cost(V ) ∩ L(V new, V ) ⊂ C
f then

18 T.Rewire(V new, V );
19 if H(V new) < H(V best) then
20 return V new;
21 else return ∅

Algorithm 8: Id(V near, Qrand, Ĝ, T )

1 for i : 1 → R do
2 if qrandi = Ti then
3 vnewi ← argmin

x∈Adj(vneari ,Gi )

H(x, Ti ,Gi ) ;

4 else
5 vnewi ← random(Adj(vneari ,Gi ));
6 return V new

is selected. During the exploration phase, the method selects
a random neighbor out of Adj(vneari ,Gi ).

In either case, the oracle function Id returns toAlgorithm7
the implicit graph node V new that is a neighbor of V near on
the implicit graph (Line 7). Then the method finds neighbors
N , which are adjacent to V new in Ĝ and have also been added
to T (Line 8). Among N , the best node V best is chosen as the
node to connect V new according to cost measure. Such an
operation might yield no valid parent V best due to collisions
along L(·). In such a case (Line 10) the method fails to add
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Fig. 5 The method selects a neighbor with the best heuristic estimate
H from each of the constituent roadmaps during the guided expansion
phase in Id

a node during the current iteration. Line 11 implements a
branch-and-bound based on the cost of the best solution so
far.

Lines 12–15 recount the tree addition and parent rewire
process. Lines 16–17 perform an additional rewiring step in
the neighborhood if V new is a better parent of any of the
neighboring nodes. Line 19 switches the child promotion
by checking whether V new made progress toward the goal
according to the heuristic measure. The method ensures that
in this case V new(or V last) is a child-promoted node, which
would be selected during the next iteration. This effect of
this behavior is that if the uncoordinated individual shortest
paths are collision free, this would be greedily attempted first
from the child-promoted nodes added to the tree. Evaluations
indicate that this proves very effective in practice.

It should be noted that all candidate edges L(·) in Line
9 and 17 are collision-free and for the sake of algorithmic
clarity, collision checking has been assumed to be encoded
into the steering functionL(·) and this is enforced during tree
additions and rewires. Any specialized sampling behavior is
assumed to be part of the implementation of the subroutine
Random_Sample.
Notes on implementation In the implementation, the heuristic
measure H is efficiently calculated by precomputing all-
pair shortest paths on the constituent graphs with Johnson’s
algorithm (Johnson 1977), which runs in O(|V |2log|V |).
Precomputing the heuristic measure alleviates any overhead
of spending online computation time. It is proposed that for
large graphs, the vertices can be subsampled and the heuris-
tic estimated for representative nodes that approximate the
H value in their neighborhoods. The neighbor with the best
H value can be computed once for a given target T , and
reused during the iterations inside Id . In Algorithm 7 (Line
19), H refers to a heuristic estimate in the composite space.
This can be deduced from the constituent spaces. Themethod
also included additional focused random sampling (Gammell

et al. 2015) once a solution is found to aid in convergence.
For a fraction of the “random samples”, goal biasing samples
the target state for a robot.

The set Adj(·) returns the set of neighbors on the graph
for a vertex, in addition to the vertex itself. This ensures that
it is possible for a robot to stay static during an edge expan-
sion. This means that the algorithm is also able to discover
solutions where a subset of the robots must remain stationary
for a period of time.

6 Analysis

This section examines the properties of dRRT∗ starting with
the asymptotic convergence of the implicit roadmap Ĝ to
containing a path inCf with optimum cost. Then, it is shown
that the online search eventually discovers the shortest path in
Ĝ. The combination of these two facts proves the asymptotic
optimality of dRRT∗and ao-dRRT.

For simplicity, the analysis considers robots operating in
Euclidean space, i.e.,Ci is a d-dimensional Euclidean hyper-
cube [0, 1]d for fixed d ≥ 2. Robots are assumed to have
the same number of degrees of freedom d. The results can
relate to a large class of systems, which are locally Euclidean
(see, Dobson and Bekris (2013)). This is applicable to all the
systems under consideration in the paper, including manipu-
lators, with bounded angular degrees of freedom. Analysis of
systems, which are not locally Euclidean, requires additional
rigor especially regarding the definition of the cost metric.
The Discussion section includes a description of a possible
extension of the presented analysis to non-holonomic sys-
tems. It is acknowledged that the arguments presented in the
current section will not readily transfer to such systems.

6.1 Optimal convergence of Ĝ

In this sectionweprove thatwhen the connection radius r(n)2

used for the construction of the single-robot PRM roadmaps
G1, . . . ,GR is chosen in a certain manner, this yields a
tensor-product graph Ĝ, which contains asymptotically opti-
mal paths for MMP.

Definition 3 A trajectory Σ : [0, 1] → C
f is robust if there

exists a fixed δ > 0 such that for every τ ∈ [0, 1], X ∈ C
o it

holds that ‖Σ(τ)− X‖ ≥ δ, where ‖ · ‖ denotes the standard
Euclidean distance.

Definition 4 Let cost be one of the cost functions defined in
Sect. 3. A value c > 0 is robust if for every fixed ε > 0,

2 In the graphs considered here, an edge exists between two nodes, if
the nodes are separated by a distance less than the connection radius
r(n).
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there exists a robust path Σ , such that cost(Σ) ≤ (1 + ε)c.
The robust optimum c∗, is the infimum over all such values.

For any fixed n ∈ N
+, and a specific instance of Ĝ con-

structed from R roadmaps, having n samples each, denote
by Σ(n) the lowest-cost path (with respect to cost(·)) from S
to T over Ĝ.

Definition 5 Ĝ is asymptotically optimal (AO) if for every
fixed ε > 0 it holds that cost(Σ(n)) ≤ (1 + ε)c∗ asymp-
totically almost surely,3 where the probability is over all the
instantiations of Ĝ with n samples for each PRM.

Using this definition, the following theorem is proven.
Recall that d denotes the dimension of a single-robot config-
uration space.

Theorem 1 Ĝ is AO when

r(n) ≥ r∗(n) = γ

(
log n

n

) 1
d

,

where γ = (1+ η)2
( 1
d

) 1
d

(
μ(Cf)

ζd

) 1
d
where η is any constant

larger than 0, μ is the volume measure and ζd is the volume
of an unit hyperball in R

d .

Since themethoddealswith solving the problemoffinding
a robust optimum solution, some ε > 0 is fixed. By definition
of the problem, there exists a robust trajectory Σ : [0, 1] →
C
f, and a fixed δ > 0, such that cost(Σ) ≤ (1 + ε)c∗.

Additionally for every X ∈ C
o, τ ∈ [0, 1] it holds that

‖Σ(τ) − X‖ ≥ δ.
If it can be shown that Ĝ contains a trajectory Σ(n), such

that4:

cost(Σ(n)) ≤ (1 + o(1)) · cost(Σ) (1)

a.a.s., this would imply that cost(Σ(n)) ≤ (1+ ε)c∗, proving
Theorem 1.

As a first step, it will be shown that the robustness of
Σ = (σ1, . . . , σR) in the composite space implies robustness
in the single-robot setting, i.e., robustness along σi .

For τ ∈ [0, 1] define the forbidden space parameterized
by τ as

C
o
i (τ ) = C

o
i ∪

R⋃

j=1, j �=i

I ji (σ j (τ )). (2)

3 Let A1, A2 . . . be random variables in some probability space and let
B be an event depending on An . B occurs asymptotically almost surely
(a.a.s.) if lim

n→∞Pr[B(An)] = 1.

4 The small-o notation o(1) indicates a function that becomes smaller
than any positive constant and thereby asymptotically will become neg-
ligible. When this relation holds, the positive constant corresponds to
ε.

Claim 1 For every robot i , τ ∈ [0, 1], and qi ∈ C
o
i (τ ),

‖σi (τ )−qi‖ ≥ δ, i.e., the robustness ofΣ = (σ1, . . . , σR) in
the composite space implies robustness over all single-robot
paths σi .

Proof Fix a robot i , and fix some τ ∈ [0, 1] and a config-
uration qi ∈ C

o
i (τ ). Next, define the following composite

configuration

Q = (σ 1(τ ), . . . , qi , . . . , σ
R(τ )).

Note that it differs from Σ(τ) only in the i-th robot’s con-
figuration. By the robustness of Σ it follows that

δ ≤ ‖Σ(τ) − Q‖

=
(

‖σi (τ ) − qi‖2 +
R∑

j=1, j �=i

‖σ j (τ ) − σ j (τ )‖2
) 1

2

≤ ‖σi (τ ) − qi‖.

��
The result ofClaim1 is that the pathsσ1, . . . , σR are robust

in their individual spaces w.r.t the parameterized forbidden
spaceCo

i (τ ). This means that there is sufficient clearance for
the individual robots to not collide with each other given a
fixed location of a single robot.

Next, a Lemma is derived using proof techniques from the
literature (Janson et al. 2015, Theorem 4.1), and it implies
every Gi contains a single-robot path σ

(n)
i that converges to

σi .

Lemma 1 For every robot i , letGi be constructedwith n sam-
ples and a connection radius r(n) ≥ r∗(n). Then it contains
a path σ

(n)
i with the following attributes a.a.s.:

(i) σ
(n)
i (0) = si , σ

(n)
i (1) = ti ;

(ii) ‖σ (n)
i ‖ ≤ (1 + o(1))‖σi‖;

(iii) ∀q ∈ Im(σ
(n)
i ), ∃τ ∈ [0, 1] s.t. ‖q − σi (τ )‖ ≤ r∗(n),

where Im(·) is the function image.

Proof The first two properties of Lemma (i) and (ii) restate
(Janson et al. 2015, Theorem 4.1), which is applicable to the
setup of this work. The last property (iii) is an immediate
corollary of the first two: due to the fact that σ (n)

i is obtained
from Gi , every point along the path is either a vertex of the
graph, or lies on a straight-line path (i.e., an edge) between
two vertices, whose length is at most r∗(n). ��

To complete the proof of Theorem1 it remains to be shown
that the combination of σ

(n)
1 , . . . , σ

(n)
R yields the trajectory,

Σ(n) of a desired cost, i.e., one that conforms to Eq. 1. The
bound derived in Lemma 1 (ii) looks like what we need for
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proving Theorem1. Even though a similar bound exists in the
individual spaces, it needs to be shown that Eq. 1 holds for
a cost function in C

f. We proceed to show this individually
for the different cost functions.

6.1.1 Optimal convergence for a linear combination of
Euclidean arc lengths

Lemma 2 Given Lemma 1 (ii), Eq. 1 holds for a cost function
cost(·) that is a linear combination of Euclidean arc lengths
Proof Here consider the case that cost(Σ) = ∑R

i=1 ‖σi‖,
which can also be easily modified for maxi=1:R ‖σi‖ or some
arbitrary linear combination of the arc lengths.

In particular, define Σ(n) = (σ
(n)
1 , . . . , σ

(n)
R ), where σ

(n)
i

are obtained from Lemma 1. Then

cost(Σ(n)) =
R∑

i=1

‖σ (n)
i ‖ ≤ (1 + o(1))

R∑

i=1

‖σi‖

≤ (1 + o(1))cost(Σ).

��
Lemma 3 A path Σ(n) = (σ

(n)
1 . . . σ

(n)
R ) exists, that satisfies

the properties of Lemma 1, and is collision free both in terms
of robot-obstacle and robot-robot.

Proof Every constituent roadmap Gi of n samples is con-
structed to satisfy Lemma 1 and contains individual robot
paths σ

(n)
i . Ĝ defines the tensor-product graph in the com-

posite configuration spaceC. The pathΣ(n) is a combination
of the individual robot paths σ

(n)
i . Lemma 1 implies that

Ĝ contains a path Σ(n) in C, that represents collision-free
motions relative to obstacles, and minimizes the cost func-
tion. Nevertheless, it is not clear whether this ensures the
existence of a path where robot-robot collisions are avoided.
That is, although Im(σ

(n)
i ) ⊂ C

f
i , it might be the case that

Im(Σ(n))∩C
o �= ∅. Next, it is shown that σ (n)

1 , . . . , σ
(n)
R can

be reparametrized to induce a composite-space path whose
image is fully contained inCf, with length equivalent toΣ(n).

For each robot i , denote by Vi = (v1i , . . . , v
�i
i ) the chain

of Gi vertices traversed by σ
(n)
i . For every v

j
i ∈ Vi assign a

timestamp τ
j
i of the closest configuration along σi , i.e.,

τ
j
i = argmin

τ∈[0,1]
‖v j

i − σi (τ )‖.

Also, define Ti = (τ 1i , . . . , τ
�i
i ) and denote by T the ordered

list of
⋃R

i=1 Ti , according to the timestamp values. Now, for
every i , define a global timestamp function TSi : T → Vi ,
which assigns to each global timestamp in T a single-robot
configuration from Vi . It thus specifies in which vertex robot
i resides at time τ ∈ T . For τ ∈ T , let j be the largest

index, such that τ
j
i ≤ τ . Then simply assign TSi (τ ) = τ

j
i .

From property (iii) in Lemma 1 and Claim 1 it follows that no
robot-robot collisions are induced by the reparametrization.
This concludes the proof of Theorem 1. ��

6.1.2 Optimal convergence for Euclidean arc length

Arguments for convergence of the cost of the solution in
terms of the Euclidean arc length of the composite path Σ

can bemade to extend the results of Lemma 2.A robot having
d DoFs, (F1, . . . Fd) exists in an R

d space. The motion of
the robot constitutes a curve in Rd , defined as

Σ = ( f1(t), . . . fd(t)),

where fi (t) is the coordinate function of the curve Σ along
the DoF Fi , where t ∈ [0, 1] and i ∈ [1, d]. The Euclidean
arc-length of the path in R

d :

‖Σ‖ =
∫ √

( f ′
1(t)

2 + · · · + f ′
d(t)

2) dt . (3)

The coordinate function is assumed to be continuous with
respect to the Lebesgue measure on t and of bounded varia-
tion. The Lebesgue measure assigns a measure to subsets of
n-dimensional Euclidean space. For n = 1, 2, or 3, it coin-
cides with the standard measure of length, area, or volume.
The assumption here is that the curve is Lebesgue integrable
over the coordinate function. This relates to the variation of
the curve being smooth for the parametrization, over subsets
of the curve that correspond to the Lebesgue measure over t .
Σ is also a rectifiable curve, i.e., the curve has finite length.

Definition 6 The partial arc length is defined as,

s(x) = ‖Σ : [0, x]‖, x ≤ 1.

By definition and assuming smoothness and bounded varia-
tion (Pelling 1977), for t = 0 to t = x ≤ 1 :

s(x) = sup
P

m∑

j=1

√
√
√
√

( d∑

i=1

( fi (t j ) − fi (t j−1))2
)

. (4)

The value is the supremum over all possible finite partitions
P : 0 = t0 < · · · < tm = x , that can divide t . This generates
a finite set of m parts.

We denote the value of s(x) for some partition P as:

s(x)P =
m∑

j=1

√
√
√
√

d∑

i=1

( fi (P( j)) − fi (P( j − 1)))2. (5)
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Fig. 6 Partitions of the curves in the full space and the composite spaces
(bottom). P∗ is the supremum partition but the parts do not have equal
measures. P∗ is subdivided into a finer partition Q with L = 6 equal
measure parts. Let the composite curves exist in individual robot con-
figuration spacesC0 andC1, respectively. These curves also have a finer
partition with 6 equal parts

A part shall refer to the curve between Σ(P( j − 1)) and
Σ(P( j)). The measure of the part would be

μP
j−1, j = s(P( j)) − s(P( j − 1)). (6)

Let P∗ be the finite supremum partitioning over t , that has
m parts. This means, s(x) = s(x)P∗ .

Without loss of generality, let us assume that P∗ corre-
sponds to the supremumpartitioning that has the least number
of parts, |P∗| = m+1, i.e., there are no degenerate partitions.
A finer partition can introduce additional parameterization
over t , and hence is a superset of P∗, but cannot increase the
value of s(x) since P∗ is the supremum. Note that a parti-
tion sequence with m parts will have a cardinality of m + 1.
The finer partition has all these m + 1 parametrization val-
ues in addition to others. Since s(x) is finite and m is finite,
∃P∗ | μP∗

j−1, j ∈ R+ ∀ j ∈ t .

Claim 2 Given a finite set of paths ξ , there exists a finer parti-
tioning, Q∗ for P∗ over each Σ ∈ ξ , which yields L number
of equal measure parts (Fig. 6) for every Σ ∈ ξ .

Proof

∃L s.t. s(1)Q∗ = s(1)P∗ = ‖Σ‖,
Q∗ ⊇ P∗, |Q∗| = L + 1,

μ j−1, j = μk−1,k = ‖Σ‖
L

∈ R+ ∀ j, k ∈ [1, . . . L].

This holds true for every Σ for a corresponding Q∗ ⊇ P∗.
The measure of every part Σ(l) is equal, and is denoted
by ‖Σ(l)‖ = ‖Σ‖

L . This simplifies Eq. 5 to ‖Σ‖ =
∑L

l=1 ‖Σ(l)‖. ��
Claim 3 Additionally, by this simplification, Eq. 5 in the
composite space is restated for ΣRd = {Σ1 . . . ΣR} where
ΣRd ,Σ1 . . . ΣR ∈ ξ .

Proof In the multi-robot space Euclidean space RRd , the arc
length in the composite space can be expressed in terms of
the arc lengths traversed in the individual robot spaces.

‖ΣRd‖ = s(1)Q∗

=
L∑

l=1

√
√
√
√

Rd∑

i=1

( fi (Q∗( j)) − fi (Q∗( j − 1)))2

=
L∑

l=1

√
√
√
√

d∑

i=1

(δ fi )2 + · · · +
Rd∑

i=(R−1)d+1

(δ fi )2

=
L∑

l=1

√
‖Σ1(l)‖2 + · · · + ‖ΣR(l)‖2

=
L∑

l=1

√
√
√
√

R∑

i=1

‖Σi (l)‖2,

where, with a slight abuse of notation δ fi is a shorthand
representation for some fi (Q∗( j)) − fi (Q∗( j − 1)). ��
Lemma 4 For a Σ(n) = (σ

(n)
1 . . . σ

(n)
R ), where σ

(n)
i is

obtained from Lemma 1, given that ‖σ (n)
i ‖ ≤ (1+o(1))‖σi‖,

Eq. 1 holds for the Euclidean arc lengths.

Proof Partitioning the arcs σ
(n)
i , and σi , into L (chosen as

per Claim 2) pieces of equal length, yields two trajectory
sequences, for l ∈ N+, l ≤ L .

The high level idea is that leveraging the uniformity in the
parameterized parts introduced by L , Lemma 1 (ii) has to
be recombined to represent the Euclidean arc length in the
composite space.

‖σ (n)
i ‖ ≤ (1 + o(1))‖σi‖ (Using Lemma 1)

⇒
L∑

l=1

‖σ (n)
i (l)‖ ≤ (1 + o(1))

L∑

l=1

‖σi (l)‖

(Using Claim 2 and 3)

⇒‖σ (n)
i (l)‖ ≤ (1 + o(1))‖σi (l)‖

⇒‖σ (n)
i (l)‖2 ≤ (1 + o(1))2‖σi (l)‖2.

Combining over R using Claim 3,

R∑

i=1

‖σ (n)
i (l)‖2 ≤ (1 + o(1))2

R∑

i=1

‖σi (l)‖2

⇒L

√
√
√
√

R∑

i=1

‖σ (n)
i (l)‖2 ≤ (1 + o(1))L

√
√
√
√

R∑

i=1

‖σi (l)‖2

⇒‖Σ(n)‖ ≤ (1 + o(1))‖Σ‖

��
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Following the same parameterization described in
Lemma 3, Theorem 1 can be shown for the Euclidean metric
as well.

6.2 Asymptotic optimality of dRRT∗

Finally, dRRT∗ is shown to be AO. Denote by m the time
budget in Algorithm 6, i.e., the number of iterations of the
loop. Denote by Σ(n,m) the solution returned by dRRT∗ for
n samples in the individual constituent roadmaps and m iter-
ations of the dRRT∗ algorithm.

Theorem 2 If r(n) > r∗(n) then for every fixed ε > 0 it
holds that

lim
n,m→∞Pr

[
cost(Σ(n,m)) ≤ (1 + ε)c∗] = 1.

Since Ĝ is AO (Theorem 1), it suffices to show that for any
fixed n, and a fixed instance of Ĝ, defined over R PRMs with
n samples each, dRRT∗ eventually (as m tends to infinity),
finds the optimal trajectory over Ĝ. This property is stated
in Lemma 5 and proven subsequently. The same arguments
hold for bothdRRT∗ andao-dRRT, with the difference high-
lighted explicitly in the proof.

Lemma 5 (Optimal Tree Convergence of dRRT∗) Consider
an arbitrary optimal path π∗ originating from v0 and ending
at vt , then let O(m)

k be the event such that after m iterations
of dRRT∗, the search tree T contains the optimal path up to
segment k. Then,

lim inf
m→∞ P

(
O(m)
t

) = 1.

Proof This is shown using Markov chain results (Grin-
stead and Snell 2012, Theorem 11.3). Specifically, absorbing
Markov chains can be leveraged to show that dRRT∗ will
eventually contain the optimal path over Ĝ. An absorbing
Markov chain has some subset of its states in which the tran-
sition matrix only allows self-transitions.

The proof follows by showing that the dRRT∗ method
can be described as an absorbing Markov chain, where the
target state of a query is represented as an absorbing state in
a Markov chain. For completeness, the theorem is re-stated
here.

Theorem 3 (Thm 11.3 in Grinstead & Snell) In an absorb-
ing Markov chain, the probability that the process will be
absorbed is 1 (i.e., Q(m) → 0 as n → ∞), where Q(m) is
the transition submatrix for all non-absorbing states.

The first part is that the dRRT∗ search is cast as an absorb-
ing Markov chain, and second, that the transition probability

from each state to the next is nonzero, i.e., each state even-
tually connects to the target.

For query (S, T ), let the sequence V = {v1, v2, · · · , vt}
of length t represent the vertices of Ĝ corresponding to the
optimal path through the graph which connects these points,
where vt corresponds to the target vertex, and furthermore, let
vt be an absorbing state. Theorem 3works under the assump-
tion that each vertex vi is connected to an absorbing state vt.

Then, let the transition probability for each state have two
values, one for each state transitioning to itself, which cor-
responds to the dRRT∗ search expanding along some other
arbitrary path. The other value is a transition probability from
vi to vi+1. This corresponds to two slightly different cases for
ao-dRRT and dRRT∗.

Caseao-dRRTThe transition probability from vi to vi+1 cor-
responds to the method sampling within the volume Vol(vi).
Then, as the second step, it must be shown that this volume
has a positive probability of being sampled in each iteration.
It is sufficient then to argue that μ(Vol(si))

μ(Cf)
> 0. Fortunately,

for any finite n, previous work has already shown that this is
the case given general position assumptions (Solovey et al.
2015a, Lemma 2).

Case dRRT∗ In the case of dRRT∗ due to the random neigh-
borhood selection in the expansion Id , there is a positive
transition probability from vi to vi+1.

Given these results, the dRRT∗ is cast as an absorbing
Markov chain, which satisfies the assumptions of Theorem 3,
and therefore, the matrix Q(m) → 0. This implies that the
optimal path to the goal has been expanded in the tree, and
therefore lim infm→∞ P

(
O(m)
t

) = 1. ��

7 Extension to shared degrees of freedom

This section describes an extension of thedRRT∗ approach to
systems with shared degrees of freedom (DoF), with specific
focus on humanoid robots with two arms. The challenge here
arises because of the high dimensionality of the robots. The
sharedDoF is a general formulation, which can refer to either
degrees of freedom in a torso or a mobile base etc.

This section is structured in the same way as the rest of
the algorithmic descriptions, and a lot of the shared nota-
tions and details are omitted for the sake of brevity. Instead,
the interesting insights into the problems that arise due to
the shared DoF are highlighted, and resolved. A high level
overview of the differences of dual-arm dRRT∗ (da-dRRT∗)
from the previously stated methods includes:

– da-dRRT∗ decomposes the space by grouping the shared
DoF with one of the arms.

– da-dRRT∗ implicitly builds two trees online that explores
two tensor roadmaps.
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Fig. 7 The decomposition of the full configuration space into the arm
spaces (Cl and Cr), and the shared degrees of freedom (Cs) such that
C = Cl × Cs × Cr

– da-dRRT∗ needs additional arguments for proving
robustness in Claim 1.

The current work does not get into aspects related to
manipulation. Nevertheless, the primitives designed here
can speed up dual-arm manipulation task planning, where
computational benefits can be achieved by operating over
multiple roadmaps (Gravot et al. 2002; Gravot and Alami
2003b). The topology of dual-arm manipulation has been
formalized (Koga and Latombe 1994; Harada et al. 2014)
and extended to the N -arm case (Dobson and Bekris 2015).
It requires the consideration of multi-robot grasp planning
(Vahrenkamp et al. 2010; Dogar et al. 2015), regrasping
(Vahrenkamp et al. 2009), as well as closed kinematic
chain constraints (Cortés and Siméon 2005; Bonilla et al.
2017). Furthermore, force control strategies are helpful for
multi-arm manipulation of a common object (Caccavale and
Uchiyama 2008). Recently coordinated control has been
applied to solve human-robot interaction tasks (Sina Mir-
razavi Salehian et al. 2016).

The algorithm is meant to address the applicability of
dRRT∗ to high dimensional humanoid robots with shared
DoF.

7.1 Problem setup and notation

As shown in Fig. 7, the DoF[F1, . . . , Fd ] can be grouped
into left, right, and shared DoF subsets, so that: C = Cl ×
Cs × Cr. A candidate solution path Σ : [0, 1] → C

f can be
decomposed to projections [Σl ,Σs,Σr ] alongCl,Cs andCr

respectively.
The method proposes the construction of the following

roadmaps, as shown in Fig. 8:

– A left-shared Rls(Vls,Els) and a right-shared DoF
roadmap Rsr (Vsr ,Esr ), where Vls ⊂ Cl × Cs and
Vsr ⊂ Cs × Cr. The edges are collision-free paths in
the same spaces, i.e., no collisions with the static geome-
try, or self-collisions among the arm or the shared DoFs.

– A left armPl(Vl ,El) and a right arm roadmapPr(Vr ,Er ),
such that Vl ⊂ Cl, and Vr ⊂ Cr. These roadmaps do not
consider the static geometry as they are not grounded by
the shared DoFs. So, only self-collisions between arm
links are avoided.

The method focuses on two tensor product roadmaps:
Ĝl = Rls × Pr , and Ĝr = Rsr × Pl . The method then
simultaneously searches over Ĝl and Ĝr in a dRRT∗-esque
fashion.

7.2 Methodology

This section describes the proposed method, and the way the
da-dRRT∗ builds a forest of two treesT, which explores both
Ĝl and Ĝr . In terms of the method’s properties it is sufficient
to consider only one roadmap, but in practice, exploring them
simultaneously helps in the convergence, since we can evalu-
ate more possible solutions and rewires. The approach shows
faster convergence compared to RRT* in C, and scales more
than PRM∗.

At a high-level, the proposed Dual-arm dRRT∗
(da-dRRT∗) simultaneously explores the tensor product
roadmaps Ĝl and Ĝr , by building a search tree for each one
so as to find a solution from the start configuration S to the
target configuration T . For every vertex, the algorithm keeps
track fromwhich tensor product roadmap the vertex belongs
to. Upon initialization, the tree starts with two vertices, Sl and
Sr , one corresponding to tensor product roadmap Ĝl and the
other to Ĝr . Then, at every iteration, the tree data structure
T is expanded by adding a new edge and a node by call-
ing an expand subroutine like Algorithm 7. The differences
arises in the neighborhood calculation in Algorithm 7 Line 8.
The neighborhood N for V new considers the tensor roadmap
neighborhoods that are part of the tree for both roadmaps.
V new belongs to to either Ĝl or Ĝr . ˆV new is chosen to be
the nearest tree vertex that was generated on the other ten-
sor roadmap. N is the set of all tree vertices that are tensor
roadmap neighbors of V new or ˆV new. While doing rewires,
care is taken to only rewire nodes belonging to the same
tensor roadmap. The consideration of a richer neighborhood
lets the algorithm ensure adequate exploration of both tensor
roadmaps. The informed oracle Id is similar to Algorithm 8
with the difference arising for the constituent roadmap P,
where the H estimate is simply the shortest Euclidean dis-
tance to the goal.

Notes on efficiency The difference of the decomposition
for shared degrees of freedom compared to dRRT∗ is that
G = R × P does not give two kinematically independent
spaces. Specifically, P depends on the shared DoF to be
grounded to the frameof the robot. Thismeans that the heuris-
ticH is less informed for P and can only use the straight line
distance. The dRRT∗algorithm does not work out of the box
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Fig. 8 The image on the left is an illustration of the decomposition of
the space to create arm-sharedDoF roadmapsR and arm only roadmaps
P. The example has three vertices in each roadmap consisting of a com-
bination Left (l), Shared (s), and Right(r ) values. For the sake of clarity

the vertices on the arm-only roadmaps correspond to the R roadmaps.
The image on the right shows the connectivity in the tensor product
roadmap Ĝl = Rls × Pr. A similar tensor product is obtained for Ĝr

in the case of robots with shared degrees of freedom. The
effect of the less expressive heuristic inda-dRRT∗, translates
into some degradation in performance relative to the case of
two kinematically independent robotic arms. Nevertheless,
da-dRRT∗ is still significantly faster than operating directly
in the composite space of the entire robot. There are not
manymethods that canpractically compute solutions for such
high-dimensional (e.g., 15 degrees of freedom) systems with
kinematic dependences. The proposed da-dRRT∗ method
preserves some of the scalability benefits of da-dRRT∗and
addresses the kinematic dependence that arises formanypop-
ular humanoid robots.

7.3 Analysis

Asymptotic optimality of tensor roadmaps Given the decom-
position, C is divided into two parts: Rls and Pr.

If a robust optimal path Σ∗ exists in C, most of the
arguments of Sect. 6 still hold for this decomposition.
Due to the nature of the space decomposition, since the
constituent spaces do not correspond to kinematically inde-
pendent robots, the clearance assumption in Claim 1 needs
to be reworked.

Claim 4 Robustness in C implies robustness in Cls and Cr .
For every decomposition, τ ∈ [0, 1], and qi ∈ C

o
i (τ ),

‖σi (τ ) − qi‖2 ≥ δ.

Proof Consider any Q = (Σls(τ ), qr ), where qr is a configu-
ration inCr so that the right arm collides either with the static
geometry or with the left-shared part of the robot, which is

at σls(τ ). Given a robust Σ , Q is a colliding configuration:
δ ≤ ‖Σ(τ) − Q‖. But Q and Σ(τ) only differ in qr , so the
path σr has clearance δ

δ ≤ ||σr (τ ) − qr ||.

By switching the decomposition ofΣ in Ĝl into (σl , σsr ),
by the above reasoning:

δ ≤ ||Σ(τ) − Q|| �⇒ δ ≤ ||Σl(τ ) − ql ||
Now, since ∀τ : ||σls(τ ) − qls || ≥ ||σl(τ ) − ql ||

�⇒ δ ≤ ||σls(τ ) − qls ||.

This proves the robustness for σls . The same reasoning
can be applied to Csr and Cl . ��

It suffices to follow the proof structures outlined in Sect. 6
to argue asymptotic optimality for the method. It should be
noted that due to the coupled nature of C introduced by the
shared DoF, the use of the Euclidean cost metric is more
applicable.

8 Experimental validation

This section provides an experimental evaluation of dRRT∗
by demonstrating practical convergence, scalability for disk
robots, and applicability to dual-arm manipulation. The
choice of a cost metric depends on the type of application
and the underlying system properties. For systems without

123



458 Autonomous Robots (2020) 44:443–467

shared degrees of freedom, the considered cost function is
the sum of individual Euclidean arc lengths, which is a pop-
ular choice for multi-robot systems. For systems with shared
degrees of freedom, the combined nature of the underlying
configuration spacemotivates the use of Euclidean arc length
in the composite space as the metric. The results show that
the properties and benefits of the proposed algorithms stay
robust for both choices of cost functions.

8.1 Tests on systems without shared DoF

The approach and alternatives are executed on a cluster with
Intel(R) Xeon(R) CPUE5-4650@2.70GHz processors, and
128 GB of RAM. The solution costs are evaluated in terms
of the sum of Euclidean arc lengths.

2 disk robots among 2DpolygonsThis base-case test involves
2 disks (Ci := R

2) of radius 0.2 with bounded velocity, in a
10× 10 region, inflated by the radius, as in Fig. 9. The disks
have to swap positions between (0, 0) and (9, 9). This is a
setup where it is possible to compute the explicit roadmap,
which is not practical in more involved scenarios. In partic-
ular, dRRT∗ is tested against: (a) running A* on the implicit
tensor roadmap Ĝ (referred to as “Implicit A*”), where Ĝ

is defined over the same individual roadmaps with N nodes
as those used by dRRT∗; (b) an explicitly constructed PRM∗
roadmap with N 2 nodes in C; and (c) the ao-dRRT variant
of the algorithm.

Results are shown in Fig. 10.dRRT∗ converges to the opti-
mal path over Ĝ, similar to the one discovered by Implicit
A*, while quickly finding an initial solution of high qual-

Fig. 9 The 2D environment where the 2 disk robots operate

ity. Furthermore, the implicit tensor product roadmap Ĝ is
of comparable quality to the explicitly constructed roadmap.
The convergence ofdRRT∗ is faster compared to correspond-
ing ao-dRRT variant as evident from Fig. 10(left).

Table 1 presents running times. dRRT∗ and implicit A*

construct 2 N -sized roadmaps (row 3), which are faster
to construct than the PRM∗ roadmap in C (row 1). PRM∗
becomes very costly as N increases. For N = 500, the
explicit roadmap contains 250,000 vertices, taking 1.7 GB
of RAM to store, which was the upper limit for the machine
used.When the roadmap can be constructed, it is fast to query
(row 2). dRRT∗ quickly returns an initial solution (row 5),
at par with the solution times from the explicit roadmap and
well before Implicit A* returns a solution (row 4). The ini-
tial solution times are compared visually in Fig. 10 which
demonstrates the efficiency ofdRRT∗ compared toao-dRRT
as well. The next benchmark further emphasizes this point.

The comparison between the early solution time required
to find a suboptimal solution by the proposed method against
the computation time needed by the optimal A* highlights
the impact of roadmaps of increasing sizes. While dRRT∗’s
initial solution times barely change, the time taken by any
variant of heuristic search over the composite roadmap
increases with the size of the roadmap. This indicates that
roadmaps of size similar to the tensor roadmaps considered
here would rapidly cease to be solvable without anytime per-
formance similar to that of dRRT∗.

Many disk robots among 2D polygons In the same envi-
ronment as above, the number of robots R is increased to
evaluate scalability. The same environment is maintained in
this benchmark to introduce additional complexity purely
in terms of the addition of more robots into the planning
problem. The effect of more difficult and practical planning
scenarios would be explored in the subsequent benchmarks
with manipulators. Each robot starts on the perimeter of the
environment and is tasked with reaching the opposite side.
An N = 50 roadmap is constructed for every robot. It quickly
becomes intractable to construct aPRM∗ roadmap in the com-
posite space of many robots.

Figure 11 shows the inability of alternatives to compete
with dRRT∗ in scalability. Solution costs are normalized by
an optimistic estimate of the path cost for each case, which
is the sum of the optimal solutions for each robot, disre-
garding robot-robot interactions. The colored vertical bars
represent the range of the average initial and final solu-
tion costs. Implicit A* fails to return solutions even for 3
robots. Directly executing RRT* in the composite space fails
to do so for R ≥ 6. The original dRRT method (without the
informed search component) starts suffering in success ratio
for R ≥ 4 and returns worse quality solutions than dRRT∗.
The ao-dRRT variant performs similar to dRRT in terms of
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Fig. 10 For every n, 10
randomly generated pairs of
roadmaps are generated. dRRT∗
and ao-dRRT ran on 5 random
experiments for every roadmap
pair, and the implicit A* searches
these 10 tensor combinations.
PRM∗ is run 10 times for every
n. (Top): Average solution cost
is reported over iterations. Data
averaged over 10 roadmap pairs.
dRRT∗ (solid circled line) and
ao-dRRT (solid triangled line)
converges to the optimal path
through Ĝ (dashed line).
(Bottom): Initial solution times
for the algorithms

Table 1 Construction and query times (s) for 2 disk robots

Number of nodes: N = 50 100 200

N 2-PRM* construction 3.427 13.293 69.551

N 2-PRM* query 0.002 0.005 0.019

2 N -size PRM* construction 0.135 0.274 0.558

Implicit A* search over Ĝ 0.886 4.214 15.468

ao-dRRT over Ĝ (initial) 1.309 0.999 0.638

dRRT∗ over Ĝ (initial) 0.003 0.002 0.002

success ratio but expectedly finds better solutions thandRRT.
dRRT∗ finds solutions up to R = 10.

In order to give an estimate of the immensity of the size
of the search space, for R = 10, the tensor-product roadmap
represents an implicit structure consisting of 5010 or ∼ 100
million-billion vertices.

Dual-arm manipulator This test (Fig. 12) shows the bene-
fits of dRRT∗ when planning for two 7-dimensional arms.
Figure 13 shows that RRT* fails to return solutions within
100K iterations. Using small roadmaps is also insufficient
for this problem. Both dRRT∗ and Implicit A* require larger
roadmaps to begin succeeding. But with N ≥ 500, Implicit
A* always fails,whiledRRT∗ maintains a 100%success ratio.
As expected, roadmaps of increasing size result in higher
quality path. The informed nature of dRRT∗ also allows to

find initial solutions fast, which together with the branch-
and-bound primitive allows for good convergence. The initial
solution times in Fig. 13 indicate that the heuristic guid-
ance succeeds in finding fast initial solutions even for larger
roadmaps.

8.2 Tests on systems with shared DoF

This section showcases three benchmarks of increasing dif-
ficulty, which are used to evaluate the performance of the
da-dRRT∗. All the experiments were run on a cluster with
Intel(R) Xeon(R) CPU E5-4650 @ 2.70 GHz processors,
and 128 GB of RAM. In each benchmark, different sizes n
of the constituent roadmaps Rls and Rsr were evaluated. The
da-dRRT∗algorithm is compared against RRT*and PRM∗.
The platforms used are Motoman SDA10F, with a torsional
DoF, and Baxter on a mobile base that can rotate and
translate. For thePRM∗ algorithmand all benchmarks, 20 ran-
domly seeded roadmapswith 50,000 nodes are constructed in
C and data are gathered from 20 experiments. A 50,000 node
roadmap has ≈ 1 million edges, and takes ≈ 7 h to construct
in these high dimensional spaces. Larger roadmaps run into
memory scalability issues. These roadmaps in the full space
occupied ≈ 50 MB. In comparison, the space requirement
for two arm roadmaps were < 1 MB.

For all benchmarks, both RRT* and da-dRRT∗were
allowed to run for 100,000 iterations. RRT* is ran in 20
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Fig. 11 Data averaged over 10 runs for R = 3 to 10 robots. The data is
reported for the algorithms dRRT∗, ao-dRRT, dRRT, and RRT*. (Top
inset): The success ratio shows the fraction of the runs that returned a
solution. (Top): Relative solution cost of the algorithms for increasing R
over 100,000 iterations. The horizontal green line at 1 denotes the best
possible cost estimate, which is a combination of the individual robot
shortest paths for each problem. All the other costs are represented as
multiples of this estimate. dRRT only reports a single solution, and is

denoted by the inverted blue triangles. The other algorithms improve
the solution over the iterations, represented by vertical bars between
the average initial solution cost and average final reported solution cost.
The numbers above the dRRT∗ bars represent the iteration number of
the first solution for dRRT∗. (Bottom left): The average initial solution
times for the algorithms. (Bottom right): The plot of the reported solu-
tion cost over time for the different algorithms. dRRT only reports a
single solution and is represented by the inverted triangles

different randomly seeded experiments for every bench-
mark. For the da-dRRT∗ algorithm, 20 experiments are run
for every benchmark, for the different constituent roadmap
sizes n, by building 4 pairs of randomly seeded constituent
roadmaps, and running 5 randomly seeded experiments over
each roadmap combination.

Motoman tabletop benchmark A set of 20 random collision-
free starts and goals are selected in the tabletop environment,
shown in Fig. 14.

They are only used if they are sufficiently far away from
each other. da-dRRT∗is tested with constituent roadmap
sizes of 100, 250 and 500.All the algorithms succeed in every
experiment. In this simpler problem, smaller roadmaps are

quicker to search, and generate initial solutions faster com-
pared to RRT*, as shown in Fig. 15 (top).

Searching the PRM∗ is the fastest (online), but the solution
quality is worse than that obtained from the other methods.
da-dRRT∗ converges to better solutions, compared to the
other algorithms, as shown in Fig. 15 (bottom).

Motoman shelf benchmark This benchmark sets up the
Motoman in front of 3 shelves. The robot has to plan between
two stateswhere both arms are inside different shelving units,
which require the rotation of its torso (Fig. 16 (top)).

This is a significantly harder problem, and RRT* suffers in
terms of success ratio (Fig. 16 (second)). RRT* takes much
longer to find the initial solution, as indicated by Fig. 16
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Fig. 12 The start and target configuration for the dual-arm manipula-
tor benchmark on a Motoman SDA10F. dRRT∗ is run for a dual-arm
manipulator to go from its home position (left) to a reaching configu-
ration (right)

Fig. 13 (Top): 5 random experiments are run for 4 random roadmap
pairs for every n. dRRT∗ achieves perfect success ratio as n increases.
(Middle): dRRT∗ solution quality over time. Here, larger roadmaps pro-
vide benefits in terms of running time and solution quality. (Bottom):
Initial solution times for dRRT∗

(middle). PRM∗ is still the fastest in finding solutions (only
online cost considered again here). The da-dRRT∗solution
cost is much better than both the average PRM∗ solution, and
RRT*, as shown in Fig. 16 (bottom). da-dRRT∗ will quickly
converge for smaller roadmaps, and then stop improving the

Fig. 14 The Motoman tabletop benchmark setup for da-dRRT∗ with
randomly sampled start and goal configurations

Fig. 15 Motoman Tabletop Benchmark: Top: The initial solution times
are reported for every algorithm. Bottom: The average solution costs
over time are reported

cost. The larger roadmaps contain better solutions, causing
da-dRRT∗to converge slower.

Mobile Baxter benchmark This benchmark uses a Rethink
Baxter robot with a mobile base. The robot is grasping two
long objects inside a shelf Fig. 17 (top). The robot has to
navigate across a cramped, walled room, to a placing config-
uration inside a shelf on the other side of the room.
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Fig. 16 Motoman Shelf Benchmark: Top: The setup of the benchmark.
Second: Success ratios of the algorithms are shown over time.Middle:
The initial solution times are reported for every algorithm. Bottom: The
average solution costs over time are reported. The dashed horizontal
line denotes the average solution cost discovered by PRM∗. The shaded
regions represent the corresponding algorithm’s standard deviation of
cost

This proves to be themost challenging problem among the
three benchmarks. As shown in Fig. 17 (middle), RRT*fails
to find a solution. It should be noted that, when tested on a
simpler version of the benchmark without the pillar in the
room, RRT*could find solutions. PRM∗ also falters by show-
ing a very low success rate. This indicates that we need even
larger roadmaps inC to solve harder problems. The problem
is solved when a dense implicit structure, with n = 1000 is
explored by da-dRRT∗.

Figure 17 (bottom) shows that da-dRRT∗ finds better ini-
tial and converged solutions when compared to the instances
in which PRM∗ succeeded.

Fig. 17 Mobile Baxter Benchmark: Top: The setup of the benchmark.
Middle: Success ratios of the algorithms are shown over time. Bottom:
The average solution costs over time are reported. The dashed horizontal
line denotes the average solution cost discovered by PRM∗

8.3 Real world experiments

Experiments were performed in a 28-dimensional space with
two dual-armed manipulators: (a Motoman SDA10f and a
Baxter). Initial solutions were obtained in a fraction of
a second for the two experimental setups, with the method
allowed to run for 1000 iterations to improve the quality
of the demonstrated trajectories. The two setups are chosen
carefully to demonstrate in the first instance a typical appli-
cation of simultaneous grasping that may arise in real world
scenarios, and in the second instance a problem that forces
very close interactions between the arms in close proximity.

Pre-grasp demonstration As shown in Fig. 18, the demon-
stration simulates an application to multi-arm manipulation,
where the goals of the motion planning problem for 4 arms
is to pre-grasping configurations for 4 objects placed on a
table in the shared workspace between the robots. 1000 node
roadmaps were constructed for each arm and dRRT∗ was
used to search for a solution to the motion planning prob-
lem. The solution was computed offline and an open-loop
execution was performed on the real system.

Coupled workspace demonstration As shown in Fig. 19, a
pole is positioned between the two robots so that the arms
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Fig. 18 Real world experiments were performed in a 28 dimensional
space with 2 dual-armed manipulators planning their motion to a goal
configuration corresponding to pre-grasping states for 4 objects rest-

ing on a table in the shared workspace. The sequence corresponds to
freeze-frames starting in sequence from the top-left, and progressing
along each row till the bottom-right

Fig. 19 Real world experiments were performed in a 28 dimensional
space with 2 dual-armed manipulators planning their motion from a
start state to an approach state close to a pole positioned in the center
of a tightly coupled shared workspace. The arms then swap positions

on the pole and return back to the start state. The goals correspond to
the last images in each row. The sequence corresponds to freeze-frames
starting in sequence from the top-left, and progressing along each row
till the bottom-right

cannot cross over. The objective is for the 4 arms to (a)
approach the pole at alternating heights, (b) then swap the
height of their approaching configurations, and (c) finally
return back to the start state. 1000 node roadmaps were con-
structed for each arm and dRRT∗ was used to search for a
solution to the three motion planning problems. The solu-
tions that were computed offline, were stitched together and
replayed in an open loop execution on the real system.

9 Discussion

This work proves asymptotic optimality of sampling-based
multi-robot planning over implicit structures by extending
the dRRT approach. Asymptotic optimality is achieved by
making amodification, resulting inao-dRRTwhich expands
a spanning tree over an implicitly defined tensor product
roadmap, and leverages a simple re-wiring scheme.
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This method already has the advantage of avoiding the
construction of a large, dense roadmap in the composite con-
figuration space ofmany robots. This can be further improved
to use heuristics so as to search in an informed manner, in the
dRRT∗ method. The method is also extended to work with
robot systems, which share degrees of freedom, resulting in
da-dRRT∗.

Experimental results show the efficacy of the proposed
approaches. Furthermore, by leveraging heuristics, dRRT∗
is able to solve more challenging problem instances than the
baselineao-dRRTmethod, and the approach is demonstrated
to solve complex, real-world problems with robot manipula-
tors operating in a shared workspace with a high degree of
coupling.

In terms of practical applicability, dRRT∗ promises fast
initial solutions times (Figs. 11, 13) on the order of a
fraction of a second for most problems, including for
high-dimensional, kinematically independent multi-robot
problems, which is an exciting result. The solution qual-
ity improvement indicates the anytime properties of the
approach, where paths of improved path quality are discov-
ered as more computation time is invested. While problems
with shared degrees of freedom provide less guidance and
result in performance degradation, the scalability benefits
remain even in this case relative to composite planning.
Future work includes the consideration of dynamics. The
existing theoretical analysis of dRRT∗ assumes that the indi-
vidual robot systems are holonomic, which guarantees the
existence of near-optimal single-robot paths (see Lemma 1
and (Janson et al. 2015, Theorem 4.1)). Recent results con-
cerning asymptotic optimality of PRM for non-holonomic
systems (see Schmerling et al. (2015a, b)) bring the hope
of achieving a more general analysis of the current work as
well. The proposed framework can also be leveraged toward
efficiently solving simultaneous task and motion planning
for many robot manipulators (Dobson and Bekris 2015).
The demonstrated applications tomanipulators alsomotivate
dual-arm rearrangement challenges (Shome et al. 2018).
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