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Abstract
This paper proposes a novel sampling-based motion planner, which integrates in Rapidly exploring Random Tree star (RRT�)
a database of pre-computed motion primitives to alleviate its computational load and allow for motion planning in a dynamic
or partially known environment. The database is built by considering a set of initial and final state pairs in some grid space, and
determining for each pair an optimal trajectory that is compatible with the system dynamics and constraints, while minimizing
a cost. Nodes are progressively added to the tree of feasible trajectories in the RRT� algorithm by extracting at random a
sample in the gridded state space and selecting the best obstacle-free motion primitive in the database that joins it to an existing
node. The tree is rewired if some nodes can be reached from the new sampled state through an obstacle-free motion primitive
with lower cost. The computationally more intensive part of motion planning is thus moved to the preliminary offline phase
of the database construction at the price of some performance degradation due to gridding. Grid resolution can be tuned so as
to compromise between (sub)optimality and size of the database. The planner is shown to be asymptotically optimal as the
grid resolution goes to zero and the number of sampled states grows to infinity.

Keywords Optimal sampling-based planning · Kinodynamic planning · Motion primitives

1 Introduction

Motion planning is one of the fundamental problems in
robotics, and consists of guiding the robot from an initial
state to a final one along a collision-free path.

For many robots, focusing only on kinematics could result
in collision-free paths that are impossible to be executed by
the actual system. In particular, for systems that are differ-
entially constrained, such a decoupled approach makes it
difficult to turn a collision-free path into a feasible trajectory.
In order to tackle this problem, Donald et al. (1993) proposed
the idea of kinodynamic planning, which combines the search
for a collision-free path with the underlying dynamics of the
system, so that the resulting trajectory would be feasible.

For most robotic applications, the solution to the plan-
ning problem should not only be feasible and collision-free,
but also satisfy some properties such as, e.g., reaching the
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goal in minimum time, minimizing the energy consumption,
and maximizing safety. These additional requirements have
shifted the focus from simply designing collision-free and
feasible trajectories to finding optimal ones.

This paper deals with optimal kinodynamic motion plan-
ning for systems with complex dynamics and subject to
constraints.

1.1 Literature review

A significant amount of work in the robotics community has
then been dedicated to the problem of kinodynamic planning
so as to determine a trajectory that fulfills the differential
constraints arising from the dynamics of the robot. Solv-
ing this problem is complex, in general, since it requires a
search in the state space of the robot, which often implies a
higher-dimensional search space compared to a pure kine-
matic planning.

Most of the motion planners can be classified under
the two categories of exact and sampling-based methods,
LaValle (2006). The former looks for a solution in the contin-
uous state space,while the latter samples this space redefining
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it as a graph where nodes are connected via edges represent-
ing local trajectories between sampled states.

Exact methods are said to be complete, since they termi-
nate in finite time with a solution, if one exists, and return the
nonexistence otherwise. However, with the exact approaches
even the simplest problem isPSPACEhard (Reif 1979).Exact
methods require that the obstacles are represented explicitly
in the state space, dramatically increasing the problem com-
plexity. However, they can provide practical solutions for
problems that are characterized by a low dimensional state
space, or forwhich a lowdimensional obstacle representation
can be adopted. Obstacles introduce non convex constraints
in the admissible state space, and make the problem of com-
puting an optimal trajectory hard. In particular, most of the
algorithms, that are gradient based, can only find a solution in
the same homotopy class of the initial guess (LaValle 2006).
There has been a significant progress to address this issue
and, in particular, the ideas of dividing the global optimal
trajectory planning problem into simpler subproblems and
of using numerical optimization to compute locally optimal
trajectories have been explored in, e.g., (Park et al. 2015;
Kuderer et al. 2014).

Sampling-based approaches emerged to handle systems
with high dimensional state spaces, and they became the
most popular approaches in the planning literature, repre-
senting the practical way to tackle the problem. The basic
idea is to sample states (nodes) in the continuous state space
and connect these nodes with trajectories in the collision-free
space, building a roadmap in the form of a graph or a tree of
feasible trajectories. These algorithms avoid an explicit rep-
resentation of obstacles by using a collision check module
that allows to determine the feasibility of a tentative trajec-
tory. They are not complete, but they satisfy the probabilistic
completeness property, i.e., they return a solutionwith a prob-
ability converging to one as the number of samples grows to
infinity, if such a solution exists.
Probabilistic Road Map (PRM), introduced by Kavraki et al.
(1996), and Rapidly exploring Random Trees (RRT), intro-
duced by LaValle and Kuffner (2001), were the first popular
sampling-based planners. PRM first creates a graph in the
free configuration space by randomly sampling nodes and
connecting them to the already existing ones in the graph
using a local planner. The graph can then be used to answer
multiple queries, where in each query a start node and a goal
node are added to the graph and a path connecting the two
nodes is looked for. RRT, on the other hand, incrementally
builds a tree starting from a given node, returning a solution
as soon as the tree reaches the goal region, hence providing a
fast on-line implementation. In all the different formulations
of sampling-based planners, a steering function is required to
design a trajectory (edge in the tree terminology) connecting
two nodes of the tree.

Considering the quality of the solution, an important
progress has been made with the introduction of RRT�

(Rapidly exploring Random Tree star) and PRM� (Prob-
abilistic Road Map star), which have been proven to be
asymptotically optimal, i.e., the probability of finding anopti-
mal solution, if there exists one, converges to 1 as the tree
cardinality grows to infinity, (Karaman and Frazzoli 2011).
The main idea of these algorithms is to ensure that each node
is connected to the graph optimally, possibly rewiring the
graph by testing connections with pre-existing nodes that are
in a suitably definedneighborhood.The same strategy applies
to kinodynamic planning (Karaman and Frazzoli 2010) as
well, with the additional difficulty that when optimality is
required, implementing the steering function involves solv-
ing a two point boundary value problem (TPBVP), which is
computationally challenging especially when dealing with
complex dynamics, such as for non-holonomic robots, in
presence of actuation constraints. In the context of kinody-
namic planning RRT� and PRM� cannot be considered in the
same way. In fact, PRM� is limited to symmetric costs and
to those systems for which the cost associated to a TPBVP is
conserved when the boundary pairs are swapped. Note that,
nonholonomic systems do not belong to this class.
Considering instead RRT�, it must be noticed that for vari-
ous dynamical systems, such as non-holonomic vehicles, the
presence of kinodynamic constraints makes the constrained
optimization problem that the steering function has to solve
extremely complex.
To deal with this computational complexity, some effort
has been made towards developing effective steering func-
tions for different types of dynamical systems. Webb and
van denBerg (2013) have obtained the closed-formanalytical
solution for a minimum time minimum energy optimization
problem for systems with linear dynamics, and extended it
to non-linear dynamics using first-order Taylor approxima-
tion. Other works (Perez et al. 2012; Goretkin et al. 2013)
have focused on approximating the solution for systems with
linearizable dynamics, by locally linearizing the system and
applying linear quadratic regulation (LQR).
Some recent attempts have been made towards optimality
without formulating and solving aTPBVP, aswell. For exam-
ple, algorithms like Stable Sparse RRT� (SST�) (Li et al.
2016) have proved asymptotic optimality given access only to
a forwardpropagationmodel. The idea is to iteratively sample
a set of controls and final times instead of explicitly solv-
ing the BVP. Similarly, a variant of RRT� (hwan Jeon et al.
2011) uses a shooting method without a steering function to
improve the solution by pruning branches from the tree. If a
sampled node has a lower cost compared to another one that
is close by and that shares the same parent, the pre-existing
node is pruned from the tree and its branches are connected
to the newly sampled node, or they are pruned completely if
they are not collision-free. This approach generates feasible
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but inherently suboptimal solutions. Other works on extend-
ing RRT� to handle kinodynamic constraints include limiting
the volume in the state space from which nodes are selected
by tailoring it to the considered dynamical system in order to
improve computational effectiveness (Karaman and Frazzoli
2013).
Nevertheless, solving the TPBVP for an arbitrary nonlinear
system remains challenging and typically calls for numerical
solvers. The algorithms that account for a nonlinear optimiza-
tion tool, like for example ACADO toolkit (Houska et al.
2011), GPOPS-II (Patterson and Rao 2014), etc., commonly
use Sequential Quadratic Programming (SQP) (Boggs and
Tolle 1995) for solving the TPBVPs numerically, and embed
it as a subroutine in the sampling based planning framework
such as in RRT� (Stoneman and Lampariello 2014) or in
Batch-Informed-Trees star (BIT�) (Gammell et al. 2014).

A different class of algorithms, aiming at optimality, is
based on graph search and adopt a gridding approach. The
main idea is to discretize the state space, building a grid,
and compute a graph. The motion planning problem is then
recast into finding the best sequence of motions by travers-
ing this graph with an optimal search algorithm like A�

(Pearl 1984). This graph is often represented by a state lat-
tice, a set of states distributed in a regular pattern, where the
connections between states are provided by feasible/optimal
trajectories (Pivtoraiko et al. 2009). Likhachev and Ferguson
(2009) improved the idea of state lattice by using a multi-
resolution lattice such that the portion of the graph that is
close to either the initial or the goal state has a higher res-
olution than the other parts. These approaches have been
successfully applied to several robotic systems and found to
be effective for dynamic environments (Likhachev and Fer-
guson 2009; Dolgov et al. 2010). However, these algorithms
are resolution optimal, such that the optimality is guaranteed
up to the grid resolution. Furthermore, their computational
effectiveness is highly related to the resolution: the finer is
the grid, the higher the branching factor, and thus the com-
putational time and the required memory to execute a graph
traversal algorithm.

1.2 Contribution of the paper

The main contribution of this paper is proposing an algo-
rithm, called RRT�_MotionPrimitives, which extends
RRT� by introducing a database of pre-computed motion
primitives in order to avoid the online solution of a con-
strained TPBVP for the edge computation. The database is
composed of a set of trajectories, each one connecting an ini-
tial state to a final one in a suitably defined grid. By sampling
in the gridded state space, the implementation of the steer-
ing function adopted for growing and rewiring the RRT� tree
reduces to the search of amotion primitive in a pre-computed
Look Up Table (LUT).

The proposed approach is applicable to any dynamical
systemdescribed by differential equations and subject to ana-
lytical constraints, for which edge design can be formulated
as a TPBVP. Notably, when a model of the robot is not avail-
able, the database can be derived directly from experimental
trajectories.

The main difference of the proposed approach, with
respect to existing algorithms that use a database of pre-
computed trajectories, e.g., search based approaches as in
(Pivtoraiko et al. 2009), is that it leverages on a dynamic tree
whose size depends only on the number of samples, but not
on the number of motion primitives that affects the accuracy
in the approximation of the robot kinematic and dynamic
characteristics. As a consequence, memory consumption to
store the tree and computation time to determine a solu-
tion on a given tree can be bounded selecting an appropriate
maximumnumber of samples,without introducing undesired
constraints in the robot action space.
Search based approaches, instead, have to strongly limit the
action space, keeping the number of motion primitives low,
as the branching factor of the graph, i.e., the number of edges
generated expanding each node, depends on the size of the
database.

The effectiveness of RRT�_MotionPrimitives has
been validated in simulation, showing that the time required
to build the tree is greatly reduced with the introduction of a
LUT. This represents a promising result for online applica-
tions, especially in dynamic environments where the planner
has to generate a new trajectory in response to changes in the
obstacle-free state space.

An analysis of the probabilistic completeness and opti-
mality properties of RRT�_MotionPrimitives is also
provided. This involves a two-step procedure where we
assess how close the proposed sample-based solution gets
to the optimal one in the gridded state space as the number of
samples grows to infinity, and how it gets close to the opti-
mal solution in the continuous state space as the gridding
gets finer and finer.

1.3 Paper structure

The paper is organized as follows. Section 2 introduces
a formal description of the problem. In Sect. 3 the pro-
posed RRT�_MotionPrimitives algorithm is explained
in detail. An analysis of its probabilistic completeness and
optimality properties is presented in Sect. 4. A numerical
validation of RRT�_MotionPrimitives is provided in
Sect. 5. Finally, some concluding remarks are drawn in
Sect. 6.
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2 Problem statement

In this work, dynamical systems with state vector q ∈ R
d

and control input u ∈ R
m , governed by

q̇(t) = f (q(t),u(t)) (1)

where f is continuously differentiable as a function of both
arguments, are considered. The control input u(t) is subject
to actuation constraints, and the admissible control space is
denoted as U ⊂ R

m . The state q(t) is constrained in the set
Q ⊂ R

d , and initialized with q(0) = q0 ∈ Q. Both U and
Q are assumed to be compact. An open subset Qgoal of Q
represents the goal region that the state has to reach.

A trajectory of system (1) is defined by the tuple z =
(q(·),u(·), τ ), where τ is the duration of the trajectory, and
q(·) : [0, τ ] → Q and u(·) : [0, τ ] → U define the state
and control input evolution along the time interval [0, τ ],
satisfying the differential equation (1) for t ∈ [0, τ ], the
initial condition q(0) = q0, and the final condition q(τ ) ∈
Qgoal .

Obstacles are represented via an open subset Qobs of Q.
The free space is then defined as Q f ree := Q \ Qobs , and
the assumption q0 ∈ Q f ree is enforced.
A trajectory z = (q(·),u(·), τ ) of system (1) is said to be
collision free, if it avoids collisionswith obstacles, i.e.,q(t) ∈
Q f ree, t ∈ [0, τ ].
The set of collision free trajectories is denoted as Z f ree.

An optimal kinodynamic motion planning problem can
then be formalized as finding a feasible and collision free
trajectory z� = (q�(·),u�(·), τ �) ∈ Z f ree that is optimal
according to a cost criterion J (z) : Z f ree → R≥0 that is
expressed as

J (z) =
τ∫

0

g (q(t),u(t)) dt

where g : Q ×U → R≥0 is an instantaneous cost function.
We assume that trajectories joining two different states have
a non-zero cost. This is for instance the case inminimum time
optimization where g(q,u) = 1 and the trajectory duration
τ is one of the optimization variables of the problem.

Remark 1 (translation invariance property) In the context of
motion planning, system (1) represents the robot equations of
motion and, consequently, its state vectorq includes the robot
position with respect to a given absolute reference frame. In
the following, a translation invariance property is supposed
to hold. This means that, if obstacles are neglected and a
pair of initial and final states and the associated optimal tra-
jectory z� = (q�(·),u�(·), τ �) are considered, by shifting
the origin of the coordinate system and rewriting all rele-
vant quantities—including system dynamics (1), and initial

and final states—in the new coordinate system and applying
input u�(·), the optimal robot trajectory is obtained, which is
z� rewritten in the new coordinates.

3 RRT� withmotion primitives

The approach here proposed is based on previous works on
search-based (Pivtoraiko et al. 2009; Likhachev and Fergu-
son 2009), and sampling-based (Karaman and Frazzoli 2011,
2010) methods, and combines them in a novel way.
In particular, it relies on a uniform discretization of the state
space, and on the computation of a finite set of motion prim-
itives by solving a constrained optimization problem with
boundary conditions on the grid points of a smaller (uniform)
grid. The motion primitives are then embedded in the RRT�

algorithm, where they are used to connect the randomly gen-
erated nodes to the tree, thus eliminating the need of solving
online challenging and time consuming TPBVPs.

3.1 Database of motion primitives

The database of motion primitives is built by gridding the
continuous state space in order to obtain a finite set of bound-
ary conditions (initial and final states), and by solving offline
a constrained boundary value optimization problem for each
pair. The resulting set of optimal trajectories is then used
repeatedly online, implementing a procedure that, when an
edge connecting two nodes is requested by the planner, sim-
ply picks up from the database a suitable trajectory.

Given a state tuple q ∈ Q, q = [πT , . . .]T , including the
robot position π , motion primitives are computed for each
pair of initial and final states (q̄0, q̄ f ) with q̄0 = [π̄T

0 , . . .]T .
Given a boundary value pair (q̄0, q̄ f ), a motion primitive is
computed by solving the following optimization problem

mininimize
u(·),τ

τ∫
0
g (q(t),u(t)) dt

subject to q̇(t) = f (q(t),u(t))
u(t) ∈ U , t ∈ [0, τ ]
q(t) ∈ Q f ree, t ∈ [0, τ ]
q(0) = q̄0, q(τ ) = q̄ f

(2)

Finally, the database is generated by considering distinct
pairs of initial and final states (q̄i0, q̄

i
f ), i = 1, . . . , N , and

computing the corresponding set of motion primitives Z =
{z�

i = (
q�
i (t),u

�
i (t), τ

�
i

)
, i = 1, . . . , N } with the associated

costs C = {C�
i , i = 1, . . . , N }.

Note that, thanks to the translation invariance property
introduced in Remark 1, the size of the database can be kept
small while covering a wide range of the space where the
robot is moving. Indeed, one can, without loss of general-
ity, set the initial position π̄0 to π̄0 = 0 when building the
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database, and recover the optimal trajectory for an arbitrary
initial position π0 by simply centring the coordinate system
in π0.

Example 1 Consider, as an example, a planning problem for
a unicycle robot characterised by a 3D search space (x, y, θ),
including the position (x, y) and the orientation θ , and by a
2D actuation space (v, ω), constituted by the linear velocity
v and the angular velocity ω.
Motion primitives are computed solving the following
TPBVP

mininimize
v(·),ω(·),τ

τ∫

0

(
1 + 0.5v(t)2 + 0.5ω(t)2

)
dt

subject to ẋ(t) = v(t) cos (θ(t))

ẏ(t) = v(t) sin (θ(t))

θ̇(t) = ω(t)

v(t) ∈ [0, 2] , t ∈ [0, τ ]
ω(t) ∈ [−2, 2] , t ∈ [0, τ ]
x(0) = x̄0, y(0) = ȳ0, θ(0) = θ̄0

x(τ ) = x̄ f , y(τ ) = ȳ f , θ(τ ) = θ̄ f

for different initial and final poses.
Figure 1 shows a subset of these motion primitives, charac-
terized by trajectories starting from x̄0 = ȳ0 = θ̄0 = 0.

Fig. 1 A subset of the motion primitives computed for a 3D search
space (x, y, θ). Red dots correspond to the initial and final positions,
and black lines represent the resulting trajectories for different final
orientations (θ ) (Color figure online)

Fig. 2 “Reference trajectory” corresponding to (q0,q f ) (red solid
line), and symmetric trajectories defined by the pair of boundary con-
ditions (q0,q1f ), (q0,q

2
f ), (q0,q

3
f ) (Color figure online)

As can be seen in Fig. 1, with the dynamical system and
cost function considered in this example, motion primitives,
corresponding to boundary conditions that are symmetric
with respect to the x-axis, are symmetric. A further anal-
ysis reveals that the same property holds for the y-axis as
well, and that symmetric primitives are characterized by the
same cost.

Remark 2 When for the considered dynamical system and
cost criterion stronger invariance properties hold, like the
axis symmetry in Example 1, the size of the database can
be further reduced by storing only a few “reference trajec-
tories”, and generating all the others using the invariance
transformation.
Figure 2 shows an example, referred to the TPBVP consid-
ered in Example 1, where the trajectories represented by the
pairs (q0,q1f ), (q0,q2f ), (q0,q3f ) are characterised by the
same cost and can be easily mapped to a “reference trajec-
tory” corresponding to the boundary value pair

(
q0,q f

)
. In

this case, the size of the database can be further reduced stor-
ing only the “reference trajectory”.

3.2 Search space design

In order to take advantage of the pre-computed database of
motion primitives in sampling-based planning, the search
space of the planner has to be defined appropriately so that
every time the planner needs to connect two nodes, the cor-
responding optimal trajectory can be found in the database.
To guarantee that this is indeed the case, the search space of
the planner is uniformly gridded as the region where motion
primitives are built. The translation invariance property1 can
then be exploited, as any optimal trajectory which connects a

1 This approach can be easily extended in case stronger invariance prop-
erties hold.
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pair of initial and final states (in the discretized search space)
can be computed by first shifting the initial and final states
so that the initial robot position corresponds to the zero posi-
tion, then picking a suitable motion primitive in the database,
and finally shifting the motion primitive so as to get back to
the original reference coordinate system. Translation invari-
ance, jointly with uniform gridding, allow a reduced number
of motion primitives to cover the entire (discretized) search
space. Note that, as the resolution of the database and the
uniform grid size of the search space are coupled, we often
use these two terms interchangeably.

Determining optimal state space discretization depends on
the specific application, and is out of the scope of this work.
We shall assume here that the state space grid should include
the initial state q0, at least a grid point in the goal region,
and few points in the free space Q f ree. Moreover, in order
to find a solution that reaches the goal region, the algorithm
should be able to search within all homotopy classes that are
feasible given the robot footprint. In other words, one should
be able to represent in the grid space all sets of trajectories
in the continuous state space that can be obtained applying a
smooth transformation and lead to the goal region. Missing
a homotopy class could highly deteriorate performance in
terms of achieved cost.
In Sect. 5 some numerical examples are provided, in which
different grids are used for solving the same case study and
results are compared.

Algorithm 1: RRT�_MotionPrimitives
1 QT ← {q0}, ET ← ∅, n ← 1
2 while n ≤ N do
3 qrand ← SAMPLE(Qfree)

4 Qnear ← NEAR_NODES(qrand)
5 qbest ← EXTEND(Qnear,qrand)
6 if qrand /∈ QT ∧ qbest 
= ∅ then
7 QT ← QT ∪ {qrand}
8 ET ← ET ∪ {(qbest,qrand)}
9 n ← n + 1

10 ET ← REWIRE(QT , ET ,qrand, Qnear)

11 else if qrand ∈ QT then
12 qprev ← PARENT(qrand )
13 if qbest 
= qprev then
14 ET ← (ET \ {(qprev,qrand )}) ∪ {qbest ,qrand }
15 ET ← REWIRE(QT , ET ,qrand, Qnear)

16 return QT , ET

3.3 Motion planning

This section introduces RRT�_MotionPrimitives
(Algorithm 1), the proposed variant of RRT� integrating
the database of motion primitives for the computation of a
collision-free optimal trajectory (cf. Sect. 2).

As in RRT�, RRT�_MotionPrimitives is based on
the construction of a random tree T = (QT , ET ) where
QT ⊂ Q is the set of nodes, and ET is the set of edges.
Nodes are states and edges are optimal trajectories, each one
connecting a pair of origin and destination nodes and solving
the TPBVP in (2).
The tree T is expanded for a maximum number of iterations
N , defined by the user, starting from QT = {q0}, where
q0 ∈ Q f ree is the initial state, and ET = ∅, as described in
Algorithm 1.
Every node q ∈ QT is connected to q0 via a single sequence
of intermediate nodes qi ∈ QT , i = 1, . . . , n − 1, n ≤ N ,
and associated edges ei = eqi ,qi+1 ∈ ET , i = 0, 1, . . . , n−1,
with qn = q.
One can then associate to this sequence a cost C(→ qn)
given by

C(→ qn) =
n−1∑
i=0

C(ei )

where C(ei ) denotes the cost associated with edge ei ∈ ET

and computed as in (2).

Algorithm 2: NEAR_NODES
1 Qnear ← ∅
2 πrand ← GetPosition(qrand )
3 for ∀q ∈ QT do
4 if q ∈ BoundingBox(πrand ) then
5 if C(eqrand ,q) ≤ l(n) ∨ C(eq,qrand ) ≤ l(n) then
6 Qnear ← Qnear ∪ {q}

7 return Qnear

Tree growing is based on four main steps—random sam-
pling, finding near nodes, extending the tree, and rewiring—
that are described in the following.

Random sampling

A random state qrand is sampled from the free state space
Q f ree according to a uniform distribution by
SAMPLE (Qfree). Unlike the original RRT� algorithm, how-
ever, the node is not sampled from the continuous state space,
but from its discretization according to a uniform grid. For
this reason, there is also a non zero probability that the same
state qrand is sampled again in the next iterations of the
algorithm.

Near nodes (Algorithm 2)

In RRT� a random state qrand can be connected only to a
node that is within the set of its near nodes.
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For Euclidean cost metrics, the set of near nodes is defined
as a d-dimensional ball centered at qrand of radius

γball = γRRT � (log(n)/n)1/d

where n is the tree cardinality at the current iteration of the
algorithm and γRRT � is a suitable constant selected as

γRRT � > 2 (1 + 1/d)1/d
(
μ(Q f ree)/ζd

)1/d

μ(Q f ree) and ζd denoting the volume of the free con-
figuration space and of the unit ball, respectively, in a
d-dimensional Euclidean space.
For non-Euclidean cost metrics, the distance between two
states is represented by the optimal cost of the trajectory that
connects them, and near nodes are selected from a set of
reachable states, Qreach , defined as the set of states that can
be reached from qrand or that can reach qrand with a cost
that satisfies some threshold value. More specifically,

Qreach = {q ∈ Q : C(eqrand ,q) ≤ l(n) ∨
C(eq,qrand ) ≤ l(n)} (3)

where eqi ,q j denotes the edge from qi to q j , and l(n) is a cost
threshold that decreases over the iterations of the algorithm
as l(n) = γl (log n/n) such that a ball of volume γ d (log n/n)

is contained within Qreach , where γl and γ are suitable con-
stants (see Karaman and Frazzoli 2010, for further details).

InRRT�_MotionPrimitives, however, the setQreach

has to be further constrained to ensure that there is a pre-
computed trajectory in the database for each connection in
the set of near nodes, that is thus redefined as follows

Qnear = Qreach ∩ BoundingBox(πrand)

whereBoundingBox(πrand) denotes the box of grid points
in the state space Q adopted for the database construction,
with the origin of the reference coordinate system shifted
from π̄0 = 0 to πrand , which is the robot position associated
to state qrand and obtained by using GetPosition.
If Qnear occurs to be an empty set, the algorithm continues
to the next iteration selecting a new qrand .

Extend (Algorithm 3)

The tree is extended to include qrand by selecting the node
qbest ∈ QT such that the edge eqbest ,qrand connects qrand
with a minimum cost collision free trajectory.
qbest is determined as follows

qbest = argmin
q∈Q f easible

C(→ q) + C(eq,qrand )

where Q f easible ⊆ Qnear is the set of nodes q that belong
to Qnear and such that the trajectory connecting q to qrand
is collision free, i.e.,

Q f easible = {q ∈ Qnear |CollisionFree(eq,qrand ) = 1}

where CollisionFree : ET → {0, 1} is a function that
returns 1 for an edge that is collision free, 0 otherwise.
The selection of an edge from the database, connecting q to
qrand , is a peculiarity of RRT�_MotionPrimitives, and
is performedby theFindTrajectory function as follows:

1. a translation is applied to the pair of initial and final
states (q,qrand) (Fig. 3a), obtaining the normalized pair
(q̃, q̃rand), such that the resulting q̃ has the position π̃

corresponding to the null vector (Fig. 3b);
2. a query is executed on the database to look for the tra-

jectory zi ∈ Z and the cost C(eq̃,q̃rand ) ∈ R;
3. the inverse of the previous translation is applied in

order to recover the trajectory connecting the actual
pair of boundary values (q,qrand), determining the edge
eq,qrand (Fig. 3c).

At the end of this procedure, if qrand is not already in the
tree, then it is added to the tree together with the minimum
cost edge, i.e., QT is replaced by {qrand} ∪ QT and ET

by {eqbest ,qrand } ∪ ET (see steps 7 and 8 in Algorithm 1). If
qrand is already in the tree and if the computed qbest is dif-
ferent from the current parent node, qprev , of qrand , given
by PARENT(qrand), then the previous edge, eqprev,qrand ,
is replaced by the new edge, eqbest ,qrand (see step 14 in
Algorithm 1).

Algorithm 3: EXTEND
1 qbest ← ∅, ebest ← ∅,cbest ← ∞
2 for q ∈ Qnear do
3 z,C(eq,qrand ) ← FindTrajectory (q,qrand)
4 if C(eq,qrand ) < cbest then
5 if CollisionFree(eq,qrand ) then
6 qbest ← q
7 ebest ← z
8 cbest ← C(eq,qrand )

9 return qbest

Rewiring (Algorithm 4)

In order to ensure that all node pairs are connected by an
optimal sequence of edges, every time a new node qrand is
added to the tree, a check is performed to verify if an already
existing node can be reached from this newly added node
with a smaller cost.
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Fig. 3 Steps involved in the
coordinate transformation
within the FindTrajectory
procedure

(a) original query (b) translation to origin (c) inverse transformation and
edge design

Algorithm 4: REWIRE
1 for q ∈ Qnear do
2 z,C(eqrand,q) ← FindTrajectory (qrand,q)

3 if C (→ qrand ) + C(eqrand,q) < C (→ q) then
4 if CollisionFree(eq,qrand ) then
5 qparent ← Parent (q)

6 eprev ← eqparent ,q

7 e ← eqrand ,q
8 ET = {ET \ eprev} ∪ {e}

9 return ET

Therefore, ∀q ∈ Qnear if eqrand ,q is collision free, and the
following conditions hold

C(eqrand ,q) ≤ l(n)

C(→ qrand) + C(eqrand ,q) ≤ C(→ q)

the tree is rewired, i.e.,

ET ← {ET \ eprev} ∪ {eqrand ,q}

where eprev is the previous edge connecting the node q to
the tree.

Termination and best sequence selection

After the maximum number of iterations is reached the pro-
cedure to build the tree terminates.
The best trajectory is selected as the node sequence reaching
the goal region with the minimum cumulative cost C .
Note that, using a discretized search space limits the number
of nodes that can be sampled, once all of them have been
sampled the tree cardinality does not increase any more, but
the algorithm can still continue updating the edges to ensure
that each node is connected with the best possible parent
node.

4 Completeness and optimality analysis

In this section, probabilistic completeness of the proposed
planning algorithm and optimality of the solution are dis-
cussed. Furthermore, some results to assess how close the
solution obtained using a discretized state space and motion
primitives is to the optimal trajectory computed considering
a continuous state space are provided.

Let QΔ define the set of grid points that represent the dis-
cretized state space2 and similarly QΔ

f ree := QΔ ∩ Q f ree

represents the free discrete state space. Assuming that the
discretization step size is chosen properly, then, the collec-
tion of all grid points q ∈ QΔ

f ree that can be reached from q0
by concatenating a sequence of motion primitives in Q f ree

is a non empty set. We shall denote this set as VΔ
f ree and its

cardinality as NΔ. Note that the end points of the concate-
nated motion primitives are grid points in QΔ

f ree and hence

they belong to VΔ
f ree.

Let GΔ
f ree = (VΔ

f ree, E
Δ
f ree) be a graph where the set of

nodes is given by VΔ
f ree defined before and the set of edges

EΔ
f ree is the collection of all the (possibly translated) motion

primitives iteratively built as follows: starting from q0 con-
sider all the (translated) motion primitives that lie in Q f ree

and connect q0 to all possible grid points in QΔ
f ree, and, then,

continue with the same strategy for all of the newly reached
grid points iteratively until it is not possible to further expand
the graph.

Finally, QΔ
goal denotes the set of those grid points of V

Δ
f ree

that belong to Qgoal . The motion planning problem using the
grid representation admits a solution if QΔ

goal is not empty
since this means that there exists a way of reaching a state in
Qgoal starting from q0 with the available motion primitives.
In the following derivations we assume that QΔ

goal 
= ∅.
Similarly to RRT�, RRT�_MotionPrimitives gener-

ates a tree T based on the random samples extracted from
QΔ

f ree. However, unlike RRT
�, the nodes and edges added to

2 In this section, a Δ superscript is used to denote all variables that are
associated with the grid state space, so as to distinguish them from their
continuous state space counterpart.
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the tree belong respectively to VΔ
f ree and EΔ

f ree, so that the

obtained tree T is a sub-graph of GΔ
f ree, i.e., T ⊂ GΔ

f ree. The
subscript i is used to denote the generated tree and the cost
of the lowest cost trajectory represented in that tree after i-th
iterations, i.e., Ti and ci , respectively.

Since QΔ
goal 
= ∅, then, there exists at least an optimal

branch of GΔ
f ree composed of the ordered sequence of nodes

S� := {q�
0,q

�
1, . . . ,q

�
k},

which represents a resolution optimal Δ-trajectory, a mini-
mum cost trajectory that starts at the initial state q0 and ends
in the goal region, i.e., q�

k ∈ QΔ
goal , such that q

�
j ∈ VΔ

f ree and

eq�
j−1,q

�
j
∈ EΔ

f ree, for any j = 1, . . . , k. Let c�Δ denote the

cost of this optimal trajectory, i.e., C(→ q�
k) = c�Δ, which

is named resolution optimal Δ-cost.
The goal of RRT�_MotionPrimitives can then be

reformulated as that of generating a tree that contains an
optimal branch S� to reach QΔ

goal that is represented inGΔ
f ree.

Note that, one could in principle build GΔ
f ree and apply an

exhaustive search on it. However, this can still be an issue
due to the combinatorial nature of the problem, in particular
due to the branching caused by the dimensionality of the state
space and the number of nodes contained in the graph.

In this section the quality of the solution obtained by
RRT�_MotionPrimitives is analyzed by addressing the
following questions:

1. resolution optimality: if there exists a resolution optimal
Δ-trajectory S� in GΔ

f ree, then, is it possible to obtain
such a trajectory?

2. asymptotic optimality: how close is the resolution opti-
mal Δ-cost to the cost of the optimal trajectory, as the
grid resolution increases and the grid converges to the
continuous state space?

Theorem 1 As the number of iterations goes to infinity
the cost of the trajectory returned by RRT�_
MotionPrimitives converges to the resolution optimal
Δ-cost with a probability equal to 1, i.e.,

P

({
lim
i→∞ ci = c�Δ

})
= 1.

Moreover, the expected number of iterations required to con-
verge to c�Δ is upper bounded by k|QΔ

f ree|, where k is the

length of an optimal branch of GΔ
f ree.

Proof RRT�_MotionPrimitives returns the resolution
optimal solution if it discovers an optimal branch, S� =
{q�

0,q
�
1, . . . ,q

�
k}, defined on GΔ

f ree. Assuming that the con-
stant defining the cost threshold for selecting nearby nodes,

γl , is selected large enough (e.g. γl can be chosen so that
Qreach defined in (3) contains the BoundingBox (πrand)

for n = NΔ), as soon as {q�
0,q

�
1, . . . ,q

�
j−1} is a branch in

the tree, T = (QT , ET ), then the algorithm adds the edge
eq j−1,q j to the tree in one of the following two ways:

1. any time q�
j is sampled it is connected to q�

j−1 by the
EXTEND procedure. In fact, as eq�

j−1,q
�
j
is part of the

optimal sequence, there is no better way of reaching q�
j

other than eq�
j−1,q

�
j
.

2. ifq�
j is sampled beforeq�

j−1 and connected to somenode
qprev , such that q�

j ∈ QT and eqprev,q�
j
∈ ET , the edge

eq�
j−1,q

�
j
is selected any time q�

j−1 is sampled, thanks to
the REWIRE procedure.

This property allows to model the process of determining
the sequence S� as an absorbing Markov chain initialized
at q�

0 with q�
k as absorbing state and all intermediate q�

j ,
j = 1, 2, . . . k − 1 that are transient states. There is a
positive probability P j of advancing in the sequence, i.e.,
moving from q�

j−1 to q�
j , and a probability 1 − P j of stay-

ing at the same state. Considering that at each iteration a
new grid point is sampled from QΔ

f ree independently and
according to a uniform distribution, each one has a probabil-
ity 1

|QΔ
f ree|

of being extracted. Therefore, there is a probability

P j = 1
|QΔ

f ree|
of advancing in theMarkov chain and, since all

states are transient states apart from q�
k which is the absorb-

ing state, the probability that the process is absorbed by q�
k

tends to 1 as i tends to infinity (Bertsekas and Tsitsiklis
2002). Moreover, there is a finite number of expected itera-
tions, k/P j = k |QΔ

f ree|, before the process is absorbed, i.e.,
before RRT�_MotionPrimitives returns the resolution
optimal solution. ��

Clearly, the number of expected iterations increases
with the depth of the solution, k, and the number of
states represented in the grid. However, one advantage of
RRT�_MotionPrimitives, as RRT� is the possibility of
obtaining a solution rapidly and possibly improving its qual-
ity within the allowed computing time.

Corollary 1 RRT�_MotionPrimitives is probabilisti-
cally resolution complete, as the number of iterations goes
to infinity the algorithm will return a solution to the motion
planning problem, if there exists one in GΔ

f ree, with a proba-
bility 1.

The remaining of this section deals with the relation
between the resolution optimal Δ-trajectory returned by
RRT�_MotionPrimitives as the number of iterations
grows to infinity and the truly optimal trajectory in the con-
tinuous state space. To this purpose, we shall focus with the
case when there are no actuation constraints and enforce
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the following assumptions regarding the properties of the
dynamical system (1) and the existence of a solution.

Assumption 1 The following properties hold for the dynam-
ical system in (1)

– the system is small-time locally attainable (STLA)3;
– function f (·), representing the system dynamics, is Lip-
schitz continuous with Lipschitz constant K f ;

– function C(·), assigning a cost to an edge, satisfies the
following Lipschitz-like continuity condition with Lips-
chitz constant Kc:

∣∣C(eq0,q1) − C(eq̃0,q̃1)
∣∣ ≤ Kc

∥∥∥∥
∣∣∣∣q0q1

∣∣∣∣ −
∣∣∣∣ q̃0q̃1

∣∣∣∣
∥∥∥∥

for each pair of edges eq0,q1 and eq̃0,q̃1 .

Derivations in the rest of this section apply straight-
forwardly to state spaces that are Euclidean, and can be
generalized to state spaces that are manifolds if the following
assumption holds.

Assumption 2 The state space manifold of system (1) with d
state variables is a subspace of the d-dimensional Euclidean
space, Rd , therefore can be locally treated as Rd .

With a slight abuse of the previously introduced nota-
tion, in the rest of this section we use the term “trajectory”
for the state space component of the tuple z defined in
Sect. 2. In order to compare the trajectory returned by
RRT�_MotionPrimitives and the optimal trajectory in
the continuous state space, firstly, trajectories whose points
are all away from obstacles by a certain distance are consid-
ered. For this reason, the definition of obstacle clearance of a
trajectory, i.e., the minimum distance between obstacles and
points belonging to the trajectory, has to be introduced.

Definition 1 (ε-obstacle clearance) Given a trajectory σ(t),
t ∈ [0, T ], if the ball Bε (σ (t)) of radius ε and centred at
σ(t) is strictly inside Q f ree, for any t ∈ [0, T ], then, the
ε-obstacle clearance property holds for σ .

Definition 2 (ε-free space) Let σ(t) : [0, T ] → Q f ree be a
trajectory which has ε-obstacle clearance, the ε-free space
along σ is given by

Qε
σ :=

⋃
t∈[0,T ]

Bε (σ (t))

3 A system is STLA from a state q ∈ Q if ∀T > 0 the reachable set of
states from q in time 0 < t ≤ T , R(q,≤ T ) contains a d-dimensional
subset of N , where N denotes the set of neighborhood states in terms
of Euclidean distance, (Choset 2005).

Fig. 4 An example of a trajectory σ2 that is ε-similar to a trajectory σ1

Fig. 5 σ�
ε is the optimal trajectory with at least ε-obstacle and dynamic

clearance

Then, a set of trajectories that are called to be ε-similar to σ

can be introduced.

Definition 3 (ε-similarity) Any trajectory σ̃ (t) : [0, T̃ ] →
Q f ree is said to be ε-similar to σ if it lies in the Qε

σ free-
space, i.e., if

σ̃ (t) ∈ Qε
σ , t ∈ [0, T̃ ].

Figure 4 shows an example of a trajectory that is ε-similar to
another one.

Note that having an ε-free space along a trajectory is not
sufficient to guarantee the existence of ε-similar trajectories
(ε-dynamic clearance), as this existence depends also on the
properties of the dynamical system (1). The following defi-
nition relates the ε-similarity with the ε-free space through
the system dynamics.

Definition 4 (ε-dynamic clearance) Given a trajectory σ(t)
: [0, T ] → Q f ree which has ε obstacle clearance, if for any
pair of time instants t1, t2, such that 0 ≤ t1 < t2 ≤ T , there
exists a set of states inside a ball of radiusαε, with 0 < α ≤ 1,
centered at σ(t2) that are reachable from σ(t1) according to
dynamics (1) without leaving the ε-free space around σ(t),
then σ has ε-dynamic clearance.

Let Σε denote all the trajectories that solve the motion
planning problem and have at least ε-obstacle and dynamic
clearance. Let c�

ε denote theminimumcost over allΣε , which
corresponds to the ε-optimal trajectory, σ�

ε (Fig. 5). Note
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Fig. 6 Consecutive samples taken along the ε-optimal trajectory to
design a {Bδ} sequence. The corresponding BB(πm) are shown in red
(Color figure online)

that, as ε tends to zero σ�
ε converges to the truly optimal

trajectory in the continuous state space.Due to the discretized
nature of RRT�_MotionPrimitives it is not possible to
converge to the optimal trajectory in the continuous state
space, however in the following it is proven that the graph,
GΔ

f ree, contains an ε-similar trajectory, σΔ
ε , to the optimal

trajectory σ�
ε with a particular ε-clearance. Consequently,

this result will be used to show that as the resolution of the
grid increases, and as ε converges to zero, the resolution
optimal Δ-cost will converge to the truly optimal cost, i.e.,
c�.

Theorem 2 Let ε̄ > 0 be smaller than half of the shortest
side of the bounding box and such that the system (1) admits
an ε-optimal trajectory for any ε ≤ ε̄, then,

– for a sufficiently fine gridding, GΔ
f ree contains an ε-

similar trajectory to σ�
ε , ∀ε ≤ ε̄,

– as the grid resolution increases, the resolution optimal
Δ-cost converges to c�.

Proof Let us fix ε, with 0 < ε ≤ ε̄, and sample a set of states,
{qm : m = 0, 1, . . . , M}, along the ε-optimal trajectory, σ�

ε ,
starting from the initial state and ending in the final state,
in such a way that a ball of radius ε̄ centered at sample qm
would be contained in the BoundingBox(πm−1) centered
at the preceding sample qm−1 and touching its boundary for
m = 1, . . . , M − 1 (Fig. 6), till the final state is included
within BoundingBox(πM−1).

As σ�
ε has ε-dynamic clearance, it is true that for any sam-

ple qm along the trajectory there exists a set of states within
a ball of radius αε centered at qm+1 that is reachable with-
out leaving Qε

σ �
ε
, which is the ε-free space along σ�

ε . From

Fig. 7 Construction of the ball sequence {Bδ (qm)}. Tiling σ�
ε with balls

of radius δ centered at consecutive samples, there exist trajectories that
are ε-similar to σ�

ε represented on GΔ
f ree. The cost of the trajectory

connecting two consecutive samples is larger than or equal to lmin

Assumption 1, in particular from the Lipschitz continuity
of the system dynamics, it follows that a sequence of non-
overlapping balls, {Bδ (qm)}, centered at the samples along
σ�

ε and characterized by radius δ where

δ = αε

2K f
(4)

can be determined such that any state within Bδ (qm)

can reach any state in Bδ (qm+1) without leaving4 Qε
σ �

ε

(see, Khalil 1996; Karaman and Frazzoli 2010). Assum-
ing that the discretization is fine enough so that none of
the Bδ (qm) is empty, there exists a sequence of nodes
{q̃m : m = 0, 1, . . . , M} represented in GΔ

f ree, such that
q̃m ∈ Bδ (qm) ,m = 0, 1, . . . , M , q̃0 = q0, q̃M belongs
to the goal region and the corresponding trajectory σΔ

ε in
GΔ

f ree is ε-similar to σ�
ε (Fig. 7).

The cost of the optimal trajectory can be defined as the
sum of the costs of the trajectories connecting consecutive
Bδ (qm) balls, i.e.,

c�
ε =

M∑
m=1

C(eqm−1,qm ), (5)

and similarly the cost of the σΔ
ε is

cΔ
ε =

M∑
m=1

C(eq̃m−1,q̃m ). (6)

Subtracting (5) from (6), the difference can be written as

cΔ
ε − c�

ε =
M∑

m=1

(
C(eq̃m−1,q̃m ) − C(eqm−1,qm )

)
.

4 It is assumed that K f ≥ 1.
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By the Lipschitz continuity of the cost function given in
Assumption 1 it follows that

cΔ
ε − c�

ε ≤
M∑

m=1

Kcδ,

where Kc is the Lipschitz constant for the cost function.
Therefore,

cΔ
ε ≤ c�

ε + KcMδ. (7)

We next derive an upper bound on the number of trajectory
segments, M , using the lower bound on the cost of the trajec-
tory connecting two consecutive samples, qm−1 and qm . To
this purpose, let us define a smaller bounding box centered
at qm for each sample, which we shall denote as BB(πm),
such that the frontier of BB(πm) intersects with σ�

ε at qm
(see Fig. 6) and all its sides are obtained by decreasing those
of BoundingBox(πm) of 2ε̄ evenly. Then, we can define
a minimum cost lmin among all the trajectories that reach
the frontier of BB(π0) from π0. Note that lmin > 0 since
the length of the shortest side of BB(π0) is larger than zero
and we assumed non-zero cost for trajectories joining two
different states. Then, the cost C(eqm−1,qm ) of the trajectory
connecting qm−1 and qm , for m = 1, . . . , M − 1, satisfies
the following inequality

lmin ≤ C(eqm−1,qm ). (8)

Note that we have to treat separately the last trajec-
tory segment connecting qM−1 to qM since the exis-
tence of an ε̄-ball centered at qM and contained within
BoundingBox (πM−1) can not be guaranteed as qM is the
final state which is fixed. Therefore, (8) may not hold for
the last trajectory segment. We can then rewrite Eq. (5) as
follows

c�
ε =

M−1∑
m=1

C(eqm−1,qm ) + C(eqM−1,qM )

and lower bound the cost of σ�
ε as

c�
ε ≥ (M − 1)lmin + 0.

Considering that the number of trajectory segments can be
upper bounded by

M − 1 ≤ c�
ε

lmin
,

from (7) it follows that

cΔ
ε ≤

(
1 + Kcδ

lmin

)
c�
ε + Kcδ.

Substituting the definition of δ given in (4), we get

cΔ
ε ≤

(
1 + Kc α ε

2K f lmin

)
c�
ε + Kc α ε

2K f
,

which shows that the cost of the ε-similar trajectory for a
specific gridding is upper bounded by the cost of the ε-
optimal trajectory and the ε-clearance. Now the cost c�Δ

of the optimal trajectory that can be obtained given a partic-
ular discretization satisfies

c�Δ ≤ cΔ
ε ≤

(
1 + Kc α ε

2K f lmin

)
c�
ε + Kc α ε

2K f
(9)

which provides an upper bound on the resolution optimal
Δ-cost, c�Δ.

As the resolution of the discretization increases and as the
grid converges to the continuous state space, ε can converge
to zero. Then, sinceK f andKc are constants and lmin is fixed
(it depends on the upper bound ε̄ on ε), from (9) it follows
that as ε goes to zero the resolution optimalΔ-cost converges
to the cost c� of the optimal trajectory, i.e.,

lim
ε→0

c�Δ = c�. (10)

��
Theorem 2 states that when the number of nodes in

GΔ
f ree goes to infinity, i.e., when the uniform gridding con-

verges to the continuous state space, the resolution optimal
Δ-cost converges to the cost c� of the optimal trajectory
in the continuous state space without gridding. By The-
orem 1, it then follows that, when the uniform gridding
converges to the continuous state space, as the number of
iterations goes to infinity the cost of the trajectory returned
by RRT�_MotionPrimitives converges to the cost of
the optimal trajectory. Furthermore, Theorem 2 establishes
an upper bound on the resolution optimal Δ-cost as a
function of the cost of the ε-optimal trajectory and the
ε-clearance such that as the grid resolution increases the
upper bound decreases (see Eq. (9)). However, as shown
in Theorem 1, as the number of discrete states increase,
RRT�_MotionPrimitives will take more iterations to
return the resolution optimal Δ-trajectory. Depending on
the problem at hand, one should make the best compromise
between the computing time (and size of the database) and
the performance in terms of cost.

5 Numerical example

In this section a numerical example is presented to show the
effectiveness of the proposed algorithm.
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(a) square gridding with coarse resolution

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b) square gridding with fine resolution
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(c) diamond gridding with fine resolution

Fig. 8 The three grids used to generate the database. The red circle is the initial position, the blue dots the final ones. Red arrows represent the
initial headings and velocities, blue arrows are the final ones. Different arrow sizes correspond to different velocities (Color figure online)

A 4D state-space (x, y, θ, v) representing a unicycle like
robot moving on a planar surface is considered. The robot
is described by the following equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) = v(t) cos θ(t)

ẏ(t) = v(t) sin θ(t)

θ̇(t) = w(t)

v̇(t) = a(t)

(11)

where (x, y) is the position of the robot and θ the orientation
with respect to a global reference frame, v and w are the
linear and angular velocity, respectively. The control input is
represented by u = [w, a]T , where w and a are the angular
velocity and linear acceleration, respectively.

The motion primitives in the database are computed for
each pair of initial and final state, q0 = [x0, y0, θ0, v0] and
q f = [x f , y f , θ f , v f ], solving the TPBVP in (2) for the
differential equations given in (11) and the cost function

J (u, τ ) =
τ∫

0

[
1 + u(t)T Ru(t)

]
dt

that minimizes the total time of the trajectory τ , penaliz-
ing the total actuation effort with a weight R = 0.5I2. The
control variables a and w are bounded as a ∈ [−3, 3]m/s2,
w ∈ [−5, 5] rad/s.
TPBVPs are solved using MATLAB toolbox GPOPS (Pat-
terson and Rao 2014), a nonlinear optimization tool based on
the Gauss pseudo-spectral collocation method.

Three databases based on different grids have been con-
sidered. For all of them the initial state is characterised by
the same position (x0, y0) = (0, 0).
The first database is based on a coarse resolution uni-
form square grid (Fig. 8a), where (x f , y f ) ∈ [−2, 2] ×
[−2, 2] \ {(0, 0)} and each square cell has a size of one

Fig. 9 Linear velocity and actuation profiles for the optimal trajectories
in Figs. 10c (pink line), 11c (blue line) and 12c (green line). Red lines
show the velocity and actuation limits (Color figure online)

meter. The initial orientation θ0 is selected among three val-
ues {0, π/4, π/2} rad, the final orientation θ f can take 8
equally spaced values in the range [0, 2π) rad. For the initial
and final velocities, v0 and v f , a minimum and a maximum
velocity of 1m/s and 4m/s is considered together with the
zero velocity.
The second database is based on a fine resolution uniform
square grid (Fig. 8b), where (x f , y f ) ∈ [−2, 2] × [−2, 2] \
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Fig. 10 Trajectories generated with an indoor map and a coarse resolution uniform square gridding for various number of iterations. Magenta
square is the goal region, and the optimal trajectories are represented in red (Color figure online)

Fig. 11 Trajectories generated with an indoor map and a fine resolution uniform square gridding for various number of iterations. Magenta square
is the goal region, and the optimal trajectories are represented in red (Color figure online)

Fig. 12 Trajectories generated with an indoor map and a fine resolution uniform diamond gridding for various number of iterations. Magenta square
is the goal region, and the optimal trajectories are represented in red (Color figure online)
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Fig. 13 Cost with respect to the number of iterations. Coarse resolution
square gridding (red line), fine resolution square gridding (green line)
and diamond gridding (blue line) as a function of number of iterations
(Color figure online)

Fig. 14 Tree cardinality with respect to the number of iterations, for
coarse (red line) and fine (blue line) resolution square gridding (Color
figure online)

{(0, 0)} and each square cell has a size of half a meter. The
initial and final orientations can take 24 equally spaced val-
ues in the range [0, 2π) rad. The initial and final velocities
are selected among 5 equally spaced values in the range
[0, 4]m/s.
Finally, the third database is based on a uniform diamond
grid (Fig. 8c), characterised by the same initial and final
states as the previous one, plus some additional final states at
(x f , y f ) ∈ [−1.75, 1.75] × [−1.75, 1.75] with a discretiza-
tion step of half a meter in each direction. These additional
states are characterized by the same orientation and velocity
of the rest of the database.

Simulations are performed on an IntelCore i7@2.40 GHz
personal computer with 8Gb RAM and the algorithm has
been implemented in MATLAB.
An indoormap is considered (Figs. 10, 11, and 12), setting the
robot initial pose at (1, 0, π/2) with zero velocity. The goal
area is defined as a square of half a meter side and centred at
(9, 11). The robot should stop at the end of the trajectory.

Figures 10, 11, and 12 show the trees and the opti-
mal trajectories obtained for different number of iterations
and for the three different gridding strategies. Correspond-
ingly, Fig. 9 shows the velocity and the actuation profiles
for the optimal trajectories computed with 3000 and 50,000
iterations, and reported in Figs. 10c, 11c and 12c, clearly
demonstrating that the velocity constraint and the actuation
bounds are satisfied. Note that the velocity profile that cor-
responds to the coarse resolution square gridding exhibits a

Fig. 15 Computation time with respect to the number of iterations, for
coarse (red line) and fine (blue line) resolution square gridding (Color
figure online)

jerky acceleration behaviour, due to the fact that the velocity
at each node is constrained to be exactly one of the values in
the database. This demonstrates that the velocity discretiza-
tion step has to be accurately selected if a smoother velocity
profile is required.

The same planning problem has been solved for 10 inde-
pendent simulation runs. Figure 13 shows the average cost
evolutions related to the coarse resolution, fine resolution
and diamond gridding, as the number of iterations increases.
As expected, the cost reduces increasing the number of
iterations, and converges to the resolution optimal Δ-cost:
once this minimum is achieved the solution will not further
improve.
As can be easily seen, motion primitives computed using a
denser grid provide lower cost plans. Moreover, the resolu-
tion optimalΔ-cost achieved using the fine resolution square
and diamond grids are similar, demonstrating that the choice
of the discretization step is strictly related to the specific prob-
lem. Finally, it is worth mentioning that as the resolution of
the grid increases, the cardinality of QΔ

f ree increases as well,
slowing down the convergence to the resolution optimal Δ-
cost.

In order to assess the impact of the grid resolution on
the size of the search space, in Table 1 we report the num-
ber of nodes corresponding to the grids of the three adopted
databases (see Fig. 8), together with the corresponding mini-
mum and maximum branching factors, i.e., the number of
neighbors that each node is connected to. The computed
number of nodes is an upper bound on the cardinality of
GΔ

f ree. Yet, from the figures in Table 1, it should be clear
the combinatorial nature of the problem, which makes it
hard building the whole graph of motion primitives and
applying a graph search. As a matter of fact, the most
commonly used lattice-based approaches use graph search
algorithms that resort to some heuristic (see for example
dynamicA� (D�) and anytime repairingA� (ARA�) by Stentz
(1994) and Likhachev et al. (2008) respectively). Note that
RRT�_MotionPrimitives does not need to adopt any
heuristic, but if a smart heuristic were available, it could be
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Table 1 Number of nodes of the state space grids in Fig. 8 correspond-
ing to different resolutions together with the minimum and maximum
branching factors

Type of grid Number of nodes Branching factor
Min Max

Figure 8a 2460 324 370

Figure 8b 68,000 7300 9100

Figure 8c 131,000 12,000 15,000

Fig. 16 Histogram of the computation time for solving a single TPBVP,
median of the values is represented with the red line. The histogram is
determined based on 1000 boundary pairs randomly selected from the
same subspace used for building the motion primitives (Color figure
online)

integratedwithinRRT�_MotionPrimitives to speed up
the search.

Figure 14 shows the cardinality of the tree for the coarse
and fine resolution square griddings, as the number of iter-
ations increases. Since the nodes that can be added to the
tree are limited to the elements of the grid, the tree cardinal-
ity converges to the cardinality of GΔ

f ree: once this value is
achieved no more nodes can be added.

Figure 15 shows the computation time evolution for the
coarse and fine resolution griddings, as the number of itera-
tions increases. ThoughRRT�_MotionPrimitives does
not necessarily add a new node at each iteration, but can only
change the existing connections, showing the computation
time evolution with respect to the number of iterations allows
to easily relate this quantity to the achieved cost, and thus the
degree of sub-optimality of the planned trajectory.

It is also worth mentioning that the resulting computation
time is promising, even for online replanning in the case of
dynamic and partially known environments. Code optimisa-
tion and a C/C++ implementation can be considered for a
further speed up.

To better emphasize the advantage of using a precom-
puted database, we report in Fig. 16 the histogram of the
computation time for solving a single TPBVP of the consid-
ered example using theGPOPS commercial numerical solver
(Patterson and Rao 2014). As can be seen from this figure, it
typically takes around 400 ms to get a solution for a single
TPBVPwhile a trajectory can be extracted from the database
in a time of the order of 0.01ms (values ranged between 0.008

ms and 0.015 ms over 100 trials). Note that at each iteration
of the standard RRT� algorithm, a set of TPBVPs that cor-
responds to the set of tentative trajectories connecting qrand
to a set of nearby nodes has to be solved. When the TPBVP
is not easy to be solved (like in the considered example),
the applicability of RRT� to dynamic and partially known
environments is hampered.

6 Conclusions

In this paper, a variant of RRT�, named RRT�_
MotionPrimitives, that allows to introduce motion
primitives in the RRT� planning framework is presented. In
particular, a set of pre-computed trajectories, named motion
primitives, is used to substitute the computationally chal-
lenging step of solving for a steering action. Then, in order
to ensure that for any queried steering action a pre-computed
trajectory exists, a grid representation of the state space has
been introduced.
This newly conceived algorithm is supported by an accurate
theoretical analysis, demonstrating the optimality and prob-
abilistic completeness.
The performance ofRRT�_MotionPrimitives has been
verified in simulation, showing promising results in terms
of quality of the planned trajectory and computation time,
that is particularly important for an online usage in the case
of dynamic environments that require repeated replanning.
The results show also that as the grid size gets smaller,
asymptotic optimality is achieved. Having a fine resolution,
however, increases the size of the database and the number of
iterations required to converge to the resolution optimal tra-
jectory. Nevertheless, one advantage of adopting a sampling
based approach is the possibility of computing a feasible
though sub-optimal solution first, and then, in case more
time is available, improve it. One should indeed choose the
best compromise between computing time and performance,
according to the application at hand.
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