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Abstract
In this paper we introduce a novel algorithm for online distributed non-myopic task-selection in heterogeneous robotic teams.
Our algorithm uses a temporal probabilistic representation that allows agents to evaluate their actions in the team’s joint
action space while robots individually search their own action space. We use Monte-Carlo tree search to asymmetrically
search through the robot’s individual action space while accounting for the probable future actions of their team members
using the condensed temporal representation. This allows a distributed team of robots to non-myopically coordinate their
actions in real-time. Our developed method can be applied across a wide range of tasks, robot team compositions, and reward
functions. To evaluate our coordination method, we implemented it for a series of simulated and fielded hardware trials where
we found that our coordinationmethod is able to increase the cumulative team reward by amaximumof 47.2% in the simulated
trials versus a distributed auction-based coordination. We also performed several outdoor hardware trials with a team of three
quadcopters that increased the maximum cumulative reward by 24.5% versus a distributed auction-based coordination.

Keywords Heterogeneous robotic teams · Non-myopic coordination · Robotic planning · Robotic coordination · Robotic
fielded hardware trials

1 Introduction

The capability to coordinate teams of robots across a wide
variety of tasks is a critical concern at the core of many

This is one of the several papers published in Autonomous Robots com-
prising the Special Issue on Foundations of Resilience for Networked
Robotic Systems.

This work was supported by NASA Grant NNX14AI10G and Office
of Naval Research Grant N00014-17-1-2581.

B Andrew J. Smith
smithan7@oregonstate.edu

Graeme Best
bestg@oregonstate.edu

Javier Yu
javieryu@stanford.edu

Geoffrey A. Hollinger
geoff.hollinger@oregonstate.edu

1 Collaborative Robotics and Intelligent Systems (CoRIS)
Institute, School of Mechanical Industrial and Manufacturing
Engineering, Oregon State University, Corvallis, OR, USA

2 School of Engineering, Stanford University, Stanford, CA,
USA

robotic applications. As teams of robots take an increasing
role in agriculture (Ayanian et al. 2017); assisting themilitary,
police, fire-fighters, and search and rescue (Beck et al. 2016;
Petersen et al. 2013); monitoring our environment (Smith
et al. 2010); and producing goods (Liu and Chopra 2009),
it will become increasingly important to ensure that robots
are able to operate not just as individuals but as members
of a cohesive team. This problem has been widely studied
for nearly 3decades (Fukuda et al. 1989) and continues to
be a promising area of research (Ayanian et al. 2017). This
high-level of interest is due to the inherent advantages that
multi-robot systems offer; such as: the ability to take dis-
tributed actions, being robust to single point failures, and
frequently requiring multiple different algorithmically and
mechanically simpler individual robots instead of a single
robot capable of completing every task (Arkin and Balch
1998).

Distributing planning authority among the team can fur-
ther extend the advantages of multi-robot systems. For
example, distributed teams increase system robustness by
removing the dependence upon constant communication to
a central controller. This provides two benefits: First, it
removes the possibility of a single point failure if the cen-
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tral controller fails. Second, this frees the team to operate
outside of communication range with the central controller
and allows them to continue in the event of lost communica-
tion with either the central controller or even the entire team.
However, these advantages come at the expense of increas-
ing the difficulty of coordinating the team’s actions. This
is because distributed teams lack a central authority to dic-
tate the actions of each robot and have planning uncertainty
between team members that are attempting to coordinate.

Varying team member capabilities (heterogeneity) is
another way to increase the capabilities of a team of robots.
Heterogeneous teams can be formed to includemultiple types
of specialized, yet mechanically and algorithmically simpler,
robots that individually excel at a small set of tasks instead of
a general robot capable of completing every task. However,
heterogenous teams may further complicate team coordina-
tion as it requires accounting for the abilities of each robot
when planning each robot’s actions. A solution is to frame the
heterogeneous coordination in a way that is agnostic to team
member capabilities, allowing the inclusion of wide ranging
ability in team members with minimal modification.

A common consideration in robotic planning is whether
to perform online or offline planning. Offline planning meth-
ods find a complete policy of actions before executing a
single action. Online planning methods act and plan in
parallel by making decisions in real-time. Online planning
generally enables reacting to unpredictable changes in the
environment and team composition, while offline planning
typically enables searching deeper into the solution space.
Consequently, most fielded systems are either offline and
centralized, or online and myopic.

In this work we present an online distributed non-myopic
method of coordinating teams of heterogeneous multi-robot
systems performing general robotic tasks. Our approach uses
a novel probabilistic and temporal representation of each
robot’s potential future actions, named the probable action
timeline, to communicate their intent to the remainder of the
team. A probable action timeline defines a cumulative prob-
ability distribution for the belief of the time any robot may
claim a task. Each robot re-plans while accounting for the
probable actions of their teammates to maximize their con-
tribution to the team’s global reward. Each robot searches for
a sequence of macro-actions using Monte-Carlo tree search
(MCTS) (Browne et al. 2012) to asymmetrically search
through the macro-action space and a variant of difference
rewards (Tumer and Agogino 2009) to calculate their impact
on the team’s cumulative reward. Macro-actions include all
of the individual actions required to complete a single task;
e.g., traveling to the task location and performing the task,
with a distribution over the expected completion time. To
account for non-stationary rewards in the action space result-
ing from the actions of team members and changes in the
environment we use the Sliding-Window Upper Confidence

Bound (SW-UCB) (Garivier and Moulines 2011) search
heuristic within MCTS; we refer to this new MCTS variant
as SW-UCT. Then, each robot samples their tree and broad-
casts the temporal and probabilistic representation of their
intended actions to the team to coordinate. This representa-
tion allows each robot to coordinate with the other members
of their teamwhile remaining agnostic of the teammember’s
capabilities and limitations by focusing specifically on how
actions affect the team’s cumulative performance when per-
forming the following iterations of search. This approach
addresses many of the previously described concerns by
allowing for teams ofmultiple robot types to non-myopically
coordinate their efforts in real time.

In summary, we introduce a distributed algorithm that
leverages a novel representation of the multi-robot action
space utilizing the following components:

1. Robots leverage recent advancements in MCTS and
macro-action control to efficiently search for sequences
of actions in their individual action space.

2. Actions are evaluated using difference rewards to approx-
imate how actions affect the team’s cumulative reward.

3. Sliding window upper confidence bound is used to
account for non-stationary rewards resulting from the
actions of team members.

4. Each robot broadcasts their intended actions to the rest
of the team using a probable action timeline that allows
agents to calculate difference rewards.

We performed a series of experiments to evaluate the
performance of our algorithm using two simulators, includ-
ing Gazebo (http://gazebosim.org/), and hardware trials with
a team of three quadcopters (source code is available at
https://github.com/smithan7). Across these trials the pro-
posed coordination method outperformed a state-of-the-art
distributed auction-basedmethod (Gerkey andMataric 2002)
by collecting an additional 30.6–47.2% reward by complet-
ing additional or different tasks in the simulated trials and
24.5% in the hardware trialswith a teamof three quadcopters,
Fig. 1. This increase is due to the ability to non-myopically
plan the actions of individual robots while accounting for
their effect on the team’s global reward. In these trials we
also found that the proposedmethod of coordination is robust
to communication loss and choice of parameters. This paper
summarizes the proposed coordination algorithm, simulated
experiments, and both the methods of implementation and
results of fielded hardware trials.

The remainder of the paper is organized as follows.
Section 2 discusses related literature in multi-robot task
assignment and heterogeneous teaming. Section 3 describes
the domain of the problem we are addressing. Section 4
describes our coordination algorithm. Section 5 details the
experiments used to validate the algorithm and their results.
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Fig. 1 The three quadcopters in flight during an experiment. The three
safety pilots and ground station are off frame

Section 6 concludes the paper and provides the direction for
our intended future work.

2 Related work

The multirobot task assignment problem can be formulated
as a decentralized partially observableMarkov Decision pro-
cess with macro-actions (MacDec-POMDPs) (Amato et al.
2016). Here, a macro-action is the set of actions required to
complete a higher level goal and includes lower level actions
such as moving, manipulating, and observation. In the task
assignment problem a team of robots work together under
uncertainty tomaximize a global teamutility function. In het-
erogeneous teams where only one teammember has the abil-
ity to complete a specific task, the task assignment problem
is simplified significantly. However, when robots have over-
lapping skill-sets and can complete most tasks with varying
levels of competency the problem is complicated. Tradition-
ally such problems are addressed myopically, using markets,
auction, and greedy methods (Zavlanos et al. 2008; Luo et al.
2012;Gerkey andMataric 2002; Liu et al. 2015). Themyopic
solutions, i.e., methods that plan one task ahead for each
robot, are inherently limited by their inability to account
for future actions of other robots and the consequences of
their actions for their future selves. As our algorithm is non-
myopic and plans over sequences of actions it is able to
account for the future actions of both their own and their team
member’s future actions when evaluating potential actions.

There are also non-myopic methods for solving the task
assignment problem that instead of allocating single tasks
to single robots they allocate sequences or clusters of tasks
to robots. Market and auction-based techniques can also be
used for non-myopic coordination by allowing agents to bid
over multiple tasks and then solving for a tour to complete

the selected tasks (Zlot et al. 2002). Convergence guaran-
tees can be provided by decentralized auction methods by
additionally performing consensus-based local conflict res-
olutions (Choi et al. 2009). A related algorithm has been
developed for multi-robot exploration that uses a central
controller to cluster tasks and then distribute them to each
robot, who then solves a traveling salesman problem (Faigl
et al. 2012). A related method has been developed for multi-
robot routing problems that exploits locality and sparsity of
tasks to efficiently plan over local partitions of tasks (Liu
and Shell 2012). Our method has two key differences from
these non-myopic methods: First, our method uses MCTS
to efficiently search each individual robot’s action space to
non-myopically find sequences of actions for each robot.
Second, our robots broadcast a temporal representation of
their intended actions that allow robots to coordinate in the
joint space while accounting for the broadcast future actions
of their team members. This approach enables addressing
assignment problems that have time-varying rewards.

Another common approach is to use a centralized con-
troller that dictates the actions of each team member. These
centralized approaches may use genetic algorithms (Deng
et al. 2013), the Hungarian method (Mills-Tettey et al. 2007),
or task swaps (Zheng and Koenig 2009) to coordinate.
Related algorithms have been developed for the multiple
Traveling Salesman Problem (TSP) Bektas (2006), includ-
ing variants that require considering temporal constraints
and rewards (Desrosiers et al. 1995; Mitrović-Minić et al.
2004; Mathew et al. 2015). Generalizations of the TSP have
also been considered for persistent monitoring and informa-
tion gathering formulations (Lan and Schwager 2016; Best
et al. 2018; Yu et al. 2016). TSP variants have primarily
been considered in centralized contexts. Centralized systems
are limited by the requirement of a constant communication
tether with the central robot and the computational burden of
exploring the action space of all robots across all tasks collec-
tively. In contrast, we have developed a distributed method
where each robot only searches their individual action space
but is able to adjust their expected rewards to account for
the future actions of their team members. This allows robots
to plan their actions over a sequence of tasks without the
computation and communication restrictions of centralized
methods.

There has been growing interest in robotics of modify-
ing traditionally centralized methods of planning into dis-
tributed variants. Recent examples include Dec-MCTS (Best
et al. 2018), Dist-Hungarian (Chopra et al. 2017), and Dec-
POMDP methods (Omidshafiei et al. 2017). In contrast to
Dist-Hungarian, our method addresses probabilistic formu-
lations and time-varying rewards. Dec-POMDP methods are
typically considered in offline contexts rather than the online
and real-time context considered in this paper. Dec-MCTS
addresses probabilistic formulations and is aimed at online
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contexts, and thus has many similarities to our proposed
method. Both algorithms sample the individual action space
of each robot and then coordinates with a sparse approxima-
tion of the joint action space. However, the main difference
in our method is a fundamentally new way for robots to
sample and represent the coordinated space and plan over
the joint space. Dec-MCTS shares a subset of Monte-Carlo
tree branches that are likely to be chosen by the robot and
shares the probability of the robot taking an observation from
the poses along that branch. Our method more efficiently
searches each robot’s action space by recursively sampling
the Monte-Carlo tree along each branch until a predefined
threshold is reached. In our method, time-varying reward
functions are explicitly addressed by encoding the tempo-
ral information in the messages exchanged between robots.
These messages describe, for each task, the probability of
task selection and a probability distribution for the comple-
tion time. Then, each robot broadcasts this information to
their team who update their expected reward of completing
tasks by accounting for the expected future actions of team
members. Other important differences between Dec-MCTS
and the proposed algorithm include different ways of dis-
counting (D-UCB vs SW-UCB), different tree compression,
and explicitly addressing heterogeneous teams.Additionally,
this paper provides an extensive set of new experiments in
simulation for a variety of scenarios, and in hardware with a
team of UAVs.

In the robot planning domain there are many ways of
describing when the planning takes place (online vs. offline),
when a robot is able to select an action (any-time), and what
time constraints are placed on the planning (real-time and
run-time). An online algorithm is one that can approach a
problem sequentially as information becomes available and
provides an immediate response, while an offline algorithm
approaches the problem as a whole and waits until it has
the complete sequence of information before acting (Karp
1992). Any-time algorithms are those that continue to refine
their solution over time but can be stopped prematurely and
provide the user with its current best solution (Boddy and
Dean 1989). A real-time algorithm where the algorithm is
activated or queried at regular intervals by which they must
provide a response (Shin and Ramanathan 1994). Online,
real-time and any-time algorithms are particularly valuable in
robotics applications. MCTS exhibits these desirable proper-
ties (Browne et al. 2012), which has motivated a recent surge
in popularity for MCTS in the robotics community. MCTS
techniques have so far mostly been applied to single-robot
contexts, but there has also been recent interest in extensions
for multi-robot active perception (Best et al. 2018), explo-
ration (Corah and Michael 2018), marine operations (Best
et al. 2018), and patrolling (Kartal et al. 2015). Our presented
method, which features MCTS, is also intended to be online
and real-time with the ability to query any-time.

An individual robot selecting a task to complete is an
example of the multi-arm bandit problem (MAB). For-
tunately, the MAB has several solutions with a strong
theoretical and experimental support, most prominently the
Upper-Confidence Bound search method (UCB) Agrawal
(1995). UCB selects the action to search that maximizes a
combination of expected reward and uncertainty. However,
in situations where the reward distribution of an action may
change over time the traditional UCB algorithm is unable to
track the transition. This is a concern for a team of robots
where the actions, or communicated intended actions, of
one robot may affect the actions of the rest of the team. To
account for this several non-stationaryMAB algorithms have
been developed in the literature, including Discounted-UCB
(Kocsis and Szepesvári 2006) and Sliding-Window-UCB
(Garivier and Moulines 2011). Discounted-UCB reduces the
expected reward and increases the uncertainty of prior results.
Sliding-Window-UCB acts similarly, but only retains a finite
length history of prior actions allowing it to better adapt to
abruptly changing rewards. We chose to implement the SW-
UCB algorithm to allow robots to search their individual
action space and adapt to the non-stationary rewards result-
ing from their team member’s actions. We use the SW-UCB
within MCTS as an alternative to the standard UCB (Kocsis
and Szepesvári 2006) suitable for multi-robot settings.

Outside the robotics community there has been multiple
methods of parallelizing the Monte-Carlo tree search algo-
rithm to allow it to search deeper into the action space by
distributing branches of the tree over multiple computing
cores (Yoshizoe et al. 2011; Schaefers and Platzner 2015).
These methods are distributed and use MCTS, but are fun-
damentally different from the method presented here. These
methods search one tree over multiple distributed computing
cores. In contrast, our proposed method searches over multi-
ple trees in a decentralized manner over multiple distributed
computing cores, which allows for a team of distributed
robots to independently operate. This is because our method
has each robot focus their computational effort developing a
tree that only searches their individual action space, and thus
a robot does not rely heavily on the computation of other
robots when making a decision. This allows robots to oper-
ate independently in the presence of communication failures.

3 Problem definition

In this paper we address the problem of selecting each indi-
vidual robot’s sequence of actions that will maximize the
team’s collective reward. To do this, each robot will have
to interact with its environment by moving and completing
tasks in exchange for reward. This section formally defines
the problem by describing the environment, robots, time-
varying tasks and rewards, and objective function.
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Fig. 2 Example environment graph. Rectangles designate available
tasks with the color indicating the task type, black circles are graph
nodes without tasks, and lines are graph edges. Black edges are unob-
structed to traverse for all robot types while red edges have an additional
travel cost for some robot types (Color figure online)

3.1 Environment and robots

The environment the robots operate in is represented as a
bi-directional graph, G, consisting of edges and vertices
(locations in the environment) as shown in Fig. 2. There is a
set of robots, A, where each robot, ai ∈ A, has an associated
type, t ype. Each robot traverses through the environment,
which is described as a path through the graph. Each path,
P , is a sequence of connected vertices from a fixed start-
ing location. Each edge has a travel cost, ei,t ype, describing
the cost to traverse the edge for a robot of type t ype; e.g., a
quadcopter may be able to traverse some environments faster
than awheeled vehicle or aquatic vehicle and vice versa. Each
edge cost can be either deterministic or described by a prob-
ability distribution describing the time required to traverse
it. Using these edge costs, ei,t ype, a robot can calculate their
expected travel time to traverse path P between two nodes
on the graph as the summation of the edge costs that make up
the path between the two nodes. Tasks, φ j ∈ Φ, are located
on vertices in the graph, but not all vertices are required to
have an associated task.

3.2 Tasks and task rewards

A task φ j is described by two components: First, an estimate
of the time required to complete it by each agent type,w j,t ype,
and, second, the expected reward for completing the task as
a function of time, r j (t). The estimate of the time required
to complete a task for each agent type is dependent upon the
ability of each robot to complete each task. For example, a
robot with a soft gripper may be able to perform a manipu-
lation task faster than another robot with a rigid gripper, i.e.,
w j,so f t � w j,rigid , while a quadcopter would be unable to
complete it, i.e., w j,quad = ∞. Then, the expected comple-
tion time for task φ j is the sum of the expected travel time
and the expected work time,

t j,t ype = tP,t ype + w j,t ype (1)

The reward function can be any function of time, which
may be continuous or non-continuous and may increase or
decrease w.r.t. time. Throughout this text, we consider four
example reward functions: linearly varying rewards are used
for tasks that should be completed in a wide range of times
with a preference towards being completed as quickly as
possible (linearly decreasing) or as late as possible within
the mission budget (linearly increasing),

r j (t) = a j + b j ; (2)

exponentially decreasing rewards that should be completed
as quickly as possible with how quickly being determined by
the rate of decay provided in the reward function,

r j (t) = a j e
−b j t ; (3)

constant rewards that should be completed at the teams con-
venience,

r j (t) = a j ; (4)

and windowed rewards that are paired with another reward
type, f (t), for tasks that should only be completed at a spe-
cific time,

r j (t) =
{
f (t), if a j < t < b j

0, otherwise
(5)

where a j , b j , and c j are constants used to define the reward
for task j . Though not done in this work, any function of
time, e.g., sinusoidal rewards,

r j (t) = a j sin(b j t + c j ), (6)

can be used to define a reward function as shown in Fig. 3.
We emphasize that the four examples shown in Fig. 3 are

only a sample of potential reward functions that can be used.
The proposed method admits the use of any function, of any
arbitrary complexity, as long as when queried for the reward
at a specified time it returns a value.

This freedom in reward structure allows for the developed
method to be applied to a wide range of potential scenarios.
For example, in a search and rescue scenario the area to be
searched could be discretized into a minimal set of poses to
fully explore the environment. Then, each pose is assigned a
linearly or exponentially decreasing reward function that has
a magnitude determined by the probability of the lost person
being located at that location and the rate of decay set by the
assumed danger a person at that location would be in. An
additional example would be in a medical treatment center
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Fig. 3 Examples of linearly decreasing (top-left), exponentially
decreasing (top-right), sinusoidal (bottom-left), and linearly increasing
window (bottom-right) reward functions

where a team of robots are responsible for delivering food at
specific intervals to patients a parabolic or windowed reward
structure could be used to encourage delivering the food at
the correct times.

The reward offered for completing a task sets the task
priority, increasing the offered reward will lead the robots,
all other things being equal, to select tasks with larger
rewards. Having task rewards that vary with time allow us
to describe the urgency and desired scheduling of each task.
This combination provides an intuitive approach to setting
up coordination problems to represent a wide range of envi-
ronments and tasks allowing users to express task priorities
and allowing the coordination algorithm to match tasks with
robots.

3.3 Problem statement

Each robot, ai ∈ A, is defined by the previously described
ability to traverse the graph of the environment,G, and the set
of tasks,Φ, that describe the robot’s ability to complete them.
Robots plan their actions as a sequence of macro-actions,
x j,i ∈ Xi . Each macro-action, x j,i consists of both the pro-
cess of moving to and completing the associated task, φ j .
Each robot is assigned either an energy or temporal budget,
Ψ , in which to collect the maximum reward, i.e.,

X∗
i = argmaxXi∈Ω RG(X) s.t.

∑
x j,i∈Xi

e j,i + w j,i ≤ Ψ , (7)

where Ω is the space of all possible macro-action sequences
for robot ai and RG is the team’s cumulative reward,

RG(X) =
∑
Xi∈X

∑
x j,i∈Xi

r j (t j,i ), (8)

and e j,i + w j,i represent the sum of the travel and work
costs (time or energy) required for robot ai to complete the
task associated with macro-action j and t j,i is the time at
which macro-action j is completed by robot ai . Once a robot
completes a task and collects the corresponding reward, no
additional reward is awarded for that task. Effectively, each
robot is attempting to select a set of tasks to complete at the
specific times that will lead to themaximum team reward and
while staying under an energy budget.

4 Algorithm description

The main contribution of this paper is a novel algorithm
for distributed coordination that solves the planning problem
described above.Ourmethodof coordination consists of each
agent repeatedly searching the action space for a sequence of
tasks to complete and then broadcasting a condensed repre-
sentation of their intended actions. This representation allows
each agent to select actions that will maximize the team’s
cumulative reward by accounting for the likely future actions
of their team members. Throughout this process, each agent
is also simultaneously acting in the environment by either
moving or completing tasks while continuously re-planning.
In this section we begin by providing an overview of our
algorithm followedby a detailed description of themain com-
ponents.

4.1 Algorithm overview

Our method of coordination, illustrated in Fig. 4, repeatedly
cycles through a sequence of steps where each robot on a
team searches its individual action-space and then commu-
nicates its intent with the rest of the team. Each agent begins
planning its actions by searching through its action space,
Ω , using MCTS for a predetermined number of iterations
or computation time. After searching its individual action
space, each robot samples its trees to compile a condensed
representation of its probable sequence of actions in the form
of a timeline, ΠΣ . Next, each robot broadcasts its timeline
to share its intent with robots on the team in communication
range. While planning, each robot may also be simultane-
ously working on its current task or moving through the
environment. Upon completion of a task, robots will broad-
cast to the team that a taskhas been completed.On subsequent
planning iterations the robot will account for the broadcast
timelines of its team members to select actions that maxi-
mize the team’s cumulative reward. This process is repeated
throughout the duration of the mission as each robot contin-
ues to extend and update its Monte-Carlo tree, broadcast to
team members, and complete tasks. This process is outlined
in Algorithm 1.
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Fig. 4 High level illustration of the coordination procedure. Each robot
builds a tree of potential actions using Monte-Carlo tree search which
is then used to create a probable action timeline for each task. These
probable action timelines are broadcast to the team who are simultane-
ously doing the same. Each robot then continues to explore the space
of potential actions including the effect of the rest of its team

Algorithm 1 Overview of the proposed algorithm for dis-
tributed coordination
1: procedure Coordination Overview
2: while true do
3: if ¬ team initialized then
4: Broadcast Ready Signal
5: continue
6: while computation time budget not exhausted do
7: tree.Search Tree(G, Π ) � Alg. 2
8: tree.Sample Tree(1.0, Π , Pmin) � Alg. 3
9: Broadcast to Team(Π )

The remainder of this section describes in detail the main
components of our algorithm as follows. First, we introduce
the probable action timeline that is used to represent each
robot’s probable future actions in Sect. 4.2 and our method
for evaluating how completing a task will affect the team’s
cumulative reward in Sect. 4.3. Then, in Sect. 4.4we describe
how each robot uses MCTS to search its action space and in
Sect. 4.5 we describe how the robots coordinate their actions
to maximize the team’s cumulative reward.

4.2 Probable action timeline

We introduce the concept of a probable action timeline to
enable efficiently computing and communicating the proba-
bilities of tasks being completed as a function of time. Each
robot maintains one probable action timeline for each task.
Each probable action timeline is the cumulative probabil-
ity, represented as a cumulative distribution function, of any
team member completing the associated task as a function
of time. Then, using the probable action timeline, each robot
can quickly evaluate the probability of another robot com-
pleting a task at any time when deciding which task they
should complete.

More specifically, the probable action timeline,ΠΣ
j,i , con-

sists of a series of task claims, π j,k ∈ Π j,i , that includes
the predicted time a task, φ j , is planned to be completed,
t j,k (which may be a probability distribution over time);
the probability of that action being completed, P(x j,k);
and the identity of the robot, ak , planning the action; i.e.,
π j,k = (t j,k, P(x j,k)). As the probable action timeline
ΠΣ

j,i represents the probability of any of robot ai ’s team
members completing task φ j , it does not include claims
by robot ai . Probable action timelines are initialized for
each task with an initial claim with probability of 0 at time
0; i.e., π j,∅ = (0, 0). As additional probable actions are
received from broadcasting team members, they are merged
into the probable action timeline as non-mutually exclu-
sive events to represent the cumulative probability of any
team member completing task φ j as a function of time
using

ΠΣ
j,i (t) = Pt (x j,A ∪ x j,B)

= Pt (x j,A) + Pt (x j,B) − Pt (x j,A)Pt (x j,B). (9)

Here, Pt (x j,A) and Pt (x j,B) are the probabilities of robots
A and B completing task φ j before time t , respectively.
ΠΣ

j,i (t) is the cumulative probability of either robot A or
robot B completing task j before time t . Then, robots
can sample ΠΣ

j,i (t) to identify the probability of any
robot team member completing a task at any time in the
future.

An example probable action timeline with task comple-
tion times given by normal distributions, defined as ΠΣ

j,i =
[(N (μ = 20.0s, σ = 1.0s), 0.1), (N (μ = 40.0s, σ =
0.25s), 0.4), (N (μ = 70.0s, σ = 1.5s), 0.3), (N (μ =
80.0s, σ = 0.62s), 0.6)], is shown in Fig. 5. Figure 5 (Top)
shows the probability distribution function of each claim
reflected by one Gaussian distribution for each claim. Fig-
ure 5 (Bottom) is the probable action timeline and it provides
the cumulative probability of any agent completing task x j
as a function of time.

Similarly, Fig. 6 (Top) provides discrete claims ΠΣ
j,i =

[(20.0s, 0.1), (40.0s, 0.4), (70.0s, 0.3), (80.0s, 0.6)] and
(Bottom) the resulting probable action timeline.

An example application of the probable action timeline
would be to calculate the expected reward, RE, j (t j ,ΠΣ

j,i ),
for completing task j at robot i’s expected completion time,
t j,i , by removing the reward associated with the probability
of any other team member completing task j before them,
ΠΣ

j,i (t j,i ); i.e.,

RE, j (t j ,Π
Σ
j,i ) =

∞∫
t j,i

r j (t) × (1 − ΠΣ
j,i (t))dt (10)
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Fig. 5 An example probable action timeline (bottom) with task claims
ΠΣ

j,i = [(N (μ = 20.0s, σ = 1.0s), 0.1), (N (μ = 40.0s, σ =
0.25s), 0.4), (N (μ = 70.0s, σ = 1.5s), 0.3), (N (μ = 80.0s, σ =
0.62s), 0.6)] (top)
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Fig. 6 An example probable action timeline (bottom) with discrete task
claims ΠΣ

j,i = [(20.0s, 0.1), (40.0s, 0.4), (70.0s, 0.3), (80.0s, 0.6)]
(top)

which can be approximated by

RE, j (t j ,Π
Σ
j,i ) = r j (t j,i ) × (1 − ΠΣ

j,i (t j,i )). (11)

For a task with a linearly decreasing reward and the discrete
claims provided in Fig. 6 the resulting expected reward is
provided in Fig. 7. While the expected reward does provide
useful information, it can cause robots to ‘race’ to complete
a task as there is no disincentive for completing a task that
someone else may complete later. In an extreme example, if
robot A is going to complete task j at time 20s with proba-
bility P(x j ) = 1.0, then robot B will receive a full reward
for completing the task at time 19.99 s; even though it may
only marginally increase the team reward. While this is an
extreme example, it demonstrates the importance of planning
in the joint space over the horizon of both robots. To fix this
behavior, we introduce the difference reward in the following
section that allows agents to account for the future actions of
their team members.
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Fig. 7 Raw linearly decreasing reward (Red) and the resulting expected
reward accounting for discrete task claims ΠΣ

j,i = [(20.0s, 0.1),
(40.0s, 0.4), (70.0s, 0.3), (80.0s, 0.6)] (Color figure online)

4.3 Difference rewards

As previously described in (7), each robot searches the
action space to find a sequence of actions that will result
in the largest cumulative team reward. As mentioned in
Sect. 4.2 (11), using the expected reward at the time a task is
completed can lead to a race, where robots select tasks to out-
compete each other and not necessarily achieve the largest
cumulative team reward. To address this concern, we lever-
age difference rewards, which were initially developed in the
multi-agent systems community (Tumer and Agogino 2009).
Our variation of difference rewards is a heuristic that allows
each robot to evaluate how an action contributes to the team’s
cumulative reward and not only its own individual reward.

Before calculating a robot’s difference reward, each robot,
ai , must first calculate the reward for completing each task,
φ j , at the time it would be completed; which can be either
the sum of the distributions defining travel times and work
time,

t j,i = w j,i (μ j , σ
2
j ) +

|Pj,i |∑
i=1

e j,i (μ j , σ
2
j ), (12)

or as an approximation the sum of the expected travel costs
and expected work time,

E[t j,i ] = E[w j,i ] +
|Pj,i |∑
i=1

E[e j,i ]. (13)

Using the predicted completion time, t j,i , the predicted
reward for completingφ j can be calculated usingφ j ’s reward
function,
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R j,i (t j,i ) =
∞∫

−∞
r j (t)π j,i (t)dt, (14)

and approximated by

R j,i (E[t j,i ]) = r j (E[t j,i ]); (15)

where π j,i (t) is the distribution of the time robot ai pre-
dicts to complete taskφ j . For non-Gaussian distributions and
unconventional reward functions the integration will likely
require a numerical approximation. Here, R j,i is the pre-
dicted reward robot ai will receive for completing task φ j at
the time they are expected to complete it accounting for both
the time required to travel to taskφ j and the time robot ai will
need to work to complete it. However, R j,i does not account
for the actions of team members and how completing task
φ j at t j,i will benefit the team’s total reward, RG . Here, we
implement our variation of difference rewards to account for
the expected actions of the team members. The traditional
difference reward for robot ai is defined as

RD,a = RG(X) − RG(X − Xi ); (16)

where RG is the teams cumulative reward, X is the actions
taken by all members of the team, and Xi are the actions
taken by robot ai (Tumer and Agogino 2009). RD,a is used
to isolate robot ai ’s contribution to the team by removing the
contribution made by robot ai ’s team members.

In thisworkwe take advantage of the probable action time-
line, described in Sect. 4.2, to approximate the difference
reward and account for the probable actions of each robot
when determining how each potential action will benefit
the team’s global reward, RG . The probable action time-
line, ΠΣ

j,i , consists of a series of task claims, π j,i , each
containing a predicted task completion time, t j,i (either an
expected time or distribution), the probability of that action
being selected, P(x j,i ), the identity of the robot making the
claim, ai . In short, π j,i represents the probability of robot ai
completing task φ j at time t j,i and ΠΣ

j,i includes the claims
of the all of the evaluating robot’s team members. Combin-
ing these claims results in an estimate of the probability of
any team member completing task φ j as a function of time,
ΠΣ

j,i (t). Using this information we can determine how robot
ai completing task j at time t j,i affects the teams’ cumulative
reward.

Before calculating the difference reward, begin by assum-
ing that no team members have competing claims. Then, the
reward for robot ai completing task φ j at time t j,i is sim-
ply task φ j ’s reward function at the time robot ai predicts as
shown in (14). However, if team members have competing
claims on taskφ j with predicted completion times before t j,i ,
we subtract the reward that team members are predicted to

collect before robot ai is able to complete task φ j at time t j,i .
As the probable action timeline ΠΣ

j,i represents the cumula-
tive probability of robot ai ’s team members completing task
φ j , the reward associated to the probability of a team mem-
ber completing task φ j before t j,i can be removed leaving
the remaining expected reward,

RE,i (t j,i ,Π
Σ
j,i ) =

∞∫
−∞

R j,i (t) × (1 − ΠΣ
j,i (t))dt, (17)

or using E[t j,i ] as an approximation,

RE,i (E[t j,i ],ΠΣ
j,i ) = R j,i (E[t j,i ]) × (1 − ΠΣ

j,i (E[t j,i ])).
(18)

Note, RE,i only accounts for the actions affecting task φ j

robot ai predicts their team members to take prior to time
t j,i . In the event that a team member has a competing claim
on task φ j after robot ai ’s claim at time t j,i , robot ai ’s reward
should be further reduced to account for it. This is to disin-
centivize robot ai completing a task that a team member
is probably going to complete shortly after them; assuming
there are other tasks available. This reduction is done by
removing the reward robot ai ’s team members would get if
robot ai does not complete task φ j at time t j,i . In the event
of one later competing claim by robot ak at time t j,k where
t j,k > t j,i , this penalty would be

Dj,i (E[t j,i ],ΠΣ
j,i ) =

∞∫
t j,i

r(t])(ΠΣ
j,i (t))dt; (19)

which can be approximated by

Dj,i (E[t j,i ],ΠΣ
j,i ) = r(E[t j,k])(ΠΣ

j,i (E[t j,k])) (20)

where r(t j,k) is the reward for completing task φ j at time
t j,k and π j,k(t j,k) is robot ak’s claimed probability of com-
pleting task φ j . In short, this reduces the reward robot ai
predicts to contribute to the team’s reward for completing
task φ j by accounting for the predicted future actions of their
team member robot ak if robot ai does not complete task φ j .
This reduction is weighted by both the probability of robot
ak’s predicted actions and the reward at the time robot ak is
predicted to take those actions. An example of this is shown
in Fig. 8. To account for multiple claims on a single task, the
predicted rewardmust be further discountedby incrementally
accounting for the additional probability each team member
claim contributes to the team’s cumulative probability. For
example, in the event of a second competing claim by robot
am at time t j,m , where t j,m > t j,k , the difference penalty for
robot ai is found by subtracting both the predicted reward
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Fig. 8 Comparison of expected rewards and difference rewards (bot-
tom) on a task with a linearly decreasing reward function and one
competing claim in the probable action timeline (top)

robot ak contributes to the team and the predicted reward
robot am contributes in proportion to the amount both of
their claims contribute to the team; i.e.,

Dj,i (E[t j,i ],ΠΣ
j,i ) = r(E[t j,k])ΠΣ

j,k(E[t j,k])
+ r(E[t j,m])(ΠΣ

j,k(E[t j,m]) − ΠΣ
j,k(E[t j,k])). (21)

In general, the approximation of the difference penalty is
given by

Dj,i (E[t j,i ],ΠΣ
j,i ) =

|ΠΣ
j,i |∑

γ=0
E[t(πγ

j )]>E[t j ]

r j (E[t(πγ

j )])(ΠΣ
j,i (E[t(πγ

j )])

−ΠΣ
j,i (E[t(πγ−1

j )])); (22)

where γ in π
γ

j indicates the index of the claim in set of

claims, Π j,i , and E[t(πγ

j )] is the expected time task φ j will
be completed due to this claim. Next, to address the case
where claims are defined probabilistically, we extend (22)
to sum the differences at discrete time-steps, δ, where δ is a
small step size, i.e.,

Dj,i (t j,i ,Π
Σ
j,i ) =

∞∑
t=t j,i

r j (t)(Π
Σ
j,i (t) − ΠΣ

j,i (t − δ)). (23)

Finally, the complete difference reward is given by

RD,i (t j,i ,Π
Σ
j,i ) = RE,i (t j,i ,Π

Σ
j,i ) − Dj,i (t j,i ,Π

Σ
j,i ). (24)

A comparison of the raw task reward, difference reward,
and expected reward is shown in Figs. 8, 9, and 11. Figure 8
shows an example probable action timeline with a claimed
action, by robot A, π j = (t = 40s, 0.5), and the raw reward,
r j (t j ); resulting expected reward, RE, j (t,ΠΣ

j,i ); and differ-

ence reward RD, j (t,ΠΣ
j,i ), as a function of time. Notice that
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Fig. 9 Comparison of expected and difference rewards (bottom) on a
task with a sinusoidal reward function and one competing claim in the
probable action timeline (top)
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Fig. 10 Comparison of expected and difference rewards (bottom) for
a task with a linearly decreasing reward function and multiple claims
represented by distributions, from Fig. 5, in the probable action timeline
(top). Difference rewards were numerically integrated.

the expected reward, RE, j (t = 39s,ΠΣ
j,i ) and raw reward,

r j (t = 39s) are both 61u. This incentivizes teammembers of
A to race robot A for this task by not reducing the reward to
account for A’s future claim at t = 40s, regardless of how it
will affect the cumulative team reward. The difference reward
compensates for this by accounting for the expected future
actions of A, providing RD, j (t = 39s,ΠΣ

j,i ) = 31.0.
Figure 9 provides an example expected and difference

reward for a task with a sinusoidal reward structure. Notice
that the difference reward provides a desirable outcome as
shown in Fig. 9 by penalizing robot A’s team members with
a negative reward for completing the task when it is expected
that robot A is likely to complete the task later for a larger
reward. Alternatively, a robot using expected reward would
attempt to maximize its expected reward by completing the
task before robot A at the cost of a reduced team reward.

A final example of the difference reward and expected
reward with multiple claims represented by expected arrival
times and distributions of arrival times are shown in Figs. 10
and 11, respectively. Notice that in addition to accounting
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Fig. 11 Comparison of expected and difference rewards (bottom) for
a task with a linearly decreasing reward function and multiple discrete
claims, from Fig. 6, in the probable action timeline (top)
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Fig. 12 The predicted reward robot ai will have with a predicted com-
pletion time of π j,i = N (μ = 40.0s, σ = 1.0s), 1.0 and the probable
action timeline and task reward function provided in Fig. 10.

for the future claims, the difference reward is noticeably
smoother which may make it easier for some optimization
methods.

Further, if robot ai evaluates their probable action time-
line, from Fig. 10, for task φ j with an expected completion
time provided by π j,i = N (μ = 40.0s, σ = 1.0s), 1.0,
Fig. 12(Top), then their predicted reward is shown in
Fig. 12(Bottom). Unsurprisingly, using difference rewards
results in taskφ j providing the robot ai the smallest predicted
reward. This is because there are four other robots indicating
their intent to complete task φ j and the difference reward
removes robot ai ’s team members’ contributions leaving.

4.4 Searching the action space

Using difference rewards to identify its individual contri-
bution, each robot uses MCTS to optimize a sequence of
macro-actions. MCTS traditionally uses a search heuristic
called Upper Confidence Bound for Trees (UCT) (Kocsis

and Szepesvári 2006) to asymmetrically search the action
space and construct a tree of possible action sequences. UCT
balances the benefits of exploring the action space by adding
newbranches of action sequences onto the tree and exploiting
existing high-reward branches by extending these sequences.
UCT does this by searching the branch beginning with the
action that maximizes the heuristic

x∗ = argmaxx j∈Ω R̄Σ
D, j (t j,i ,Π

Σ
j,i ) + c( j), (25)

where

R̄Σ
D, j (t j,i ,Π

Σ
j,i ) =

∑p
s=1 R

Σ
D, j (t j,i ,Π

Σ
j,i )1xs= j∑p

s=1 1xs= j
(26)

is the expected reward of completing the action sequence
beginning with x j,i at time t j,i , and

c( j) = β

√
ε log Np∑p
s=1 1xs= j

(27)

is a measure of uncertainty that encourages exploring the
action sequence branching from t j when it has not been
recently searched. Here,

1a=b =
{
1, if a = b

0, otherwise
(28)

and β is a heuristic weight that determines the emphasis on
exploring the action space against exploiting previously iden-
tified beneficial actions.

Traditional UCT is likely to encounter problems in the
multi-robot domain as it can fail in the event of non-stationary
rewards; e.g., in this domain a task may initially provide a
large reward until another robot broadcasts its intent to com-
plete it causing its reward to significantly reduce. To account
for this, we implement a modified Upper Confidence Bound
(UCB) search method called Sliding Window-UCB (SW-
UCB) (Garivier and Moulines 2011). SW-UCB was chosen
because it has a temporally discounted reward structure that
allows it to track both incremental and non-continuously
changing reward structures. Unlike traditional UCT, SW-
UCT only accounts for historical results for the past κ

searches and discounts the historical expected rewardswithin
thatwindowbyγ s ,where s indicates how long ago that action
was searched. This allows it to ‘forget’ searches that occurred
far in the past while favoring the most recent information.
SW-UCT also incentivizes searching actions that have not
been evaluated recently to update the reward of actions with
new information. SW-UCT’s policy on search iteration p is
to select the action

x∗ = argmaxx j∈Ω R̄Σ
D, j (x j ,Π

Σ
j,i ) + c(κ, j), (29)
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where

R̄Σ
D, j (t j,i ,Π

Σ
j,i ) =

∑p
s=p−κ+1 γ p−s R̄Σ

D, j (t j,i ,Π
Σ
j,i )1ts= j∑p

s=p−κ+1 γ p−s1ts= j

(30)

is the expected reward of completing the action sequence
beginning with x j at time t j,i , γ is a weighting variable that
determines how heavily past results should beweighted com-
pared to more recent ones, κ is the length of the history (i.e.,
window) used to evaluate actions, and

c(κ, j) = β

√
ε logmin(p, κ)∑p

s=p−κ+1 γ p−s1as= j
(31)

is a padding function to encourage exploring the action
sequence branching from t j when it has not been searched
recently. In (31) β is a search heuristic used toweigh between
exploiting actions with historically high rewards and explor-
ing under-searched actions. In To plan over sequences of
actions, the expected reward uses the node’s normalized
cumulative down-branch reward, RΣ

D, j ; i.e. the summation
of reward along the optimal branch from the evaluated node
to the leaf of the tree. RΣ

D, j is normalized:

RΣ
D, j = RΣ

D, j − RΣ
D,−

RΣ
D,+ − RΣ

D,−
, (32)

where RΣ
D,−, RΣ

D,+ are the sibling nodes with minimum and
maximum, respectively, branch rewards.

The strength of SW-UCT is that as the robots coordi-
nate and its team members’ plans change, the value of some
actions, completing certain tasks, will change over time. SW-
UCTwill adjust by increasingly discounting older searches in
favor ofmore recent search resultswhen calculating expected
rewards, with the severity of the discount determined by γ .
This behavior allows the robots to escape an action that was
previously an optimal solution that has been affected by the
actions of a team member and similarly re-evaluate actions
that were unfavorable but not might offer a large reward.

As the Monte-Carlo tree is grown and new nodes (macro-
actions of completing tasks) are added to the tree, a simu-
lation is completed to estimate the reward of selecting that
branch; as shown in Algorithm 2 line 7. During the MCTS
simulation, we use a greedy policy to select tasks that will
lead to the largest increase of the team’s cumulative reward
at the time the task is expected to be completed. This pro-
vides a reasonable and computationally efficient estimate of
the probable actions the robot will take after completing the
queried node and its corresponding rewards. Following the
expansion of the node, the tree needs to be updated via back-
propagation of the new branch reward, Algorithm 2 lines

13–16. Here, the branch reward is the summation of the
node’s expected reward and the maximum branch reward
of all of its child nodes.

Algorithm 2 Searching the Action Space
1: procedure Search Tree(G, Π )
2: if ¬ Children exist then
3: � Make child nodes from available tasks and set

their initial reward from their expected completion time.
4: Children = make children
5: for child ∈ Children do
6: child.branch_reward = child.rollout
7: child_reward = 0.0
8: � Use SW-UCT to select child to search.
9: child∗ = SW- UCT(Children)

10: � Search the selected child.
11: child∗.Search Tree(G,Π)

12: � Update the reward for my best child.
13: child_reward = max(child∗.branch_reward,

child_reward)

14: � Update my expected branch reward.
15: branch_reward = child_reward + reward

4.5 Coordinated planning

Now that each robot has searched its individual action space
and developed a sequence of actions that will maximize its
individual reward, the next step is to coordinate with its team
members to reduce conflicting plans. To do this each robot
must communicate some information with its teammembers
indicating what they are likely to do and how it will affect the
team’s cumulative reward. We do this using the previously
described probable action timeline and difference rewards.
This allows each robot to re-evaluate its sequence of actions
while accounting for the probable actions of its team mem-
bers and change its plans accordingly.

To coordinate their actions, after each robot searches the
action space and expands its tree, they periodically sample
the developed tree and broadcast a condensed version of its
likely actions to its team members. Robots sample their tree
to assemble their probable action time line; which describes
the tasks they will probably complete, how likely they are
to complete them, and the predicted time the task will be
completed. The sampling process recursively proceeds down
the Monte-Carlo tree evaluating the probability of selecting
each action from each node. Initially, each action is given a
probability of

P(x j ) = r j∑|C|
i=1 ri

. (33)

On subsequent iterations, the value is updated by

P(x j )
′ = P(x j ) + α(11=max − P(x j )), (34)
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Algorithm 3 Constructing the probable action timeline
1: procedure Sample Tree(Ppar , Π , Pmin)
2: if Psel f < Pmin then return

3: for child in Children do
4: Pchild = Psel f

rchild−rmin
rmax−rmin

5: Π.Add Claim(Pchild , tchild,i )

6: child.Sample Tree(Pchild ,Π, Pmin)

where 11=max is 1 when action x j is the action with the
largest branch reward and 0 otherwise and α is a gradient
update rate that adjusts the broadcast probability. This pro-
cedure increases the broadcast probability of the branch with
the largest reward and decreases all others in proportion to α

and the current broadcast probability of the branch. Follow-
ing each update, probabilities are normalized to ensure the
cumulative probability of the children of each node is 1.

Then, to account for the depth in the tree and the probabil-
ity of selecting the sequence of tasks that lead to the current
node in the tree,

P(x j ) = P(x j )Pparent , (35)

where Pparent is the probability of the parent node being
selected, line 4 in Algorithm 3. To begin the sampling pro-
cess, the root node is assigned a probability of 1. Then the
tree is sampled recursively, as described above and in Algo-
rithm 3 line 6, until a lower bound of probability is reached
and the sampling terminates along that branch, line 2. When
all branches have reached the lower threshold and the recur-
sive sampling terminates, the probable action timeline for all
claimed tasks is broadcast to the team.

When a robot receives a broadcast from a team member
they update a probable action timeline representing the rest of
the team’s cumulative claims. First, they remove all existing
non-identical claims made by the broadcasting agent. Then,
all of the unique broadcast claims are added to the team’s
probable action timeline as non-mutually exclusive events
using (9).

Team members use the probable action timeline to calcu-
late the expected difference reward for completing the task on
the next iteration of searching the action space and expand-
ing its tree. Difference rewards of each task are updated
non-uniformly, focusing on the most beneficial branches of
the tree as selected by SW-UCT. As updating the difference
rewards do not require additional simulations or estimates
of travel costs it is relatively computationally inexpensive.
The repetitive process of broadcasting and then using dis-
counted rewards to plan and re-evaluate action sequences
provides team members a way to account for the actions of
team members and coordinate their actions in a way to min-
imize overlap while maximizing the collected reward.

In long-horizon planning problem with discrete tasks the
cardinality of the search space grows combinatorially with

the number of macro-actions and number of robots. To
approach this problem, our developed method distributes the
computation across the team by having each robot only plan
their own actions. By only searching their own actions the
number of combinations to be searched by each robot is sig-
nificantly decreased and it increases team robustness as it
allows each robot the ability to plan and execute their own
tasks independently in the presence of communication fail-
ures. However, distributing the computation across the team
also results in a communication cost that scales linearly with
the number of robots. Each robot then uses MCTS and the
SW-UCB heuristic to focus their computational effort on the
highest value portions of their action space to further miti-
gate the computational burden resulting from the large action
space and long-planning horizon.

5 Experiments

To evaluate the developedmethod of coordination, four series
of experiments were conducted ranging from low-fidelity
simulation to fielded hardware trials with unmanned aerial
vehicles. These trials were designed to evaluate the perfor-
mance of the algorithm across a wide range of randomized
scenarios and in a fielded hardware implementation. The first
series, presented in Sect. 5.1 analyzes the convergence of
the coordination with three stationary agents coordinating to
complete 30 tasks. Next, we use a low-fidelity simulator in
Sect. 5.2 to validate the algorithmover awide number of team
compositions and environments. Then in Sect. 5.3 the algo-
rithm is implemented on a team of quadcopters using the
Robot Operating System (ROS) (http://www.ros.org/) and
Gazebo (http://gazebosim.org/). Finally in Sect. 5.4 a team
of three DJI Matrice M100 quadcopters are used to evaluate
the algorithm in hardware trials. The trials and their intent
are summarized:

1. Simulated trials exploring robustness to changes in
parameters and communication ability.

2. Low-fidelity simulations with large teams over many tri-
als to show statistical significance across a wide range of
team compositions and environments.

3. High-fidelity simulations in Gazebo with varying team
capabilities and environments.

4. Hardware trials to demonstrate feasibility on existing
hardware and confirm the findings from simulated trials.

5.1 Robustness to environmental and parameter
variations

To evaluate the convergence of the coordination plans and
robustness to environmental and algorithm parameter vari-
ations of the developed algorithm, a series of offline trials
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were conducted. In these trials three robots coordinate to
form a plan to complete 30 tasks placed randomly in the
environment, but they do not either move or complete a task;
i.e., the robots only plan and coordinate their intended future
actions without taking them. This allowed us to evaluate how
varying algorithm parameters affected the convergence and
performance of the coordinated planning. For these trials we
allowed each robot to search its action space 5000 times. As
the action-space of an individual robot selecting 10 tasks of
30 consists of 2.7 × 1032 = 30! − 20! possibilities, we are
only sampling a small portion of the action space. Periodi-
cally while searching its action space each robot will sample
its Monte-Carlo tree and potentially broadcast its intent to
the remainder of the team. While these trials are intended
to be representative of general use, it may be helpful for
reference that the embedded processor used in the accom-
panying hardware trials, Sect. 5.4, is capable of performing
μ = 928.92(σ = 87.16, N = 100) searches on a graph with
30 tasks in 0.1s. Unless mentioned otherwise, the default
parameter values used in this subsection are: gradient ascent
rate α = 0.99, exploration factor β = √

2, historical weight-
ing factor γ = 0.999, the dropout rate is Pdo = 0.05, and
the broadcast period is 250.

In these trials the parameters we investigated are the sam-
pling frequency, α, γ , and β as well as how communication
dropouts affect the convergence. Each of these are investi-
gated individually below in their own sub-subsection.

5.1.1 Convergence example

The offline simulator allows us to glimpse at how the coor-
dination converges from each robot’s individual perspective.
Figure 13 shows the reward a single robot expects to col-
lect and how it changes through out the coordination phase.
Notice that an individual robot initially has a higher reward as
they actively seek out the largest individual reward. Then, as
they gain information about what each of its teammembers is
doing the difference rewards of some of its potential actions
are changed and its expected reward may be reduced. The
robot then replans with the most recent coordination infor-
mation tomaximize its collected difference reward leading to
an increase in its expected reward. Simultaneously, the cumu-
lative team reward increases as the team of agents coordinate
their actions as shown in Fig. 13.

5.1.2 Broadcast frequency

As this algorithm involves multiple robots periodically com-
municating with the members of their team it is important
to investigate how the frequency of communication affects
the team’s ability to coordinate. To evaluate this, we inves-
tigated a variety of communication rates over 20 different
randomly generated environments; environments were held

0 1000 2000 3000 4000 5000
Planning Iteration

0

200

400

600

800

1000

1200

1400

R
ew

ar
d

Robot 3
Team Reward

Fig. 13 The captured reward of both a single robot and the complete
team throughout the planning process. Note that each single robot con-
tinuously attempts to maximize its collected reward. However, every
250 planning iterations they receive broadcasts from their team mem-
bers causing some of the tasks in the environment have their expected
reward changed. Consequently, the robot may seek out alternative tasks
that offer a lower raw reward but a larger difference reward

constant across each communication rate. Figure 14 provides
the results of the experiment for agents broadcasting their
intent with varying numbers of planning iterations between
broadcasts. Notice that early in the process of coordinating
a higher broadcast frequency performs better, which intu-
itively makes sense as each robot is able to account for the
actions of their team members earlier into the process. How-
ever, you will notice that late in the exploration less frequent
updates and broadcasts outperforms the higher broadcast fre-
quencies. This is because when a robot receives the plans of
another robot they do not immediately update every node
in their expanded Monte-Carlo Tree (MCT). Instead, they
continue to search the space including the updated infor-
mation as it affects the actions they are searching. This has
two consequences for a high-frequency update rate: First, the
robot’s broadcast actions may not be searched and updated
with the latest information causing their broadcast actions to
not reflect the current state of the team’s plans. Second, the
robot does not have time to adequately search the space and
exploit the broadcast information.

5.1.3 Communication dropout

One common concern in multi-robot coordination problems
is the effect communication failures will have on the coordi-
nated planning process. To evaluate this we implemented a
communication period of 250 planning iterations and hin-
dered the coordination with probabilistic communication
drop outs; e.g., communication fails with probability Pdo.
We found that even with high levels of dropout (Pdo ≤ 0.75)
the robots plan still reliably converges as shown in Fig. 15.
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Fig. 14 The captured cumulative team reward with varying broadcast
periods. Each line represents the number of planning iterations between
broadcasts. Notice that at both extremes, too frequent and too sparse
communication, reduces the team performance
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Fig. 15 Coordination performance with varying communication
dropout rates. In these examples the agents attempted to communi-
cate every 250 planning iterations and failed with Pdo. Notice that with
Pdo ≤ 0.5 the coordination converges at a similar rate as trials without
any failures

Notice that for agents with Pdo = 1.0 the cumulative team
reward converges to a team reward significantly below that
of teams with higher levels of communication. This demon-
strates the ability of the algorithm to gradually improve the
performance through iterations of searching and broadcast-
ing.

5.1.4 Varying gradient ascent rate

These offline experiments also allowed us to evaluate how
the coordination parameters effect the robot’s ability to coor-
dinate their planning. We investigated how changing the
gradient ascent rate, α, affects the coordination convergence
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Fig. 16 The effect of α on the convergence of the algorithm; α is the
learning rate that determines how quickly a robot modifies the strength
of their claims as explained in (34). Probabilities are updated and broad-
cast every 250 planning iterations

as shown in Fig. 16. We found that α ≈ 0.99 yielded the best
results with a sampling period of 250 planning iterations.
This implies that agents should make strong but not absolute
claims about their intended actions. This results in agents
who are changing their claim to strongly disincentivize other
agents from claiming that task without removing all reward
after a single iteration of coordination.

5.1.5 Varying SW-UCT heuristic

Another parameter of concern is the SW-UCT heuristic
weight β. Traditionally β is

√
2 (Chang et al. 2005). How-

ever, for thiswork the role of exploitation is slightlymodified.
In this work when an action is searched it is also updated
with the most recent plans collected from the team and so it
is important that the process of exploring the action space
and updating the best actions is balanced to ensure that
the robot is acting upon the most recent coordination infor-
mation. We compared multiple values of β and found that√
2 ≤ β ≤ 2

√
2 provided the best results, as seen in Fig. 17.

β values below this range did not explore enough of the action
space to find high reward action sequences. Alternatively,
values of β above this range did not emphasize updating and
exploiting high reward action sequences which resulted on
planning and broadcasting on outdated information.

5.1.6 Varying weight of historical values

The next parameter we evaluated was the effect of γ which
determines theweighting of historical results in the SW-UCB
search heuristic as shown in (30) and (31). As γ increases
from 0 → 1 the length of SW-UCT’s ’memory’ increases
and historical search results are more heavily weighted. We
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Fig. 17 β is used to weigh between exploration and exploitation when
selecting which branch of the Monte-Carlo tree to search. Notice that
values near the traditional value of

√
2 perform well while values sig-

nificantly larger or smaller do not perform as well

0 1000 2000 3000 4000 5000
Planning Iteration

200

400

600

800

1000

1200

1400

C
um

ul
at

iv
e 

Te
am

 R
ew

ar
d

0.1
0.5
0.9
0.95
0.975
0.99
0.999
1

Fig. 18 The parameter γ is used to determine the weight of past
searches in the SW-UCT algorithm with γ

noticed in our trials, Fig. 18, that having a γ � 1.0 balances
the ability to discount searches that occurred a long time ago
and also retain useful information about the action space. In
the following trials we enforce a maximum memory length
of 5000 by assigning this value to κ in (30) and (31).

5.2 Low-fidelity simulations with variety in
environments and team compositions

A simulator was developed to test our method’s ability to
coordinate a heterogeneous team of robots completing het-
erogeneous task types. The environment of the simulator is
a PRM style graph, as described in Sect. 3, where a ran-
dom subset of PRM nodes contain tasks or random types.
For each trial the same experiment, identical map, task, and
robot configurations, was completed once by a distributed

auction-based planner and then our developed algorithm
introduced in Sect. 4. Then, on the following trial a new
graph, team of robots, and set of tasks are randomly gener-
ated. Throughout the trials, the environment is held fixed at a
simulated 1000× 1000m2 area for all experiments with 100
vertices randomly placed. Edges are created by connecting
the Euclidean nearest five vertices.

Tasks are randomly generated at a portion of the nodes
depending upon the number of robots in the current experi-
ment. Generated tasks are assigned one of four random types
that have varying reward amounts, reward function types, and
the amount ofwork that each robot typemust perform to com-
plete it. Task rewards are varied across all tasks and not held
constant for each task type.Generated robots belong to one of
four types with uniformly randomly sampled travel speeds of
5.0–25.0ms and ability to perform of work on each task type
in each time-step; varied uniformly randomly, wi = 1−100,
with some probability that an robot type will not be able
to work on a given task type, i.e., P(wi = 0.0|a, t) = 0.1.
Similarly, a random subset of edges have obstacles that either
slow or prevent some robot types traveling along them with
P(slow|a) = 0.25 and P(block|a) = 0.05.

Robots operate in simulated real time where they are
allowed one time-step, of duration 0.1 s, to search through
their action space, sample the tree and broadcast their cur-
rent plan to the team. Each robot attempts to maximize
their expected reward and collectively work to optimize their
teams cumulative reward collected.Robots useA* (Hart et al.
1968) to identify the minimum cost path to each potential
task. When making claims, each robot calculates the time
they expect to complete a task by summing the expected time
to traverse each edge along the path and the time required to
complete the selected task upon arrival.

An auction-based planner is used as a comparative base-
line (Gerkey and Mataric 2002) due to its ability to adapt to
the developed problem setup. A key strength of our devel-
oped method is the ability to account for the time at which
a task is completed when calculating the reward function.
Unfortunately, including this flexibility in the problem setup
made direct comparison to other existing non-myopic meth-
ods infeasible. In the auction-based planner, robots select
tasks that will result in the largest reward at the time the task
is completed. Robots then publicly bid on the task with their
expected travel cost and the robotwith the lowest bid receives
the task until it is either completed or they select another task.
The results of the auction are enforced by removing all poten-
tial reward for the bid task from the losing robots; equivalent
to a claim with probability of 1.0 at the expected time of
completion.

We evaluated three different team sizes for 100 trials each
and the collected reward is reported in Table 1. The param-

eters used for SW-UCT were β =
√
2
2 , γ = 0.999, ε = 0.5,
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Table 1 Summary of the
low-fidelity simulation results
for team sizes and the
corresponding probability of
each of the 100 tasks being
active during the trials

Number of robots 3 robots 5 robots 7 robots
Pactive = 0.25 Pactive = 0.5 Pactive = 0.75

Auction μ = 3674.46 μ = 8348.65 μ = 18,721.27

Reward σ = 14.74 σ = 25.22 σ = 1146.63

Proposed algorithm μ = 5406.94 μ = 11,650.86 μ = 24,445.67

Reward σ = 17.73 σ = 22.55 σ = 556.47

Mean utility gained 47.15% 39.55% 30.6%

For each set of trials new robot abilities, travel speeds, graph structure, and task typeswere randomly generated.
The presented result is the mean cumulative reward collected by the team at the end of each test. Mean Utility
Gained = 100.0% × μD−μA

μA

and κ = 5000. These values were adapted from Garivier
and Moulines (2011) and empirically tuned. The coordina-
tion update parameter was α = 0.9. These experiments were
perform on a Laptop with a Core-i7 processor with 16GB of
RAM. During the alloted planning time, 0.1 s, robots were
able to performμ = 308.2(σ = 61.6, N = 900) searches of
the MCT and each iteration of sampling the MCT required
μ = 3.8 × 10−4 s(σ = 4.9 × 10−4 s, N = 900).

The distributed auction baseline myopically selects task
with the largest expected reward at the time of completion
while accounting for competing claims of other robots, i.e.,

RA(k j , A) = r j (k j ) × (1 − P(x j )). (36)

Then, robots claim the task with their expected time of
completion with P(x j ) = 1.0, effectively removing all
reward after the time of their claim. In thisway robots attempt
to take the action that will result in the largest reward and
resolve claims by the robot who will arrive at the task first.

The developed coordination algorithm outperformed the
auction-based coordination algorithm across the range of
teamsizes, robot, task, and environment configurations tested
by 30.6–47.2% as shown in Table 1. This shows that our pro-
posed algorithm is able to coordinate the robots in a more
efficient manner that allows them to collect a larger amount
of reward. Throughout the simulations conducted it was a
common trend that the auction coordination algorithmwould
initially outperform the proposed method in the beginning of
each simulation, as demonstrated in Figs. 19 and 20. This
is because the auction coordinator myopically searches for
the largest individual reward available, that it will arrive at
first, at the potential cost of future rewards. Alternatively,
our proposed method plans over sequences of rewards in the
joint space allowing it to avoid both resource scarcity and
congestion.

In addition to coordinating which robot should complete
each task, our proposed method also determines when each
robot should complete each task to maximize their differ-
ence reward and the team’s cumulative collected reward. This
difference allows our proposed method to outperform the
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Fig. 19 A comparison of the mean reward collected by the proposed
method and auction baseline for three robot trials. The error bar provides
the standard errors of the mean

auction coordinator implemented as a baseline. While the
proposed method did outperform the baseline, as the num-
ber of robots increases the performance gain of the proposed
method decreases. This is because the tasks become over-
subscribed as the number of robots available to complete the
tasks increases.

5.3 ROSGazebo experiments in varied environments

Additional simulated trials were performed using ROS and
Gazebo to evaluate the performance of the algorithm in var-
ied environments in a higher-fidelity simulator. These trials
used the Hector quadcopter (Meyer et al. 2012) to simulate
the motion of the quadcopter, Gazebo to simulate the physics
of the quadcopter and provide absolute localization informa-
tion, the rtabmap package (Labbé and Michaud 2014) and a
depth camera to sense and navigate the environment. In these
trials maps were randomly generated with obstacles which
were spawned in Gazebo as red cylinders (Figs. 21, 22). The
test environment was 100 m × 100 m.
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Fig. 20 The gain in collected reward from the proposed method
over the auction baseline. Notice, that the auction robot initially
leads the proposed algorithm. This is because the auction baseline is
myopic and sacrifices later reward for immediate returns. The proposed
method alternatively sacrifices immediate returns for cumulatively
higher returns collected over the duration of the experiment

Fig. 21 The Gazebo test environment. The red cylinders are randomly
placed obstacles in the environment and the green cubes are the ground
locations of markers (Color figure online)

Fig. 22 The Gazebo test environment close up of the quadcopter mov-
ing through the environment. The red cylinder is an obstacle and the
green cubes mark the locations of tasks (Color figure online)

The results from these trials are shown below in Table 2.
Notice that there is a decrease in performance from the low-
fidelity simulator. This decrease is assumed to come from two
sources: First, in the low fidelity simulator the robot’s arrival

Table 2 Summary of the gazebo simulation results for team sizes and
the corresponding probability of each of the 100 tasks being active
during the trials

Number of robots 3 robots 5 robots
Pactive = 0.25 Pactive = 0.5

Auction reward μ = 3425.59 μ = 9419.72

σ = 895.26 σ = 1857.31

Proposed algorithm reward μ = 4707.13 μ = 12,182.99

σ = 1447.68 σ = 1120.43

Mean utility gained 37.41% 29.33%

For each set of trials new robot abilities, travel speeds, graph structure,
and task types were randomly generated. The presented result is the
mean cumulative reward collected by the team at the end of each test

time is perfectly predictable allowing the robots to accurately
forecast their actions. In the Gazebo trial this accuracy is
decreased as the quadcopter must be controlled and avoid
the obstacles on apriori unknown paths. Second, in the low
fidelity simulator each quadcopter is allowed a full planning
cycle to plan their actions without additional processes com-
peting for processing power. In the gazebo simulator each
robot is simultaneously being simulated in Gazebo, search-
ing the macro-action space, and controlling the motion of the
quadcopter. The extra computational burden of simulating
multiple quadcopters reduced the computational resources
available for searching the action space.

5.4 Hardware experiments

In addition to the simulated experiments, hardware trials
were conducted to provide a real world comparison between
the proposed method and a distributed-auction-based coor-
dination using DJIM100 quadcopters (https://www.dji.com/
matrice100) and to demonstrate the feasibility of the pro-
posed approach on existing hardware. In these trials a random
graph was created over an open field and each quadcopter
was provided a random agent type with random capabilities,
similar to Sect. 5.2. Then, each quadcopter moved about the
graph attempting to complete their tasks. The following sec-
tions begins by describing the hardware system used in these
and then describes the experimental results.

5.4.1 Hardware system

The three quadcopters used for these hardware trials were
DJIMatrice 100s, each equipped with a ZEDRGBD camera,
NVIDIA Jetson TX2 GPU, and DijiKey Xbee-Pros, Fig. 23.
The ZED camera is mounted on the ‘front’ of the Matrice,
and the orientation of the quadcopter is controlled so that the
camera is always facing the direction of forward motion.
The Jetson TX2 operates using Ubuntu 16.04 and Robot
Operating-System (ROS) Kinetic-Kame, and the ZED ROS
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Fig. 23 The DJI Matrice M100 used in the hardware trials. The Jet-
son TX2 is a NVIDIA GPU that runs Ubuntu 16.04 and performs the
onboard computation. The ZED RGBD camera is used to create a 3D
map of the environment the quadcopter is operating in

wrapper is used to access the depth images from the ZED
cameras. The DJI On-Board ROS SDK is used to acquire
odometry and GPS positional information from the Matrice,
and to allow the Jetson TX2 to control the motion of the
quadcopter. A 2D Occupancy grid with inflated obstacles
is generated from the depth images and Matrice odometry
using the RTAB-Map ROS package. The Matrice uses the
A* search algorithm on the 2D occupancy grid to plan a path
to goal locations while avoiding obstacles. Inter-team com-
munication, betweenMatrices and a ground station replaying
the human search path, is performed over using a mesh net-
work via Diji-Key Xbee Modules and a custom ROS node.

As mentioned, the Jetson TX2 used a series of ROS
nodes, outlined in Fig. 24, to conduct each experiment. The
coordination and task selection was carried out in the High-
Level Planner node that used custom messages to coordinate
with other agents through the XBee Bridge node. The XBee
Bridge node converts standard ROS messages and custom
ROS messages to a string of characters and broadcasts them
over the XBee Diji-Mesh network. Then, at 100Hz the Xbee
Bridge reads all messages in the buffer and publishes them
to ROS as ROS messages. To coordinate the quadcopters,
their local odometry is generated by the GPS bridge node
which converts their global position, provided by GPS, to a
local shared frame; allowing quadcopters to operate in the
same ROS local coordinate frame. The Motion Planner node
uses the costmap, seeded by satellite imagery and updated
using the ZED RGBD camera and RTABMap ROS Pack-
age, to plan a path to the current goal. The PID controller
publishes velocity commands to the DJI M100 that attempt
to follow the path published by the Motion Planner. Custom
nodes created for this work are available at https://github.
com/smithan7.

In addition to the three quadcopters, a ground station was
used to conduct these experiments. The ground station did

Fig. 24 TheROSnodes used in this paper.Nodes encapsulated by green
boxes were developed for this project. Arrows indicate the direction of
information flow. Solid arrows indicate ROS messages being passed
locally while dashed arrows indicate communication over the XBee
Diji-Mesh network (Color figure online)

not assist in the coordination or inter-team communication
but instead was used as a graphical user interface for the
operator (shown in Fig. 25), recorded team performance, and
simulated the tasks in the environment. To simulate tasks, the
ground station received and processed ‘work requests’ from
robots; i.e., when a robot is attempting to work on a task it
notifies the ground station. After receiving the work request,
the ground station determines the amount of work the robot
performed and adjusts the remaining amount of work in the
task and notifies the team. When the robot has successfully
completed the amount of work required to complete the task,
the ground station notifies the team that the task has been
completed and records the amount of reward awarded for
completing the task at the time it was completed. Alterna-
tively, in application each robot could broadcast to the team
when they have completed a task so that other robots may
prune their Monte-Carlo trees of the completed task. In addi-
tion to recording the actions of the quadcopters, the ground
station also ensured that quadcopters started at the same loca-
tion for each experiment and synchronized the quadcopter
starts.

The hardware experiment is used to validate the results
collected in the Low-Fidelity and Gazebo Simulators,
Sects. 5.2 and 5.3, and demonstrates feasibility on hardware
subjected to communication and computation restrictions.
These experiments were conducted in an unstructured out-
door environment with random tasks distributed across a
generated graph covering the environment as shown in
Fig. 25.1 The quadcopters begin a the top center of the map
and are released simultaneously by the ground station to
begin each experiment. Starting locations were consistent
across all trials. To simulate a heterogeneous team, we took

1 The hardware flight trials conducted for this research were conducted
under Oregon State University’s (OSU) Federal Aviation Adminis-
tration Certificate of Authorization and logged in OSU’s compliance
software, Drone Complier.

123

https://github.com/smithan7
https://github.com/smithan7


808 Autonomous Robots (2019) 43:789–811

Fig. 25 An overhead view of the field the hardware experiments were
conduced in. The field is 200 × 80m in size. Graph edges are white,
vertices are blue, and tasks in the environment are red squares. The
quadcopters are identified by number (0, 1, 2) and color (red, blue,
green). Each quadcopter has lines connecting them to the vertices of
the edge they are occupying (Color figure online)

Table 3 The results of the hardware trials conducted for the proposed
method and distributed auction coordination algorithms

Number of robots 3 robots
Pactive = 0.4

Auction reward μ = 7603.07

σ = 300.79

Proposed algorithm reward μ = 9462.41

σ = 339.59

Mean utility gained 24.46%

Three trials were conducted for each and the mean collected reward is
reported for both methods

advantage of the controllability of the quadcopters to vary
each agent’s movement speed and time spent to complete
each task type.

5.5 Experimental results

In the experiments conducted we successfully performed
three trials of both the distributed auction-based coordina-
tion and our proposed method. In these trials our proposed
methodwas able to collect an additional 24.46% reward com-
pared to the distributed auction baseline, as shown in Table 3
and Fig. 26. While this is still a significant increase over
the distributed auction, the relative difference is less than
resulted in the Gazebo simulators. This difference could be
the result of differences in the map size or graph used in the
hardware trials and Gazebo trials, increasing the number of
active tasks on the graph by 15%, the limited battery life of
the quadcopters restricting the mission time which may have
a larger adverse effect on the proposed method, or a compli-
cation from implementation on hardware in the environment.

We had considered evaluating the performance of our
algorithm against other non-myopic coordination methods
in our experiments. One of our algorithm’s primary contri-
butions is the temporal component of the coordination and
the resulting flexibility provided in both task reward types
and the environment travel costs. Unfortunately, the other
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Fig. 26 The mean collected reward from the proposed method and
the auction baseline for the six hardware trials (three of each method).
Notice, that the proposed method collected reward at a larger rate over
the duration of the experiment

non-myopic planning methods we investigated for inclusion
in this work do not include this level of flexibility, hinder-
ing a direct comparison. In the future it would be interesting
to see a direct comparison between our method and adapted
versions of other non-myopic coordination methods.

6 Conclusion

In this paper we introduced a novel algorithm for task-
selection in distributed heterogeneous teams. The proposed
method leverages recent advancements of Monte-Carlo tree
search and macro-action control to efficiently search each
individual robot’s action space while compensating for the
non-stationary rewards resulting from teammember actions.
A novel temporal-action-space representation allows each
agent to evaluate how actions will affect the team’s cumu-
lative reward while searching their individual actions space
and remaining agnostic to team member capabilities. Our
proposed method was compared against an auction-based
task selection technique in simulated environments with
randomly generated tasks, robot types, and environment
structures and costs. In every simulated experiment our pro-
posed algorithmwas able to collect a larger amount of reward
than the distributed auction-based planner.

7 Extensions and future work

Using our developedmethod as a starting point we have iden-
tified multiple avenues for extension:
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– It would be interesting to analyze the theoretical con-
vergence properties of the our algorithm by extending
the analysis presented in Best et al. (2018) for our new
MCTS variant. This may provide additional insight into
the parameters identified in Sect. 5.1 and methods to
improve the computational efficiency of our algorithm.

– We believe the algorithm would be tolerant to local
(non-global) coordination. Robots using our algorithm
individually plan and act and only dependent upon team
members to coordinate. As the team members that will
require the highest level of coordination are likely to
be the team members that are also the closest each we
believe that the team performance would decline grace-
fully as the range and ability to communicate decline.
This has been demonstrated with a related algorithm, and
can be exploited to judiciously select when to communi-
cate (Best et al. 2018); it would be interesting to extend
this idea for the problem formulation addressed in this
paper.

– In some scenarios it may be desirable to have tasks com-
pleted in a specific sequence; e.g., before robot a0 can
operate a piece of machinery it must be powered on by
robot a1. Using the probable action timeline robot a0 can
predict the probability of required tasks being completed
by their team members when calculating their expected
reward for completing tasks which should allow task
sequences to be evaluated. It would be an interesting and
valuable extension to investigate this further.

– As the team size and action space grows into large teams
(20+ robots) and the task space scales (1000’s of tasks)
our algorithm, as implemented, will likely not scale well.
This is because each robot currently plans over every
task and coordinateswith every agent in the environment;
which may be computationally infeasible as the numbers
of tasks and agents grows. However, this problem can
be solved by restricting each robots view of the world.
First, the tasks available to each robot could be restricted
by distance. Second, using an ad-hoc communication
network as a template, we would enforce local commu-
nication to the robots most likely to interfere with each
others actions. Then, each robot can pass along a merged
probable action timelines of all upstream robots to repre-
sent their cumulative actions to all receiving down-stream
robots.
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