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Abstract
We address the problem of progressively deploying a set of robots to a formation defined as a point cloud, in a decentralized
manner. To achieve this, we present an algorithm that transforms a given point cloud into an acyclic directed graph. This graph
is used by the control law to allow a swarm of robots to progressively form the target shape based only on local decisions.
This means that free robots (i.e., not yet part of the formation) find their location based on the perceived location of the robots
already in the formation. We prove that for a 2D shape it is sufficient for a free robot to compute its distance from two robots
in the formation to achieve this objective. We validate our method using physics-based simulations and robotic experiments,
showing consistent convergence and minimal formation placement error.
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1 Introduction

Multi-robot systems are becoming pervasive in society:
whether it is self-driving cars or swarms of quadcopters,
the idea of using large number of communicating robots to
accomplish tasks is becoming more common. Coordinating
large teams of robots can be accomplished in many ways,
for example with robot swarms using decentralized tech-
niques (Brambilla et al. 2013). In general, most approaches
assume that all of the robots involved in a particular task,
or executing a particular algorithm, are readily available at
the beginning of its execution. In practice, however, this
can be rather difficult to achieve for swarms containing
more than a dozen robots: economic or technology con-
straints can severely limit the number of robots that are
available for deployment at a given time. For instance, the
current state-of-the-art in terms of planetary exploration, i.e.,
the current effort at understanding Mars, required hardware
to be sent in waves, and each new wave is built on the
capability of the previous. Currently, the rovers use the com-
munication infrastructure provided by satellites of previous
missions.

We believe that future mission involving complex, hetero-
geneous swarms will be deployed progressively, in phases. A
first phase of expensive, complex robots can build or provide
infrastructure that paves the way for simpler, cheaper, and
more mission-specific robots. For these progressive deploy-
ments, we need a new class of algorithms that focuses on
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swarms that grow over time (Beal 2011). As a first attempt in
this area, in this paper we propose a decentralized algorithm
that can progressively form an arbitrary shape using a robot
swarm. Shape formation is an important and well-studied
application of robot swarms, with applications including
environmental modeling of large areas (such as the opti-
mal placement of sensors) or the creation and maintenance
of mobile ad-hoc networks. We can envision robots begin-
ning their tasks before the structure is completed, and still
providing a useful service. In this context, the time needed
to form a complete shape is bound to the frequency at
which robots can be added to the system, which is pos-
sibly not completely controllable by the system designer.
The time needed to correctly place the next robot and
the accuracy of its placement are then far more important
metrics.

Centralized methods allow robots to achieve any kind of
shape. However, they might not be applicable in
communication-challenged scenarios, and as the number of
robots involved increases, these methods become less and
less desirable. In addition, pre-assignment of robots to spe-
cific positions is not robust to individual failures and it
becomes increasingly more cumbersome as the swarm size
grows. We believe that a progressive, decentralized method
such as the one presented in this paper can solve these
issues.

Our main idea is to represent the target shape as an acyclic
directed graph in which each robot can find its position using
twoother robots (calledparents) in the shape as reference.We
assume that all robots possess the graph representation, but
none is initially assigned to a specific position. The overall
shape is built dynamically and iteratively: each new robot
joins the shape only after being granted permission by one
of the parents, using local communication exclusively. The
resulting algorithm is completely decentralized and parallel:
multiple robots can join different parts of the shape at any
given time.

The rest of the paper is organized as follows. We discuss
related work in Sect. 2. In Sect. 3, we present an algorithm to
construct an acyclic directed graph starting fromapoint cloud
which represents the target shape. In Sect. 4, we illustrate a
mathematical model that proves the convergence properties
of our decentralized algorithm. In Sect. 5, we describe the
behavior the robots follow to achieve the target shape. We
report experimental evaluation in Sects. 6 (simulation) and
7 (real robots). The paper is concluded by Sect. 8, in which
we outline future research directions.

2 Related work

The deployment of a swarm of robots in patterns is a founda-
tion for various practical swarm applications, and has been
widely studied. Many of these studies focus on special pat-

terns that are suited for specific applications. For instance,
Güzel et al. (2017) and Sepulchre et al. (2008) focus solely
on circle formation and parallel formation, while Majid and
Arshad (2015) focus on a ‘V’ shaped pattern, and Paley
et al. (2008)manage to stabilize symmetric formations.These
kinds of patterns are usually achieved through well-designed
control laws, and have different communication or sensors
requirements. However, the focus is in general towards rel-
atively simple patterns, which constrain their application
domain.

In this paper, we focus on a pattern formation scheme
for arbitrary patterns. To represent these patterns, several
schemes are proposed in literature: for instance, Hsieh and
Kumar (2006) and Zhang and Leonard (2006) use curves
described by a formula for 2D geometrical patterns. Cheah
et al. (2009) propose a region-based formation method
shaping the target region from a continuous mathematical
representation of the frontier. Robots are then deployed to
cover this region. This is achieved with a control law derived
using the shape of the region as a global objective for all
robots, and maintaining a minimum distance between neigh-
bors as a local objective function. Similarly, potential fields
were also proposed Hsieh et al. (2008). Zhang et al. (2007)
use smooth curve-based formation for ocean sampling and,
in later work, design a control algorithm to form a pattern
defined by a boundary curve without requiring a global posi-
tioning system (Zhang and Haq 2008). Compared to our
work, the existing methods either require robots to sense
the position of all robots involved in the formation (and not
only the neighbors), or do not support progressive forma-
tion. Cowley and Taylor (2007) introduced an incremental
pattern formation that allows the construction of symmetri-
cal and recurring shapes that can be described by particularly
crafted functions. The work was not validated on real robots
or in presence of noise, and it is limited in terms of the type
of shapes that it can form. We show that our approach works
with noise, and for formations defined by arbitrary point
clouds.

Another way to represent the desired pattern is to use a
point cloud to define the relative positions of each robot.
Robots are then directed to the desired positions following a
control law. The process of assigning each robot to a specified
point is similar to a task allocation problem, as the control
law to drive the robots to their destination is related to path
planning. In fact, Belta and Kumar (2002) focus on mov-
ing a swarm of robots while keeping it in formation, and
Michael et al. (2008b) propose a task allocation method that
can be used in pattern formation. More recently, the work
of Turpin et al. (2013) considers the problem of assigning a
swarm of robots to specific goals, and gives a trajectory plan-
ning method. Similar work is done by Turpin et al. (2012b),
in which the robots are required to move while keeping a
desired shape, and each robot plans its own trajectory based
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on relative location information. While all of these methods
have interesting applications, their experimentation is lim-
ited to simple shapes, and they do not address the problem
of progressive deployment.

Closer to our approach, Desai et al. (2001) uses graph
theory to assign robot positions in a given formation. Robots
in the formation determine their neighbors’ relative position
based only on distance or using both distance and bearing.
Scalability of such methods was proven by Rubenstein and
Shen (2008), in which they show control of a large number of
robots in formation. This method also provides a mechanism
to change the formation and to self-heal if a robot fails. The
method is further implemented at large scales using physical
robots in Rubenstein et al. (2014): the swarm is initialized
with static seed robots and then generates a coordinate frame
to identify the location of each swarmmember, and robots are
then driven purely by virtual potentials. In comparison, our
work does not need seed robots, and it can be progressively
deployed.

The leader-follower method is also popular to manage
swarm behaviors, where one or more robots are treated as
a reference for the others (Tanner et al. 2002). For exam-
ple, Fierro et al. (2001a) focus on controlling a swarm of
Unmanned Aerial Vehicles (UAVs) using a leader-follower
structure; in their work, the trajectory is planned for the
leader, and the followers only maintain their relative posi-
tion. Fierro et al. (2001b) also present a leader-follower
structure, with robots switching between continuous-state
different control laws to achieve the desired pattern.

Turpin et al. (2012a) represent the desired pattern with
shape vectors, and Anand et al. (2014) generate a pattern to
move objects, where a master robot directs all other robot
slaves. Michael et al. (2007, 2008a) use an aerial robot to
control a team of ground robot to move as a pattern: by using
a rough model of the formation, the aerial robot can control
the formation without knowing details about each robot in
the formation.

Compared to these works, our method also uses a leader-
follower hierarchy based on a graph. Each robot needs to
confirm its destination according to the positions of its pre-
decessors in the graph. However, the allocation of robots on
the graph is not predefined, and a robot joining the forma-
tion dynamically finds a suitable predecessor, thus providing
flexibility and fault tolerance.

Virtual forces or virtual potentials are widely used in pat-
tern formation. Zhang (2007) and Yang and Zhang (2010)
present an approach based on Jacobi shape theory for robot
swarms, reaching a formation with a set of virtual forces.
Chen and Chu (2013) use a model based on attractive and
repulsive interaction between robots. Methods presented
in these works are similar to the Joining phase of our
method, which in contrast is a whole deployment process
consisting of multiple phases, and includes a strategy for

robots to find proper predecessors. Besides, as the theoret-
ical basis of these works are different, so are the virtual
forces.

Additionally to the previously mentioned work, a handful
of publications are addressing a similar question as our solu-
tion: achieving any given shape defined as a point cloud in a
decentralized manner. Spletzer and Fierro (2005) reorganize
a swarm of robots to form new shapes while minimizing
the maximum distance any robot travels, or the total dis-
tance traveled by the group. Ravichandran et al. (2007)
provide a scalable distributed algorithm to achieve an arbi-
trary formation based on a distributed median consensus
estimator, requiring only local communication. Yu and Nag-
pal (2008) focus on the theoretical study of decentralized
control for sensing-based formation on modular multi-robot
systems. Yu and Nagpal (2008) use local sensor constraints
between neighboring robot agents to define the desired shape.
Alonso-Mora et al. (2011) provide amethod to form arbitrary
target patterns independently from the number of robots. Liu
and Shell (2014) tackle the problem of changing smoothly
between formations of spatially deployed multi-robot sys-
tems. The main difference between our approach and these
methods is thatwepropose an incremental formation scheme,
where new robots join the pattern without disrupting the par-
tially formed structure.

3 Progressive formation

This paper can be considered a case study in progressive
swarm deployment: robots are progressively introduced in
an environment and are required to form a complex shape,
without the knowledge of all robot positions. In this context,
the swarmmembers cannot share a global coordinate system,
but they have access to a local coordinate system defined by
their own frame of reference. Interaction among robots is
achieved through situated communication, i.e., a robot can
get the relative range and bearing (RAB) of the sender when
it receives a message (Støy 2001).

We propose a progressive formation approach. As shown
in Fig. 1, this method consists of two stages:

1. We generate a directed acyclic graph (DAG) from a point
cloud representing robot positions. This graph specifies a
parent-child relationship between triads of positions (two
parents, one child). As soon as a robot can identify both
its parents, it can join the formation;

2. We propose a set of behavior laws to direct a robot to the
target position based on the information sent from its par-
ents, until it reaches its target position in the formation.

A robot is guided to its target position by robots that have
already joined the formation. These robots are called parents
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Fig. 1 Steps of the progressive formation approach proposed in this
paper: a the desired formation depicted as a 2Dpoint cloud,b the acyclic
directed graph generated with algorithm A1, c from the behavior law
A2, robots reach their final formation. In (b), numerical labels indicates
the nodes in the graph, with the arrows identifying the parents of a node
and their associated number representing the distances between robots.
The markers’ shape indicate the side a node is w.r.t. the vector between
its parents (using the right-hand rule): squares are on the positive side,
while diamonds are on the negative side

of the robot. With the exception of the first two deployed
robots (robots 0 and 1), our solution requires that each robot
is able to sense 2 parents. We chose 2 parents, instead of
another number, as a compromise between the communi-
cation requirements and the robustness of the method. With
only 1 parent, robots need to exchange their relative positions
to establish a common frame of reference. Using 2 parents
does not require this exchange, lowering the communication
requirements. When considering more than 2 parents, it is
worth noting that a robot is unable to join the pattern until
all of its parents reached their position (which would slow
down the formation process), and the robot must be able to
sense all of them (which gets harder as the number of parents
increases).

3.1 Directed acyclic graph generation

We propose an algorithm to produce a DAG from a 2D point
cloud, based on the flow graph shown in Fig. 2. Since indi-
vidual robots must converge to a desired position in a global
reference, the graph encodes two types of information:

1. The relative distance between a robot and its parents; and
2. The orientation of the robot with respect to the vector

connecting its two parents.

To compute the graph, we use three lists over which we
iterate until all points are labeled:

1. Unlabeled list: points that not have been assigned a label
yet;

2. Labeled list: points with a label from the graph;
3. Delayed list: points that couldnot be labeled in the current

iteration.

Fig. 2 Task flow of our graph generation from a point cloud algorithm

The algorithm starts by labeling point 0. This is the initial
point for the formation process and it can be chosen based
on different criteria such as distance, hierarchy, etc. In this
implementation, we elect the nearest point to the center of
the point cloud, so that the formation will expand from the
inside out, gradually. Subsequently, all other points are sorted
according to their distance to the center. The closest point to
point 0 is labeled 1, and both are pushed in the Labeled list.
Point 0 has no parents, while point 1 has one.

All the other points are pushed in the Unlabeled list and
will be labeled through an iterative process to find their two
parents.At each iteration, a candidate is pulled from theUnla-
beled list assuming that all points in the Labeled list could be
its parent. To select a pair of parents, we test pairs of points
in Labeled as potential parents according to the distances to
the candidate. The pairs of potential parents nearest to the
candidate are tested first, and the first two points that pass
the test are chosen as the parents. Assuming that no distance
between two adjacent points in the graph is greater than the
robot communication range, the robots are always able to
communicate with their parents.

Pairs of points from the Labeled must pass two tests: (1)
they form a triangle with the current candidate, and (2) no
other points is present at the edges of this triangle. If this is
the case, the candidate is moved from the Unlabeled list to
the Labeled list, getting a label according to its position in
the Labeled list. If the search fails to find a pair of parents,
the point is transferred to the Delayed list. When all points
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Table 1 The acyclic directed graph in Fig. 1b, recorded as a table

Label P1 Dis1 P2 Dis2 Side

0 −1 −1 −1 −1 1

1 0 25 −1 −1 1

2 0 25 1 35 0

3 0 25 1 35 1

4 0 25 2 35 0

5 1 25 2 25 1

6 1 25 3 25 0

7 2 25 4 25 1

8 3 25 4 25 0

of the Unlabeled list are checked, the remaining points in
the Delayed list are pushed back to the Unlabeled list and
another iteration begins.

The algorithm ends after checking the Delayed list. If this
list is empty, all points have been labeled; otherwise, the
algorithm fails. Our 2-parent representationmight not be able
to represent every possible point cloud, such as cases inwhich
too many points are placed along a single line. In practical
applications, if acceptable, the point cloud could be modified
to introduce slight perturbations that break the linearity of the
shape.

Once a point is moved to the Labeled list, an element is
added to the graph, which is recorded in a table to be later
distributed to the swarm. Each element of this table contains
six items: the label, parent 1, parent 2, distance to parent 1,
distance to parent 2, and the side of the position with respect
to the two parents. For instance, Table 1 depicts the graph of
Fig. 1 with nine points. The point with label 0 in the graph
has no parents, and point labeled 1 has only one. The value
−1 is used to indicate an unused cell in the table. The main
drawback of the current method is that, as the point labeled 1
has only one parent, the corresponding robot can end up any-
where on a circle around the robot labeled 0. As the rest of the
formation is built around these two robots, the orientation of
the formation is not fixed.This problemcanbe easily resolved
by recording both the relative distance and orientation of the
point labeled 1 w.r.t. the point labeled 0 (Li et al. 2017).

4 Mathematical model

We build a mathematical model to derive the control law
that drives the robots to their positions on the graph. This
model is used to guarantee that the desired formation can be
reached.

4.1 Formulation

Consider a team of N robots labeled as i ∈ {0, . . . , N − 1}
moving in R2 space. With respect to a fixed global reference

frame ∅g
xy , the position of each robot can be represented by

a vector pi (t) = [xi (t), yi (t)]T ∈ R
2. We assume that the

dynamics of each robot is:

ṗi = ui , (1)

From the conditions described in Sect. 3, each robot i
does not know its absolute position pi (t). Situated commu-
nication (Støy 2001) provides the relative distance di j (t) =
∥
∥pi (t) − p j (t)

∥
∥ and the relative bearing θi j (t) of the j neigh-

bor robots in direct line-of-sight. Commercial robots such
as the e-puck (Mondada et al. 2006) can be equipped with
devices that perform situated communication. Based on the
prerequisites of the earlier sections, the problem is defined
as follows.

Problem 1 Given a desired formation expressed as a set of
positions {q̄0, q̄1, . . . , q̄N−1} determine a translation r ∈ R

2

and a rotation R(θ) such that

lim
t→∞ R(θ)pi (t) + r = q̄i ,∀i ∈ {0, 1, . . . , N − 1}

It is preferable to create a target shape that can arbitrarily
rotate and translate with respect to a fixed global reference,
rather than forcing all robots to converge to specific positions.
For the sake of simplicity, we consider q̄0 = [0, 0]T and
q̄1 = [x1, 0]T with x1 > 0, without loss of generality, in
the rest of this section. Under this assumption, p01i is treated
as the coordinates of the ith robot in the reference frame
centered in p0. The x axis of the reference is oriented with
the vector connecting p0 to p1, while the y axis with a π/2
anti-clockwise rotation of x around p0. Problem1 can then
be expressed in new terms as:

Problem 2 Given a desired formation {q̄0, q̄1, . . . , q̄N−1}
where q̄0 = [0, 0]T and q̄1 = [x1, 0]T and x1 > 0, ensure
that ṗi → 0 and pi → q̄i ∀i ∈ {0, 1, . . . , N − 1}.

4.2 Proposed solution

For the first robot, at the center of the formation, a simple
solution to Problem2 is to maintain its current position, i.e.,

u0 = 0 (2)

For the second robot to join the formation, an equally
simple solution is to apply any control law of the form

u1 = f1(d0,1(t)) (3)

that ensures that d0,1(t) asymptotically tends to ||q̄0(t) −
q̄1(t)||. Here we use the Coulomb potential (Spears et al.
2004), a distance-based attraction/repulsion law, to derive
f1.
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The control law for the other robots (i > 1) is based on
a continuously differentiable potential field �i (pi ,p j ,pk),
�i : R2 ×R

2 ×R
2 → R, which can be considered as being

generated by the two parent nodes j and k such that, for any
two bounded p j and pk , these assumptions hold:

A1 �i (pi ,p j ,pk) is invariant to rototranslations:

�i (R(θ)pi + r, R(θ)p j + r, R(θ)pk + r) = �i (pi ,p j ,pk)

A2 �i (pi ,p j ,pk) is unbounded for unbounded pi :

lim‖pi ‖→∞ �i (pi ,p j ,pk) = ∞

A3 If p j and pk are distinct, �i (pi ,p j ,pk) admits only
one stationary point, which we denote as p̄i (p j ,pk), and that
point is a minimum of the potential field. This corresponds
to forcing robot i to only have one possible position to reach
when communicating with robots j and k.

A4 Two finite scalars αmax and βmin exist such that for
any p j , pk

−∇�i (pi ,p j ,pk)
T ∇�i (pi ,p j + d j ,pk + dk) ≤ 0

for any
∥
∥d j

∥
∥, ‖dk‖ ≤ αmax , and for any pi = p̄i (p j ,pk)

with ‖di‖ ≥ βmin .
This means that, for bounded perturbations of the parents

p j and pk , if pi is sufficiently far from the equilibrium, the
perturbed anti-gradient is still a direction of descent of the
non-perturbed potential field.

We prove the following theorem by using a control law in
the form:

ui = −∇�i (pi ,p j ,pk) (4)

Theorem 1 Consider the system described by Eq. (1) and
controlled by Eqs. (2)–(4) that comply with assumptions A1–
A4. Under the constraints:

1. If j and k are parents of i , then j < i and k < i ;
2. p̄i (q̄ j , q̄k) = q̄i ∀i ∈ {0, 1, . . . , N − 1};

Problem2 is then solved for any set of initial conditions.

Proof Due to Eq. (2), at t = 0, robot 0 is already stationary
in its final position. Concerning robot 1, due to Eq. (3), p1(t)
converges asymptotically to q̄1. As for the other robots (i >

1), by using Eq. (4), we can write

ṗi = −∇�i (pi ,p j ,pk).

For fixed and non-coincident p j and pk , global asymp-
totic stability of the point of equilibrium p̄i (p j ,pk) directly

follows using

V = �i (pi ,p j ,pk) + �i (p̄i (p j ,pk),p j ,pk)

as a Lyapunov function along with assumptions A2 and A3.
For robot 2, it is then possible to write

ṗ0,12 = −∇�i

(

p0,12 , q̄0, q̄1 + δ2(t)
)

(5)

for which q̄1 is Globally Asymptotically Stable (GAS) for
δ2(t) = 0. The term δ2(t) can be seen as a vanishing output
of the system

⎧

⎪⎨

⎪⎩

ṗ0,10 = 0
ṗ0,11 = f1(q̄0, ṗ

0,1
1 )

δ2(t) = ṗ0,11 − q̇1.
(6)

Equations (5) and (6) can be seen as the cascade of two GAS
systems which, according to Theorem 1.1 in (Seibert and
Suarez 1990), is GAS if the trajectories of the resulting sys-
tem are bounded. Since Eq. (5) satisfies A4, the trajectories
of the resulting systems are bounded (see also Theorem1.2 in
Seibert and Suarez 1990). By repeating the same procedure
for i ∈ {3, . . . , N − 1} the theorem is proved. ��

Since every position q̄i in the target shape is expressed
with respect to two other positions q̄ j and q̄k , and j < i and
k < i , the target shape can be presented as a directed acyclic
graph in which every node i is connected to its parents j
and k. Thus, the process of positioning a specific robot i can
ideally be seen as a cascade of positioning processes, which
starts with robot 1 and proceeds with all other robots. If every
step of the positioning dynamics is globally asymptotically
stable, then the entire process converges to the desired shape.
This is the core idea of this proof.

For some applications, assumptions A3 and A4 might
prove to be too strong. For instance, the existence of a sin-
gle stationary point topologically forbids the use of repulsion
terms among robots that are usually used for collision avoid-
ance. To fix this, consider the following relaxed condition:

A3bis If p j and pk are distinct, p̄i (p j ,pk) exists, which
is an isolated minimum of �i (pi ,p j ,pk).

By using A3bis instead of A3 and dropping assumption
A4, the formation is asymptotically stable. This means that
a basin of attraction around the configuration of equilibrium
ṗ0,1i = q̄i exists for which Problem2 is solved.

Theorem 2 Consider the system described by Eq. (1) and
controlled by Eqs. (2)–(4) that comply with assumptions A1,
A2, and A3bis. Under the constraints:

1. If j and k are parents of i , then j < i and k < i ;
2. p̄i (q̄ j , q̄k) = q̄i ∀i ∈ {0, 1, . . . , N − 1};
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Problem2 is solved for any set of initial conditions in a
suitable neighborhood of the equilibrium configuration of
ṗ0,1i = qi ∀i ∈ {0, 1, . . . , N − 1}.
Proof Similarly to the proof of Theorem1, the overall sys-
tem can be seen as a cascade of N systems such that, in
the absence of interconnection, ṗ0,1i = qi are asymptotically
stable. This implies (see Theorem 4.1 in Seibert and Suarez
1990) that ṗ0,1i = qi is asymptotically stable for the cas-
caded system. The theorem statement follows by definition
of asymptotic stability. ��

The above proof demonstrates that the controller will con-
verge to the desired shape as far as all robots received their
destination and identified the proper parents. Section 5 intro-
duces a finite state machine that assigns each robot a proper
destination and proper parents. Then the described control
law is applied to drive robots to the destination, allowing the
whole swarm to form the desired pattern in an incremental
way. The convergence for the overall behavior is shown in
experiments in Sects. 6 and 7.

5 Behavior

Weassume that all robots involved in the formation are aware
of the formation graph, as described in Sect. 3. This can be
achieved by downloading the table representing the graph
before the robots’ deployment, or through run-time broad-
cast. However, the robots are not pre-assigned to a specified
label in the graph. The behavior allows them to find proper
labels through simple local interactions with other robots,
including robots already part of the formation and robots not
yet in the formation. This process can drive free robots to par-
ticipate in the formation gradually or, from the perspective
of the formation, it attracts free robots to join from the edges
of the current formation, allowing it to grow dynamically. Of
course, the assumption that all robots are aware of the graph
can be considered a limiting constraint. However, the graph
can be broadcasted by robots already in the formation, so that
nearby free robots receive the graph and then participate to
the formation progressively.

Asmentioned in Sect. 3, the formation process starts when
a robot gets the label 0 in the graph, and is considered as part
of the formation. In the context of progressive deployment,
this robot is simply the first robot to enter the scene. If mul-
tiple robots are deployed simultaneously, position 0 can be
determined using one of the many election schemes avail-
able in the literature (e.g. Dieudonné and Petit 2007; Petit
2009; Karpov and Karpova 2015), or we can assign label 0
to a specially chosen robot. For example, robot 0 could be
a stakeholder that allows a user to monitor and control the
swarm, or it could be the first robot to reach the designated
position for the center of the graph. Robot 0, as explained

FREE ASKING

JOININGJOINED

ESCAPE

(1)

(2)

(4) (3)

(5)

(7)

(6)

Fig. 3 The behavior represented as a finite state machine. Every robot
joining the formation will experience states Free, Asking, Joining and
Joined and finally Joined. The secondary state Escape is active when a
free robot is trapped among Joined robots

Table 2 State transition condition in Fig. 3

Marker Description

(1) Found a label

(2) Request refused

(3) Request granted

(4) Lost parents

(5) Reached target

(6) Trapped inside joined robots

(7) Escape from joined robots

earlier, does not move, but all other robots gradually position
themselves around it. Robot 0 can also act as the interface
with a human to interactwith the swarmandmanually control
the formation process or change its shape. It is worth noting
that this does not prevent the whole formation process to be
entirely distributed, as there is no central control node.

5.1 Behavior structure

Thebehavior is represented as afinite statemachine, shown in
Fig. 3. It consists of four states, which are Free, Asking, Join-
ing and Joined. Table 2 shows the state transition conditions.
A robot in state Free and Asking is still not part of the for-
mation: it circles around the edge of the formation, namely
the structure composed of Joining and Joined robots, and
searches for a proper label in the graph. When such a label
is found, and both its parents are in sight, the Free robot
transitions to state Asking, sending a message to request the
label. Once the request is approved by the Joining and Joined
robots, the robot transitions to state Joining. From then on it
becomes part of the formation and at the position designated
by the acquired label. Based on the control law described
in Sect. 4, the robot is attracted and repelled by its parents,
moving to the target position in the formation and stopping
there. If no obstacles are encountered and if the parents stay in
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A F

E

4

2 0 3

1

F

6

Fig. 4 Theoverall formation process.Roundmarkers are robots not par-
ticipating to the formation, with a letter indicating their state. Hexagon
markers are robots already part of the formation, with indication of their
label. Arrows show the predicted motion of each robot, and the shadow
represents the virtual force field generated by the current formation.
Letter ‘F’ indicates a Free robot, slipping at the edge of the virtual force
field. Letter ‘E’ indicates a robot trapped in the formation aiming at a
safer outside position. Letter ‘A’ indicates an Asking robot, trying to
keep the two candidate parents within sight. The full hexagon mark-
ers are Joined robots that can act as parents, and the hollow hexagon
marker is a Joining robot driven by the parents to the target position,
represented without a numerical label

sight, the robot finally converges to the desired position and
switches to state Joined. In the Asking state, several robots
may ask for the same label simultaneously. In this case, only
one is conferred the label, while the rest transitions back to
state Free. If a Joining robot loses communication with its
parents, it transitions to stateAsking to request the label again,
from which it may receive the same label or have to transi-
tion back to state Free. It is possible that a Free robot gets
trapped among joined robots. In this case, the robot switches
to a secondary state,Escape, to evade its trapped location and
find a safe spot outside the formation. The whole formation
process is shown in Fig. 4.

5.2 States

Each of the states described in Fig. 3 are detailed in this
section, togetherwith the communication scheme and control
law.

5.2.1 Free state

A robot in this state does not have a label because it is not
yet part of the formation. Robots in this state update their
graph according to the robots that have already joined the
formation. They are notified if a labeled node in the graph is
already occupied or not. A Free robot searches for an avail-
able label and when one is found, if both parents are also
within sight, transits to the state Asking to send a request to
join the formation with this label.

F

J2

J1

J5

J3
J4

1

2

3

4

5

R

Fig. 5 Schematic of the Free state test. The F point is a Free robot.
Assuming it has five Joined neighbors, dots J1 to J5, it is trapped. Ray
F R is the reference direction of the local coordinate of the Free robot,
so α1 to α5 are the bearings of each Joined neighbor w.r.t. this local
frame. Sorting the neighbors according to angle α1 to angle α5 and
lining them up, a polygon consisting of 5 Joined neighbors of the Free
robot is created

Free robots only broadcast their state, so that robots nearby
can sense them and avoid collisions. They circle around the
current formation composed of Joined robots and Joining
robots. This is achieved by applying three virtual forces:

u = f (Fp,Fv,Fa),

where Fp is a force keeping the robot away from the struc-
ture, Fv is a force perpendicular to Fp that compels the robot
to circle around the structure, and Fa is a force pushing Free
robots away fromnearby robots to avoid collisions. The func-
tion f (·) maps the virtual force to a navigation command.

5.2.2 Escape state

TheEscape state is a secondary state under stateFree. Robots
in this state follow the same communication rule as a Free
robot, but following a different behavior. If a Free robot is
trapped, i.e., it is inside a polygon created by Joined robots, it
is unable to move along the outer edge of the already formed
pattern and find a proper position to join. To free itself from
the polygon, the robot transits to state Escape. A Free robot
tests if it is trapped at each control step. As in Fig. 5, a Free
robot sorts all its Joined neighbors according to their relative
bearing. By lining them up, we can obtain a polygon com-
posed of the Joined neighbors. Then, we draw a ray from the
Free robot. By counting the number of intersection points
between the ray and the edges of the polygon, the Free robot
can check if it is inside the polygon, which occurs when the
number of intersections is odd. A trapped robot can free itself
bymoving towards the Joined neighborwith the highest label
and then rotate around it. This escape strategy works because
the labeling algorithm grows the target graph from the inside
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out, so labels with higher values are closer to the exterior
boundary of the formation.

5.2.3 Asking state

Once a robot gets a proper label and both parents are within
sight, it sends amessage containing three items to request this
label. The message is a tuple (Asking, ReqLabel, ReqID).

The first element encodes the state of the robot, ReqLabel
is the label being asked, and ReqID is a randomly generated
unique ID used to counter the situationwheremultiple robots
ask for the same label.

The reply received from a Joined robot is a tuple (Joined,
ReqLabel, ReqID, Reply). The Asking robot checks if the
ReqLabel is the same as the label requested. If this is the
case, the robot further checks the Reply value. If it is granted,
and the ReqID is the same as the one it sent originally, then
the robot takes the label and transitions to Joining. If not, it
transitions back to Free, looking for another available label.

The control law during the Asking stage must keep the
parents in sight. We use attraction to the joined robots and
repulsion from the surrounding free robots through the fol-
lowing law:

u = f (Fp + Fa)

where Fp is the virtual force generated by the joined robots,
keeping the the Asking robot a given distance from the
already formed pattern; and Fa is the virtual force gener-
ated by the nearby robots, pushing the Asking robot away
to avoid collisions. Function f (·) maps the virtual force
into velocity commands: it takes the vector of virtual force
vforce = (αforce, dforce) as input, with αforce being the direc-
tion of the vector, and dforce its magnitude. The output will
also be a vector vvelocity = (αvelocity, dvelocity), where:

αvelocity = αforce

and

dvelocity =
{

k · dforce if w · dforce ≤ vthreshold

vthreshold otherwise

where w is a parameter to scale the magnitude (empirically
determined) and vthreshold is a speed threshold.

5.2.4 Joining state

According to the model described in Sect. 4, we derive a
behavior as Eq. (4) and prove thatwith this control law, robots
can be driven to form the desired pattern. The behavior of a

Joining robot is defined as

ui = −∇�i (pi ,p j ,pk)

The potential-field-based control law is interpreted as a set
of virtual forces that are translated into a speed command.
Based on pi , p j and pk , robot i can get the position of par-
ents j and k in its local coordinate frame as pi

j = (di
j , α

i
j )

and pi
k = (di

k, α
i
k). Using the formation graph, the robot

can also get the desired distance from the two parents as
di j and dik . Robot i first checks if it is on the correct side
w.r.t. the two parents. This is done by normalizing vector

vnorm = (pi
k − pi

j )/

∥
∥
∥pi

k − pi
j

∥
∥
∥, with vperp being obtained

by rotating vnorm anticlockwise by π/2 . If vperp · pi
j > 0,

the robot is on the correct side. Let us assume robot i is on
the correct side: if it is sufficiently far from both parents,

i.e.,
∣
∣
∣

∥
∥
∥pi

j

∥
∥
∥ − di j

∣
∣
∣ > dsafe and

∣
∣
∥
∥pi

k

∥
∥ − dik

∣
∣ > dsafe, or it is

already between the two parents, which means pi
j ·vnorm < 0

and pi
k · vnorm > 0, it is applied a virtual force represented

as Fi = F j +Fk , with F j and Fk being two attracting forces
generated by the two parents. If the robot is already near the

target, namely
∣
∣
∣

∥
∥
∥pi

j

∥
∥
∥ − di j

∣
∣
∣ < dthreshold and

∣
∣
∥
∥pi

k

∥
∥ − dik

∣
∣ <

dthreshold, we use the Lennard-Jones Potential to compute the
driving virtual forces as:

F j = ( fLJ(d
i
j , di j ), α

i
j )

Fk = ( fLJ(d
i
k, dik), α

i
k)

where

fLJ(ddist, dtar) = KLJ

ddist
·
((

dtar
ddist

)4

−
(

dtar
ddist

)2
)

in which KLJ is an empirically determined parameter. If the

robot is far from the target, which means
∣
∣
∣

∥
∥
∥pi

j

∥
∥
∥ − di j

∣
∣
∣ ≥

dthreshold or
∣
∣
∥
∥pi

k

∥
∥ − dik

∣
∣ ≥ dthreshold, we use a concave

potential as:

F j = ( fcon(d
i
j , di j ), α

i
j )

Fk = ( fcon(d
i
k, dik), α

i
k)

where

fcon(ddist, dtar) = Kmax ·
(

dtar
ddist

− 1

)2Kexp−1

inwhich Kmax is a parameter set to themaximum speed of the
robot, and Kexp is another empirically-determined parameter.
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If the robot is not between the parents, and is on the side
of parent j , which means pi

j · vnorm > 0, the virtual force is

Fi = Kmax · vnorm

If the robot is on the side parent k, namely pi
k · vnorm < 0,

the virtual force is then

Fi = −Kmax · vnorm.

If the robot is on the wrong side of the parents, if it is

far enough from both parents, as
∣
∣
∣

∥
∥
∥pi

j

∥
∥
∥ − di j

∣
∣
∣ > dsafe and

∣
∣
∥
∥pi

k

∥
∥ − dik

∣
∣ > dsafe, or it is already between the twoparents,

which means pi
j · vnorm < 0 and pi

k · vnorm > 0, the robot
goes between the parents with

Fi = Kmax · (pi
j + pi

k),

meaning it will move to the correct side.
At this stage, robots broadcast their state and label as

the tuple (Joining, Label). When the distance to the target
is smaller than a tolerance ε, the robot transitions to state
Joined. If for any reason it lost communication with its par-
ents, it transitions back to Asking.

5.2.5 Joined state

A Joined robot is part of the formation, which means it can
play the role of a parent for other robots. Such a robot keeps
broadcasting its state and label with the tuple (Joined, Label).

Once a request is received, a Joined robot checks if it is
a parent of the point with the requested label. In this case,
and if it is also the parent with the highest label, it is then
responsible for sending a reply to the asking robot. If the
point is already occupied by another robot, the Joined robot
sends a refuse message (Joined, ReqLabel,0,refuse).

If the position is still unoccupied, the joined robot will
choose a robot among the candidates (if many are simul-
taneously asking) and reply as: (Joined, ReqLabel, ReqID,
granted).

In some cases, the free robot may be trapped in the middle
of joined robots. The robot then switches to stateEscape until
it evades the trapped position.

6 Simulation evaluation

The performance of the formation algorithm is evaluated
with ARGoS (Pinciroli et al. 2012), a realistic, physics-based
simulator for multi-robot systems. Figure 6 shows how a
heart-shaped formation is generated progressively (Pinciroli
et al. 2016). A systematic evaluation follows.

Fig. 6 Steps of the formation for a heart geometry formedby114 robots.
The black robots are Free, and the green-yellow robots are Joined.
Screenshot are taken from theARGoS simulator. a t = 10 s, b t = 400 s
and c t = 1500 s (Color figure online)

6.1 Performance

The evaluation focuses on three aspects of the formation pro-
cess:

– Completion time the time required to form a complete
shape;

– Joining time the time elapsed between two successive
join events;

– Absolute positioning error Ei j between robots i and j
is calculated as Ei j = ∣

∣(di j − d̄i j )/d̄i j
∣
∣ where d̄i j is the

expected distance between robots i and j , and di j is the
actual distance measured at the end of the experiment.

6.2 Simulation setup

While our algorithm can form generic shapes, to ensure
comparability among different experimental conditions, the
robots are tasked with the formation of a grid. In our simu-
lation, we test three grid sizes: 5× 5, 10 × 10, and 15× 15.

M robots are uniformly distributed in the experimental
arena, an empty square of side L . We consider three density
configurations D: broad (D = 0.01), medium (D = 0.05),
and tight (D = 0.1). The arena side L is calculated with
L = √

(Mπ R2)/D, where R is the radius of the robot
(R = 8.5 cm). We use the marXbot (Bonani et al. 2010)
robot model for our simulations, with a range-and-bearing
sensor for situated communication, and with its maximum
speed set to 10cm/s.

We also evaluate the scalability of the algorithm with the
number of robots N required to complete the formation (e.g.,
N = 25 for a 5 × 5 grid). We deploy M = k N robots,
with k ∈ {1, 2, 3}. Every configuration 〈grid size, D, k〉 was
tested 30 times, for a total of 810 runs.

6.3 Simulation results and discussion

We observed 3 failures out of all the 810 runs, leading to a
failure rate of 0.37%. All the failures occurred with the high-
density configuration (D = 0.1) and were due to a robot
trapped in the middle of the formation at the very beginning
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Fig. 7 Simulation results from Pinciroli et al. (2016). Each box cor-
responds to the distribution of a performance measure for a specific
experimental configuration 〈grid size, D, k〉 over 30 runs. The whiskers

in the box plots indicate the 5th and 95th percentile. The top plot reports
the completion time in seconds; the middle plot reports the joining time
in seconds; and the bottom plot reports the positioning error

of the formation process. No failure occurred with low and
middle density distributions.

Figure 7 shows that both completion time and joining time
decrease with the factor k: this is because with k = 1, every
robot needs to find a position in the formation and at the final
stages of the formation process, there are fewFree robots that
have to circle the formation looking for a label. With k > 1
the number of Free robots increases, and so does the chance
that a robot is close to an available position. We also observe
that completion time slightly decreases with the initial robot
density (the parameter D), which is to be expected as denser
robots have to travel a shorter distance to find a label. It is
worth noting that the configuration parameters do not signifi-

cantly affect the positioning error, which is always lower than
8% (with a median around 4%). This is expected because the
final position of each robot in the formation relies on the vir-
tual force generated by its parents and the position tolerance:
assuming a robot can get accurate distance and bearing infor-
mation from its neighbours and can physically travel to the
target position, then the formation error is only affected by
the parameters of the force field and the formation tolerance
value. Note that this is in general not the case for real robots,
and for this reason we conducted the experiments presented
in the following section.
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Fig. 8 Structure of the experimental platform.AnOptitrack systemgets
the position of each robot through IR cameras. Blabbermouth acts as a
communication hub, combining the communicationmessages and posi-
tion information. TheKhepera robots receive position-taggedmessages,
emulating situated communication. Our algorithm is implemented with
a Buzz script

7 Experimental evaluation

We carried out experiments with the Khepera IV robots1 to
verify our formation control algorithm. Figure 8 shows our
experimental platform, which consists of an Optitrack sys-
tem (an infrared camera-based tracking system), a software
communication hub, and a swarm of Khepera IV. To emu-
late situated communication, the robots send their messages
wirelessly to the software hub. The software hub processes
the messages received from the robots and calculates relative
positioning information from the tracking system data, and
relays them back to the receiving robots.

We ran two sets of experiments to validate our approach:
(1) the formation of a regular 3 × 3 grid, repeated 10 times
from different initial positions; and (2) 4 formations with the
shapes of the letters M, I, S and T, which spell the name of
one of the laboratories involved in this work.

The formation control algorithm is implemented in Buzz
(Pinciroli andBeltrame2016).Our implementation, shown in
Algorithm 1, first reads the graph file and sets the experiment
parameters within the reset() function. The step()
function is executed 10 times per second, and it implements
our algorithm’s state machine.

We measure the performance of the algorithm as the posi-
tioning error of the formation Ei j = di j − di j , where di j is
the distance between robots i and j when all robots are in
state Joined, and di j is the desired distance between the two
robots.

1 https://www.k-team.com/khepera-iv.

Algorithm 1 Structure of the robot control code
function reset()

readGraph()

initialSet()

msg = listen()

end function

function step()
if state == Free then

doFree()

else if state == Asking then
doAsking()

else if state == Joining then
doJoining()

else if state == Joined then
doJoined()

end if
broadcast(msg)

end function

function doFree()
searchProperLabel()

if seeParents() and onCorrectSide() then
state = Asking

end if
if IsTrapped() then

doEscape()

else
circleAroundPattern()

end if
end function

function doAsking()
sendRequestMessage()

if requestApproved() then
state = Joining

else if RequestDenied() or TimerOut() then
state = Free

end if
updateTimer()

stay()

end function

function doJoining()
if seeParents() then

if label == 1 then
navigateAccordingToParent()

else
navigateAccordingToPotentialField()

end if
else if reachedTarget() then

state = Joined
else if timerOut() then

state = Asking
end if

end function

function doJoined()
if receiveRequest() then

chooseChild()

approveRequest()

end if
end function
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Fig. 9 Experiments with typical initial positions. The left side shows
the initial and final position with robots initially placed around the robot
with label 0. The right side show robots initially placed on one side of
the robot with label 0

7.1 Experiment setup

Figure 10 shows the results for the 3×3 grid formation, using
red diamonds for the target positions. In this experiment, we
fixed the robot with label 0 to be the Khepera with ID K01,
and randomly selected the initial positions of all other robots
shown in Fig. 9. The experiment was repeated 10 times, with
different initial conditions.

For our second set of experiments (forming the “MIST”
letters), the desired formation is shown in Fig. 13, with the
targets marked with red diamonds. Each formation experi-
ment was repeated twice, with random initial positions. The
arena for the experiment was 2.5m×2.5m and the position
tolerance was set to 3cm.

7.2 Experiment results and discussion

Figures 9, 10 and 11 report the results of the grid formation
experiments. Figure 9 shows testswith two initial positions as
well as the final positions. Figure 10 depicts the desired for-
mationwith red diamonds and the final positions of the robots
of all tests; roundmarkers with the same color indicate robots
from the same test. As the orientation of the final formation
cannot be fixed, we rotated and translated the graphs to over-
lay the results. The final positions of robots converge around
the targets, with an error in most cases smaller than the tol-
erance for joining the formation between −3 and 3cm. The
worst-case error was ± 6 cm, and we attributed it to impre-
cise relative localization. Figure 11 shows the details of the
formation error for each test, as well as the aggregate error.
Figure 12 shows the results for the second set of experiments,
where the robots form the shapes of the letters in the word
“MIST”. Figure 13 depicts the final positions of the robots

Fig. 10 Final positions of the robots after 10 tests. The red diamonds
indicate the desired formation, while the roundmarkers show the exper-
imental results. Markers with the same color represent the same test
(Color figure online)
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Fig. 11 Position error for the grid formation. The aggregate formation
error is shown in the rightmost column

Fig. 12 Experiment results of the “MIST” formation. Robots are tasked
to form four letters (“M”, “I”, “S” and “T”) from random initial posi-
tions. The first row shows the initial positions of robots,while the second
shows the final formations

with round markers of different colors for different attempts.
The robots converged to the targets with a formation error
illustrated in Fig. 14, generally within the range of ± 2 cm.
A video for the experiments is available at https://mistlab.ca/
grid_MIST.avi and https://youtu.be/vPFrWTJ70VA.
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Fig. 13 Final positions of robots in the experiments for the MIST letters formation, with each letter repeated twice. The red diamonds show the
desired formation, while the round markers with the same color show the final positions of robots from the same test (Color figure online)
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Fig. 14 Formation error from the MIST experiment

8 Conclusions

The progressive deployment of a swarm of robots can pave
the way for many applications. In this paper, we proposed a

case study of pattern formation, that can be applied to any
shape described as a 2D point cloud. The point cloud is trans-
formed into a directed acyclic graph that is shared among the
swarm members. When robots are deployed, they agree on
their assigned position on the graph using only local com-
munication and navigate there. This is a first step towards the
definition of behaviors for progressively deployed swarms,
and it shows how a formation can gradually grow in time,
with guaranteed convergence for the joining process. In this
paper, we provide a solid theoretical foundation, a mathe-
matical model, and sufficient conditions for convergence.

The proposed algorithmwas verified with extensive simu-
lations and with experiments on real robots. Our simulations
study the effects of swarm size (up to hundreds of robots),
available robots, and the density of the initial robot distribu-
tion. To validate our simulated experiments with real robots,
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we have implemented the complete algorithm using the Buzz
language and tested it on a set of 10 Khepera IV robots. The
results indicate that our algorithm is robust to noise and that
it can handle different formations and shapes. The overall
placement error for our algorithm is below 5%.

We plan to apply this algorithm to practical applications,
such as the deployment of sensor networks. For instance,
we are currently porting the algorithm to a fleet of heteroge-
neous unmanned vehicles, forwhich graphs can ease the zone
coverage tasks for mapping and to maintain network connec-
tivity. Further research includes considering robots that need
to be in constant motion, and also includes additional theo-
retical work on progressive deployment, such as considering
adaptive task allocation for heterogeneous swarms.
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