Autonomous Robots (2019) 43:449-468
https://doi.org/10.1007/s10514-018-9792-8

@ CrossMark

Grounding natural language instructions to semantic goal
representations for abstraction and generalization

Dilip Arumugam’ - Siddharth Karamcheti'® - Nakul Gopalan' - Edward C. Williams' - Mina Rhee’ -

Lawson L. S. Wong' - Stefanie Tellex'

Received: 9 December 2017 / Accepted: 26 July 2018 / Published online: 13 August 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

Language grounding is broadly defined as the problem of mapping natural language instructions to robot behavior. To truly be
effective, these language grounding systems must be accurate in their selection of behavior, efficient in the robot’s realization
of that selected behavior, and capable of generalizing beyond commands and environment configurations only seen at training
time. One choice that is crucial to the success of a language grounding model is the choice of representation used to capture
the objective specified by the input command. Prior work has been varied in its use of explicit goal representations, with
some approaches lacking a representation altogether, resulting in models that infer whole sequences of robot actions, while
other approaches map to carefully constructed logical form representations. While many of the models in either category
are reasonably accurate, they fail to offer either efficient execution or any generalization without requiring a large amount
of manual specification. In this work, we take a first step towards language grounding models that excel across accuracy,
efficiency, and generalization through the construction of simple, semantic goal representations within Markov decision
processes. We propose two related semantic goal representations that take advantage of the hierarchical structure of tasks and
the compositional nature of language respectively, and present multiple grounding models for each. We validate these ideas
empirically with results collected from following text instructions within a simulated mobile-manipulator domain, as well as
demonstrations of a physical robot responding to spoken instructions in real time. Our grounding models tie abstraction in
language commands to a hierarchical planner for the robot’s execution, enabling a response-time speed-up of several orders
of magnitude over baseline planners within sufficiently large domains. Concurrently, our grounding models for generalization
infer elements of the semantic representation that are subsequently combined to form a complete goal description, enabling
the interpretation of commands involving novel combinations never seen during training. Taken together, our results show
that the design of semantic goal representation has powerful implications for the accuracy, efficiency, and generalization
capabilities of language grounding models.

1 Introduction

Asrobots become ubiquitous, there is a greater need for a sim-
ple yet effective means of interaction between them and their
human collaborators. Natural language is a powerful tool that
facilitates seamless interaction between humans and robots.

This is one of several papers published in Autonomous Robots compris-
ing the “Special Issue on Robotics Science and Systems”.

Dilip Arumugam and Siddharth Karamcheti have contributed equally
to this work.

B Siddharth Karamcheti
sidd.karamcheti @ gmail.com

1" Brown University, Providence, RI, USA

Not only does it offer flexibility and familiarity, but it also
eliminates the need for end users to have knowledge of low-
level programming. The challenge, however, lies in dealing
with the full scope of natural language in all of its complex-
ity and diversity. The end goal is for any human to instruct
their robot collaborator through language as if they were
interacting with another human. To this end, we address the
problem of accurate and efficient language grounding along
two specific dimensions of language complexity: abstraction
and generalization.

In everyday speech, humans use language at multiple lev-
els of abstraction. For example, a brief transcript from an
expert human forklift operator instructing a human trainee
has very abstract commands such as “Grab a pallet,” mid-
level commands such as “Make sure your forks are centered,”

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-018-9792-8&domain=pdf
http://orcid.org/0000-0003-2153-2455

450

Autonomous Robots (2019) 43:449-468

and very fine-grained commands such as “Tilt back a little
bit” all within thirty seconds of dialog. Humans use these
varied granularities to specify and reason about a large vari-
ety of tasks with a wide range of difficulties. Furthermore,
these abstractions in language map to subgoals that are use-
ful when interpreting and executing a task. In the case of
the forklift trainee above, the subgoals of moving to the
pallet, placing the forks under the object, then lifting it up
are all implicitly encoded in the command “Grab a pallet.”
By decomposing generic, abstract commands into modular
sub-goals, humans exert more organization, efficiency, and
controlin their planning and execution of tasks. A robotic sys-
tem that can identify and leverage the degree of specificity
used to communicate instructions would be more accurate
in its task grounding and more robust towards varied human
communication. Moreover, this notion of abstraction in lan-
guage parallels abstraction in sequential decision-making
(Gopalan et al. 2017). A language grounding model that
properly identifies linguistic abstraction can then use hier-
archical planning effectively, enabling more efficient robot
execution. Thus, in this work, we think of abstraction as the
key to achieving efficiency.

End users of a fully-deployed language grounding sys-
tems will also expect generalization. For instance, consider
a robot operating in the home that has been trained on the
command “Take the silverware to the kitchen.” If the robot is
also trained on natural language descriptions of all the rooms
in the home, then it should be able to generalize taking sil-
verware to each known room, such as “Take the silverware
to the dining room.” Despite never having been trained on
commands that specifically involve both the dining room
and silverware, the robot should be able to generalize and
combine its prior understanding of moving silverware with
its existing knowledge of the dining room to successfully
plan and complete the task. In other words, the grounding
model should be indifferent between the kitchen and dining
room as object destinations and recognize both as potential
parameters for a more general object manipulation template.
Without such generalization capabilities, a language ground-
ing model would require a training corpus of commands
large enough to capture the full combinatorial space of tasks,
environment variables, and the various possible relationships
between them; that is, every desired behavior would need to
be enumerated and accounted for during training. A robotic
system that can associate semantic meaning with the indi-
vidual environment components, and combine them in novel
ways to handle new natural language commands, has a much
greater chance of being able to generalize from a significantly
smaller amount of training data.

Existing approaches for language grounding map between
natural language commands and task representations that are
essentially sequences of primitive robot actions (Chen and
Mooney 2011; Matuszek et al. 2012; Tellex et al. 2011).

@ Springer

While effective at directing robots to complete predefined
tasks, mapping to fixed sequences of robot actions is unre-
liable in changing or stochastic environments. Accordingly,
MacGlashan et al. (2015) decouple the problem and use a sta-
tistical language model to map between language and robot
goals, expressed as reward functions in a Markov Decision
Process (MDP). Then, an arbitrary planner solves the MDP,
resolving any environment-specific challenges with execu-
tion. As a result, the learned grounding model can transfer
to other robots with different action sets so long as there is
consistency in the task representation (in this work, reward
functions). The desire to scale up to larger, more complex
environments, however, reveals an inherent trade-off within
MDPs between accommodating low-level task representa-
tions for flexibility and decreasing the time needed to plan
through higher level representations of the decision-making
problem (Gopalan et al. 2017). In parallel, performing a
single inference to arrive at the intermediate reward func-
tion representation compromises the opportunity to associate
semantic meaning with individual components of that repre-
sentation, thereby affecting generalization.

To address these problems, we present two novel approa-
ches for mapping natural language commands to robot
behavior. The first approach tackles the varying granular-
ity of natural language by mapping to reward functions at
different levels of abstraction within a hierarchical planning
framework. This approach enables the system to quickly
and accurately interpret both abstract and fine-grained com-
mands. By coupling abstraction-level inference with the
overall grounding problem, we exploit the subsequent hierar-
chical planner to efficiently execute the grounded tasks. The
second approach tackles the issue of generalization through
grounding models that factor the output space and com-
pose reward functions through a multi-step inference process.
Rather than inferring the entire semantic representation all at
once, these grounding models decompose the representation
and infer its constituent elements. As a result, the approach
is able to attribute meaning to specific components of the
semantic representation, enabling it to exhibit a higher degree
of generalization at testing time over baseline approaches.

Statement of contributions

Preliminary versions of this work were presented in Aru-
mugam et al. (2017) and Karamcheti et al. (2017). The
models proposed in these prior papers respectively examined,
in isolation, the issues of efficient execution and general-
ization. In this extended version, we present a unified view
of the previous approaches, using them as evidence in sup-
port of language grounding systems that make careful use of
semantic goal representations to simultaneously realize the
desiderata of accurate, efficient, and generalizable models.
Additionally, we provide new and superior results for the

Autonomous Robots (2019) 43:449-468

451

models presented in Karamcheti et al. (2017), demonstrating
the ability to generalize over goal-oriented commands.

2 Related work

While the various environments in which robots can be found
are expanding to include the home, the workplace, and on the
road, the most common interfaces for controlling these robots
remain fixed in either teleoperation or directly programmed
behaviors. Humans use natural language to communicate
ideas, motivations, and goals with other humans. It has been
a long-standing goal in the field of artificial intelligence to
have an agent understand and perform tasks that are specified
through natural language. SHRDLU (Winograd 1971) is one
of the earliest examples of such an agent wherein handwritten
rules enabled the understanding and grounding of language
commands to behavior using simple programs. Despite this
early success, however, the field cannot rely on methods that
require the enumeration of all possible grammar rules.

One alternative methodology maps language commands
directly to the action sequences that an agent must execute to
realize the task (Tellex et al. 2011; Matuszek et al. 2012; Artzi
and Zettlemoyer 2013). Tellex et al. (2011) learn the proba-
bilistic meaning of individual words given natural language
and associated trajectories. Given a sentence at testing time,
inference is performed over the space of possible trajectories
to identify one that best grounds the task specified by the
input. Matuszek et al. (2012) learn to translate natural lan-
guage to a synthetic control language that can execute directly
within the environment. Artzi and Zettlemoyer (2013) learn
a mapping of language to an event-semantics-based rep-
resentation of the trajectories. The core restrictions of the
aforementioned methods are that they limit the space of pos-
sible tasks to explicit robot action sequences and heavily rely
on the determinism of the underlying environment.

Another line of language grounding research first maps
language to an intermediate semantic representation that
can be converted to agent behavior (Zelle and Mooney
1996; Zettlemoyer and Collins 2005; Howard et al. 2014;
MacGlashan et al. 2015). Examples of semantic representa-
tions include lambda calculus expressions, reward functions,
and constraints for the agent to satisfy in the environment.
Semantic parsing translates natural language into a lambda
calculus expression using a grammar that is executable by
an agent (Liang 2016). Zelle and Mooney (1996) leverage
this approach to enable the execution of linguistic queries
on a geographical database. Zettlemoyer and Collins (2005)
solve the same problem but begin with a partial lexicon and
learn new grammar rules during the course of learning the
semantic parser. We note that by diverging from the semantic
parsing approaches, our approach does not require a manu-
ally pre-specified grammar.

Howard et al. (2014) tackle motion planning problems in
the robotics domain by learning the meaning of words while
mapping from natural language to planner constraints. This
method extends ideas from Tellex et al. (2011) where infer-
ence is performed over the smaller space of constraints rather
than the space of all possible trajectories. Paul et al. (2016)
learn the meaning of abstract concepts like rows and columns
of objects allowing for commands that capture a large space
of possible behaviors. MacGlashan et al. (2015) proposed
grounding natural language commands to reward functions
associated with certain tasks, leaving the challenge of exe-
cution in a potentially stochastic environment to an arbitrary
planning algorithm. They treat the goal reward function as
a conjunction of propositional logic functions, much like a
machine language, to which a natural language task can be
translated, using an IBM Model 2 (IBM2) (Brown et al. 1990,
1993) language model. Additionally, reward functions can
themselves be learned via inverse reinforcement learning (Ng
and Russell 2000) using trajectories from expert trainers.

Crucially, MacGlashan et al. (2015) perform inference
over reward function templates, or lifted reward functions,
along with environmental constraints. A lifted reward func-
tion merely specifies a task while leaving the environment-
specific variables of the task undefined. The environmental
binding constraints then specify the properties that an object
in the environment must satisfy in order to be bound to a
lifted reward function argument. In doing this, the output
space of the grounding model is never tied to any particu-
lar instantiation of the environment, but can instead align to
objects and attributes that lie within some distribution over
environments. Given a lifted reward function and environ-
ment constraints (henceforth jointly referred to as only a
lifted reward function), a subsequent model can later infer the
environment-specific variables without needing to re-learn
the language understanding components for each environ-
ment. In order to leverage this flexibility, all of the proposed
grounding models in this work produce lifted reward func-
tions which are then completed by a grounding module before
being passed to a planner (see Sect. 5).

Planning in domains with large state-action spaces is com-
putationally expensive as algorithms like value iteration and
bounded real-time dynamic programming (RTDP) need to
explore the domain at the lowest, “flat” level of abstraction
(Bellman 1957; McMahan et al. 2005). Naively, this might
result in an exhaustive search of the space before the goal
state is found. A better approach is to decompose the plan-
ning problem into smaller, more easily solved subtasks that
an agent can identify and select in sequence. A common
method to describe subtasks is through temporal abstrac-
tion in the form of macro-actions (McGovern et al. 1997)
or options (Sutton et al. 1999). These methods achieve sub-
goals using either a fixed sequence of actions or a policy
with fixed initial and terminal states respectively. Planning

@ Springer

452

Autonomous Robots (2019) 43:449-468

with options requires computing the individual option poli-
cies by exploring and backing up rewards from lowest level
actions. This “bottom-up” planning is slow, as the reward for
each action taken needs to be backed up through the hierar-
chy of options, which is time consuming. Other methods for
abstraction, like MAXQ (Dieterrich 2000), R-MAXQ (Jong
and Stone 2008) and Abstract Markov Decision Processes
(AMDPs) (Gopalan et al. 2017) involve providing a hier-
archy of subtasks where each subtask is associated with a
subgoal and a state abstraction relevant to achieving the sub-
goal. Unfortunately, both MAXQ and R-MAXQ still suffer
from the challenges of bottom-up planning as they must back
up the reward from individual action executions across the
hierarchy.

We use AMDPs in this paper because they plan in a “top-
down” fashion, where a planner first determines how good
a subgoal before solving the more computationally intensive
problem of planning to achieve the subgoal. Consequently,
the planner restricts its computation to a minimal subset of all
the subgoals within the hierarchy. AMDPs offer model-based
hierarchical representations in the form of a reward func-
tion and transition function to each subtask. Specifically, the
AMDP hierarchy is an acyclic graph in which each node is a
primitive action or an AMDP that solves a subtask defined by
its parent; the edges are actions of the parent AMDP. Depend-
ing on where a subgoal AMDP resides in the hierarchy, its
state space may either consist of low-level environment states
(at the lowest level) or abstract state representations built on
top of the environment state (at any point above the ground
level). AMDPs have empirically been shown to achieve faster
planning performance than other hierarchical methods.

The previous language grounding methods presented
either map language to a semantic representation or a direct
trajectory. However, Dzifcak et al. (2009) posited that natural
language can be interpreted as both a goal state specification
and an action specification. While this idea is orthogonal
to the idea of using abstractions, it is equally important as
humans often mix between goal-based commands, that spec-
ify some desired target state, and action-oriented commands,
that provide step-by-step instruction on exactly how to per-
form a task. To fully cover the space of possible language
commands, grounding models ought to be agnostic in real-
izing the specified behavior. To address this, in our work,
we put forth a single representation capable of capturing the
semantics of both types of commands.

In this work, we use deep neural networks to perform
language grounding. Deep neural networks have had great
success in many natural language processing (NLP) tasks,
such as traditional language modeling (Bengio et al. 2000;
Mikolov et al. 2010, 2011), machine translation (Cho et al.
2014; Chung et al. 2014), and text categorization (Iyyer
et al. 2015). One reason for their success is the ability to
learn meaningful representations of raw data (Bengio et al.

@ Springer

2000; Mikolov et al. 2013). In the context of NLP, these rep-
resentations, or “embeddings”, are often high-dimensional
vectors that not only represent individual words (similar to
sparse word representations) but also capture the semantics
of the words themselves. NLP has also enjoyed in the use
of recurrent neural networks (RNNs) that contain specially
constructed cells for mapping variable length inputs (in this
work, language commands) to a fixed-size vector representa-
tion (Choetal.2014; Chung et al. 2014; Yamada et al. 2016).
Our approach uses both word embeddings and a state-of-the-
art RNN models to map between natural language and MDP
reward functions.

3 Background

We consider the problem of mapping from natural language
to robot behavior within the context of Markov decision pro-
cesses. A Markov Decision Process (MDP) is a five-tuple
of (S, A, 7T, R, y) where S represents the set of states that
define a fully-observable environment, .4 denotes the set of
actions an agent can execute to transition between states, 7
defines the transition probability distribution over all possi-
ble next states given a current state and executed action, R
defines the numerical reward earned for a particular transi-
tion, and y represents the discount factor or effective time
horizon under consideration. Planning in an MDP produces
a mapping between states and actions, or policy, that maxi-
mizes the total expected discounted reward.

We specify an Object-oriented Markov Decision Pro-
cess (OO-MDP) to model the robot’s environment and
actions (Diuk et al. 2008). An OO-MDP builds upon an
MDP by adding sets of object classes and propositional func-
tions; each object class is defined by a set of attributes and
each propositional function is parameterized by instances of
object classes. For example, an OO-MDP for the mobile
robot manipulation domain seen in Fig. 1b might denote
the robot’s successful placement of the orange block into
the blue room via the propositional function blockinRoom
block0O room1, where blockO and room1 are instances of
the block and room object classes respectively and the
blockinRoom propositional function checks if the location
attribute of blockO is contained in room1. A true value
results in a reward signal of 41, and O otherwise. Using
these propositional functions as reward functions that encode
termination conditions for each task, we arrive at a suf-
ficient semantic representation for grounding language. In
our framework, as in MacGlashan et al. (2015), we wish to
map from natural language to propositional reward functions
that correctly encapsulate the behavior indicated by the input
command; we then have a fully-specified MDP that can be
solved with a planning algorithm to produce robot behav-
ior.

Autonomous Robots (2019) 43:449-468

453

(@)

Fig.1 Sample configurations of the Cleanup world task on the Turtle-
bot mobile manipulator and on the simulated environment. a Simulated
Cleanup world used to collect data for this work. Moreover, the simula-

In the previous example, the propositional function does
not generalize well to different environment configurations;
notice that the correspondence between room1 and the blue
room is specific to that particular instance of the training envi-
ronment. If the environment configuration changes at test
time, a model trained to map to environment-specific out-
puts would fail to produce the correct behavior. To remedy
this problem, we “lift” the previous propositional func-
tions to better generalize to unseen environments. Given
a command like “Take the block to blue room,” the cor-
responding lifted propositional function takes the form
blockinRoom block0 roomlsBlue, denoting that the block
should end up in the room that is blue. We then assume an
environment-specific grounding module (see Sect. 5.3) that
consumes these lifted reward functions and performs the
actual low-level binding to specific room instances, result-
ing in grounded propositional functions like blockinRoom
block0 room1.

We evaluate all models on the Sokoban-inspired Cleanup
World domain (Junghanns and Schaeeer 1997; MacGlashan
et al. 2015). The domain consists of a mobile-manipulator
agent in a 2-D world with uniquely colored rooms and mov-
able objects. A domain instance is shown in Fig. la. The
domain itself is implemented as an OO-MDP where domain
objects include rooms and interactable “blocks” (like the
chair, basket, etc.) all of which have location and color
attributes.

4 Semantic goal representations
We follow the high-level structure of a language grounding

system defined by MacGlashan et al. (2015). In particular,
we treat the language grounding problem as a decomposition

Go north a little bit.

(b)

tor allows us to test out framework before runs on the robot. b Examples
of high-level (goal-oriented) and fine-grained (action-oriented) com-
mands issued to the Turtlebot robot in a mobile-manipulation task

into task inference and task execution components. During
task inference, we are given a natural language command c,
and wish to identify the semantic representation 7, such that:

F=argmaxPr(r | ¢) (1)
r

Consequently, given a parallel corpus C at training time,
we wish to find a set of model parameters 6 such that

0 =
argmeax 1_[Pr(r | c,0) 2)
(c,r)eC

At inference time, given a language command c, we find
the best 7 that maximizes the probability Pr(r | ¢, é). In all
models, r is a lifted propositional function that is independent
of any environment. Accordingly, this lifted task represen-
tation must be passed directly to the grounding module (see
Sect. 5.3) in order to arrive at an environment-representation
that can complete the MDP and be used for planning the task
execution. In the following sections, we define two types of
semantic goal representations, each of which allows for more
efficient execution and generalization respectively.

4.1 Abstraction in language

When contemplating the question of how to make a robot’s
execution of a language command more efficient, one pos-
sible consideration is that humans use language at multiple
levels of abstraction. For example, as illustrated in Fig. 1b, a
natural language command like “Take the block to the blue
room” specifies a high-level task relative to a command like
“Go north a little bit” that is trying to exercise more fine-
grained control. To support fine-grained tasks, MDPs need

@ Springer

454

Autonomous Robots (2019) 43:449-468

high-resolution state and action spaces; however, complet-
ing high-level tasks then requires long action sequences,
which makes planning inefficient. In contrast, hierarchical
planning frameworks, are designed with abstraction in mind
and attempt to leverage the inherent hierarchical nature of a
task in order to reduce the time needed to solve complicated
planning problems (Gopalan etal. 2017). We propose that one
semantic goal representation for efficient execution combines
the latent granularity / of a natural language command with
a lifted reward function r in a hierarchical planning frame-
work. Through this representation, we empower the system
to accurately interpret and quickly execute both abstract and
fine-grained commands.

In order to effectively ground commands across multiple
levels of complexity, we assume a predefined hierarchy over
the state-action space of the given grounding environment.
Furthermore, each level of this hierarchy requires its own set
of reward functions for all relevant tasks and sub-tasks. In this
work, we leverage the AMDP hierarchical planning frame-
work that enables efficient execution through the incremental
planning of subtasks without solving the full planning prob-
lem in its entirety. Finally, we assume that each command
is generated from a single level of abstraction (that is, no
command supplied to the grounding model can represent a
mixture of abstraction levels).

We can now reformulate the learning problem outlined
in Eq. 1. Given a natural language command ¢, we find the
corresponding level of the abstraction hierarchy /, and the
lifted reward function r that maximizes the joint probability
of [, r given c. Concretely, we seek the level of the state-action
hierarchy [and the lifted reward function 7 such that:

1,7 = argnllaxPr(l, rlc) 3)
r

s

4.2 Factored reward functions

While a language command consists of multiple words, each
having varied importance on the underlying task specifica-
tion, the output of our language grounding models thus far has
been a singleton reward function. That is, the command “Take
the block to blue room,” maps to a single output blockinRoom
block0 roomlsBlue. We could, however, treat the output in
a more compositional manner and attempt to ground sub-
strings in the natural language to individual semantic tokens.
For example, blockinRoom is uniquely specified by the sub-
string “block to ...room.” Similarly, blockO and roomlIsBlue
are entirely identified by “the block’ and “blue room” respec-
tively. At testing time, when presented with a novel command
like “Take the block to the green room,” the fact that we’ve
seen the command “Take the block to blue room” during
training should be sufficient for us to infer the blockinRoom
blockO0 piece of the output. Unfortunately, a singleton reward

@ Springer

function representation compromises our ability to general-
ize and reason about the constituent elements of an output
reward function.

For this reason, we turn to an alternate semantic repre-
sentation that factors the output space (reward function). We
define the callable unit, which takes the form of a (possi-
bly multiple) argument function. These functions are paired
with binding arguments whose possible values depend on the
type and arity of the callable unit. In the previous example,
blockinRoom would be treated as a callable unit with two
separate binding arguments blockO and roomlsBlue. A lan-
guage grounding model that uses this semantic representation
must first infer the callable unit and then infer the constituent
binding arguments. By forcing the grounding model to be
responsible for making these inferences separately, we allow
the model to generalize to novel commands that require the
composition of concepts seen in isolation during training.

By reformulating Eq. 1, we arrive at a new objective func-
tion for this factored output representation. Given a natural
language command ¢, our goal is to find the callable unit
and binding arguments a that maximize the following joint
probability:

i,a=argmaxPr(u,a|c) 4)
u,a

5 Language grounding models

Here we outline two distinct classes of language grounding
models, each of which maps between a natural language com-
mand and a lifted reward function (propositional function) of
an OO-MDP. We conclude the section with a brief description
of the Grounding Module which consumes a lifted reward
function (that contains no environment-specific entities) and
maps to the appropriate grounded reward function that can
be passed to an MDP planner.

5.1 Singleton reward functions and abstraction

We compare four language models for identifying the most
likely reward function and level of granularity: an IBM Model
2 translation model (similar to MacGlashan et al. 2015), a
deep neural network bag-of-words language model, and two
recurrent neural network (RNN) language models, with vary-
ing architectures. For information regarding the collection
procedure and format of the datasets used to train all mod-
els, please refer to Sect. 6.2. For detailed descriptions and
implementations of all the presented models, and associated
datasets, please refer to the supplemental repository: https://
github.com/h2r/GLAMDP.

https://github.com/h2r/GLAMDP
https://github.com/h2r/GLAMDP

Autonomous Robots (2019) 43:449-468 455
‘ Selection Output ‘ ’ Ly Output ‘ L, Output ‘ ‘ L...Output | ’Sslection Output I ’ L, Output I | L, Output | | L...Output |
? T T |Selecuon Layer| l L, Layer | | L Layer | . | L., Layer | Hidden Layer 2
‘Seleclion Layer | Ly Layer ‘ ‘ L, Layer ‘ . ‘ L., Layer ‘
| Hidden Layer ‘

1 |

Embedding Layer ‘

Bag of Words

Natural Language Input

(a)

Fig. 2 Model architectures for all three sets of deep neural network
models. In blue are the network inputs, and in red are the network
outputs. Going left to right, green boxes denote significant structural

5.1.1 IBM Model 2

As abaseline, we formulate task inference as a machine trans-
lation problem, with natural language as the source language
and semantic task representations (lifted reward functions)
as the target language. We use the well-known IBM Model
2 (IBM2) machine translation model (Brown et al. 1990,
1993) as a statistical language model for scoring reward func-
tions given input commands. IBM2 is a generative model that
solves the following objective (equivalent to Eq. 3 by Bayes’
rule):

~

l,f:argnllaXPI‘(l,r)~PI’(C|l»r) o
W

This task inference formulation follows directly from
MacGlashan et al. (2015) and we follow in an identical
fashion for training the IBM2 using the standard expectation-
maximization (EM) algorithm.

5.1.2 Neural network language models

We develop three classes of neural network architectures
(see Fig. 2): a feed-forward network that takes a natural lan-
guage command encoded as a bag-of-words and has separate
parameters for each level of abstraction (Multi-NN), a recur-
rent network that takes into account the order of words in the
sequence, also with separate parameters (Multi-RNN), and
arecurrent network that takes into account the order of words
in the sequence and has a shared parameter space across lev-
els of abstraction (Single-RNN).

5.1.3 Multi-NN: multiple output feed-forward network
We propose a feed-forward neural network (Bengio et al.

2000; Iyyer et al. 2015; Mikolov et al. 2013) that takes in a
natural language command c as a bag-of-words vector ¢, and

Gated Recurrent Unit (RNN)

Gated Recurrent Unit (RNN)

Embedding Layer
L% é é‘ o .

Natural Language Input

rtr f

Embedding Layer

hhd-

Natural Language Input

(b) (©)

differences between models. a Multi-NN model. b Multi-RNN model.
¢ Single-RNN model (Color figure online)

outputs both the probability of each of the different levels of
abstraction, as well as the probability of each reward func-
tion. We decompose the conditional probability from Eq. 3 as
Pr(l,r | c) =Pr(l | c)-Pr(r |, c). Applying this to the cor-
pus likelihood (Eq. 2) and taking logarithms, the Multi-NN
objective is to find parameters 6:

6 = argmeax Z logPr(l | c,0) +logPr(r|1,¢,0) (6)
(c,l,r)eC

To learn this set of parameters, we use the architecture
shown in Fig. 2a. Namely, we employ a multi-output deep
neural network with an initial embedding layer, a hidden layer
that is shared between each of the different outputs, and then
output-specific hidden and read-out layers, respectively.

The level-selection output is a k-element discrete distri-
bution, where k is the number of levels of abstraction in the
given planning hierarchy. Similarly, the reward function out-
put at each level L; is a probability distribution with support
on the reward functions at level L; of the hierarchy.

To train the model, we minimize the sum of the cross-
entropy loss on each term in Eq. 6. We train the network
via backpropagation, using the Adam Optimizer (Kingma
and Ba 2014, with a mini-batch size of 16, and a learning
rate of 0.001. Furthermore, to better regularize the model
and encourage robustness, we use Dropout (Srivastava et al.
2014) after the initial embedding layer, as well as after the
output-specific hidden layers with probability p = 0.5.

5.1.4 Multi-RNN: multiple output recurrent network

Inspired by the success of recurrent neural networks (RNNs)
in NLP tasks (Cho et al. 2014; Mikolov et al. 2010, 2011;
Sutskever et al. 2014), we propose an RNN language model
that takes in a command as a sequence of words and, like
the Multi-NN bag-of-words model, outputs both the proba-

@ Springer

456

Autonomous Robots (2019) 43:449-468

bility of each of the different levels of abstraction, as well
as the probability of each reward function, at each level of
abstraction. RNNs extend feed-forward networks to handle
variable-length inputs by employing a set of one or more
hidden states, which are updated after reading in each input
token. Instead of converting natural language command c¢ to
a vector ¢, we use an RNN to interpret it as a sequence of
words s = (c1, ¢2 ... cp). The Multi-RNN objective is then:

é:argmeax > logPr(l|s,0)+1logPr(r | 1,5,6) (7)
(s,l,r)eC

This modification is reflected in Fig. 2b, which is simi-
lar to the Multi-NN architecture, except in the lower layers
where we use an RNN encoder that takes the sequence of raw
input tokens and maps them into a fixed-size state vector. We
use the gated recurrent unit (GRU) of Cho et al. (2014), a
particular type of RNN cell that have been shown to work
well on natural language sequence modeling tasks (Chung
et al. 2014), while requiring fewer parameters than the long
short-term memory (LSTM) cell (Hochreiter and Schmidhu-
ber 1997).

Similar to the Multi-NN, we train the model by minimiz-
ing the sum of the cross-entropy loss of each of the two
terms in Eq. 7, with the same optimizer setup as the Multi-
NN model. Dropout is used to regularize the network after
the initial embedding layer and the output-specific hidden
layers.

5.1.5 Single-RNN: single output recurrent network

Both Multi-NN and Multi-RNN decompose the conditional
probability of both the level of abstraction [and the lifted
reward function r given the natural language command ¢
as Pr(l,r | ¢) = Pr(l | ¢) - Pr(r | I, c), allowing for the
explicit calculation of the probability of each level of abstrac-
tion given the natural language command. As a result, both
Multi-NN and Multi-RNN create separate sets of parameters
for each of the separate outputs (that is, separate parameters
for each level of abstraction in the underlying hierarchical
planner).

Alternatively, we can directly estimate the joint proba-
bility Pr(l, » | ¢). To do so, we propose a different type of
RNN model that takes in a natural language command as a
sequence of words s (as in Multi-RNN), and directly outputs
the joint probability of each tuple (I, r), where [denotes the
level of abstraction, and r denotes the lifted reward function
at the given level. The Single-RNN objective is to find 6 such
that:

6 =
argméclx Z logPr(l,r | s,60) (8)
(s,l,r)eC

@ Springer

With this Single-RNN model, we are able to signifi-
cantly improve model efficiency compared to the Multi-RNN
model, as all levels of abstraction share a single set of param-
eters. Furthermore, removing the explicit calculation of the
level selection probabilities allows for the possibility of posi-
tive information transfer between levels of abstraction, which
is not necessarily possible with the previous models.

The Single-RNN architecture is shown in Fig. 2c. We use
a single-output RNN, similar to the Multi-RNN architecture,
with the key difference being that there is only a single output,
with each element of the final output vector corresponding
to the probability of each level-reward tuple (/, r), given the
natural language command c.

To train the model, we minimize the cross-entropy loss of
the joint probability term in Eq. 8. Training hyper-parameters
are identical to Multi-RNN, and Dropout is applied to the
initial embedding layer and the penultimate hidden layer.

5.2 Factored reward functions

While our Single-RNN model manages to generalize over
syntax, it makes no attempt to leverage the compositional
structure of language and generalize over semantics. A unit-
argument pair not observed at training time will not be
predicted, even if the constituent pieces were observed sepa-
rately. To remedy this, the Single-RNN model would require
every possible unit-argument pair to be enumerated in the
training data to adequately model the full output space.
Consequently, the requisite amount of data grows rapidly
with task specifications that include more objects with richer
attributes.

To resolve this, we introduce the Deep Recurrent Action/
Goal Grounding Network (DRAGGN) framework. The
DRAGGN framework maps natural language instructions
to separate distributions over callable units and (possibly
multiple) binding constraints, where the callable units gen-
erate either action sequences or goal conditions. By treating
callable units and binding arguments as separate entities, we
circumvent the combinatorial dependence on the size of the
domain.

This unit-argument separation is inspired by the Neural
Programmer-Interpreter (NPI) (Reed and de Freitas 2016).
The callable units output by DRAGGN are analogous to
the subprograms output by NPI. Additionally, both NPI
and DRAGGN allow for subprograms/callable units with an
arbitrary number of arguments (by adding a corresponding
number of Binding Argument Networks, as shown at the top
right of each architecture in Fig. 3, each with its own output
space). In this work, we assume that each natural language
instruction can be represented by a single unit-argument pair
with only one argument. Consequently, in our experiments,
we assume that sentences specifying sequences of commands
have been segmented, and each segment is given to the model

Autonomous Robots (2019) 43:449-468

457

Callable Unit Network Binding Argument Network

[Softmax Layer] [Softmax Layer J

ReLU Activation

[Hidden Layer J [Hidden Layer J
A .

{ Gated Recurrent Unit (RNN) }
A A A

"DRAGGN Core

{ Embedding Layer
A A 4

M State Encoder

Language Segment 1

Natural Language Input

(a)

Callable Unit Network Binding Argument Network

{ Softmax Layer] { Softmax Layer J

ReLU Activation ReLU Activation

Hidden Layer Hidden Layer

))

Gated Recurrent Unit (RNN) Gated Recurrent Unit (RNN)

O O

Embedding Layer Embedding Layer
X X A

...

Language Segment 1

Natural Language Input

(b)

Fig. 3 Architecture diagrams for the two Deep Recurrent Action/Goal Grounding Network (DRAGGN) models, introduced in Sects. 5.2.1 and
5.2.2. Both architectures ground arbitrary natural language instructions to callable units and binding arguments. a Joint DRAGGN. b Independent

DRAGGN

one at a time. At the cost of extending training time, it is
straightforward to extend our models to handle extra argu-
ments by adding extra Binding Argument Networks.

Recall the DRAGGN objective that is given exactly by
Eq. 4:

it,a =argmaxPr(u,a | c) 9)
u,a

Depending on the assumptions made about the relationship
between callable units ¢ and binding arguments a, we can
decompose the above objective in two ways: preserving the
dependence between the two, and learning the relationship
between the units and arguments jointly; and treating the two
as independent. These two decompositions result in the Joint-
DRAGGN and Independent-DRAGGN models respectively.

Given the training data of natural language and the space
of unit-argument pairs, we train our DRAGGN models end-
to-end by minimizing the sum of the cross-entropy losses
between the predicted distributions and true labels for each
separate distribution (that is, optimizing with respect to the
predicted callable units and binding arguments). At infer-
ence, we first choose the callable unit with the highest
probability given the natural language instruction. We then
choose the binding argument(s) with highest probability from
the set of valid arguments. The validity of a binding argument
given a callable unit is given a priori, by the specific envi-
ronment. Note that we do not enforce this validity restriction
at training time.

Our models were trained using Adam, for 125 epochs,
with a batch size of 16, and a learning rate of 0.001.

5.2.1 Joint DRAGGN (J-DRAGGN)

The J-DRAGGN models the joint probability in Eq. 4, via
the shared RNN state in the DRAGGN Core (as depicted in
Fig. 3a). We first encode the constituent words of our natural
language segment into fixed-size embedding vectors. From
there, the sequence of word embeddings is fed through an
RNN denoted by the DRAGGN Core. After processing the
entire segment, the current gated recurrent unit (GRU) hidden
state is then treated as a representative vector for the entire
natural language segment. This single hidden core vector
is then passed to both the Callable Unit Network and the
Binding Argument Network, allowing for both networks to
be trained jointly, enforcing a dependence between the two.

The Callable Unit Network is a two-layer feed-forward
network using rectified linear unit (ReLU) activation. It takes
the DRAGGN Core output vector as input to produce a
probability distribution over all possible callable units. The
Binding Argument Network is a separate network with an
identical architecture and takes the same input, but instead
produces a probability distribution over all possible binding
arguments. The two models do not need to share the same
architecture; for example, callable units with multiple argu-
ments require multiple different argument networks, one for
each possible binding constraint.

@ Springer

458

Autonomous Robots (2019) 43:449-468

5.2.2 Independent DRAGGN (I-DRAGGN)

The I-DRAGGN, contrary to the J-DRAGGN, decomposes
the objective from Eq. 4 by treating callable units and binding
arguments as being independent, given the original natu-
ral language instruction. More precisely, rather than directly
estimating the joint probability of the callable unit ¢ and the
arguments a given the language instruction (as J-DRAGGN
does), the -DRAGGN assumes ¢ and a are independent
given the language instruction. This change is realized in the
network architectural differences between the J-DRAGGN
and the I-DRAGGN. The I-DRAGGN network architecture
is shown in Fig. 3b. Rather than encoding the constituent
words of the natural language instruction once, and feeding
the resulting embeddings through a DRAGGN Core to gen-
erate a shared core vector, the -DRAGGN model embeds
and encodes the natural language instruction twice, using
two separate embedding matrices and GRUs, one each for
the callable unit and binding argument. In this way, the I-
DRAGGN model encapsulates two disjoint neural networks,
each with their own individual parameter sets that are trained
independently. The latter half of each individual network
(the Callable Unit Network and Binding Argument Network)
remains the same as that of the J-DRAGGN.

5.3 Grounding module

In all of our models, the inferred lifted reward function
template must be bound to environment-specific variables.
The grounding module maps the lifted reward function to
a grounded one that can be passed to an MDP planner. In
our evaluation domain (see Fig. 1b), it is sufficient for our
grounding module to be a lookup table that maps specific
environment constraints to object ID tokens. In domains
with ambiguous constraints (for instance, a “chair” argu-
ment where multiple chairs exist), a more complex grounding
module could be substituted. For instance, Artzi and Zettle-
moyer (2013) present a model for executing lambda-calculus
expressions generated by a combinatory categorical grammar
(CCG) semantic parser, which grounds ambiguous predicates
and nested arguments.

6 Experiments

In this section we outline the series of experiments con-
ducted to evaluate the ability of our grounding models to
accurately infer the task specified in natural language while
also enabling either efficient execution or generalization. We
begin by providing a brief overview of the Cleanup World
domain before describing the abstraction hierarchy defined
over the domain as well as the set of callable units and binding
arguments defined over the domain. From there we provide

@ Springer

details of how our dataset was compiled before presenting
the experimental details and results.

6.1 Domain

The Cleanup World domain (Junghanns and Schaeeer 1997;
MacGlashan et al. 2015), illustrated in Fig. 1a, is a mobile-
manipulator robot domain that is partitioned into rooms
(denoted by unique colors) with open doors (white cells).
Each room may contain some number of objects which can be
moved (pushed) by the robot. This domain itself is modeled
after a mobile robot that moves objects around, analogous
to a robotic forklift operating in a warehouse or a pick-and-
place robot in a home environment. We use an AMDP from
Gopalan et al. (2017), which imposes a three-level abstrac-
tion hierarchy for planning.

The combinatorially large state space of Cleanup World
simulates real-world complexity and is ideal for exploit-
ing abstractions. Under the OO-MDP formalism, each state
represents a collection of objects (not to be confused with
the manipulable objects or blocks that may appear within
an instance of Cleanup World), each belonging to a spe-
cific object class characterized by some number of attributes.
Consequently, each state represents more than just the robot
position but also the positions of all blocks as well as the
object instances representing each room and each door. Ulti-
mately, this gives way to a large but structured state space
for exploiting abstraction. At the lowest level of abstraction
L, the (primitive) action set available to the robot agent con-
sists of north, south, east, and west actions. Users directing
the robot at this level of granularity must specify lengthy
step-by-step instructions for the robot to execute. At the next
level of abstraction L1, the state space of Cleanup World only
consists of rooms and doors. The robot’s position is solely
defined by the region (specifically, the room or door) itresides
in. Abstracted actions are subroutines for moving either the
robot or a specific block to a room or door. It is impossible to
transition between rooms without first transitioning through
a door, and it is only possible to transition between adjacent
regions; any language guiding the robot at L must adhere
to these dynamics. Finally, the highest level of abstraction,
L,, removes the concept of doors, leaving only rooms as
regions; all L transition dynamics still hold, including adja-
cency constraints. Subroutines exist for moving either the
robot or a block between connected rooms. The full space of
subroutines at all levels and their corresponding propositional
functions are defined by Gopalan et al. (2017). Figure 4b
shows a few collected sample commands at each level and
the corresponding level-specific AMDP reward function.

For factored reward functions, goal-oriented callable units
are paired with binding arguments that specify properties
of environment entities that must be satisfied in order to
achieve the goal. These binding arguments are later resolved

Autonomous Robots (2019) 43:449-468

459

Bring the chair to the blue room.

Level Example Command Reward Function
= I Turn and move one spot to the right. goWest
0 Go three down, four over, two up. agentinRoom agent0 roomlsGreen
. - Go to door, enter red room, blockinRegion blockO roomlsGreen
Ly push chair to green room door.
L] Go to the door then go into the red room. agentinRegion agent0 roomIsRed
Lo Go to the green room. agentinRegion agent0 roomlsGreen

blockinRegion blockO roomisBlue

(a)

(b)

Fig. 4 Amazon Mechanical Turk (AMT) dataset domain and examples. a A starting instance of the Cleanup World domain. b Example AMT

commands and corresponding reward functions

Table 1 (a) Complete set of

: . Action-oriented
action and goal-oriented callable

Goal-oriented

units for the Cleanup World (a)
domain. (b) Examples of natural

language phrases and goUp(steps) agentlnRoom(room)
corresponding callable units and goDown(steps) blockinRoom(room)
arguments goleft(steps)
goRight(steps)
Natural language Callable unit Argument
()
Go to the red room. agentinRoom roomlsRed

Put the block in the green room.
Go up three spaces.

Head left for a step.

blockinRoom roomlsGreen
goUp 3

golLeft 2

by the Grounding Module (see Sect. 5.3) to produce grounded
reward functions (OO-MDP propositional logic functions)
that are handled by an MDP planner. Action-oriented callable
units directly correspond to the primitive actions available to
the robot and are paired with binding arguments defining the
number of sequential executions of that action. The full set
of callable units along with requisite binding arguments are
shown in Table 1.

6.2 Dataset

To conduct our evaluation of efficient execution by lever-
aging abstraction in language, we performed an Amazon
Mechanical Turk (AMT) user study to collect natural lan-
guage samples at various levels of abstraction in Cleanup
World. Annotators were shown video demonstrations of ten
tasks, always starting from the state shown in Fig. 4a. For
each task, users provided a command that they would give
to a robot, to perform the action they saw in the video,
while constraining their language to adhere to one of three
possible levels in a designated abstraction hierarchy: fine-
grained, medium, and coarse. This data provided multiple
parallel corpora for treating language grounding as a machine
translation problem with ground truth reward functions and

abstraction levels. We measured our system’s performance by
passing each command to the language grounding system and
assessing whether it inferred both the correct level of abstrac-
tion and the reward function. We also recorded the response
time of the system, measuring from when the command was
issued to the language model to when the (simulated) robot
would have started moving. Accuracy values were computed
using the mean of multiple trials of ten-fold cross valida-
tion. The space of possible tasks included moving a single
step as well as navigating to a particular room, taking a par-
ticular object to a designated room, and all combinations
thereof.

Unlike MacGlashan et al. (2015), the demonstrations
shown were not only limited to simple robot navigation and
object placement tasks, but also included composite tasks
such as “Go to the red room, take the red chair to the green
room, go back to the red room, and return to the blue room”.
Commands reflecting a clear misunderstanding of the pre-
sented task (for example, “please robot”) were removed from
the dataset. Such removals were rare; we removed fewer than
30 commands for this reason, giving a total of 3047 com-
mands. Per level, there were 1309 Lo commands, 872 L
commands, and 866 L, commands. The L corpus included
more commands since the tasks of moving the robot one unit

@ Springer

460

Autonomous Robots (2019) 43:449-468

Table 2 Task grounding
accuracy (averaged over 5 trials)

Evaluated Lo (%)

Evaluated L (%) Evaluated L, (%)

when training IBM2 and
single-RNN models on a single

(a) IBM2 reward grounding baselines

level of abstraction, then Trained Lo 21.61 17.20 21.87

evaluating commands from Trained L 9.83 10.23 13.90

alternate levels Trained L, 14.94 12.84 31.49
(b) Single-RNN reward grounding baselines

Trained Lo 77.67 28.05 23.26

Trained L 32.79 82.99 74.65

Trained Ly 14.19 58.62 87.91

This is similar to the MacGlashan et al. (2015) results, as we see that without accounting for abstractions
inlanguage, there is a noticeable effect on grounding accuracy
Bold values denote that the best model for the given column

in each of the four cardinal directions do not translate to
higher levels of abstraction.

To conduct our evaluation of generalization capability in
the DRAGGN models, we re-use the previously specified
dataset of natural language commands for the single instance
of Cleanup World domain seen in Fig. 1a. Since this original
dataset was compiled for analyzing the hierarchical nature of
language, we were easily able to filter the commands down
to only those using high-level goal specifications and low-
level trajectory specifications. Furthermore, to better cover
the full space of callable units and binding arguments, we
used the same Amazon Mechanical Turk procedure detailed
above to collect an additional 352 goal-oriented commands.
This resulted in the addition of 4 unique callable unit/binding
argument pairs not originally present in the dataset used for
the efficiency evaluation.

To produce a dataset of action-specifying callable units,
experts annotated low-level trajectory specifications from
the efficient execution dataset. For example, the command
“Down three paces, then up two paces, finally left four
paces” was segmented into “down three spaces,” “then up
two spaces,” “finally left four spaces,” and was given a cor-
responding execution trace of goDown 3, goUp 2, goLeft
4. The existing set of grounded reward functions in the
dataset were converted to callable units and binding argu-
ments. Examples of both types of language are presented
in Table 1 with their corresponding callable unit and bind-
ing arguments. Our final dataset after the additional round
of data collection and segmentation consists of 4086 natural
language commands total.

To fully show the capabilities of our model, we tested on
two separate versions of the dataset. The first is the standard
dataset, consisting of a 90-10 split of the collected action-
oriented and goal-oriented commands. The second is a zero-
shot dataset, which consists of a specific train-test split that
evaluates how well models can predict previously unseen
action sequence and goal combinations. For example, in this
dataset the action-oriented training data might consist only

@ Springer

of action sequences of the form goUp 3, and goDown 4,
while the test data would only consist of the “unseen” action
sequence goUp 4. The goal-oriented “zero-shot* dataset was
constructed similarly. In both datasets, we assume the test
environment is configured the same as the train environment.
We discuss the effects and limitations of this assumption in
Sect. 7.

6.3 Abstraction and efficiency

Before diving into the efficiency of our grounding models that
simultaneously infer reward function and level of abstrac-
tion, we verify that the models can achieve high grounding
accuracy. We then conclude with a series of experiments
that compare the execution times of the grounded tasks with
traditional, flat planning approaches against a hierarchical
planner that can leverage the additional abstraction informa-
tion inferred by our grounding models.

6.3.1 Task grounding

We present the baseline task grounding accuracies in Table 2
to demonstrate the importance of inferring the latent abstrac-
tion level in language. We simulate the effect of an oracle
that partitions all of the collected AMT commands into sep-
arate corpora according to the specificity of each command.
For this experiment, any Ly commands that did not exist
at all levels of the Cleanup World hierarchy were omitted,
resulting in a condensed L dataset of 869 commands. We
trained multiple IBM2 and Single-RNN models using data
from one distinct level and then evaluated using data from
a separate level. Training a model at a particular level of
abstraction includes grounding solely to the reward func-
tions that exist at that same level. Reward functions at the
evaluation level were mapped to the equivalent reward func-
tions at the training level (for instance, L agentinRegion
to Lo agentinRoom). Entries along the diagonal represent
the average task grounding accuracy for multiple, random

Autonomous Robots (2019) 43:449-468

461

Table 3 Accuracy of 10-fold
cross validation (averaged over

Level selection (%) Reward grounding (%)

3 runs) for each of the models

Naive Bayes
on the AMT Dataset

IBM2

SVM-RBF
Logistic regression
SVM-linear
Multi-NN
Multi-RNN
Single-RNN

70.89 23.70
79.87 27.26
91.53 46.64
93.21 71.45
94.62 72.86
93.51 36.05
95.71 80.11
95.91 80.46

The three NN-based methods (below the line) are introduced in this work; the rest are baselines
Bold values denote that the best model for the given column

90-10 splits of the data at the given level. Otherwise, evalu-
ation checked for the correct grounding of the command to
a reward function at the training level equivalent to the true
reward function at the alternate evaluation level (Table 3).

Task grounding scores are uniformly quite poor for IBM2;
however, IBM2 models trained using Lo and L, data respec-
tively result in models that substantially outperform those
trained on alternate levels of data. It is also apparent that an
IBM2 model trained on L data fails to identify the features
of the level. We speculate that this is caused, in part, by high
variance among the language commands collected at L as
well as the large number of overlapping, repetitive tokens that
are needed for generating a valid machine language instance
at L. While these models are worse than what MacGlashan
et al. (2015) observed, we note that we do not utilize a task
or behavior model. It follows that integrating one or both of
these components would only help prune the task grounding
space of highly improbable tasks and improve our perfor-
mance.

Conversely, Single-RNN shows the expected maximiza-
tion along diagonal entries that comes from training and
evaluating on data at the same level of abstraction. These
show that a model limited to a single level of language
abstraction is not flexible enough to deal with the full scope
of possible commands. Additionally, Single-RNN demon-
strates more robust task grounding than statistical machine
translation.

The task grounding and level inference scores for the
models in Sect. 5.1 are shown in Fig. 2. Going beyond the
IBM2 baseline used by MacGlashan et al. (2015), we exam-
ine other standard, non-neural-network-based classification
models for level and reward function inference. Specifically,
we evaluate using naive Bayes, logistic regression, and sup-
port vector machines (linear as well as with an RBF kernel),
all supplied with a bag-of-words representation of the natural
language utterance, identical to that used by our Multi-NN
model.

As we can see from these results, attempting to embed
the latent abstraction level within the machine language of

IBM2 results in weak level inference. Furthermore, ground-
ing accuracy falls even further due to sparse alignments and
the sharing of tokens between tasks in machine language (for
example, agentinRoom agentO room1 at Ly and agentin-
Region agent0 room1 at Li). The fastest of all the neural
models, and the one with the fewest number of parameters
overall, Multi-NN shows notable improvement in level infer-
ence over the IBM2; however, task grounding performance
still suffers, as the bag-of-words representation fails to cap-
ture the sequential word dependencies critical to the intent
of each command. We further observe this failure in the
performance of the logistic regression and SVM classifica-
tion baselines; while capable of outperforming the Multi-NN
model, they still fail to match the performance of RNN mod-
els operating at the level of individual word tokens.

Turning to the best performing set of models, those based
on RNNs, we see that the Multi-RNN again improves upon
level prediction accuracy and leverages the high-dimensional
representation learned by initial RNN layer to train reli-
able grounding models specific to each level of abstraction.
Finally, Single-RNN has near-perfect level prediction and
demonstrates the successful learning of abstraction level as a
latent feature within the neural model. By not using an oracle
for level inference, there is a slight loss in performance com-
pared to the results obtained in Table 2(b); however, we still
see improved grounding performance over Multi-RNN that
can be attributed to the full sharing of parameters across all
training samples allowing for positive information transfer
between abstraction levels.

6.3.2 Robot execution

Fastresponse times are important for fluid human-robot inter-
action, so we assessed the time it would take a robot to
respond to natural language commands in our corpus. We
measured the time it takes for the system to process a nat-
ural language command, map it to a reward function, and
then solve the resulting MDP to yield a policy so that the
simulated robot would start moving. We used Single-RNN

@ Springer

462

Autonomous Robots (2019) 43:449-468

3.0
2.5+ .
2.0

1.5+ ,

0.5 : '

H —

0.0-

AMDP/BASE NH/BASE AMDP/NH

(a)

Fig. 5 Relative inference + planning times for different planning
approaches on the same correctly grounded AMT commands. For each
method pair, values less than 1 indicate the method on the numerator

for inference since it was the most accurate grounding model,
and only correctly grounded instances were evaluated, so our
results are for 2634 of 3047 commands that Single-RNN got
correct.

We compared three different planners to solve the MDP:

e BASE A state-of-the-art flat (non-hierarchical) plan-
ner, bounded real-time dynamic programming [(BRTDP
(McMabhan et al. 2005)].

e AMDP A hierarchical planner for MDPs (Gopalan et al.
2017). At the primitive level of the hierarchy (L),
AMDP also requires a flat planner; we use BASE to allow
for comparable planning times. Because the subtasks
have no compositional structure, a Manhattan-distance
heuristic can be used at Ly. While BASE technically
allows for heuristics, distance-based heuristics are unsuit-
able for the composite tasks in our dataset. This illustrates
another benefit of using hierarchies: to decompose com-
posite tasks into subtasks that are amenable to better
heuristics.

e NH (No Heuristic) Identical to AMDP, but without the
heuristic as a fair comparison against BASE.

We hypothesize NH is faster than BASE (due to use of
hierarchy), but not as fast as AMDP (due to lack of heuris-
tics).

Since the actual planning times depend heavily on the
actual task being grounded (ranging from 5Sms for goNorth to
180s for some high-level commands), we instead evaluate the
relative times used between different planning approaches.
Figure 5a shows the results for all 3 pairs of planners. For
example, the left-most column shows %; the fact that
most results were less than 1 indicates that AMDP usually
outperforms BASE. Using Wilcoxon signed-rank tests, we
find that each approach in the numerator is significantly faster

@ Springer

3.0 1
2.5

ﬁ\ 7.73,
2.0 1 4.42

1.5

1.0

0.5 !

— [

0.0-

AMDP/BASE NH/BASE AMDP/NH

(b)

(left of /) is better. Each data point is an average of 1000 planning
trials. a Regular domain (214 states). b Large domain (218 states)

(p < 10740) than the one in the denominator demonstrating
that AMDP is faster than NH, which is in turn faster than
BASE; this is consistent with our hypothesis. Comparing
AMDP to BASE, we find that AMDP is twice as fast in over
half the cases, 4 times as fast in a quarter of the cases, and
can reach 20 times speedup. However, AMDP is also slower
than BASE on 23% of the cases; of these, half are within
5% of BASE, but the other half is up to 3 times slower.
Inspecting these cases suggests that the slowdown is due to
overhead from instantiating multiple planning tasks in the
hierarchy; this overhead is especially prominent in relatively
small domains like Cleanup World. Note that in the worst
case this is less than a 2 s absolute time difference.

From a computational standpoint, the primary advantage
of hierarchy is space/time abstraction. To illustrate the poten-
tial benefit of using hierarchical planners in larger domains,
we doubled the size of the original Cleanup domain and ran
the same experiments. Ideally, this should have no effect on
L1 and L, tasks, since these tasks are agnostic to the dis-
cretization of the world. The results are shown in Fig. 5b,
which again are consistent with our hypothesis. Somewhat
surprisingly though, while NH still outperforms BASE (p <
10~ 15O), it was much less efficient than AMDP, which shows
that the hierarchy itself was insufficient; the heuristic also
plays an important role. Additionally, NH suffered from two
outliers, where the planning problem became more com-
plex because the solution was constrained to conform to
the hierarchy; this is a well-known tradeoff in hierarchical
planning (Dieterrich 2000). The use of heuristics in AMDP
mitigated this issue. AMDP times almost stayed the same
compared to the regular domain, hence outperforming BASE
and NH (p < 10729), The larger domain size also reduced
the effect of hierarchical planning overhead: AMDP was only
slower than BASE in 10% of the cases, all within < 4% of
the time it took for BASE. Comparing AMDP to BASE, we

Autonomous Robots (2019) 43:449-468

463

Table4 Accuracy results (mean and standard deviation across 3 random initializations) on both the standard and zero-shot datasets

Standard

Zero-shot

Action-oriented (%)

Goal-oriented (%)

Action-oriented (%) Goal-oriented (%)

Single-RNN 95.7£0.1 844+0.3
J-DRAGGN 96.3+0.3 84.5+04
I-DRAGGN 971+0.3 81.0£0.9

0.0+0 0.0£0
21.1 £15.5 24+£1.8
97.0+0.0 19.1+12.6

Bold indicates the singular model that performed the best, whereas italics denotes the best models that were within the margin of error of each other

find that AMDP is 8 times as fast in over half the cases, 100
times as fast in a quarter of the cases, and can reach up to
3 orders of magnitude in speedup. In absolute time, AMDP
took < 1s on 90% of the tasks; in contrast, BASE takes
> 20 s on half the tasks.

6.4 Generalization

Unlike efficiency, the ability for a model to generalize beyond
what was seen at training time can be measured purely in
terms of grounding accuracy. Accordingly, we present lan-
guage grounding accuracies for our two DRAGGN models
in in Table 4 and treat Single-RNN as a baseline.

All three models received the same set of training data,
consisting of 2660 low-level action-oriented segments and
1017 high-level goal-based sentences. All together, there are
17 unique combinations of action-oriented callable units and
respective binding arguments, alongside 10 unique combina-
tions of goal-oriented callable units and binding arguments
present in the data. All three models also received the same set
of held-out data consisting of 295 low-level action-oriented
segments and 114 high-level goal-oriented sentences.

In aggregate, the models that use callable units for both
action and goal-based language grounding demonstrate supe-
rior performance to the Single-RNN baseline, largely due to
their ability to generalize, and output combinations unseen
at train time. We now consider these performance numbers
by dataset.

6.4.1 Standard dataset

Action prediction An action-oriented instruction is correctly
grounded if the output trajectory specification corresponds to
the ground-truth action sequence. To ensure fairness, we aug-
ment the output space of Single-RNN to include all distinct
action trajectories found in the training data (an additional 17
classes). All models perform generally well on this task, with
Single-RNN correctly identifying the correct action callable
unit on 95.7% of test samples, while both DRAGGN models
slightly outperform with 96.3% and 97.1% respectively.
Goal prediction An goal-based command is correctly
grounded if the output of the grounding module corre-
sponds to the ground-truth (grounded) reward function. In

our domain, all models predict the correct grounded reward
function with an accuracy of 81.0% or higher, with the
Single-RNN and J-DRAGGN models being too close to call.

6.4.2 Zero-shot dataset

Action prediction The Single-RNN baseline model is com-
pletely unable to produce unit-argument pairs that were
never seen during training, whereas both DRAGGN mod-
els demonstrate some capacity for generalization. The I-
DRAGGN model in particular demonstrates a strong ability
to disambiguate language pertaining to callable unit predic-
tion from language pertaining to binding argument predic-
tion. This ability to disambiguate between the two outputs
seemingly comes from the separate embedding spaces main-
tained for callable units and binding constraints respectively.

Goal prediction The Single-RNN baseline is again com-
pletely unable to produce unit-argument pairs never seen
during training. However, while both DRAGGN models
exhibit non-zero performance, the mean performance is
rather low, whereas the variance is quite high. Even with
the separate embedding spaces for callable units and bind-
ing arguments, the I-DRAGGN is unable to attain the same
level of accuracy exhibited in the zero-shot action prediction
experiments.

6.5 Robot demonstrations

We now outline a set of demonstrations conducted on a
mobile robot, utilizing the Single-RNN and I-DRAGGN
models to ground and execute spoken natural language
instructions in real time.

6.5.1 Abstraction

Using the trained grounding model and the corresponding
AMDP hierarchy, we tested with a Turtlebot on a small-
scale version of the Cleanup World domain. To accommodate
the continuous action space of the Turtlebot, the low-level,
primitive actions at Lo of the AMDP were swapped out for
move forward, backward, and bidirectional rotation actions;
all other levels of the AMDP remained unchanged. The low
level commands used closed loop control policies, which

@ Springer

464

Autonomous Robots (2019) 43:449-468

were sent to the robot using the Robot Operating System
(Quigley et al. 2009). Spoken commands were provided by
an expert human user instructing the robot to navigate from
one room to another. These verbal commands were converted
from speech to text using Google’s Speech API (Google
2017) before being grounded with the trained Single-RNN
model. The resulting grounding, with both the AMDP hier-
archy level and reward function, fed directly into the AMDP
planner resulting in almost-instantaneous planning and exe-
cution. Numerous commands ranging from the low-level “Go
north” all the way to the high-level “Take the block to the
green room” were planned and executed using the AMDP
with imperceivable delays after the conversion from speech
to text. A video demonstration of the end-to-end system is
available online: https://youtu.be/9bU20ESRtvU.

6.5.2 Generalization

In this section we use [-DRAGGN to specify goal and action
behaviors to a Turtlebot agent in a real environment version
of the Cleanup Domain. The natural language verbal com-
mand is first converted to text using Google’s Speech API
(Google 2017). Next, we use -DRAGGN to ground the nat-
ural language command to an executable task on the robot.
The agent then plans for the tasks using an Abstract Markov
Decision Processes hierarchy (Gopalan et al. 2017) to speed
up planning on the continuous domain.

The demo first highlights the robot’s capability to execute
action specifications such as “go three steps down” and “go
up.” Second, we demonstrate goal-based tasks like “go to the
green room” and “take the block to the blue room.” Regard-
less of the command type, the robot maintains the ability to
ground and plan in real time. Finally, we change the map of
the Cleanup domain to show that the robot can still ground the
tasks in the new environment given task specifications from
I-DRAGGN. A video demonstration of the end to end task
is submitted as supplemental material, and is also available
at this address: https://youtu.be/_u8msi-nZTI.

7 Discussion

The results presented in the previous section highlight
the capacity for neural-network based language grounding
models to improve accuracy, leverage abstraction, and dis-
play generalization. Taken together, they also form a more
cohesive picture showcasing the profound impact of task rep-
resentation on model performance. Each type of grounding
model represents a specific choice of semantic task represen-
tation that, in turn, allows the model to yield certain desirable
properties. In Single-RNN, the representation was formed by
simply including a latent language abstraction level with the
inferred reward function to inform a more efficient hierar-

@ Springer

chical planner. In the DRAGGN models, the representation
changed more fundamentally, decomposing the constituent
reward function components in order to glean more informa-
tion and generalize beyond the training data. We treat these
findings as compelling evidence for the importance of repre-
sentation design in language grounding models and see the
investigation of more cohesive representations that integrate
accuracy, efficiency, and generalization as an active direction
of future work. We now discuss the experimental results for
efficient abstraction and generalization separately, identify-
ing limitations and points for improvement.

7.1 Abstraction

While Single-RNN, our best grounding model, did achieve
high performance and correctly grounded the vast major-
ity of commands, it still suffered from a few errors that
are worth analyzing. At the lowest level of abstraction, the
model experienced some confusion between robot navigation
(agentlnRoom) and object manipulation (blockinRoom)
tasks. In the dataset, some users explicitly mention the
desired object in object manipulation tasks while others did
not; without explicit mention of the object, these commands
were almost identical to those instructing the robot to nav-
igate to a particular room. For example, one command that
was correctly identified as instructing the robot to take the
chair to the green room in Fig. 4a is “Go down...west until
you hit the chair, push chair north...” A misclassified com-
mand for the same task was “Go south...west...north...” These
commands ask for the same directions with the same amount
of repetition (omitted) but only one mentions the object of
interest allowing for the correct grounding. Overall, 83.3% of
green room navigation tasks were grounded correctly while
16.7% were mistaken for green room object manipulation
tasks.

Another source of error involved an interpretation issue in
the video demonstrations presented to users. The robot agent
shown to users as in Fig. 4a faces south and this orientation
was assumed by the majority of users; however, some users
referred to this direction as north (in the perspective of the
robot agent). This confusion led to some errors in the ground-
ing of commands instructing the robot to move a single step in
one of the four cardinal directions. Logically, these conflicts
in language caused errors for each of the cardinal directions
as 31.25% of north commands were classified as south and
15% of east commands were labeled as west.

Finally, there were various forms of human error through-
out the collected data. In many cases, users committed typos
that actually affected the grounding result such as asking
the robot to take the chair back to the green room instead
of the observed blue room. For some tasks, users often
demonstrated some difficulty understanding the abstraction
hierarchy described to them resulting in commands that par-

https://youtu.be/9bU2oE5RtvU
https://youtu.be/_u8msi-nZTI

Autonomous Robots (2019) 43:449-468

465

tially belong to a different level of abstraction than what was
requested. In order to avoid embedding a strong prior or lim-
iting the natural variation of the data, no preprocessing was
performed in an attempt to correct or remove these com-
mands. A stronger data collection approach might involve
adding a human validation step and asking separate users
to verify that the supplied commands do translate back to
the original video demonstrations under the given language
constraints as in MacMahon et al. (2006).

7.2 Generalization

Our experiments show that the DRAGGN models improve
over existing state-of-the-art in grounding action-oriented
language in an object manipulation domain. Furthermore,
due to the factored nature of the output, the -DRAGGN
model performs strongly in zero-shot action-oriented pre-
diction.

Nevertheless, [-DRAGGN did not perform as well as
Single-RNN and J-DRAGGN on goal-oriented language
in the standard setting. This is possibly due to the small
number of goal types in the dataset and the strong over-
lap in goal-oriented language. Whereas the Single-RNN
and J-DRAGGN architectures may experience some pos-
itive transfer of information (due to shared parameters in
each model), the -DRAGGN model does not because of
its assumed independence between callable units and bind-
ing arguments. This ability to allow for positive information
transfer suggests that J-DRAGGN would perform best in
environments where there is a strong overlap in the instruc-
tional language, with a relatively smaller but complex set of
possible action sequences and goal conditions.

On action-oriented language in the zero-shot setting, J-
DRAGGN has grounding accuracy of around 20.2% while I-
DRAGGN achieves a near-perfect 97.0%. Since J-DRAGGN
only encodes the input language instruction once, the result-
ing vector representation is forced to characterize both
callable unit and binding argument features. While this can
result in positive information transfer and improve grounding
accuracy in some cases (specifically, goal-based language),
this enforced correlation heavily biases the model towards
predicting combinations it has seen before. By learning sepa-
rate representations for callable units and binding arguments,
I-DRAGGN is able to generalize significantly better. This
suggests that -DRAGGN would perform best in situations
where the instructional language consists of many disjoint
words and phrases.

On goal-oriented language in the zero-shot setting, all
models exhibit weak performance, although the - DRAGGN
does show some ability to generalize. This seems to indicate
the difficulty of zero-shot language grounding in a setting
where the instructional language is complex, with multiple
overlapping words and phrases, and high variance in expres-

sive power. To better illustrate this, consider two commands
from our goal-oriented dataset: “Go to the red room,” ver-
sus “Go from the red room to the blue room.” While both
instructions ground to separate outputs (i.e roomlsRed vs
roomlsBlue), there is a lot of overlap in language, which
would make it hard for the [-DRAGGN to learn effective
embeddings in the binding argument space. Because goal-
oriented language is less constrained and generally more
expressive than action-oriented language, zero-shot predic-
tion is that much more difficult, and remains an open problem.

While our results demonstrate that the DRAGGN frame-
work is effective, more experimentation is needed to fully
explore the possibilities and weaknesses of such models.
While we’ve already identified zero-shot goal prediction as
one such limitation, another shortcoming in the DRAGGN
models is the need for segmented data. We found that all
evaluated models were unable to handle long, compositional
instructions, such as “Go up three steps, then down two
steps, then left five steps”. Handling conjunctions of low-
level commands requires extending our model to learn how
to perform segmentation, or producing sequences of callable
units and arguments. In this work, we assume that the lay-
out of the training and testing environments are identical.
Without this assumption, the scale of the testing domain
could dramatically differ from that of the training domain,
rendering the grounding model completely incapable of han-
dling action-oriented commands. For instance, consider the
model resulting from a training domain where the number
of action steps needed for completing tasks ranges from
three to five. This model would experience difficulty ful-
filling action-oriented commands in a novel testing domain
where the requisite number of action repetitions change to
be between ten and twenty steps. Note that this limitation is
exactly one of the motivations for considering goal-oriented
grounding representations in MacGlashan et al. (2015) and
our work.

8 Conclusion

Real-world language grounding systems must extend beyond
highly accurate identification of tasks specified through nat-
ural language if they are to become widespread throughout
the home and workplace. These systems must not only be
accurate in their interpretation of language but also be effi-
cient in their execution of the identified task and be capable
of leveraging linguistic structure to generalize beyond com-
mands only seen at training time. In this work, we show
that the choice of semantic goal representation used within
a language grounding model has powerful implications for
its ability to meet these three desired criteria. Moreover, we
introduce two distinct grounding models, each with their own
unique goal representation, that individually demonstrate

@ Springer

466

Autonomous Robots (2019) 43:449-468

improved efficiency through abstraction and generalization
over baseline models. By explicitly considering the latent
level of abstraction in language, our Single-RNN model can
interpret a much wider range of natural language commands
and leverage an existing hierarchical planner for efficient
execution of robot tasks. In parallel, our DRAGGN architec-
tures factor the output space according to the compositional
structure of our semantic representation thereby allowing the
model to exhibit mild generalization to commands not seen
during training.

There are limitations of this work that offer rich direc-
tions for future language grounding research. Here we have
assumed that all language commands exist at precisely one
level of abstraction; clearly, in natural human discourse, peo-
ple shift freely between levels of abstraction within a single
instruction. For instance, “go to the kitchen and take a few
steps to your left.” Additionally, humans naturally use refer-
ential expressions in language to quickly resolve ambiguities.
Through the use of determiners, we would enable future lan-
guage grounding systems to handle commands like “bring
the chair that’s in the blue room.” Commands that not only
indicate what should be done but also specify how it should be
done pose another challenge. Allowing for commands to be
qualified by adverbs like “quickly” or “safely” could require
another extension of a semantic representation to explicitly
model the qualifiers. In parallel, our factored output space,
while being representative of a large body of tasks, is still
relatively small. We plan on scaling up to domains with
larger output spaces potentially requiring us to explore other
sequence-to-sequence mapping approaches that can better
handle the increase.

Acknowledgements This work is supported by the National Science
Foundation under Grant Number IIS-1637614, the US Army/DARPA
under Grant Number W91 1NF-15-1-0503, and the National Aeronau-
tics and Space Administration under Grant Number NNX16AR61G.
Lawson L.S. Wong was supported by a Croucher Foundation Fellow-
ship.

References

Artzi, Y, & Zettlemoyer, L. (2013). Weakly supervised learning of
semantic parsers for mapping instructions to actions. In Annual
meeting of the association for computational linguistics.

Arumugam, D., Karamcheti, S., Gopalan, N., Wong, L., & Tellex,
S. (2017). Accurately and efficiently interpreting human-robot
instructions of varying granularities. In Robotics: Science and sys-
tems XII1. https://doi.org/10.15607/rss.2017 xiii.056.

Bellman, R. (1957). Dynamic programming. Princeton: Princeton Uni-
versity Press.

Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2000). A neu-
ral probabilistic language model. Journal of Machine Learning
Research, 3, 1137-1155.

Brown, P. F,, Cocke, J., Pietra, S. D., Pietra, V. J. D., Jelinek, F., Lafferty,
J. D., et al. (1990). A statistical approach to machine translation.
Computational Linguistics, 16, 79-85.

@ Springer

Brown, P. E,, Pietra, S. D., Pietra, V. J. D., & Mercer, R. L. (1993). The
mathematics of statistical machine translation: Parameter estima-
tion. Computational Linguistics, 19, 263-311.

Chen, D. L., & Mooney, R. J. (2011). Learning to interpret natural
language navigation instructions from observations. In AAAI Con-
ference on artificial intelligence.

Cho, K., van Merriénboer, B., Giilgehre, C., Bahdanau, D., Bougares,
F., Schwenk, H., & Bengio, Y. (2014). Learning phrase repre-
sentations using RNN encoder—decoder for statistical machine
translation. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP) (pp. 1724—
1734). Doha, Qatar: Association for Computational Linguistics.
http://www.aclweb.org/anthology/D14-1179.

Chung, J., Giilgehre, C., Cho, K., & Bengio, Y. (2014). Empirical
evaluation of gated recurrent neural networks on sequence mod-
eling. In Presented at the deep learning workshop at NIPS2014.
arXiv:1412.3555.

Dieterrich, T. G. (2000). Hierarchical reinforcement learning with the
MAXAQ value function decomposition. Journal on Artificial Intel-
ligence Research, 13,227-303.

Diuk, C., Cohen, A., & Littman, M. L. (2008). An object-oriented rep-
resentation for efficient reinforcement learning. In International
conference on machine learning.

Dzifcak, J., Scheutz, M., Baral, C., & Schermerhorn, P. (2009). What
to do and how to do it: Translating natural language directives into
temporal and dynamic logic representation for goal management
and action execution. In IEEFE international conference on robotics
and automation.

Google. (2017). Google Speech APL. https://cloud.google.com/speech/.
Accessed 30 January, 2017.

Gopalan, N., desJardins, M., Littman, M. L., MacGlashan, J., Squire, S.,
Tellex, S., Winder, R. J., & Wong, L. L. S. (2017). Planning with
abstract Markov decision processes. In International conference
on automated planning and scheduling.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory.
Neural Computation, 9(8), 1735-1780.

Howard, T. M., Tellex, S., & Roy, N. (2014). A natural language planner
interface for mobile manipulators. In IEEE International confer-
ence on robotics and automation.

Iyyer, M., Manjunatha, V., Boyd-Graber, J. L., Daumé, H. (2015). Deep
unordered composition rivals syntactic methods for text classifi-
cation. In Annual meeting of the association for computational
linguistics.

Jong, N. K., & Stone, P. (2008). Hierarchical model-based reinforce-
ment learning: R-max + MAXQ. In International conference on
machine learning.

Junghanns, A., & Schaeeer, J. (1997). Sokoban: A challenging single-
agent search problem. In International joint conference on arti-
ficial intelligence workshop on using games as an experimental
testbed for Al reasearch.

Karamcheti, S., Williams, E. C., Arumugam, D., Rhee, M., Gopalan, N.,
Wong, L. L. S., & Tellex, S. (2017). A tale of two DRAGGNSs: A
hybrid approach for interpreting action-oriented and goal-oriented
instructions. In Annual meeting of the association for computa-
tional linguistics workshop on language grounding for robotics.

Kingma, D. P, & Ba, J. (2014). Adam: A method for stochastic opti-
mization. CoRR. arxiv:1412.6980.

Liang, P. (2016). Learning executable semantic parsers for natural lan-
guage understanding. Communications of the ACM, 59(9), 68-76.

MacGlashan, J., Babes-Vroman, M., desJardins, M., Littman, M.,
Muresan, S., Squire, S., et al. (2015). Grounding english com-
mands to reward functions. In Proceedings of robotics: Science
and systems. https://doi.org/10.15607/RSS.2015.X1.018.

MacMahon, M., Stankiewicz, B., & Kuipers, B. (2006). Walk the talk:
Connecting language, knowledge, and action in route instructions.
In National conference on artificial intelligence.

https://doi.org/10.15607/rss.2017.xiii.056
http://www.aclweb.org/anthology/D14-1179
http://arxiv.org/abs/1412.3555
https://cloud.google.com/speech/
http://arxiv.org/abs/1412.6980
https://doi.org/10.15607/RSS.2015.XI.018

Autonomous Robots (2019) 43:449-468

467

Matuszek, C., Herbst, E., Zettlemoyer, L., & Fox, D. (2012). Learning
to parse natural language commands to a robot control system. In
International symposium on experimental robotics.

McGovern, A., Sutton, R. S., & Fagg, A. H. (1997). Roles of macro-
actions in accelerating reinforcement learning. In Grace Hopper
celebration of women in computing (pp. 13—18).

McMahan, H. ., Likhachev, M.,& Gordon, G. J. (2005). Bounded
real-time dynamic programming: RTDP with monotone upper
bounds and performance guarantees. In International conference
on machine learning.

Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., & Khudanpur,
S. (2010). Recurrent neural network based language model.
In T. Kobayashi, K. Hirose, & S. Nakamura, INTERSPEECH
2010, 11th Annual conference of the international speech com-
munication association, Makuhari, Chiba, Japan (pp. 1045-
1048). ISCA. http://www.isca-speech.org/archive/interspeech_
2010/i10_1045.html.

Mikolov, T., Kombrink, S., Burget, L., Cernocky, J., & Khudanpur, S.
(2011). Extensions of recurrent neural network language model.
In IEEE international conference on acoustics, speech, and signal
processing.

Mikolov, T., Chen, K., Corrado, G. S., & Dean, J. (2013). Effi-
cient estimation of word representations in vector space. CoRR.
arxiv:1301.3781.

Ng, A. Y., & Russell, S. (2000). Algorithms for inverse reinforcement
learning. In International conference on machine learning.

Paul, R., Arkin, J., Roy, N., & Howard, T. M. (2016). Efficient ground-
ing of abstract spatial concepts for natural language interaction
with robot manipulators. In Proceedings of robotics: Science and
systems. https://doi.org/10.15607/RSS.2016.X11.037.

Quigley, M., Faust, J., Foote, T., & Leibs, J. (2009). ROS: an open-
source robot operating system. In IEEE international conference
on robotics and automation workshop on open source software.

Reed, S. E., & de Freitas, N. (2016). Neural programmer-interpreters.
In International conference on learning representations.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, 1., & Salakhut-
dinov, R. (2014). Dropout: A simple way to prevent neural
networks from overfitting. Journal of Machine Learning Research,
15, 1929-1958.

Sutskever, 1., Vinyals, O., & Le, Q. V. (2014). Sequence to
sequence learning with neural networks. In Proceedings of the
27th international conference on neural information process-
ing systems, NIPS’14, Montreal, Canada (Vol. 2, pp. 3104—
3112). Cambridge, MA: MIT Press. http://dl.acm.org/citation.
cfm?id=2969033.2969173

Sutton, R. S., Precup, D., & Singh, S. P. (1999). Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforce-
ment learning. Artificial Intelligence, 112, 181-211.

Tellex, S., Kollar, T., Dickerson, S., Walter, M. R., Banerjee, A. G.,
Teller, S., & Roy, N. (2011). Understanding natural language com-
mands for robotic navigation and mobile manipulation. In AAA/
conference on artificial intelligence.

Winograd, T. (1971). Procedures as a representation for data in a
computer program for understanding natural language. Technical
report, Artificial Intelligence Laboratory, Massachusetts Institute
of Technology.

Yamada, T., Murata, S., Arie, H., & Ogata, T. (2016). Dynamical linking
of positive and negative sentences to goal-oriented robot behav-
ior by hierarchical RNN. In International conference on artificial
neural networks.

Zelle,J. M., & Mooney, R. J. (1996) Learning to parse database queries
using inductive logic programming. In National conference on
artificial intelligence.

Zettlemoyer, L. S., & Collins, M. (2005). Learning to map sentences to
logical form: Structured classification with probabilistic categorial
grammars. In Proceedings of the twenty-first conference on uncer-

tainty in artificial intelligence (UAI-05) (pp. 658—666). Arlington,
VA: AUAI Press. https://dslpitt.org/uai/display ArticleDetails.jsp?
mmnu=1&smnu=2&article_id=1209&proceeding_id=21.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Dilip Arumugam is an incoming
Ph.D. student in Computer Sci-
ence at Stanford University. He
recently completed his Masters
and Bachelors degrees in Com-
puter Science at Brown Univer-
sity, where he worked with Ste-
fanie Tellex and Michael Littman.
His primary research is in rein-
forcement learning.

Siddharth Karamchetiis an incom-
ing Al Resident at Facebook Al
Research, in New York City,
where he will be for a year, prior
to starting his Ph.D. at Stanford
University. He recently completed
his Bachelors degree in Computer
Science and Literary Arts at
Brown University, where he
worked with Stefanie Tellex and
Eugene Charniak. His primary
research interest is in natural lan-
guage processing, with a focus on
language grounding.

Nakul Gopalan is a Ph.D. stu-
dent at Brown University, where
he is advised by Stefanie Tellex.
His research is in the intersection
of language grounding, planning
and reinforcement learning.

@ Springer

http://www.isca-speech.org/archive/interspeech_2010/i10_1045.html
http://www.isca-speech.org/archive/interspeech_2010/i10_1045.html
http://arxiv.org/abs/1301.3781
https://doi.org/10.15607/RSS.2016.XII.037
http://dl.acm.org/citation.cfm?id=2969033.2969173
http://dl.acm.org/citation.cfm?id=2969033.2969173
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1209&proceeding_id=21
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1209&proceeding_id=21

468

Autonomous Robots (2019) 43:449-468

received a Siebel Fellowship, AAAI

Edward C. Williams is a Staff
Researcher at Brown University.
He recently completed his Bach-
elors degree in Computer Science
at Brown University, where he
worked with Stefanie Tellex.

Mina Rhee is a third-year under-
graduate in Computer Science at
Brown University.

Lawson L. S. Wong is a senior
research associate at Brown Uni-
versity, working with Stefanie
Tellex and George Konidaris. He
will be joining Northeastern Uni-
versity as an assistant professor in
Fall 2018. His research focuses on
learning, representing, and esti-
mating knowledge about the world
that an autonomous robot may
find useful. Lawson completed his
Ph.D. in 2016 at the Massachusetts
Institute of Technology, advised
by Leslie Pack Kaelbling and
Toméds Lozano-Pérez. He has
Robotics Student Fellowship, and

Croucher Foundation Fellowship for Postdoctoral Research.

@ Springer

Stefanie Tellex is the Joukowsky
Family Assistant Professor of
Computer Science and Assistant
Professor of Engineering at Brown
University. Her group, the Humans
To Robots Lab, creates robots that
seamlessly collaborate with peo-
ple to meet their needs using lan-
guage, gesture, and probabilistic
inference, aiming to empower
every person with a collaborative
robot.

	Grounding natural language instructions to semantic goal representations for abstraction and generalization
	Abstract
	1 Introduction
	Statement of contributions

	2 Related work
	3 Background
	4 Semantic goal representations
	4.1 Abstraction in language
	4.2 Factored reward functions

	5 Language grounding models
	5.1 Singleton reward functions and abstraction
	5.1.1 IBM Model 2
	5.1.2 Neural network language models
	5.1.3 Multi-NN: multiple output feed-forward network
	5.1.4 Multi-RNN: multiple output recurrent network
	5.1.5 Single-RNN: single output recurrent network

	5.2 Factored reward functions
	5.2.1 Joint DRAGGN (J-DRAGGN)
	5.2.2 Independent DRAGGN (I-DRAGGN)

	5.3 Grounding module

	6 Experiments
	6.1 Domain
	6.2 Dataset
	6.3 Abstraction and efficiency
	6.3.1 Task grounding
	6.3.2 Robot execution

	6.4 Generalization
	6.4.1 Standard dataset
	6.4.2 Zero-shot dataset

	6.5 Robot demonstrations
	6.5.1 Abstraction
	6.5.2 Generalization

	7 Discussion
	7.1 Abstraction
	7.2 Generalization

	8 Conclusion
	Acknowledgements
	References

