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Abstract
In highly constrained settings, e.g., a tentacle-likemedical robotmaneuvering throughnarrowcavities in the body forminimally
invasive surgery, it may be difficult or impossible for a robot with a generic kinematic design to reach all desirable targets
while avoiding obstacles. We introduce a design optimization method to compute kinematic design parameters that enable
a single robot to reach as many desirable goal regions as possible while avoiding obstacles in an environment. Our method
appropriately integrates sampling-based motion planning in configuration space into stochastic optimization in design space
so that, over time, our evaluation of a design’s ability to reach goals increases in accuracy and our selected designs approach
global optimality. We prove the asymptotic optimality of our method and demonstrate performance in simulation for (1) a
serial manipulator and (2) a concentric tube robot, a tentacle-like medical robot that can bend around anatomical obstacles to
safely reach clinically-relevant goal regions.

Keywords Motion planning · Design optimization · Concentric tube robots

1 Introduction

In a cluttered environment, the ability of a robotic manipula-
tor to reach desired targets while avoiding obstacles depends
significantly on the robot’s kinematic design. A robot’s kine-
matic design can be seen as a set of kinematic parameters that
define a robot’s shape and are fixed throughout the robot’s
use, e.g., the length of each link of a serial manipulator or
the lengths and curvatures of tubes in a concentric tube robot
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(Dupont et al. 2010;Gilbert et al. 2013). In highly constrained
settings, e.g., a tentacle-like robot maneuvering through nar-
row cavities in the body for minimally invasive surgery, it
may be difficult or impossible for a robot with a generic
kinematic design to reach all desirable targets while avoid-
ing obstacles (see Fig. 1).

Fortunately, advances in methods that enable the rapid
fabrication of customized robot designs is introducing the
potential to create robots that are kinematically optimized
on a task-specific basis. Advances in 3D printing enable the
rapid creation of robots with links of customizable lengths.
Customized medical robots, like concentric tube robots, can
be created inminutes by shape-setting or 3Dprinting (Gilbert
and Webster 2016; Morimoto and Okamura 2016). Our
objective is to computationally optimize the kinematic design
parameters of a robotic manipulator on a task-specific basis:
given the shapes of obstacles in the environment as well as
goal regions the robot should be capable of reaching, we aim
to compute a single robot design that can reach as many of
the goal regions as possible while avoiding obstacles.

In this paper, we focus on optimizing the kinematic design
of a general class of robots whose shapes can be modeled
as a continuous mapping from a compact set. This model
can be applied to standard serial manipulators, where the
length of each link is a kinematic design parameter, as well
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Fig. 1 Optimizing the kinematic design of a robotic manipulator can
enable it to reach more goal regions in a cluttered environment. In
this example, the objective is to optimize the design of a concen-
tric tube robot, a surgical manipulator composed of nested, precurved
tubes (cyan, yellow, magenta) whose lengths and curvatures can be cus-
tomized (top). The objective is to move from a bronchial tube (white
arrow) to reach goal regions (green spheres) in the lung while avoid-
ing anatomical obstacles, e.g., blood vessels (red, blue) and bronchial
tubes (off-white). A generic design may fail to reach some goal regions
in a cluttered environment (right column), while an optimized design
(left column) has the potential to reach more goal regions (Color figure
online)

as concentric tube robots, tentacle-like robots for minimally
invasive surgery that can curve around anatomical obsta-
cles to reach surgical sites in constrained spaces (Dupont
et al. 2010; Gilbert et al. 2013). Concentric tube robots
are composed of nested, pre-curved tubes, where each tube
is typically shaped with a straight section followed by a
pre-curved constant-curvature section. Each of the robot’s
component tubes can be independently rotated or extended,
enabling the entire device to change shape as the nested tubes
elastically interact. This robot’s kinematic design parameters
include the pre-curvatures and lengths of each constituent
tube. These parameters have a significant impact on the sur-
gical targets reachable by the device in constrained spaces,

so proper selection of kinematic design parameters for a
patient’s anatomy is critical to the success of a medical pro-
cedure.

Optimizing a robot’s kinematic design on a task-specific
basis is challenging. We desire to compute high quality
designs reasonably quickly (i.e., minutes, not days), par-
ticularly for medical applications in which the physician
customizes the robot design based on a patient-specific
anatomy identified in medical images. However, the kine-
matic design space of a robot may be large, and for any
candidate design we must evaluate whether that design can
move from an initial configuration to reach a volume of goal
points in the target set while avoiding obstacles. This implies
we need to compute motion plans to multiple goal regions
for successively selected designs, but current state-of-the-art
motion planners based on sampling-based methods cannot
determine with certainty in finite time whether a goal region
can be reached by a particular design.

Our novel contributions are as follows. First, we intro-
duce a unified framework for optimizing the kinematic design
parameters of awide class of robots on a task-specificbasis by
appropriately integrating sampling-based motion planning
into iterations of a stochastic optimization method for design
selection. We implement the integration so that, over time,
our reachability evaluations increase in accuracy and our
design selections improve toward global optimality. Second,
we analyze our algorithm and prove asymptotic optimality,
i.e., almost sure convergence to a globally optimal design,
under a mild continuity assumption on the robot’s shape
and the design objective, which guarantees that our method
avoids getting trapped in local optima. Third, we demonstrate
the broad applicability and effectiveness of our design opti-
mization method via evaluations for two distinct robots: (1)
a 4-link serial manipulator, and (2) a concentric tube medical
robot.

2 Related work

Our approach to optimizing the kinematic design of robots
integrates prior work in robot design optimization, stochastic
search, and robot motion planning. Prior work has investi-
gated combinatorial approaches to design optimization over
a finite and discrete set of robot features. Examples include
optimizing over discrete components ofmodular robots (Jing
et al. 2016; Rus and Tolley 2015), monopedal jumping robots
(Plecnik et al. 2017), snake-like and multi-modal robots
(Mulgaonkar et al. 2016; Wright et al. 2012), and kinematic
chains such as proteins (Denarie et al. 2016). In this paper,
we focus on robots with continuous design parameters.

There has been extensive work on optimizing the kine-
matic design of serial manipulators. Approaches have opti-
mized various metrics and have used genetic algorithms
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(Chocron 2008; Katragadda 1997; Leger 1999; Salle et al.
2004), interval analysis (Merlet 2005), geometric methods
(Vijaykumar et al. 1986), and grid-based methods (Park et al.
2003). These methods typically lack theoretical performance
guarantees or achieve computational tractability by impos-
ing significant assumptions on the robot’s workspace and by
using simplified kinematic models, which limit the effective-
ness and applicability of the optimization procedure.

Kinematic design optimization for concentric tube robots
is particularly challenging due to their complex kinematics,
which is computationally expensive to evaluate due to the
complex elastic and torsional interactions of their constituent
tubes. Morimoto et al. present a complementary approach to
automatic design optimization by providing a human with
an intuitive interface to manually design the tubes (Mori-
moto et al. 2016). Bergeles et al. computationally optimize
the robot’s design to reach a set of points without collid-
ing with anatomical obstacles (Bergeles et al. 2015). For
computational efficiency, they reduce the motion planning
problem to finding goal configurations that can reach the tar-
gets and do not offer a global optimality guarantee. Burgner
et al. combine a grid-based evaluation of the robot’s kine-
matics in configuration space with a nonlinear optimization
method over the design space to maximize the reachable
region of points subject to anatomical constraints (Burgner
et al. 2013). Burgner et al. extended this work to character-
ize the workspace of concentric tube robots (Burgner-Kahrs
2015; Burgner-Kahrs et al. 2014). Ha et al. present a method
for generating designs to maximize device stability (Ha et al.
2014).

By focusing only on computing designs and goal config-
urations, the works above cannot guarantee that a collision-
free path from start to goal exists for the computed design.
Torres et al. integrated a motion planner into concentric tube
robot design using an RRT to sample in the design space
and another RRT in the configuration space to ensure the
computed design is able to avoid obstacles en route to spe-
cific points (Torres et al. 2012), but offers slow performance.
Baykal et al. investigated computing minimal sets of con-
centric tube robot designs to reach multiple targets (Baykal
et al. 2015), although no analysis was provided regarding a
guarantee on optimality.

Recent work includes approaches that simultaneously
optimize the design and motion of the robot with respect
to a given objective. Ha et al. introduce a design optimiza-
tion procedure that leverages the Implicit Function Theorem
to computationally optimize the morphological design of
manipulators and quadruped robots (Ha et al. 2017). Tay-
lor et al. present a nonlinear optimization based approach
to simultaneous design and motion optimization of dynamic
planar manipulators (Taylor and Rodriguez 2017). However,
these methods only apply to specific design objectives, do
not provide global optimality guarantees, and are prone to

getting stuck in locally optimal solutions. We present a uni-
fied approach to asymptotically optimal kinematic design
optimization that is applicable to a wide class of robots and
objectives.

In this paper, we present a refined and extended ver-
sion of our methods and analysis originally introduced in
Baykal and Alterovitz (2017). Our prior work in Baykal and
Alterovitz (2017) focused on design optimization for piece-
wise cylindrical robots tomaximize end-effector reachability
to specified goal regions. We relax the previously imposed
assumption on the robot’s shape and generalize our prior
method and analysis to a much larger class of robots whose
shapes can be modeled as a continuous mapping from a
compact set. We also provide additional experimental results
demonstrating the scalability of our algorithm with respect
to varying dimensionality of the design space.

3 Problem definition

A robot’s design d is an n-dimensional vector of kinematic
parameters that correspond to physical properties of the
robot’s shape that are fixed for the duration of a given task.
This vector includes kinematic parameters such as the length
of each link of a serial manipulator or the lengths and curva-
tures of tubes in a concentric tube robot. The design space
D ⊂ R

n of a robot is the n-dimensional open set corre-
sponding to the space of all possible kinematic designs of
the robot. We assume that the robot operates in a workspace
W ⊆ R

l containing a compact set of obstacles O ⊂ W ,
where l ∈ {2, 3}.

Our overarching goal is to design the robot so it can
safely, i.e., without colliding with the obstacles, reach as
many points in a specified goal region G ⊂ W as pos-
sible. That is, the optimization problem is to generate an
optimal design d∗ ∈ D such that the robot under design d∗
maximizes the reachable volume of points in G. Formulating
the design optimization problem in this continuous, volume-
based manner formally captures the objective of maximizing
reachability, however, it also renders the problem compu-
tationally intractable to exactly solve algorithmically. This
challenge stems from the fact that the volume-based objec-
tive requires the evaluation of reachability to an uncountable
set of points in G in order to measure volume. Evaluating this
objective is both algorithmically challenging in theory and
computationally intractable in practice.

Motivated by these practical and theoretical concerns,
we consider a discretized version of the problem where the
objective of maximizing the reachable volume is replaced by
its discretized analogue of maximizing the number of dis-
crete goal regions that can be reached. This discretization
alleviates the challenges associated with the volume-based
objective without significantly altering the core problem that
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we address in this paper. That is, the robot should be designed
so it can reach (while avoiding obstacles) a set of m user-
specified goal regions, where each goal region Gi ⊂ W ,
i ∈ {1, . . . ,m} is defined as a volume of workspace posi-
tions. We define G = {Gi : i = 1, . . . ,m} as the union of the
goal regions.

Let the open set Q ⊂ R
d denote the d-dimensional con-

figuration space of the robot. Since the shape of a robot at
any configuration is a function of its design d, the set of
configurations for which the robot’s shape does not inter-
sect an obstacle is dependent on d. Thus, we denote the
set of collision-free configurations for a robot of design d
as Qfree

d ⊂ Q. We model the shape of a robot with design
d ∈ D at configuration q ∈ Q by the mapping Shape :
D × Q × Krobot → W , where Krobot is a compact set used
for parameterization (e.g., a parameterization of points in the
volume of a manipulator or along the central axis of a thin
tubular robot). Namely, Shape(d,q, ·) defines the workspace
points that the robot occupies under design d at configuration
q.We assumeShape is computed using an accurate kinematic
model. We let kbase,kend ∈ Krobot denote elements ofKrobot

such that Shape(·, ·,kbase) and Shape(·, ·,kend) correspond
to the robot’s base and end-effector points, respectively.

We define q0 ∈ Q as the robot’s start configuration. The
robot’s motion is a path in the configuration spaceQ defined
by the continuous function σ : [0, 1] → Q, where σ(0) =
q0. A path σ executed under robot design d is collision-free
if it lies entirely in the collision-free configuration space, that
is, if σ(τ) ∈ Qd

free for all τ ∈ [0, 1].
We define our design optimization objective with respect

to a user-defined reachability function f : D×Q×Kreach →
W for a non-empty, compact set Kreach ⊆ Krobot. The func-
tion f can be thought of as a mapping from a robot design
d ∈ D at configuration q ∈ Q to an objective-specific point
in the workspace. In particular, in this paper we consider the
objective of reaching as many goal regions in G as possible
with the robot’s end-effector, where we defineKreach = kend
and f as themapping from a design-configuration pair (d,q)

to the robot’s end effector position, Shape(d,q,kend).1 We
compute f via the kinematics evaluation for Shape for some
Kreach corresponding to the points on the robot that we desire
to reach the goal.

More generally, given a user-specified f and a non-empty
compact set Kreach, the reachability of any goal region Gi ∈
G, i ∈ [m] under design d ∈ D at configuration q can be
defined entirely in termsof f andKreach, as formalizedbelow.

Definition 1 (Reachable design-configuration pair) A des-
ign-configuration pair (d,q) ∈ D × Qfree

d is said to be

1 In fact, for any objective that can be defined with respect to a set
of points on the robot, we can define the mapping f as f (d,q,k) �→
Shape(d,q,k) for any objective-specific Kreach ⊆ Krobot.

reachable if there exists a collision-free path σ : [0, 1] →
Qfree

d from the initial configuration q0 to q under design d.

Definition 2 (Reachable goal region under a design-configu-
ration pair) A goal region Gi ∈ G, i ∈ [m] is said to be
reachable by the design-configuration pair (d,q)with respect
to the reachability function f and a non-empty compact set
Kreach ⊆ Krobot if:

1. the pair (d,q) is reachable and,
2. there exists k ∈ Kreach such that f (d,q,k) ∈ Gi .

Definition 3 (Reachability under a design) A goal region
Gi ∈ G, i ∈ [m] is said to be reachable by a robot of design
d ∈ D if there exists a configuration q ∈ Q such that Gi is
reachable by the design-configuration pair (d,q).

Our over-arching goal is to compute an optimal robot
design d∗ ∈ D that enables the robot to reach as many goal
regions in G as possible in a safe manner, i.e., via collision-
free paths that avoid the workspace obstaclesO. The quality
of a design d ∈ D is defined with respect to the extent of the
design’s reachability to the goal regions in G (Definition 3).
That is, the objective function value of d is expressed as the
percentage of goal regions inG that are reachable with design
d relative to the total number of goal regions in G.

Formally, the reachability of design d is given by the map-
ping R(d) : D → [0, 1]:

R(d) = |GoalRegionsReachable(d)|
|G| , (1)

where GoalRegionsReachable(d) : D → 2|G| denotes the
set of goal regions that the robot of design d can reach with
respect to the reachability function f and compact setKreach,
by following a collision-free path. R(d) expresses the reach-
able goal percentage of the robot under design d, which we
seek to maximize. We formalize the kinematic design opti-
mization problem as follows:

Given an environment W ⊆ R
l (where l = 2 or 3), a

set of obstacles O ⊂ W , a set of user-specified goal regions
G, an objective-specific non-empty compact set Kreach ⊆
Krobot, and a reachability function f : D × Q × Kreach →
W , generate a design d∗ that maximizes the reachable goal
percentage, i.e.,

d∗ ∈ argmaxd∈D R(d). (2)

4 Methods

In this section, we present our algorithm for optimizing the
kinematic design parameters of a robot whose shape can be
modeled as a continuous mapping from a compact set, to
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maximize the robot’s reachable goal percentage while avoid-
ing obstacles in a task-specific environment.

4.1 Method overview and the key challenge

Our design optimization approach combines a stochastic
search in the robot’s design space D with a sampling-based
motion planner in the robot’s configuration space Q to effi-
ciently generate designs with high reachability. To select
candidate designs for evaluation, we use Adaptive Simulated
Annealing (ASA) (Ingber 1989), a global optimization algo-
rithm.For each selected design,weuse theRapidly-exploring
RandomTree (RRT) (LaValle 2006) algorithm to estimate the
design’s reachable workspace and evaluate its reachable goal
percentage.We provide an overviewof our approach inAlgo-
rithms 1 and 2 and formally prove the method’s asymptotic
optimality in Sect. 5.

To ensure that we converge toward a globally optimal
design, a key challenge we must address is that state-of-the-
art, practical motion planners cannot guarantee completeness
(LaValle 2006), i.e., they cannot always in finite time answer
the question of whether a collision-free motion plan exists
from the start configuration to a goal region. This limitation
of current state-of-the-art motion planners introduces a sig-
nificant challenge for design optimization; to use a standard
optimization algorithm to optimize the design d in Eq. 2, a
motion planner must evaluate the reachable goal percentage
accurately and in finite time in each iteration of the opti-
mization algorithm. Commonly used sampling-basedmotion
planners only offer probabilistic completeness (and in some
cases also asymptotic optimality in terms of path quality),
meaning the probability that they will produce a collision-
free path (if one exists) to a goal region approaches 1 as more
time is spent (LaValle 2006). Terminating a sampling-based
motion planner after finite time may result in an incorrect
computation of the reachable goal percentage.The lack of full
completeness makes it impossible to simply plug a standard
sampling-based motion planner into a standard optimiza-
tion algorithm and expect convergence toward a globally
optimal design. We address this challenge by appropriately
integrating sampling-based motion planning into stochastic
optimization in design space so that, over time, our reach-
able goal percentage evaluations increase in accuracy and
our selected designs approach global optimality.

4.2 Evaluating a design’s reachable goal percentage

Evaluating the objective function value R(d) in equation
(1) for an arbitrary design d ∈ D requires computing
GoalRegionsReachable(d), the set of goal regions that design
d can reach by executing collision-free paths. Thus, evaluat-
ing the reachability of a design is fundamentally a motion

Algorithm 1 Select and evaluate a kinematic design
Input:

G: set of goal regions
O: set of environmental obstacles
f : the objective-specific reachability function
Kreach: the objective-specific non-empty compact set
dcurrent: previously considered robot design
T : ASA’s current annealing temperature
i : number of RRT iterations to execute

Output:

dnew: new robot design
R̂new: approximate reachable goal percentage of dnew

1: dnew ← SampleDesign(dcurrent, T );
2: goalRegionsReached ← RRT(dnew, i,O, f ,Kreach);
3: R̂new ← |goalRegionsReached|/|G|;
4: return dnew, R̂new;

planning problem, which is known to be PSPACE-hard
(Reif 1979). This renders the use of exact evaluation meth-
ods computationally intractable and motivates the use of
a sampling-based motion planning algorithm, such as the
Rapidly-exploring Random Tree (RRT) (LaValle 2006), to
generate approximations of a design’s reachability (albeit an
approximation that can improve over time, as will be dis-
cussed in Sect. 4.4).

For a given design d ∈ D and a start configuration q0,
the RRT algorithm incrementally constructs a tree of con-
figurations that can be reached by collision-free paths from
the root of the tree, q0. For a given design, we run the RRT
algorithm for i ∈ N+ iterations and iterate over the config-
urations in the constructed tree to compute the set of goal
regions that can be feasibly reached by the robot with design
d (Line 2, Algorithm 1). From this we can approximate
the design’s reachable goal percentage in a computation-
ally tractable manner (Line 3, Algorithm 1). Because RRT
provides probabilistic completeness, as we increase the iter-
ations i of RRT, the probability of our approximation R̂i (d)

being equal to the true R(d) approaches 1. For any finite i ,
our approximations of the reachable goal percentage at each
iteration is ensured to be a lower bound of the ground-truth
reachability, i.e., R̂i (d) ≤ R(d).

A key challenge is appropriately setting the number of
iterations i the RRTwill run for. In Sect. 4.4, we introduce an
approach to setting i in Algorithm 1 that ensures asymptotic
optimality of the design optimization.

4.3 Selecting designs

We use the ASA algorithm (Ingber 1989; Locatelli 2002) for
optimizing the kinematic design to maximize the reachable
goal percentage. We use ASA because it is a global opti-
mization method that escapes local optima, it is efficient in
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Algorithm 2 Iterative design optimization
Input:

G: set of goal regions
O: set of environmental obstacles
f : the objective-specific reachability function
Kreach: the objective-specific non-empty compact set
iinit: initial number of RRT iterations
i�: additional RRT iterations after each sample
Tinit(optional): initial annealing temperature for the search
dinit(optional): initial design for the search

Output:

d∗: a robot design that maximizes (1)

1: T ← 1 or Tinit if provided;
2: i ← iinit;
3: R̂current ← 0;
4: R̂∗ ← 0;
5: dcurrent ← random initial design or dinit if provided;
6: d∗ ← dcurrent;
7: k ← 0;
8: while allotted time remains do
9: d′, R̂′ ← Algorithm1(G,O, f ,Kreach,dcurrent, T , i)
10: if Accept(R̂′, R̂current, T ) then
11: dcurrent ← d′;
12: R̂current ← R̂′;
13: if R̂′ > R̂∗ then
14: d∗ ← d′;
15: R̂∗ ← R̂′;
16: i ← i + i�;
17: k ← k + 1;
18: T ← UpdateTemperature(Tinit, k);
19: return d∗

practice for problems in high dimensional spaces, and it has
favorable algorithmic properties which we exploit. Specifi-
cally, we are able to use sampling-based motion planning in
each iteration of ASA in a manner that ensures asymptotic
optimality of the design, as discussed in Sect. 4.4. Our ASA-
based algorithm is shown asAlgorithm2 and operates similar
to a hill climbing algorithm in that it is centered on a design
dcurrent that it incrementally attempts to improve. However,
unlike a hill climbing algorithm, the algorithm may in some
iterations select an inferior design, which enables escaping
local minima. Next designs are determined by sampling a
new design (SampleDesign; Line 1, Algorithm 1) and
deciding whether to accept that new design (Accept; Line
6, Algorithm 2), with both procedures being highly depen-
dent on a temperature parameter T ∈ R≥0. Accept returns
true if the sampled design d′ is higher quality than dcurrent
(i.e., R̂′ > R̂current) or with some probability (dependent on
T ) if d′ is inferior. In particular, for a sampled state d′ the
probability of accepting the state d′ from the current state
dcurrent, denoted by PAccept, is defined to be

PAccept =
{
1 if R̂′ > R̂current,

exp
(
− R̂current−R̂′

T

)
otherwise.

The temperature variable T is initially set to a sufficiently
high value,2 Tinit ∈ R+, to ensure convergence to the globally
optimal solution and is decreased after each iteration based
on a cooling schedule (Algorithm 2, Line 18),

UpdateTemperature(Tinit, k) = Tinit exp(−c k
1
n ),

where c is an appropriate constant (Ingber 1989; Ingber
et al. 2012) and n is the number of design parameters (see
Sec. 4.2.7 of Ingber et al. (2012) for full details).

When T is high, ASA is more likely to sample states that
are far away from dcurrent and also more likely to probabilis-
tically accept inferior designs, which leads to exploratory
behavior initially. As T is cooled down over time, ASA sam-
ples states in smaller neighborhoods around dcurrent and is
increasingly less likely to accept inferior designs,which leads
to eventual convergence to a high quality design. We cache
the best found design (Algorithm2,Line 10) so the best found
design is returned when the algorithm terminates.

Full details of the Adaptive Simulated Annealing algo-
rithm can be found in the publicly available codebase of
Ingber (1993); Ingber et al. (2012).

4.4 Integratingmotion planning into stochastic
optimization

A key requirement to converging toward a globally optimal
design is an accurate evaluation of any candidate design’s
reachable goal percentage. This implies we need to compute
motion plans to multiple goal regions for each design consid-
ered in the optimization, but current state-of-the-art motion
planners based on sampling-based methods cannot specify
with certainty in finite time whether a goal can be reached
by a particular design.

To address this challenge, we use a simple-to-implement
idea: we incrementally increase the number of RRT itera-
tions by i� after each sampled design (Line 13, Algorithm
2). This approach ensures that our approximations become
increasingly accurate over time. This approach is sufficient
for establishing the asymptotic optimality of our algorithm
(see Sect. 5). This approach also has a secondary benefit: it
enables us tomore quickly (butmore coarsely) evaluatemany
designs in the initial iterations and subsequently evaluate can-
didate designs with higher accuracy (albeit at a slower rate)
in later iterations.

2 We remark that a default initial value of 1 for Tinit is suggested in
Ingber (1993, 1989), and Ingber et al. (2012) and refer the reader to
prior work, e.g., (Ben-Ameur 2004), for computing an appropriate Tinit .

123



Autonomous Robots (2019) 43:345–357 351

5 Analysis

We prove under mild assumptions that the design computed
by our algorithm almost surely converges (Durrett 2010) to
a globally optimal design. The outline of our proof is as
follows. First, we establish that the set of optimal designs
with respect to the reachability problem (2) is non-empty and
open, and thus has strictly positive measure. Then, we show
that by property of the ASA algorithm, optimal designs will
be sampled and evaluated infinitely often. We conclude by
proving that, eventually, an optimal design will be sampled
and evaluated accurately by the RRT algorithm.

5.1 Preliminaries

We remind the reader that the inverse images of open and
closed sets under continuous functions are themselves open
and closed respectively where the inverse image of A ⊆ B
under f : C → B (denoted f −1[A]) is the set {c ∈ C |
f (c) ∈ A}. In the following proofs, we will also frequently
refer to the topological projection (or simply projection) from
a Cartesian product of topological spaces X × Y to X . The
projection of a set Z ⊆ X × Y to X is the set {x ∈ X |
∃y ∈ Y : (x, y) ∈ Z}. Two useful properties of projections
enable the proofs below. First, the projection of an open set
is itself open. Second, if Y is compact, then the projection
X×Y → X of a closed set is itself closed. This latter property
is referred to as the Tube Lemma (Munkres 2000).

Assumption 1 (Goal Regions asOpen Sets) Each goal region
Gi ⊂ W , i ∈ [m], is defined as an open set.

Assumption 2 (Continuity of the Shape Function) Shape :
D × Q × Krobot → W is continuous.

Assumption 3 (Continuity of f ) f : D × Q × Kreach → W
is continuous.

Assumption 1 rules out pathological problem instances
where only a single optimal design lying on the boundary of
the design space exists. Assumption 2 guarantees that robots
of similar designs have similar shapes at similar configura-
tions. Finally, Assumption 3 is a technical assumption that
ensures the pertinent design optimization objective is suffi-
ciently well-behaved.

Let R ⊆ D × Q denote the set of reachable design-
configuration pairs. The following lemma is an extension
of the analysis introduced in Baykal and Alterovitz (2017),
and establishes that the set of reachable design-configuration
pairs, R, is open.

Lemma 1 The set of reachable design-configuration pairs
R ⊆ D × Q is open.

Proof Our proof of this lemma is based on the result in Kuntz
et al. (2018). Consider a reachable design-configuration pair
(d,q) ∈ D×Qfree

d forwhichwewish to construct a reachable
neighborhood. By definition of reachable, there must exist
some collision-free path σ ∈ [0, 1] → Qfree

d with σ(1) = q,
i.e.,

∀s ∈ [0, 1],k ∈ Krobot Shape(d, σ (s),k) ∈ O,

where O denotes the set complement of O. Let σq′(s) =
σ(s) + s · (q′ − q). σq ′ is continuous by continuity of σ and
σq′(1) = q′ by construction, so σq′ is a path to q′. We thus
have only to show that σq′ is collision-free under each design
d′ for all (d′,q′) in a neighborhood of (d,q).

Observe that the mapping L : D×Q×Krobot ×[0, 1] →
W given by:

d′,q′,k, s �→ Shape(d′, σq′(s),k)

is continuous by continuity of σq ′ and Shape. We then have
that B = L−1[O] ⊆ D × Q × Krobot × [0, 1] is closed by
closedness ofO. Let C be the projection of B toD×Q. C is
thus the set of all (d′,q′) for which σq′(s) is in collision under
design d′ for some s ∈ [0, 1], and is closed by compactness
of Krobot × [0, 1] and the Tube Lemma.

Now observe that (d,q) ∈ C because σq = σ , and σ

is collision-free for design d by definition. But C is open,
so it covers some neighborhood N of (d,q). N is thus a
neighborhood of (d,q) in which σq′ is collision-free under
design d′ for all (d′,q′) ∈ N . ��

Now, let Rg ⊆ D × Qfree
d denote the set of design-

configuration pairs under which the goal region g ∈ G is
reachable. The following lemma establishes thatRGi is open
for all of the m goal regions Gi ∈ G, i ∈ [m].
Lemma 2 For any goal region Gi ∈ G, i ∈ [m], the set
of design-configuration pairs under which goal region Gi is
reachable, denoted byRGi , is open.

Proof For any arbitrary goal region Gi ∈ G, consider the set
A = Gi = W\Gi . Note that A is closed sinceW is compact
and Gi is open. The remainder of the proof proceeds in a
manner similar to Lemma 1.

Let B = f −1[A] ⊆ D × Q × Kreach and note that B
is closed since A is closed and f is continuous. Now let
C ⊆ D × Q be the projection of B to D × Q, i.e., C is the
set of design-configuration pairs that cannot reach the goal
region Gi for any k ∈ Kreach:

∀(d,q) ∈ C �k ∈ Kreach : f (d,q,k) ∈ Gi .

Since Kreach is compact, it follows by the Tube Lemma that
the set C is closed. Therefore, its complement, C , is open.
Now, note that the set of reachable design-configuration pairs

123



352 Autonomous Robots (2019) 43:345–357

from which goal Gi is reachable is defined asRGi = C ∩R,
whereR is the set of all reachable design-configuration pairs
as before. By Lemma 1,R is open, thusRGi , the intersection
of two open sets, is also open. ��

Let R∗ = maxd∈D R(d) denote the optimal objective
value with respect to the non-empty compact set Kreach and
the reachability function f , and let D∗ = {d ∈ D | R(d) =
R∗} be the optimal set of designs with respect to the opti-
mization problem defined by (2) in Sect. 3. The following
lemmas establish that designs from the optimal design set
will be sampled infinitely often.

Lemma 3 The set of optimal designs, D∗ ⊆ D, is open.

Proof For all i ∈ [m], let RGi denote the set of design-
configuration pairs under which goal region Gi is reachable,
and note that by Lemma 2, RGi is open. Now, let Di denote
the projection ofRGi to the set of designsD. Projection is an
open mapping, so each Di is open. Let m∗ be the number of
goal regions reachable by an optimal design. Observe that the
union of allm∗-wise intersections of {D1, . . . ,Dm} is the set
of optimal designs. This is a finite union of finite intersections
of open sets, and is thus open itself. ��
Corollary 1 (Frequency of SamplingOptimalDesigns)Algo-
rithm 2 will sample designs from the optimal design set D∗
infinitely often.

Proof It is known that designs that are an element of any
subset ofDwith non-zero measure will be sampled infinitely
often by the ASA algorithm (Ingber 1989; Locatelli 2002).
By Lemma 3 we have that D∗ is open and non-empty.
Lebesgue measure is strictly positive on non-empty open
sets, thus the set of optimal designs D∗ ⊆ D has non-zero
measure and the result follows. ��

5.2 Asymptotic optimality

LetYk be a randomvariable that denotes themaximum reach-
able goal percentage attained over all the designs sampled in
optimization iterations 1, . . . , k.

Theorem 1 (Asymptotic Optimality) Let Assumptions 1–3
hold. Then, the solution generated by Algorithm 2 almost
surely converges to a globally optimal design d∗ ∈ D∗, i.e.,

P

(
lim
k→∞Yk = R∗

)
= 1.

Proof Application of Corollary 1 implies that the optimal
set of designs D∗ ⊂ D will be sampled infinitely often. Let
j ∈ N+ denote the j th occurrence of sampling any arbitrary
optimal design d∗ ∈ D∗ and let I j denote the number of
iterations that the RRT algorithm is executed for. Note that by
the procedure used to increase the number of RRT iterations

by i� ∈ N+ (Algorithm 2) after each sampled design, we
have that I j + 1 ≤ I j+1 for all j and that 1 ≤ I1.

For each occurrence of sampling an optimal design d∗ ∈
D, a random approximation of the reachable goal percentage
is generated by running the RRT algorithm for I j iterations.

Let Ĝ j (d∗) and R̂ j (d∗) = |Ĝ j (d∗)|
|G| denote the approximation

ofGoalRegionsReachable(d∗) and R(d∗) for the j th sampled
optimal design respectively. For any arbitrary ε ∈ R+, let A j

denote the event |R̂ j (d∗) − R∗| ≥ ε for each j . Note that
event A j is equivalent to the event that the RRT algorithm
fails to find a collision-free path to at least one goal region
g ∈ G∗\Ĝ j (d∗) within I j iterations. Thus, we have

P (A j ) = P (∃g ∈ G∗\Ĝ j (d∗))

≤
∑
g∈G∗

P (g ∈ G∗\Ĝ j (d∗))

≤
∑
g∈G∗

ae−bI j

= |G∗|ae−bI j ,

for some constants a, b, where the first inequality is by the
union bound and the second by RRT’s exponential decay of
the probability of failure to find a path after I j iterations
(LaValle and Kuffner 2001; Karaman and Frazzoli 2011).

Consider the sum of the probabilities of A j over all j :

∞∑
j=1

P (A j ) ≤
∞∑
j=1

|G∗|ae−bI j

≤
∞∑
j=1

|G∗|ae−bj

= |G∗|a
eb − 1

< ∞.

By the Borel-Cantelli Lemma we have that

P

(
lim sup
j→∞

A j

)
= 0,

that is, the probability that A j occurs infinitely often is 0.
This implies that

P

(
lim inf
j→∞ |R̂ j (d∗) − R∗| < ε

)
= 1,

which is precisely the definition of R̂ j (d∗) a.s.→ R∗.
Thus, with probability 1, at least one optimal design d∗ ∈

D∗ will be sampled and evaluated accurately as the number
of optimization iterations of Algorithm 2 approaches infinity.
Since the best solution found thus far is cached in Algorithm
2, it follows that Yk

a.s.→ R∗. ��
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Corollary 2 The design optimization procedure is asymptot-
ically optimal with respect to the objective of reaching as
many goal regions as possible with the robot’s end-effector,
i.e., Algorithm 2 is asymptotically optimal for the choice
of reachability function f : D × Q × Kreach → W with
Kreach = kend, defined as the mapping

f (d,q,k) �→ Shape(d,q,k).

Proof Observing thatKreach = kend is compact and f is con-
tinuous (since Shape is continuous), and applying Theorem 1
yields the result. ��

6 Results

We apply our design optimization algorithm to two distinct
robots: (1) a serial manipulator and (2) a concentric tube
robot, a tentacle-like robot designed for minimally invasive
medical procedures. In particular, we consider the design
objective of maximizing the reachability of the robot’s end
effector to the specified goal regions, i.e., we defineKreach =
kend and f : D × Q × Kreach → W as the mapping

f (d,q,k) �→ Shape(d,q,k),

for all d ∈ D,q ∈ Q,k ∈ Kreach.
We assess the performance of our method (ASA+MP) in

computing designs with high reachable goal percentage and
compare its computational efficiency and results with the
following variants of our method and other state-of-the-art
design optimization algorithms.

– NM+G: The Nelder–Mead optimization algorithm is
used instead ofASA for sampling designs. For evaluation
of the reachable goal percentage, a grid-based approach is
used instead of motion planning; the configuration space
is discretized into a grid and the robot configuration at
each grid point is evaluated to determine if it is collision-
free and reaches a goal region (Burgner et al. 2013).

– NM+MP: Nelder–Mead is used for optimizing the
design. In contrast to prior work using Nelder–Mead
(Burgner et al. 2013), we use motion planning using the
same number of initial and additional RRT iterations as
our algorithm to approximate the reachable goal percent-
age of candidate designs.

– ASA+G: In this simplified form of our approach, we use
ASA to sample designs, but we use the grid approach (as
described in NM+G) to evaluate reachable goal percent-
age for a candidate design.

– RRT of RRTs: An RRT-based algorithm is run both in the
design space (Torres et al. 2012) and in the configuration
space for estimating reachable goal percentage.

We emphasize that the grid-based algorithms (ASA+G and
NM+G) only consider final configurations when evaluating
reachable goal percentage during design optimization. This
implies that grid-based evaluations generate upper bounds on
the ground-truth reachable goal percentage, since the actual
motion of the device from its start configuration to a goal
region is not considered, and no motion may be feasible due
to obstacles. In our results graphs, we do not display this
upper bound; instead, we run a post-processing step (that is
not counted towards method computation time) and estimate
the reachable goal percentage of each returned design by
running the RRT algorithm for 300,000 iterations.

We implemented all design optimization algorithms in
C++. The experiments were conducted on a PC with two
2.40GHz Intel Xeon E5620 processors (8 cores total) and
12GB RAM.

6.1 Design optimization of a serial manipulator in
2D

We consider the design optimization of a serial manipula-
tor with 4 revolute joints and 4 straight links operating in
a 2D environment. The configuration space of the robot is
defined by the angles of the four links, i.e., Q ⊂ (S1)4. We
define a robot’s design space as the length of each of the four
links, thus, D ⊂ R

4. We evaluated each design optimiza-
tion method on 40 randomized problem instances. For each
instance,we randomly generated between 4 and 8 rectangular
or right triangular obstacles with sides of random length and
a set of 100 goal regions arranged in a regular grid and placed
randomly in the workspace. The robot’s start configuration
q0 was fixed for all instances and the robot’s base position
was randomly placed so that the robot was collision-free.
Figure 2 depicts three examples of the problem instances.

Figure 3 shows the reachable goal percentage (averaged
over the 40 problem instances) achieved by each design
optimization algorithm as a function of computation time.
The robot design generated by our algorithm is capable of
reaching a significantly higher percentage of the goal regions
compared to the designs found by the other algorithms.

Figure 4 depicts the performance of each design optimiza-
tion algorithm for a single scenario, specifically Example
Instance 3 in Fig. 2. Each line is an average over 10 runs of
the corresponding algorithm. We note the methods that use
grid-based evaluation of the objective function are not guar-
anteed to improve over time since ignoring motion planning
implies they are optimizing a potentially incorrect approxi-
mation of the objective function. Our method improves the
design in an asymptotically optimal manner.

Our results indicate that our approach for blending ASA
for searching the design space andmotionplanning for design
evaluation helps in attaining computational efficiency and
escapes local optima via asymptotic optimality.
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Fig. 2 First row: example configurations of robot designs (where the
links are colored green, cyan, magenta, and orange) computed by our
algorithm for three randomly generated 2D environments containing
obstacles (red) and a grid of goal regions colored green for grid cells

reachable using the optimal design and blue for unreachable cells.
Second row: in contrast to optimal designs, generic (i.e., randomly gen-
erated) robot designs operating in the same three scenarios are unable
to reach the goal regions (Color figure online)

Fig. 3 The performance over time of the design optimization methods
for a 4-link serial manipulator. The plot shows the reachable goal per-
centage of the best design found thus far with respect to computation
time, averaged over 40 randomized problem instances

We also demonstrate the scalability of our method in
simulation by optimizing the design parameters of an n =
2, . . . , 6-link serial manipulator respectively over an allot-
ted computation time of 4 hours per trial. For each problem
instance we randomly generated between 6 to 10 obstacles.

Figure 5 depicts the performance of our algorithm with
respect to different values for the dimensionality of the design
space. The results confirm the intuition that when the num-
ber of links is small, e.g., n = 2, the robot’s shape is not
sufficiently flexible to maneuver around the obstacles in the
environment to reach goal regions. On the other hand, when
the number of links is relatively large, e.g., n = 6, the robot’s
initial configurationmaybe in collision, e.g., with other links,

Fig. 4 Plot of the reachable goal percentage over computation time for
each design optimization method run 10 times for the problem instance
in Fig. 2 (right column)

the boundary of the workspace, or obstacles, which makes
it more difficult for the robot to follow collision-free paths
from the initial configuration, causing an increase in the com-
putation time needed for design optimization.

6.2 Design optimization of a concentric tube robot

We next apply our design optimization algorithm to a con-
centric tube robot (Dupont et al. 2010; Gilbert et al. 2013),
a medical robot composed of nested nitinol tubes that
can be rotated and translated independently to change the
shape of the entire robot and achieve tentacle-like motion.
Unlike traditional medical instruments that are constrained
to straight-line paths, these robots are capable of curving
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Fig. 5 The reachable goal percentage over computation time for opti-
mizing the design of n-link manipulators, for various values of n. The
results are averaged across 10 different problem instances

around anatomical obstacles, e.g., blood vessels, to reach
clinical targets in a safe, minimally-invasive manner.

We consider in simulation a concentric tube robot with 3
tubes. In configuration space, each tube adds two degrees of
freedom (since each tube can be independently inserted and
rotated), resulting in a 6dimensional configuration space, i.e.,
Q ⊂ (S1)3 × R

3. The curvilinear shapes that the robot can
achieve are highly dependent on the physical specifications
of the robot’s tubes, i.e., its design. In this study, each tube of
the concentric tube robot is described by (1) the length of its
straight section, (2) the length of its pre-curved section, and
(3) the curvature of its pre-curved section. Thus, for our 3-
tube robot the design space is 9 dimensional, i.e.,D ⊂ R

9. To
evaluate the robot’s shape given its configuration, we use an
accuratemechanics-based kinematicmodel to account for the
elastic and torsional interactions between the tubes (Rucker
2011).

Figure 6 illustrates a potentialmedical application of these
devices for biopsy of suspicious nodules in the lung for early-
stage lung cancer diagnosis. The concentric tube robot is
deployed near the base of the primary bronchus of the right
human lung using a rigid bronchoscope with the objective
of reaching a clinical target for biopsy. We discretized the
interior volume of the right human lung into 4156 equally-
sized cubic voxels each with volume ≈ 0.7 cm3. For each
trial, a subset of 8 contiguous voxels (i.e., goal regions) was
randomly chosen to represent subregions of a clinical target
that should be biopsied.

The results averaged over 40 trials are shown in Fig. 7. The
results for this scenario follow a similar trend as the results
obtained from the 4-link serial manipulator scenario. In par-
ticular, the figure illustrates our algorithm’s effectiveness in
finding a design with high reachable goal percentage and its
tendency to efficiently improve the solution over the allotted
computation time without being trapped in local optima.

Fig. 6 Aconcentric tube robot (composed of cyan, yellow, andmagenta
tubes) has the potential to reach clinical goal regions (green and blue
voxels) within the lung for early-stage lung cancer diagnosis. The figure
shows the robot with an appropriate design reaching a point (green
sphere) in one of the goal regions (shown as blue) (Color figure online)

Fig. 7 The reachable goal percentage over computation time for the
concentric tube robot scenario. The results are averaged across 40 dif-
ferent problem instances, each with randomly selected goal regions in
the right lung

7 Conclusion

We presented a design optimization algorithm applicable to
a wide class of robots whose shapes can be modeled via a
continuous mapping from a compact set and design objec-
tives that satisfy a mild continuity condition. The algorithm
integrates a sampling-based motion planner in the configu-
ration space with stochastic search in the design space to
efficiently compute designs that maximize reachability to
user-specified goal regions in the workspace. We proved the
asymptotic optimality of our algorithm and demonstrated its
computational efficiency in simulated scenarios involving
serial manipulators and concentric tube robots for medical
procedures.
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In future work, we plan to consider a mixture of con-
tinuous and discrete design parameters and generalize our
definition of goal regions to consider goal configurations and
end effector poses. We also plan to physically implement the
designs computed by ourmethod and conduct experiments in
testbeds based on clinically-relevant scenarios, such as lung
biopsies and neurosurgery. Since the shape-set or 3D-printed
robots may not precisely match our method’s output, we plan
to consider design uncertainty in design optimization.

Acknowledgements WethankAlanKuntz for his insights and feedback
on the analysis, Robert J. Webster III for valuable discussions, and Luis
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