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Abstract
We consider the problem of configuration formation in modular robot systems where a set of modules that are initially in
different configurations and located at different locations are required to assume appropriate positions so that they can get
into a new, user-specified, target configuration. We propose a novel algorithm based on (sub)graph isomorphism, where the
modules select locations or spots in the target configuration using a utility-based framework, while retaining their original
configuration to the greatest extent possible, to reduce the time and energy required by the modules to disconnect and connect
multiple times to form the target configuration. We have shown analytically that our proposed algorithm is complete and
guarantees a Pareto-optimal allocation. Experimental simulations of our algorithm with different numbers of modules in
different initial configurations and located initially at different locations, show that the planning time of our algorithm is
nominal (order of msec for 100 modules). We have also compared our algorithm against a market-based allocation algorithm
and shown that our proposed algorithm performs better in terms of time and number of messages exchanged.

Keywords Modular robots · Configuration formation · Graph isomorphism

1 Introduction

Modular self-reconfigurable robots (MSRs) (Yim et al. 2007)
are composed of individual robotic modules which can
change their connections with each other to form differ-
ent shapes or configurations. This configuration adaptability
affords a high degree of dexterity and maneuverability to
MSRs and makes them suitable for robotic applications such
as inspection of engineering structures like pipelines (Enner
et al. 2013), extra-terrestrial surface exploration (Knight et al.
2001), information collection (Dutta and Dasgupta 2016)
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etc. As noted in Neubert and Lipson (2016), the main three
advantages of usingMSRsover traditionalwheeled robots for
exploration (e.g., Mars Rover) are: versatility, low cost and
robustness. While the self-reconfiguration problem in MSRs
has been studied extensively in the literature over the last
decade, another fundamental problem, the configuration for-
mation problem, has not been studied with that same vigor
(Ahmadzadeh and Masehian 2015). The configuration for-
mation problem can be described as follows: we are given
a set of modules forming different arbitrary initial configu-
rations that are distributed at different locations within the
environment along with a target configuration that needs to
be formed at a specified location; the target configuration
involves some or all of the modules from the initial con-
figurations. The problem is to select an appropriate subset of
modules to occupy appropriate spots or positions in the target
configuration, so that, after reaching the selected positions,
they can readily connect with adjacent modules and form the
shape of the desired target configuration.

As a motivating example, we consider a scenario where
a set of modules (either as singletons or as part of different
configurations) are collecting information from an environ-
ment. To access a specific region of the environment, e.g., an
elevated region, they need to form a certain shape (configu-
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Fig. 1 a Four initial configurations consisting of 1, 2, 6 and 8 modules
respectively, and desired target configuration (marked with yellow dot-
ted lines), b target configuration involving all 17 modules connected

in ladder configuration; module numbers marked in white, yellow and
red are retained between initial and target configurations (Color figure
online)

ration) such as a legged configuration, which allows them to
navigate the elevation. An instance of this problem is shown
in Fig. 1 where 17 modules initially distributed as single-
tons or part of smaller configurations go through an online
decision making procedure to finally form the ladder-like
structure consisting of all 17 modules (Fig. 1b).

In our recent work (Dutta and Dasgupta 2016), we have
proposed an algorithm using which singleton modules can
form a user-defined configuration while maximizing the
amount of information collected on their paths. But in
this paper, we have generalized the configuration forma-
tion problem from only initial singleton modules to any
arbitrary configuration. The generalized configuration for-
mation problem is non-trivial as the modules might already
be connected in initial configurations that do not correspond
to parts of the target configuration. Also, existing connec-
tions between modules in the initial configuration should be
preserved in the target configuration, whenever possible, to
reduce the energy and time expenditure in disconnecting and
re-connecting modules. Moreover, multiple modules from
different initial configurations might end up selecting the
same most-preferred position (i.e., position involving least
time and battery expenditure to navigate to) in the target
configuration, leading to failed attempts to achieve the tar-
get configuration. To address these challenges, we propose
an algorithm that allows modules from initial configurations
to select suitable positions in a target configuration using
a technique based on graph isomorphism that attempts to
improve the utility of the modules by reducing the number of
disconnects betweenmodules to achieve the target configura-
tion. [To minimize the number of disconnections among the
already existing configurations, our approach uses a graph-
based technique to find a (maximum) isomorphic structure
of an already existing smaller configuration in the final target
configuration].Wehave shown analytically that our proposed
algorithm is complete and achieves Pareto-optimal alloca-
tion. We have also verified the performance of our algorithm
in terms of planning time and number ofmessages exchanged
for different numbers of modules and different initial and tar-

get configurations. Our experimental results show that our
algorithm performs better, in terms of planning time and
number of messages passed by the modules, as compared
to a market-based allocation algorithm.

1.1 Our contribution

Our contribution in this paper is two-fold. Firstly, to the best
of our knowledge, our work in this paper is the first work to
address the configuration formation problem where initially
modules can be in any arbitrary configuration. Most of the
works in the literature assume that initially the modules are
singletons which makes the problem a bit less challenging as
the problem of simultaneous retaining of the initial configu-
rations for saving time and energy and allocating them to the
target configuration does not arise.

Secondly, to solve this unique problem, we propose
a decentralized solution which uses concepts from graph
theory (e.g., graph isomorphism andmaximumcommon sub-
graph) to solve it. Although both graph isomorphism and
maximumcommon subgraphhave beenusedbefore inmodu-
lar robotic systems to solve the self-reconfiguration problem,
i.e., how to change the shapeof a configurationwithout break-
ing any existing connection among the modules (Hou and
Shen 2014; Chirikjian et al. 1996), our approach in this paper
uses these graph concepts to solve a different problem—how
tomergemultiple singletons/configurations into a final target
configuration.

2 Related work

Modular self-reconfigurable robots (MSRs) are a type of
robots that are composed of several small modules; the con-
nections between the modules can be changed autonomously
by the robot to manifest different shapes or configurations
(Stoy et al. 2010). An excellent overview of the state of the
art in MSRs and related techniques is given in Yim et al.
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(2007). Based on architectural properties,modular robots can
be divided into three main categories (Yim et al. 2007):

(1) Chain/tree In this type ofMSR architecture, modules are
connected together in a string or tree topology. This type
of configuration can fold up to become space filling, but
the underlying architecture is serial (Yim et al. 2007).

(2) Lattice In this type of architecture, modules are con-
nected in regular, three-dimensional graph structures
(e.g., cubic or hexagonal grid). Modules are usually
controlled in a parallel manner. Therefore, these con-
figurations follow a liquid-flow like locomotion pattern
unlike the worm-like locomotion in chain configura-
tions. In this type of locomotion, each module acts like a
molecule of the flowing liquid (Fitch and Butler 2008),
(Ahmadzadeh and Masehian 2015).

(3) Hybrid This type of architecture is a combination of
both chain and lattice type. Modules tend to form large
connected networks in hybrid configurations (Yim et al.
2007).

Our proposed approach in this paper is mainly aimed towards
chain-type MSRs, but it can be extended to other types of
MSRs as well. Over the last decade, the self-reconfiguration
problem has been studied extensively by MSR researchers
(Ahmadzadeh and Masehian 2015) and it has been proved
to be an NP-complete problem (Hou and Shen 2014). Sev-
eral approaches based on graph theory (Hou and Shen
2008; Asadpour et al. 2008) and control theory (Rosa et al.
2006; Kurokawa et al. 2008) have been proposed. However,
as noted in a recent survey on MSRs (Ahmadzadeh and
Masehian 2015), configuration formation in modular robot
systems has been studied less extensively and the solution
approaches proposed so far are not always easy to general-
ize to all MSR platforms. Configuration formation involves
autonomously aggregating modules to form a desired tar-
get pattern. A few studies on configuration formation by
means of programmable self-assembly can be found for self-
actuatedmodular robots (Klavins 2007), and formodules that
lack innate actuation ability, like stochastically-driven mod-
ules in a liquid environment (Tolley and Lipson 2010). But
these approaches cannot be generalized to allMSR platforms
directly.

In swarm robotic systems, configuration formation is
known as pattern formation or self-assembly. As the swarm
robots are usually not equipped with connectors to connect
with other robots, therefore they aggregate nearby to form
different patterns.Many studies can be found on autonomous
self-assembly of robot swarms. Alonso-Mora et al. (2011)
have solved the problem of forming artistic patterns by
miniature swarm robots where they are initially distributed
arbitrarily (spatially) in an environment and their final objec-
tive is to aggregate in such a way that they form the given

pattern. Goal positions for robots are specified as Voronoi
regions and the Hungarian Algorithm (Kuhn 1955a) is used
to allocate robots to goal positions. In Werfel and Nagpal
(2008), the authors have provided decentralized movement
strategies for robots using random walk, systematic search,
or gradient-following to enable them to carry blocks to build
user-specified configurations. Recently, we have proposed a
semi-distributed solution for configuration formation from
singleton modules (Dutta and Dasgupta 2016). A potential
limitation of these approaches when applied to MSR config-
uration formation is that it would require modules already
connected in a certain initial configuration to be first discon-
nected into singletons and then allocated to individual spots
in the target configuration, resulting in unnecessary expendi-
ture of energy to undock modules in the initial configuration
and possibly re-dock the same modules in the target config-
uration; inter-module collision avoidance during locomotion
of multiple individual modules would also consume more
time and energy than when the same modules move together
as a connected configuration.

In contrast, our proposed approach attempts to preserve
initial configurations in parts of the target configurationwher-
ever possible using graph isomorphism (Cordella et al. 2004)
to avoid these issues. Graph isomorphism for MSRs has
been investigated by several researchers including Nelson
and Cipra (2004), Park et al. (2008) and Hou and Shen
(2014), albeit for self-reconfiguringmodules (changing posi-
tions of modules) that remain part of the same configuration
after reconfiguration. For example, in Hou and Shen (2014),
the authors have used maximum common subgraph and
subgraph isomorphism based techniques for configuration
matching which consequently help to find the modules in the
configurations which do not need to change positions for the
reconfiguration process. Asmight be expected, past works on
the self-reconfiguration problem can contribute techniques
which may be partially adaptable to the configuration forma-
tion problem. For example, the modeling of modular robot
systems as graphs has been used for quite some time, and
distance metrics on these graphs are useful for reconfigura-
tion and motion planning (Chirikjian et al. 1996; Pamecha
et al. 1997). This representation is also useful for enumerat-
ing unique (non-isomorphic) structures (Chen and Burdick
1998; Davis et al. 2016), although it has been pointed out that
determining whether a pair of structures are isomorphic to
eachother ismuchmore difficult than just enumerating the set
of unique structures (Chen and Burdick 1998). The Hungar-
ian algorithm based distance metric developed in Chirikjian
et al. (1996), Pamecha et al. (1997), is more useful in deter-
mining the distance between two configurations where the
number of member modules in these two configurations are
the same. But in our case, the goal is to find an isomorphic
sub-structure of a configuration in a possibly larger target
configuration. In this paper, we use a graph representation
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for the robot system, take advantage of existing algorithms
for measuring distance in these graphs, and use the concept
of maximum common subgraph (closely related to isomor-
phism) in addressing the configuration formation problem.
Our proposed approach generalizes the self-reconfiguration
problem by finding the best positions for multiple config-
urations and singleton modules within a different, possibly
larger or smaller, target configuration.

3 Configuration formation as utility
maximization problem

3.1 Notations

Let A = {a1, a2, . . .} denote a set of modules. Each ai ∈ A

has an initial pose denoted by a pos
i = (xi , yi , θi ), where

(xi , yi ) denotes the location of ai and θi denotes its orien-
tation within a 2-D plane corresponding to the environment.
Each module has a unique identifier. A configuration is a set
of modules that are physically connected. A configuration
is denoted as Ai = {a1, a2, . . . , a j } ⊆ A. The topology of
configuration Ai is denoted as a graph, GAi = (VA, EA),
where VA = Ai and EA = {ek j = (ak, a j ) : a j and ak are
physically connected in Ai }. Each configuration has a mod-
ule that is identified as a leader (Baca et al. 2016) and the
leader’s pose is used to represent the configuration’s pose.

In the configuration formation problem studied in this
paper, modules, starting from a set of different initial
configurations, are required to get into a specified target con-
figuration. The target configuration is also represented as a
graph, denoted byGT = (VT , ET ), where VT = {s1, s2, . . .}
is the set of vertices and ET = {ei j = (si , s j )} is the set of
edges. Each vertex in VT is referred to as a spot that a mod-
ule needs to occupy and two neighboring spots share an edge
between them depending on the topology of GT . Each spot
si ∈ VT is specified by its pose and its neighboring spots
in the target configuration, si = (s posi , neigh(si )), where
neigh(si ) ⊂ VT . Visual representation of these two graph
structures has been shown in Fig. 2. Even though we have
modeled the initial and target configurations as graphs, for
testing purposes, we have used only tree configurations. In
the rest of the paper, for the sake of legibility, we have slightly
abused the notation by using T instead of GT to denote the
target configuration and S instead of VT to denote the spots in
the target configuration. Let costloc() denote the locomotion
cost from a pos

i to s posj , costdock denote the cost of docking

ai with modules in neighboring spots of s j and costundock

denote the un-docking costs of ai from neighboring modules
in Ai .

s1 s2 s3
s1 s2 s3

s4

s5

T T s4

s5
a3

a1

a2

a3

a1

a2

AiAi

(a) (b)

Fig. 2 a Graph abstraction of T , b Graph abstraction of Ai

3.2 Problem setup

To formulate the configuration formation problem as a utility
maximization problem, we first represent the utility of a sin-
glemodule to occupy a single spot in the target configuration,
and then extend that representation to a set of modules con-
nected as a configuration to occupy a set of adjacent spots
in the target configuration. A single module’s utility for a
spot is given by the value of the spot to the module minus
the costs or energy expended by the module to occupy the
spot. As reported in Kamimura et al. (2004), the locomo-
tion of an MSR is significantly affected by the locomotion
of the module(s) in the MSR that has more neighbors in
the MSR’s configuration. For example, for the configuration
shown in Fig. 1a, module 12’s position at the center of the
6-module configuration is more critical than the other mod-
ules for locomotion as it has more neighbors. If module 12
becomes un-operational at any point of time, then four of its
connected neighbor modules need to un-dock to get rid of
module 12 and then reconnect again to continue working.
On the other hand, if any of the terminal modules (e.g., 14)
becomes un-operational, then that particular module can be
detached from the MSR body with just one un-dock opera-
tion.

To capture this position dependency, we have used a con-
cept from graph theory called the betweenness centrality
(Brandes 2001) to denote the value of spot si , given by:

Val(si ) =
∑

si �=s j �=sk

σs j sk (si )

σs j sk
(1)

where σs j sk is the total number of shortest paths between any
pair of nodes s j and sk in GT and σs j sk (si ) is the number of
shortest paths between s j and sk which go through si .

The cost to amodule ai located at a
pos
i to occupy spot s j at

s posj , is calculated as a sum of ai ’s locomotion costs to reach
and occupy spot s j , and any costs to undock and re-dock
with neighboring modules before and after it occupies the
spot (Dasgupta et al. 2012). This is denoted as the following:
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costai (s j ) = costloc(a pos
i , s posj ) +

∑

ak∈neigh(s j )

costdock(ai , ak)

+
∑

ai ′ ∈neigh(ai )

costundock(ai , ai ′) (2)

Note that energy requirements for locomotion of a module
are generally higher than those for docking the module with
another module as locomotion requires continuous power
to all motors and much higher torques than docking; also,
docking two modules requires aligning their docking ports
first, which takes more energy than un-docking twomodules.

When a set of modules is connected in configuration Ai ,
the cost of occupying a set of spots S j ⊆ VT in the target
configuration is given by:

costAi (S j ) =
∑

sl∈S j ,ak∈Ai

costak (sl) − frwd(|Ai |) (3)

where frwd(|Ai |) = |Ai |−2
|A| is a reward function for retaining

connections between modules in the existing configuration
Ai while being allocated to the target configuration. Because
frwd(|Ai |) increases (and costAi () decreases)with the size of
Ai , it is cost-wise better to break smaller configurations than
to break larger configurations to fit into the target configura-
tion. So, the reward function ensures that keeping the initial
configuration intact in the target configuration, whenever
possible, results in lower cost. Using the above formulation,
it can easily be seen that when Ai can fit entirely into VT
(i.e., S j = VT ), costAi (S j ) <

∑
s j∈S j ,ai∈Ai

costai (s j ).

The utility of a spot to amodule determines how profitable
or beneficial that spot is for the module if it finally ends up
occupying that spot. The utility of module ai for spot s j is
given by

Uai (s j ) = Val(s j ) − costai (s j ) (4)

Similar to the cost function described above, the utility for
initial configuration Ai to occupy a set of spots S j ⊆ VT is
given by the sum of the utilities of the individual modules
comprising Ai to occupy spots in S j ,

UAi (S j ) =
∑

sl∈S j
V al(sl) − costAi (S j ) (5)

Using the above formulation, the spot allocation problem has
to assign modules to spots so that each module is allocated
to the most eligible (highest utility earning) spot and no two
modules are assigned to the same spot.

Formally, we can define the objective function as follows:
Given a set of modules A in a set of initial configurations,
and a set of spots S representing the target configuration, find
a suitable allocation P∗ : A → S such that

P∗ = argmax∀P
∑

ai∈A,s j∈S
Uai (s j ) +

∑

Ai⊆A,S j⊆S

UAi (S j );

∀ak �= ai , P∗(ai ) �= P∗(ak). (6)

Note that, if two modules ai and ak both have the same high-
est utility for spot s j , then only one of themcan be allocated to
and occupy s j . In the next section, we describe our spot selec-
tion algorithm that provides a suitable allocation of modules
to spots for the above utility maximization problem.

4 Algorithms for configuration formation

We divide the problem into two phases—a planning phase,
where modules select spots in the target configuration, and
an acting phase, where modules move to their selected spots
and connect with other modules.

4.1 Planning phase

In the beginning of the planning phase, all the modules
broadcast their positions and orientations. After having this
information, eachmodule calculates the location correspond-
ing to the center target configuration T in the environment, as
the mean of all spots’ positions. However, a specific desired
location can also be given as an input to the modules by the
user.1 Singleton modules then rank themselves according to
their distances from the center of T ; the rank of a configu-
ration is calculated using the distance of the configuration’s
leader from the center of T . Singletons and configurations
select spots in T based on their rank. Because costloc has
the most significant contribution to the cost function, the
distance-based rank ensures that modules and configurations
with lower costs (higher utilities) get to select spots in T
first. We describe the spot selection techniques in the plan-
ning phase in two parts—spot selection by singletonmodules
and spot selection by configurations.

4.1.1 Spot selection by singleton modules

Asingletonmodule acurr selects a spot to occupy usingAlgo-
rithm 1. acurr first sorts the spots in order of its expected
utility Uacurr (s j ),∀s j ∈ S. If a spot s j has not already been
selected by another module, or, if it has been selected by
another singleton module (module that is not part of a con-
figuration) that can be evicted using the evict method, then
acurr selects s j and broadcasts the updated spot-selector pairs
to all other modules. If acurr cannot evict the module cur-
rently occupying its highest utility spot, then it successively

1 A common coordinate system can be maintained by modules for
localizing themselves following the model described in Suzuki and
Yamashita (1997).
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Algorithm 1: Spot Allocation Algorithm for Singleton
Modules.
1 procedure: spotAllocation()
Input: S: set of spots, S̄: set of (spot, selector) pairs; acurr :

module currently selecting spot.
2 Ssort ← Sort S in descending order of utility of spots
3 for each s j ∈ Ssort do
4 D ← 0;
5 if (s j is not selected by another module) ∨ ((s j is selected by

module ablock /∈ Ai ⊆ A)∧ (evict(acurr , ablock , D) = TRUE))
then

6 Select spot s j for acurr ;
7 Broadcast updated set of spot-selector pairs S̄;
8 return;

9 Broadcast NO_SPOT_FOUND message;

Algorithm 2: Eviction algorithm used by modules to
select alternate spots.

1 procedure: evict(acurr , ablock ,D)
Input: acurr : module currently selecting spot scurr ; ablock : the

module which has already selected acurr ’s best spot scurr ;
D: current recursion depth.

2 if D < Dmax then
3 sblock ← arg max

si∈S\scurr
Uablock (si );

4 scurr ′ ← arg max
si∈S\scurr

Uacurr (si );

5 if (Uacurr (scurr ) +Uablock (sblock) >

Uacurr (scurr ′ ) +Uablock (scurr )) then
6 if sblock is not selected by any module then
7 return TRUE;
8 else
9 //a′

block /∈ Ai ⊆ A is the module occupying sblock
10 return evict(ablock , a′

block ,D + 1);

11 return FALSE;

reattempts spot selection using the spots for which it has the
next highest utilities. If none of the spots in S can be selected
by acurr , it broadcasts a NO_SPOT_FOUND message to all
other modules.

Eviction strategy The evict method is used by module
acurr to cancel the selection of spot scurr done previously
by another singleton module ablock . Note that eviction can
be done only for a singleton module, and not for modules
that are part of configurations, as breaking existing con-
figurations will incur additional time as well as costs for
docking and un-docking modules. The method first checks
the expected combined utility between acurr and ablock for
selecting their most (conflicting) and second-most preferred
spots. If this combined utility is greater when acurr selects
scurr and ablock selects its next highest utility spot that it can
occupy, then acurr evicts the selection of scurr by ablock , as
shown in the evict() method in Algorithm 2. To limit exces-
sively long cycles of eviction, we have allowed at mostDmax

successive evictions. An illustration of the eviction process

s1 s2 s3

a1

a2
a3

s4

Modules Spots
Selected Second 

Preference
First Preference

Fig. 3 Illustration of eviction algorithm for 3 modules with Dmax = 3

withDmax = 3 is shown in Fig. 3. One should note that, evic-
tion and reassigning of modules in a circular fashion cannot
happen, i.e., the system will not oscillate because of two
main reasons. First, as modules get allocated in a sequential
fashion, therefore one module which is already allocated to
some spot will only get evicted iff a new spot is found for
it. Secondly, we have an upper bound on how many recur-
sive evictions can happen (Dmax ) which makes sure that the
eviction does not go on forever.

4.1.2 Block allocation by modules connected in a
configuration

Preliminaries Following are some definitions which will be
needed in explaining our proposed approach.

Definition 1 Graph Isomorphism (Raymond and Willett
2002): two graphs G1 = (V1, E1) and G2 = (V2, E2) are
isomorphic if there is a one-to-one mapping between the
nodes and edges in G1 and G2. Formally, this bijection rela-
tionship exists— f : V1 → V2.

Loosely speaking, if two graphs are isomorphic, then they
will have same number of nodes and if any two nodes in
one graph are adjacent, then those nodes will be adjacent in
the other graph as well. Graph isomorphism is one of those
problems which are neither solvable in polynomial time nor
can they be proved to be NP-complete; rather they belong to
an ‘intermediate’ class (Kobler et al. 2012). Unfortunately,
from an algorithmic point of view, even if a problem cannot
be proved to be NP-complete problem, being outside of the
P-class makes it difficult to solve anyway (in the worst-case
scenario). Even though graph isomorphism is a well-known
notorious problem to solve (Kobler et al. 2012), there are effi-
cient linear time algorithms available for tree isomorphism
(Aho and Hopcroft 1974).

Definition 2 Subgraph Isomorphism (Ullmann 1976): two
graphs G1 = (V1, E1) and G2 = (V2, E2) are subgraph
isomorphic if any subgraph G ′

1 of G1 (G ′
1 ⊆ G1) is isomor-

phic to G2.

Usually, in the case of subgraph isomorphism, one graph
is larger in size than the other and the problem becomes
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Algorithm 3: Block Allocation Algorithm that a set of
modules connected in configuration Acurr uses to select
a set of maximally adjacent spots in the target configu-
ration.
1 blockAllocation(Acurr , S̄)
Input: S̄: Set of (spot, selector) pairs; Acurr : Set of modules

connected together as a configuration and currently
selecting spots.

2 Tsub ← Set of all subgraphs of T , which are isomorphic to Acurr .
3 if Tsub == {∅} then
4 Tsub ← Set of all maximum common isomorphic subgraphs

of T and Acurr .

5 for each tk ∈ Tsub in descending order of utility UAi (tk) do
6 if No spot in tk has been selected yet then
7 Select tk ;
8 Broadcast updated set of spot-selector pairs S̄;
9 else

10 Sblock ← set of spots ∈ tk already selected by
{ablock} ⊆ A \ Acurr

11 si ← spot matched to ai ∈ Acurr but already selected by
ablock ∈ A \ Acurr

12 if evict(ai , ablock ) = TRUE for every si ∈ Sblock then
13 Select tk ;
14 Broadcast updated set of spot-selector pairs S̄;
15 else
16 if all tk ∈ Tsub have been checked then
17 for each ai ∈ Acurr where evict(ai , ablock ) =

FALSE and si ∈ tk do
18 Disconnect ai from Acurr
19 Acurr ← Acurr \ ai ;
20 spotAllocation(ai , S̄);
21 Broadcast updated set of spot-selector pairs S̄;

22 if selected tk is MCS of Acurr then
23 for every ai ∈ Acurr , where si /∈ tk do
24 Disconnect ai from Acurr
25 Acurr ← Acurr \ ai ;
26 spotAllocation(ai , S̄)

27 Broadcast updated set of spot-selector pairs S̄;

28

to find a subgraph of the larger graph which is isomor-
phic to the smaller graph. As can be understood, there can
be multiple isomorphic subgraphs available in the smaller
graph. This problem is a well-known NP-complete prob-
lem (Cordella et al. 2004). However, there are approximation
algorithms proposed in the literature which solve the prob-
lem in polynomial-time for certain graph structures like trees
(Shamir and Tsur 1997). We are also interested in the iso-
morphic subgraphs which are also maximum in size, which
leads us to our next definition.

Definition 3 Maximum common subgraph (MCS): given
G1 = (V1, E1) and G2 = (V2, E2), a MCS is a subgraph
consisting of the largest number of edges isomorphic to both
G1 and G2.

The problem of finding a MCS between two graphs is
a combinatorially intractable NP-complete problem (Ray-
mond and Willett 2002) for which no algorithm of
polynomial-time complexity exists for the general case. For
finding all possible MCSs having k nodes in a pair of graphs
G1 = (V1, E1) and G2 = (V2, E2), the total number of
comparisons we have to do is:

V1!V2!
(V1 − k)!(V2 − k)!k! (7)

As can be seen in this equation, even with small values of V1,
V2 and k, computational comparisons can reach an astronom-
ical value. Although it is a computationally difficult problem
to solve in graphs, we should mention that polynomial-time
approximation algorithms for finding maximum common
subtrees can be found in the literature (Akutsu 1993; Reyner
1977).

As discussed earlier, our main objective is to place the
initial configurations (Ai ) into the target configuration (T )
with the least number of disconnections between the mod-
ules present in Ai . We have modeled Ai and T as graphs.
Therefore if GAi is an isomorphic subgraph of T , then Ai

can readily be allocated to T (provided the spots are free).
On the other hand, if GAi is not an isomorphic subgraph of
T , then we look for a MCS so that we can preserve most
of the connections in Ai while allocating it to T while the
rest of the modules in Ai which are not part of that MCS are
detached from it.

Algorithm description The technique used by configura-
tion Acurr to select a set of connected spots in the target
configuration T is given by the blockAllocation procedure
shown in Algorithm 3. The algorithm is executed on lcurr ,
the leader of configuration Acurr , selected using techniques
in Baca et al. (2016).

To place Acurr into T without breaking the connections
between its modules, we have to find if T , or a subgraph of T ,
is isomorphic to Acurr .An example of this problem is shown
in Fig. 4a that shows all possible subgraphs of T which are
isomorphic to the configuration Ai using different colors.
This problem requires finding the isomorphic subgraphs (IS)
(Cordella et al. 2004) of T . However, if Acurr is not isomor-
phic to T or a subgraph of T , then Acurr cannot be placed
into T without breaking its connections and, thus, chang-
ing its shape. In such a scenario, our objective is to reduce
the number of connections that are removed between Acurr ’s
modules. For this, we have to find the maximum number of
modules in Acurr , which can be placed directly into T , with-
out first disconnecting them. An example is shown in Fig. 4b,
where the red dotted boxes indicate the maximum common
subgraphs of T and Ai , which are isomorphic.

This problem is an instance of the maximum common
subgraph (MCS) isomorphism problem as discussed earlier
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Fig. 4 a A scenario where the colored subgraphs of T are isomorphic
to Ai , bA scenario where a subgraph of t is isomorphic to a subgraph of
Ai . The red dotted box shows the maximal common subgraph between

T and Ai ; the unmatched module a3 is detatched from Ai and allocated
to spot s1 by our block selection algorithm (Color figure online)

(Raymond andWillett 2002), where, given two graphs T and
Acurr , the goal is to find the largest subgraphwhich is isomor-
phic both to a subgraph of T and Acurr . If |VAcurr | > |VT |,
then we find the maximum size subgraph of T which is iso-
morphic to A′

curr ⊆ Acurr and allocate the spots to matched
modules, using a similar technique as in the blockAllocation
algorithm. On the other hand, if |VT | = |VAcurr | and GT ,
GAcurr are isomorphic, then Acurr can be allocated to T ; oth-
erwise, we find the MCS between Acurr and T which can be
readily allocated to T while the rest of Acurr can be allocated
following the proposed blockAllocation algorithm.

Our algorithm first finds subgraphs ofGT that are isomor-
phic toGA. If there are no isomorphic subgraphs, it checks for
maximal common isomorphic subgraphs. These subgraphs
are stored in set Tsub (lines 2–4). As modules want to maxi-
mize the utility earned from the allocation, the subgraphs tk
within Tsub are ordered byutility to Acurr . The algorithm then
inspects each subgraph tk . If all the spots in tk are free, then tk
is selected by Acurr and lcurr broadcasts a message to notify
every module in A about this selection (lines 6–9). On the
other hand, if any spot si ∈ tk is already selected by a single-
ton ablock , Acurr checks to see if it can eviction ablock using
the evict()method. If eviction is successful, tk is selected for
Acurr and the updated set of spot-selector pairs are broadcast
to allmodules inA (lines 11–15). If eviction is not successful,
it means that some modules in Acurr could not occupy some
spots in the target configuration (or its subgraph) as some
other modules that did not belong to configuration Acurr had
already selected those spots. In this case, the modules of
Acurr that could not find a spot in tk will be disconnected
from Acurr . Single spot selection algorithm is then used to
select other spots in tk for these modules (lines 17–21).

Finally, because selection of tk by a configuration Acurr

is done by means of matching modules of Acurr to unique
spots in tk , if tk is an MCS of Acurr (i.e., |Vtk | < |VAcurr |),
then some of the modules in Acurr will not be matched to any
spot in tk . Those unmatched modules will disconnect from
Acurr , become singletons and will execute singleton module
spotAllocation() algorithm, in the order of their distances
from the center of T , to get allocated to a spot (lines 22–24).

Note that all other modules in Acurr whose matched spots in
tk were free to occupy, will occupy the matched spots while
retaining their configuration. The updated set of spot-selector
pairs are broadcast to all modules.

Algorithm 4: Movement strategy for the modules to
assume appropriate spots in T .

1 procedure:MoveToSpots()
Input:
Ssort ← Sorted S in descending order of betweenness centrality
values.
ac ← The module which is allocated to the central spot (highest
betweenness centrality).
sc ← The central spot.
A′ ← Set of modules which have already assumed their allocated
spots.
Ā ← Set of modules which will take neighboring spots of the
modules in A′.

2 if ac is a singleton then
3 Move to sc.
4 A′ ← A′ ∪ ac.
5 else
6 //ac ∈ Ai
7 Ai moves to T and therefore ac is allocated to sc.
8 A′ ← A′ ∪ Ai .

9 while configuration is not completely formed do
10 for each a′ ∈ A′ do
11 Notify other modules of the spot that a′ has assumed.

12 Update Ā.
13 Clear A′ (← ∅).
14 for each ā ∈ Ā do
15 Move to T and assume allocated spots.

16 Update A′.

4.2 Acting phase

After the planning phase is finished and all the spots in the
target configuration have been selected bymodules, themod-
ules have to move to their respective selected spots. Note that
no module moves until all the spots are selected. If there is
no proper order of modules for assuming spots, then a dead-
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(top)

(bottom)

Fig. 5 Illustration of acting phase: dotted boxes represent the spots
in T . First, the spot with the maximum betweenness centrality gets
allocated (black spot). Next its neighbors get allocated (red spots) and
finally neighbors of red spots get allocated (yellow boxes). (top) all

modules are singletons; (bottom) red modules on the left side were part
of an initial configuration. Therefore they occupied the spots at the same
time even though two of the extreme red modules were not immediate
neighbors of the central black module (Color figure online)

lock situation might arise. For example, in Fig. 1b, if all the
modules occupy their spots before module 5 does, assuming
module 5 is a singleton, then it will be difficult for module 5
to occupy its spot properly, unless othermodules give it space
formoving. But then theywill have to align themselves again,
which is a difficult task. To avoid this, the module which has
selected the spot with highest betweenness centrality value
(or, central spot), will move first and assume its position.
Once it is in its proper position, it will broadcast a message
to notify this to all other modules. Next the spots neighbor-
ing the center spot will be filled and so on. The procedure is
shown in Algorithm 4.

If some spot si is allocated to a module which is part
of an initial configuration A j , then the whole configuration
moves together to assume the allocated spots. As the initial
configuration is a connected graph, therefore si ’s neighbors
and their neighbors will get filled up by this. Next, the spots
adjacent to A j ’s allocated set of spots and the empty spots
which are closer to si which did not get assumed because of
A j ’s allocation will be assumed (Fig. 5). Similar inside-out
growth approaches have been proved to be very effective in
mitigating the challenges like hole covering, deadlock avoid-
ance etc. in swarm robotic self-assembly (Rubenstein et al.
2014; Werfel and Nagpal 2008; Dutta et al. 2012) and also
in our earlier work of configuration formation in modular
robots from singleton modules (Dutta and Dasgupta 2016).
Techniques described in Dutta et al. (2018) can then be used
for locomotion of the modules.

4.3 Theoretical analysis of algorithms

In this section, we provide the theoretical analysis of our
proposed algorithms for singleton and initial configuration
allocation.

Theorem 1 spotAllocation and blockAllocation algorithms
are complete when sufficient numbers of modules are avail-
able to form desired target configurations.

Proof We prove the completeness of the algorithms by
showing that there is no empty spot or hole in the target
configuration when the number of modules is at least equal
to the number of spots in the target configuration T , i.e.,
when |A| ≥ |S|. A hole exists in T if there is a spot sh that
is not occupied by any module. This can happen because of
two conditions: 1) No module has selected sh , or, 2) mod-
ule ah , which selected sh , could not reach its spot because
another module blocked the path to its selected spot by occu-
pying a spot that was further from the center of T than the
selected spot.We show that these two conditions cannot arise.
If |A| ≥ |S|, then because of the recursive approach in the
evict method of Algorithm 1, each module will try to select
a spot in T , as long as there are available spots. This guar-
antees that condition 1 never arises as at least one module
ah will select sh . Condition 2 will never arise because, as
described in Sect. 4.2, modules’ priority to move is based on
the betweenness centrality of their selected spots, and spots
nearer to the center of T are occupied first, followed by outer
ones. In other words, no module will occupy an outer spot
before its neighboring spot, that is nearer to the center of the
target configuration gets occupied. Consequently, T cannot
have a hole. Hence proved. ��
Lemma 1 Any module ai allocated to any spot s j before the
evict()method will still be allocated to some spot sk after the
execution of the evict() method even if sk �= s j .

Proof We prove this by contradiction. Let us assume that as
a result of the evict() method, ai will be allocated to a null
spot, sk , i.e., sk = NULL . But according to our proposed
eviction strategy, if ai does not get a spot to be allocated to,
then the module which is trying to evict it will not be able
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to do that and as a result, ai will still be allocated to its spot
s j �= NULL . Therefore, evict() method will not reduce the
number of modules that are already allocated to some spots.

��
Corollary 1 The number ofmodules allocated to unique spots
in the target configuration increasesmonotonically over time.

Lemma 2 Eviction of module is eligible iff the total utility
earned by the modules increases.

Proof Weprove this by contradiction. Let’s assume thatmod-
ule ai evicts another module a j from spot sk and then a j

selects its next highest utility spot sl . If U∗ and U ′ denotes
the total utility earned by all the modules with and without
this eviction and sk′ denotes ai ’s next highest utility spot,
then we assume U∗ < U ′. For the sake of simplicity, let’s
assume that sl was not selected by any other module before
and no other modules are executing the evict() function. So,
U∗ = Uai (sk) + Uaj (sl) + Urest and U ′ = Uai (sk′) +
Uaj (sk) + Urest . From Algorithm 2, we can guarantee that
eviction is possible iff Uai (sk)+Uaj (sl) > Uai (sk′)+Uaj (sk)
and therefore U∗ > U ′. Hence our initial assumption was
incorrect and it’s proved that the evict() function maximizes
the total utility. ��
Theorem 2 (spotAllocation) algorithm returns a Pareto-
optimal allocation between modules and spots, i.e., any
module’s earned utility cannot be improved without making
another module’s utility worse.

Proof Let si,k denote the kth highest utility spot for module
ai . Because eachmodule orders the spots based on utilities, it
follows that Uai (si,k) > Uai (si,k+1). Consider two modules
ai and a j that have the highest utility for the same spot s (i.e.,
si,1 = s j,1 = s′, butUai (s

′) > Uaj (s
′). Also, assume that a j

has selected spot s′ first. Now, if the spotAllocation allocates
ai to its next best spot, si,2 and a j remains at s′, then the
total utility is U 1 = Uai (si,2) + Uaj (s

′). On the other hand,
if spotAllocationmethod evicts a j from s′ and allocates it to
its next best spot s j,2 (assuming it is free), then the total utility
becomes U 2 = Uai (s

′) + Uaj (s j,2). From Algorithm 1, if
eviction is possible, then U 2 > U 1. On the other hand, if
eviction does not happen, then it implies U 1 > U 2. For
any other allocation strategy that does not do eviction even
if U 2 > U 1, then the total utility earned by the alternate
allocation strategy is always less than the utility earned by
the spotAllocation algorithm. From the above equations, we
can conclude that, if any two modules ai and a j have same
ranking for a particular spot, s′, then one of the modules will
be allocated to that spot and the other will be pushed to its
next highest utility spot, i.e., its earned utility reduces, and
no other allocation would increase their utilities as well as
the overall utility. Hence the allocation strategy is Pareto-
optimal. ��

Lemma 3 Both spotAllocation and blockAllocation algo-
rithms are deterministic in nature, i.e., no two modules will
be allocated to the same spot as a result of our proposed
strategy.

Proof We divide the proof into two following scenarios.
Case I

Let us assume that a singleton ai selects a spot s j which
is already allocated to another singleton module ak and also
ak’s allocation does not change due to this, i.e., both ai and ak
are now allocated to s j . But according to Algorithm 1, ai will
first try to evict ak from s j and then it can be allocated. If ak
cannot be evicted, then ai will not select s j . Also, following
Lemma 1, we can guarantee that if ak is evicted, then it will
be allocated to some spot sl �= S j . On the other hand, if
ak is a member of an initial configuration, then ai cannot
evict it anyway; rather it will look for the next best available
spot. Therefore it is not possible that both ai and ak will be
allocated to the same spot s j .
Case II

If ai ∈ Am , and ak is a singleton module, then ai has
permission to evict ak if all other required conditions are sat-
isfied. Following the similar logic as before,we can guarantee
that if ak is evicted by ai ∈ Am , then ak will be allocated to
some spot sl �= S j . If ak cannot be evicted, then ai will look
for a different spot (different isomorphic subgraph or as a
singleton module if detached). A similar thing will happen if
ak ∈ Al . Therefore, we can guarantee that if ai is part of an
initial configuration Am , it will not be allocated to the same
spot s j with ak .

Hence proved. ��
Theorem 3 As Dmax approaches |S|, the total utility earned
by the modules (U) approaches the optimal utility U∗.

Proof If there is no conflict among the modules about their
best spots, i.e., each module’s highest utility spot is unique,
then the spotAllocation algorithm allocates highest utility
spots to all the modules and thus achieves the optimal util-
ity. But if there is a conflict among modules for the same
spots, then the eviction method is invoked. From Algo-
rithm 1, we can conclude that the total utility earned by the
modules increases by successively calling the evict method.
For limDmax→|S|, any subsequent evictions will consequently
increase the total utility. If eviction fails, then that means the
total utility cannot be improved any further. Thus, every time
the evictionmethod is invoked it will increase the total utility,
going towards the optimal utility. ��
Theorem 4 The proposed configuration formation process
converges with time.

Proof Following Theorem 1, Lemma 1, and Corollary 1, we
can guarantee that the configuration formation process will
converge over time. ��
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Note on complexity: The spotAllocation algorithm (Algo-
rithm 1) has a time complexity given by O(|S|Dmax ) where
|S| is the number of spots in the target configuration and
Dmax is the depth up to which the eviction of modules is
allowed. In the blockAllocation algorithm (Algorithm 3), tar-
get configurations are considered to be trees and finding all
possible isomorphic subtrees in the target configuration has a
polynomial worst case time complexity of O((|S||Ai |)d+1)

(Cordella et al. 2004), where |Ai | and |S| are the num-
ber of modules and spots in intial and target configurations
respectively, and d is the maximum branch factor of either
configuration.

5 Experimental evaluation

5.1 Settings

We have implemented the spot allocation algorithm on
a desktop PC (Intel Core i5-960 3.20GHz, 6GB DDR3
SDRAM). We tested instances where random numbers of
singletons and initial configurations with sizes between 2
and 10 modules need to be allocated to target configurations
with between 10 and 100 spots. In all cases, unless otherwise
mentioned, the total number ofmodules in the environment is
equal to the total number of spots in the target configuration.
Each module is modeled as a cube of size 1 unit × 1 unit ×
1 unit. The modules are placed at random locations within a
16 unit × 16 unit environment, their initial orientations are
drawn from a uniform distribution in U[0, π ], and the initial
positions of singletons and leaders of the initial configura-
tions are drawn uniformly from U[(0, 15), (0, 15)]. For all
the tests,Dmax has been set to 3. Changing the value ofDmax

from 3 to 10 affected the algorithm’s performance (both time
and quality wise) negligibly; therefore this is not included in
the results.

Extracting ‘better’ isomorphic subgraphs Initial and tar-
get configurations were restricted to be trees based on the
connections themodules in ourMSRplatform are capable of,
although our algorithms can be applied for any other kinds of
graphs as well. As there can be numerous subtrees present in
the target configuration, which are isomorphic to the initial
configuration, and finding all possible isomorphic subtrees
can take considerable time, we set an upper bound, MAX ,
on the number of isomorphic subtrees that the blockAlloca-
tion algorithm (Algorithm 3) will check. MAX is set to 20;
different values of MAX = 10, 30, or 40 did not change
the performance of the algorithm. To get higher utility iso-
morphic subtrees, first the nodes in the target configuration
are sorted in descending order of betweenness centrality val-
ues, because if the costs to occupy two different spots are the
same, then higher betweenness centrality (spot value) indi-
cates higher utility of the spot. For every node in the sorted
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Fig. 6 a Time to calculate MCS or IS versus. different initial configu-
ration sizes, b Total planning time for different number of modules in
environment

list of spots, every node in current configuration Ai is made
the root of Ai once and checked for subtree isomorphism
with target configuration T while making each node in T
the root once, for every possible tree in Ai . The checking of
isomorphic subtrees between Ai and T is stopped as soon as
the first MAX isomorphic subtrees are found. All results are
averaged over 50 runs.

5.2 Results

Performance analysis of our approach First we have shown
how much time it takes to find MAX number of MCS (or,
IS). The result is shown in Fig. 6a. The x-axis denotes the
size of a single configuration and the y-axis denotes the time
in milliseconds to find MAX number of MCS (or, IS) of that
configuration in the target configuration. For this test, total
spots in the target configuration have been set to 100. Though
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the run time increases with the size of the initial configura-
tion, which can be expected because of the complexity results
shown in Shamir and Tsur (1997) for finding isomorphic sub-
trees, still it was always well within a reasonable bound. In
the next set of experiments, we have focused on themain con-
tribution of this paper—how to construct a modular robotic
system from an initial set of singletons and configurations.
Figure 6b shows how the planning time changes with differ-
ent numbers ofmodules; the y-axis denotes the total planning
time in milliseconds and the x-axis denotes the number of
modules. It can be noted from this plot that though for a small
set of modules, time change is almost constant, as the con-
figuration size as well as the number of modules increases,
elapsed time increases in a polynomial fashion. This elapsed
time indicates only the planning phase execution time of the
modules. Figure 7a shows how with increasing number of
modules the total distance traveled by them changes. This
metric is calculated by adding the distances traveled by each
module from their initial positions to their respective spots
in T . The figure shows that the total distance traveled by the
modules increases linearly. We have also calculated the total
number ofmessages passed amongmoduleswhile the config-
uration formation process is occurring. Figure 7b shows how
the number of total messages changes with the number of
modules. As can be expected, with a higher number of mod-
ules in the environment, the number of messages increases in
a polynomial fashion (cubic on the number of robots). Note
that, this curve shows the total message passed among the
robots, i.e., a total of messages sent and received. If only sent
messages are considered, then this curve becomes quadratic
in nature.

We are also interested in understanding the completion
rate of the planning phase. The percentage of planning phase
completion indicateswhat percentageof the totalmodules are
allocated to their spots in T . Figure 8a shows the planning
completion rate for different numbers of modules between
10 and 100. We can see that with increasing numbers of
modules, the completion rate increases and is more evenly
distributed over time. For instance, with |A| = 10, after 70%
time completion, only 30% of planning has been completed,
whereas with |A| = 100, 30% of planning gets completed
after only 25% of time completion. The relationship between
planning phase completion and the number of passed mes-
sages for 100 modules has been shown in Fig. 8b. All the
graphs from 50 runs have been plotted. We observe that
the message count is increasing almost-linearly with com-
pletion rate. For the next set of experiments, we have kept
the number of spots, |S|, fixed at 50 and we have varied the
number ofmodules between [50, 100]. Figure 9a shows plan-
ning completion rate for different numbers of modules. We
can see that with increasing number of modules, completion
rate increases and is more evenly distributed over time. This
behavior is similar to what we have seen in Fig. 8a. Although
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Fig. 7 a Distance traveled by modules to reach target configuration for
different number ofmodules in the environment, bNumber ofmessages
exchanged between modules to select positions in the target configura-
tion for different numbers of modules in the environment

in Fig. 8a, for most of the module sets, the planning phase
completes almost at the end of their respective time-lines, in
the case of Fig. 9a, we can notice that the planning phase
finishes at different stages of their time-lines, for different
numbers of modules. As an example, for |A| = 100, the
planning phase almost converges at 50% the of total elapsed
time, whereas for |A| = 50, it takes almost 100% time to
converge. Figure 9b shows the comparison of the number
of passed messages by the different numbers of modules,
between the cases where |S| = 50 and |S| = |A|. It can be
observed from this figure that with same number of mod-
ules, fewer messages are passed if there are fewer spots than
modules, i.e., if |S| < |A|. For example, with, |A| = 100
and |S| = 50, 8 × 105 messages are passed, whereas with
|S| = 100 and keeping |A| fixed to 100, the number of mes-
sages increases to 10 × 105. This result shows that the total
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Fig. 8 a Change in % of planning completion with % of time com-
pletion, for different no. of modules, b Change in no. of messages at
different time steps, for 100 modules

number of messages depends on both the number of modules
and spots. Next we have run experiments to check how the
subgraph isomorphism technique used in this work helps to
reduce the number of disconnections from initial configura-
tions. For this test, we have kept |S| = |A| = 100. Initially all
modules were part of some smaller configurations and each
initial configuration has the same size. We have varied the
sizes of each initial configuration between [10, 20, 25, 50]
and thus in these cases the number of initial configurations
have been varied between [10, 5, 4, 2]. The planning times
and number of modules required to be disconnected for these
cases are shown in Table 1. As can be seen, with increas-
ing size of initial configurations, the number of disconnected
modules increases. This is because the probability of finding
isomorphic subgraphs in T decreases with increasing size of
initial configurations. But the low numbers of disconnected
modules show that it is always beneficial, in terms of number
of connections detachments and re-attachments, to use our
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Fig. 9 a Change in % of planning completion with % of time com-
pletion, for different no. of modules and |S| = 50, b Change in no. of
messages for different no. of modules and different no. of spots

proposed approach than to break all initial configurations into
singletons and then form the target configurations with them.

Comparison with auction-based allocation We have also
compared our approach for MSR configuration formation
with an auction algorithm (Bertsekas 1990) that finds an
optimal assignment between spots and modules. Using the
auction mechanism a group of modules bid for a set of spots.
First the modules bid for their most preferred spots; conflict
amongmodules for the same spot is resolved by revising bids
in successive iterations. The assignment is done in away such
that the utility is maximized. The auction algorithm does not
take connected configurations of modules during allocation.
Therefore only for the tests which compare the performances
of our algorithm against the auction algorithm, initially all
the modules are considered to be singletons.
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Table 1 Planning times and the numbers of disconnected modules
(average and standard deviation) in the configuration formation process,
where all initial configurations have same sizes (|S| = |A| = 100)

Size of all initial
configurations

Planning time
(ms)

No. of modules
disconnected

10 171.48 (avg.) 0.12 (avg.)

15.13 (std.) 0.32 (std.)

20 166.66 (avg.) 4.32 (avg.)

12.88 (std.) 3.56 (std.)

25 172.10 (avg.) 8.76 (avg.)

11.30 (std.) 4.85 (std.)

50 218.28 (avg.) 29.68 (avg.)

19.57 (std.) 5.33 (std.)
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Fig. 10 a Log scale comparison of planning phase execution time with
auction algorithm,bComparison of total traveled distanceswith auction
algorithm

0 20 40 60 80 100 120
103

104

105

106

107

108

Number of robots

M
es

sa
ge

s 
(lo

g 
sc

al
e)

Auction
Spot Allocation

(a)

0 20 40 60 80 100
0

20

40

60

80

100

% of time elapsed

%
 o

f p
la

nn
in

g 
co

m
pl

et
io

n

Auction
Spot Allocation

(b)

Fig. 11 a Log scale comparison of no. of messages with auction algo-
rithm,bChange in%of planning completionwith%of time completion
and comparison with auction algorithm. 50 lines indicate 50 runs

A log scale comparison of planning times between spot
allocation and the auction algorithms is shown in Fig. 10a.
As can be seen from this graph, with increasing the num-
ber of modules, the difference between planning times of
these two algorithms increases, i.e., our proposed algorithm’s
performance gets better with increased number of modules
compared to the auction algorithm. Comparison of distances
traveled by the modules using our algorithm and the auction
algorithm is shown in Fig. 10b. As we can see in this plot, in
most of the cases total traveled distance by the modules is the
same. But with higher numbers of modules, using the pro-
posed spot allocation algorithm modules travel less distance
than by using the auction algorithm. Thus the spot allocation
algorithm assigns the spots to the modules in very nomi-
nal time, keeping the cost for movement almost the same (or
less in some cases), compared to the auction algorithm. A log
scale comparison of number of messages generated, by the
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spot allocation and auction algorithms, is shown in Fig. 11a.
This figure indicates that the spot allocation algorithm gener-
ates fewer messages than the auction algorithm, which helps
to reduce the communication overhead. Figure 11b compares
the completion rates of planning phases of the auction and
spot allocation algorithms—the x-axis denotes the percent-
age of total time elapsed. This result indicates that completion
rate of the auction algorithm is higher, even though the auc-
tion algorithm takes longer than the spot allocation algorithm.

5.3 Case studies

In this section, we have shown 8 specific cases of the config-
uration formation process that are shown in Fig. 12. Each of
the initial and target configurations used for this set of exper-
iments have been shown to be feasible and stable for the
ModRED MSR in Hossain et al. (2014). To show the gen-
eralization of our approach, we have used both tree and
graph structuredMSR configurations as opposed to only tree
configurations used in the previous sections. This was also
made possible due to not-so-large configurations used here.
Squares represent the modules and the links between two
squares denote the connection between those two modules.

For each case illustrated, the left-most diagram shows the
initial configurations and/or singletons, the middle diagram
shows the detectedMCS (or, IS) and the diagram on the right
shows the final formed configuration. Themodules are color-
coded to show the final allocations. MCS (or, IS) are shown
with dotted boxes. Grey-colored modules represent the mod-
ules that remain connected to the same neighboring module
between initial and target configurations, but only change the
connector through which they are connected. Although this
operation requires one un-docking and one re-docking oper-
ation, it consumes less energy than if the module were to be
connected to a non-neighbor module. The planning time and
number of disconnections for each case are provided along-
side each configuration formation case in Fig. 12.We can see
that each of the test cases requires less than 200 milliseconds
of planning time. Target configurations are also formed with
relatively few link disconnections (maximum being 4) (Fig.
12).

5.4 Hardware experiments with ModRED II MSR

The main objective of hardware experiments is to show
how much time it takes for the singleton modules and
the leader modules to do the local computations. We have
chosen the ModRED II modular self-reconfigurable robot
platform (Hossain et al. 2014) for experimental purposes.
Each ModRED II module is a 4-DOF robot (similar to its
predecessor ModRED I (Baca et al. 2014) with four connec-
tors (unlike its predecessor which has only two connectors
in both ends). Due to its four in-built connectors, ModRED

II (Fig. 13) is able to form more complex configurations
compared to ModRED I. For more details on ModRED II
hardware architecture and features, readers are referred to
Hossain et al. (2014). EachModRED IImodule also houses a
BeagleBone Black, a Linux based computer, on-board. It has
512MB DDR3 RAM and 4GB 8-bit eMMC on-board flash
storage. It is also equipped with a AM335x 1GHz ARM®

Cortex-A8 processor.
As we have mentioned earlier that our main objective is

to show how much on-board computation is needed by the
singletons and the leader modules, we have used a single
ModRED II module for our experiments which alterna-
tively worked as a singleton and a leader module. For these
experiments, we have implemented our algorithms on the
Beaglebone Black Processor inside the ModRED II mod-
ule and collected the results. We have also compared our
algorithms’ performance against the auction algorithm’s per-
formance by implementing the auction algorithm on the
ModRED II as well. As we ran hardware tests on a single
module, the reported run time results only consider the com-
putational time, and do not include the communication time
between modules.

First, the ModRED module acted as a leader. In our ear-
lier work (Baca et al. 2016), we have shown how much
time it takes to elect a leader and to map the topology of
the configuration for varying sizes of the configuration. This
result is reproduced here in Fig. 14a to show how much pre-
processing will be needed before we can start executing our
proposed algorithms in this paper. This shows that with 7
modules present in the configuration, it takes less than a sec-
ond of time to elect the leader and map the topology of the
configuration.

Next, the elected leader module searches for MAX MCS
(or IS) for the given target configuration. For this test, we
have provided the topology of the initial configuration and
also the target configuration to the leader module. Similar
to the simulation results, these configuration trees have been
generated randomly. Figure 14b shows howwith the increas-
ing size of the configuration, run time to search the MCS
changes. Note that the size of the target configuration was
set to 100 for all the cases here. We can observe that the run
time increases almost linearly in fashion even though it took
longer time than simulated experiments.We noticed that run-
ning the blockAllocation() algorithm along with this took a
negligible amount of extra time, so that result is not included
in the paper. The main reason behind this is that calculat-
ing the possible MCSs is the most computationally intensive
component in our proposed blockAllocation() algorithm.

Next, we have implemented the spotAllocation() algo-
rithm on the singletonModREDmodule. The result is shown
in Fig. 15a. This result shows that a singleton module will
takemuch less time (0.019 s) evenwith 100 spots. Finally, we
implemented the auction algorithm on the ModRED module
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Fig. 12 Cases showing
configuration formation
procedure along with
corresponding planning times
and number of disconnections
required. Leftmost figure in
each case shows the initial
configurations and singletons,
middle figure shows the MCS
(or, IS) found (marked by dotted
boxes) by executing our
algorithms, rightmost figure
shows the final formed target
configuration with modules
selecting spots (shown in a
color-coded fashion) (Color
figure online)

Case 1: Planning Time: 110 ms., No. of disconnections: 1

Case 2: Planning Time: 113 ms., No. of disconnections: 2

Case 3: Planning Time: 111 ms., No. of disconnections: 1

Case 4: Planning Time: 170 ms., No. of disconnections: 4

Case 5: Planning Time: 182 ms., No. of disconnections: 3
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Fig. 12 continued

Case 6: Planning Time: 173 ms., No. of disconnections: 3

Case 7: Planning Time: 190 ms., No. of disconnections: 2

Case 8: Planning Time: 184 ms., No. of disconnections: 4

Fig. 13 AsingleModREDmodule used for the configuration formation
algorithm a CAD drawing, b hardware. Each module has 4 connec-
tors which enables it to form branched configurations. c A 17-module

branched, ladder configuration similar to Fig. 1b that is capable of com-
plex maneuvers and forming truss-like structures (Baca et al. 2014)
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Fig. 14 a Comparison of run times to elect a leader and map the topol-
ogy of the ModRED configuration against the configuration size, b
Change in run time to find MCS with different number of modules in
the initial configuration

and in this case, the ModRED module acts as a centralized
auctioneer agent. The number of spots is set equal to the num-
ber of modules in this case. The result of this test is shown
in Fig. 15b. We can notice that with increasing numbers of
modules, the run time of the auction algorithm increases sig-
nificantly. For example,with 100 spots, theModREDmodule
takes 29 s to run the auction algorithm whereas it takes only
0.019 s to run the spotAllocation() algorithm, a 1526-times
improvement.

6 Discussions

Our main objective in this paper was to find an efficient solu-
tion for the configuration formation problem where initially,
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Fig. 15 a Change in run time of the spotAllocation() algorithm with
different number of spots, bChange in run time of the auction algorithm
with different number of spots

modules could be either singletons or part of an already con-
nected configuration. We have argued that as docking and
un-docking of modules are costly operations, these opera-
tions should be minimized by preserving the initially formed
configurations as much as possible. In this paper, we have
proposed subgraph isomorphism based checking and alloca-
tion algorithms that retain maximal portions of connected
modules while forming a target configuration. From our
results, we can notice that our solution produces good results
consistently, both in terms of planning time, distance traveled
and number of connections/disconnections among modules,
given the combinatorially intractable nature of the used tech-
niques. Although most of the results reported in this paper
are produced using tree-likeMSR structures, our case studies
show that even with graph structures, our methods are able
to produce considerably good results especially in terms of
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number of disconnections among the initially formed con-
figurations.

As allocating modules to target spots is an instance of
the classical bipartite graph matching problem, algorithms
like Hungarian matching can also be used for the alloca-
tion process (at least for singleton modules) (Kuhn 1955b).
As our approach is distributed in nature, a relevant issue is
the scalability of the number of messages passed between
modules for synchronizing intermediate calculations of the
algorithms. As the modules need to reach consensus about
allocation in a distributed manner, they need to continuously
exchange information about the current state of the allocation
process with each other. A semi-centralized method, where
part of the decision is made by a central supervisor, can be
used to mitigate this problem (Dutta and Dasgupta 2016).
However, this increases the risk of potential failure of the
whole process if the supervisor fails. Finally, we have tested
our approachwith homogeneousmodules only, but it remains
an open research problem for future researchers to investi-
gate the configuration formationproblemwith heterogeneous
modules where initially modules can be part of different
configurations instead of just singletons. Besides modular
robotics, we believe that our proposed approach can be used
for parts assembling in the manufacturing and automobile
industries where smaller portions (initial configurations) of
objects can be brought together and assembled to form a large
object (target configuration).

7 Conclusions and future work

In this paper, we have proposed novel spot allocation algo-
rithms for configuration formation in MSRs. To the best
of our knowledge, our approach is the first one to handle
the problem where modules might not be just singletons
in the beginning, but they can be in any arbitrary config-
uration. From there, modules need to find an allocation to
the target configuration such that the initial configurations
can be directly allocated to the target configuration as much
as possible while reducing the number of modules that will
have to undock and re-dock. Our proposed approach is dis-
tributed in nature. Modules use messages to get informed
about the global state of the allocation procedure. Our results
show that our proposed approach takes very nominal time
for calculating the final allocation. Also, using our alloca-
tion, the total distance traveled by the modules from their
start to target locations increases linearly with the number
of modules. Moreover, our proposed approach outperforms
the auction algorithm in run time while maintaining similar
solution quality (in terms of distance traveled). Our proposed
approach is also shown to performwell in terms of preserving
initial configurations—using our approach, very small num-

bers of disconnections are usually needed among the initially
connected modules.

Our proposed approach in this paper is the first step
towards solving this difficult yet highly important problem in
modular robotics. Currently, our proposed approach does not
model the uncertainty in the environment. In the future, we
are planning to add uncertainty in modules’ movements as
well as in their message passing. Right now, we assume that
there is only one target configuration that needs to be formed.
But there can be cases where multiple target configurations
need to be formed at the same time. In the future, we also
plan to consider this scenario, which will make the decision-
making problem more complex for the modules. The acting
phase in our approach is sequential in nature—it allocates
one module (or configuration) at a time. Even though it
guarantees no deadlock, it is slower than if modules move
simultaneously. However with simultaneous locomotion of
modules, it will be more difficult to guarantee properties like
deadlock-free.We are currentlyworking towards solving this
particular problem.Thiswillmake the system faster andmore
robust in nature, giving new possibilities of different appli-
cations.
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