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Abstract
We propose and evaluate a multi-robot system designed to enable live, improvisational theatric performance through online
interaction between a performer and a robot system. The proposed system translates theatric performer intent into dynamically
feasible trajectories for multi-robot ensembles without requiring prior knowledge of the ordering or timing of the desired
robot motions. We allow a user to issue detailed instructions composed of desired motion descriptors in an online setting
to specify the motion of varying collectives of robots via a centralized system planner. The centralized planner refines user
motion specifications into safe and dynamically feasible trajectories thereby reducing the cognitive burden placed on the
performer. We evaluate the system on a team of aerial robots (quadrotors), and show through offline simulation and online
performance that the proposed system formulation translates online input into non-colliding dynamically feasible trajectories
enabling a fleet of fifteen quadrotors to perform a series of coordinated behaviors in response to improvised direction from a
human operator.

Keywords Human–multi-robot interaction · Multi-robot online planning · Multi-robot formation trajectory generation

1 Introduction

We wish to enable a theatric performer to direct formations
of quadrotors online as part of an improvisational perfor-
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mance. Although the choreographedmotion types are known
before the performance, the choice and ordering of com-
manded actions, their duration, and the timing between them
is directed by a storyteller as part of a live interaction; no
movement sequences or plans are generated prior to the per-
formance.

To enable the theatric performer to provide online chore-
ographic direction to the multi-robot system, the performer’s
intent, including instructions specifying lighting, sound, or
movement and timing directions,must be translated into indi-
vidual robot trajectories online. This requirement of real-time
intent translation is particularly challenging as the performer
can issue a direction at any time and without consideration
of the robots’ extents and performance limits, leading to vio-
lation of collision and actuator constraints. Additionally, the
performer may err in their direction, leading to a motion
specification that is logically invalid.

In thiswork,wedetail a novel system to enable a performer
to direct a dynamic multi-robot system in an improvisational
(or unscripted)manner in an online setting.Our system archi-
tecture takes as input theatric intent, readily specified online
by the performer using our proposed input methodology.
We employ a centralized planning approach to translate user
input into viable motion specifications which respect actua-
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tor and collision constraints for all robots in the multi-robot
system.

Our proposed framework encodes user intent through pre-
defined descriptors that capture theatric elements such as the
light, sound, or spatial-temporal motion of one or multiple
robots. The system interprets these descriptors to formbehav-
iors composed of formation, motion, and time descriptors
(Sect. 3.1). A centralized planner generates behaviors as indi-
vidual robot trajectories (Sect. 3.2). The system ensures that
the commanded behaviors are both logically valid (Sect. 3.3)
and dynamically feasible (Sect. 3.4) through motion plan
refinement. Specified behaviors that yield unsafe or dynami-
cally infeasible trajectories are refined to yield non-colliding
trajectories. These trajectories serve to transition robots from
their current states to the desired behavior trajectories with
appropriate time-scaling to ensure that the required acceler-
ations fall within actuator limits (Sect. 3.4.1).

The system presented here illustrates a number of design
decisions chosen to meet real world challenges inherent in
human–multi-robot teaming for theatric applications.

• A parameter-matching based input methodology is used
in order to give a performer detailed motion control over
formations of robotswhile still affording the user the abil-
ity to specify instructions online. This approach differs
slightly from more common human–multi-robot input
methodologies, which we review in the Related Works
section, which may be widely generalized as requiring
only a low-degree of freedom input. The choice of param-
eters is derived from the narrative basis of the theatric
effort, and parameter design choice and human input are
detailed in Sects. 3.1 and 3.6 respectively.

• We pursue a centralized planning framework, rather than
localized rule-based motion planning at the individual
agent level, in order to guarantee motion plan safety. Plan
safety is of paramount concern to the theatric application
as robot–robot or robot-environment collisions not only
lower an audience’s trust in the performance, but can
be physically unsafe for the performer or audience in
the event that they are located in close proximity to the
operating robots.

• Multi-robot motion planning techniques are based on
time optimal trajectory generation methods in order to
facilitate the theatric narrative. Feasibility verification
is performed with respect to kinodynamic constraints,
incorporating actuator limits using the differentially flat
quadrotor model, and conflicts resolved through robot
prioritization and trajectory time scaling. These methods
allow well-described motion plan generation reflecting
performer theatrical intent. And while overall planning
time with a centralized approach will scale with the num-
ber of robots, the chosen methodology performs well for
the team size required by the application and is respon-

sive to the humanoperator. (Performer input to the system
occurs over the order of multiple seconds as part of the
performance, and motion planning, even via an unopti-
mizedMatlab-based implementation, occurs on the order
of subseconds).

Prior work has described behavior composition (Cappo
et al. 2016) and shape transitions for multi-robot ensem-
bles (Desai et al. 2016). This work contributes a full system
architecture composed of the combined prior methodologies.
We provide additional discussion of related work, includ-
ing theatric performance approaches utilizing robotics with
a focus on efforts employing multiple aerial vehicles as well
as related work in human-robot interfacing and multi-robot
control (Sect. 2).We describe our full system approach incor-
porating prior work (Cappo et al. 2016; Desai et al. 2016)
(Sect. 3) and provide extended analysis and experimental
results for increased numbers of robots obtained through
experiments done in both simulation and on hardware, for
up to fifteen robots (Sect. 4). The evaluation includes an
illustrative scenario to provide insight into how varied plan-
ning conditions resulting from timing changes due to online
instruction are accommodated by our approach. We also
include extended simulation results to highlight the con-
cept of coverage over the space of behavior inputs, confirm
that plans preserve safety and feasibility requirements, and
present plan generation timing characteristics. Simulation
performance is validated through execution of a randomly
chosen selection of 100 behaviors on ten quadrotors in a
motion capture arena, and system performance is further
highlightedby showing a chosen sequenceof complexbehav-
iors executed on fifteen quadrotors.

2 Related work

Two primary challenges must be addressed to enable a
performer to direct multi-robot ensembles online. First, a
performer must be able to convey artistic intent to the robot
system, and second, the system must be able to translate
these commands into motion specifications. These require-
ments are further complicated when accounting for time and
computational complexity considerations to both input and
execute instructions, as necessitated by the online perfor-
mance requirement.

In this section, we review how multi-robot performance
is addressed in the context of theatrical applications, and
specifically with regard to aerial vehicles. We also discuss
approaches to human-robot interfacing and multi-robot con-
trol, the constituent components of our approach to direct
a robotic theatrical performance, with considerations for
online use.
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2.1 Theatrical applications

Coordinated vehicle deployments within the context of
choreographed and improvisational performances are gen-
erally characterized as scripted or unscripted, respectively.
Currently, most robot theatric works are scripted, fully speci-
fying all robot trajectories before the performance, including
efforts focused on choreographed aerial dance and acrobatic
maneuvers (Augugliaro et al. 2013; Lupashin et al. 2014)
and light shows including Intel Corporation’s recent per-
formance at the 2017 NFL Super Bowl LI Halftime Show
(Intel Corp. 2017) and the Guinness Book of World Record-
setting flight of 1000 drones performed in celebration of the
2017 Chinese New Year (Ehang 2017; Huang 2017) by the
Ehang Company in Guangzhou, China. If present, human
actors in scripted performances (Knight and Gray 2012)
such as AURORA’s recent music video (AURORA 2016;
The Creators Project 2017) or Cirque Du Soleil’s “Sparked”
(Cirque du Soleil 2014; Coxworth 2014) respond to the
robots’ motions to invoke a sense or impression of inter-
action. Alternative strategies seek to blend online operator
interaction with scripted robot motions that are predefined
by enabling the user to dynamically trigger the start of the
motions (Hoffman et al. 2008) as demonstrated byMagicLab
and Rhizomatiks Research (2016b, 2016b). However, fully
scripted works do not allow for any change to the choreog-
raphy during the performance, and thus interaction can only
be demonstrated by the human performer as a reaction to the
robot system.While dynamically triggeredmotion sequences
enable a user to change elements of the performance online,
they do not allow the system to respond or adapt to a user’s
intent.

2.2 Interpreting human user intent

For robots to move in response to a performer’s intent, a
robot system must be able to extract and process motion or
task-level information from operator input. The determina-
tion of motion requirements from human input is still an
active research effort in single-robot domains as well as the
emergingfield of human–swarmor human–multi-robot inter-
action. However, the body of literature studying the related
questions of what strategy is best used by a human opera-
tor to communicate intent to groups of robots, and through
what interface methodologies, has grown rapidly in recent
years with advances in multi-robot technologies (Kolling
et al. 2016). Human operator input for multi-robot systems
has been formulated as:

• selection or tele-operation of leaders in leader-follower
formulations through GUI (Bashyal and Venayagamoor-
thy 2008), haptic (Secchi et al. 2015; Setter et al. 2015),

gesture (Stoica et al. 2013), and joystick (Zhou and
Schwager 2016) control;

• using a human operator to perform the function of a
“switch” to trigger behavior modes in a hybrid-control
formulation through GUI (Brown et al. 2014; Leonard
et al. 2010) or speech and facial recognition (Pourmehr
et al. 2013);

• allowing the operator to control swarm behaviors such as
flockingbyperforming simulated environmentmodificati-
on—mimicking biologically inspired control methods—
through managing artificial attraction or repulsion fields
in simulation (Kolling et al. 2012), via drawing inter-
faces (Hauri et al. 2014), or gesture and “demonstration”
through motion-mimicking (Alonso-Mora et al. 2015).

These different approaches consider a similar question: what
combination of interface and input methodology best maps
the reduced dimensionality of a user’s input (a word, ges-
ture, or button-click) to the high dimensional, application-
and platform-dependent state-space of multi-robot trajectory
generation?

The theatrical application considered in this work presents
a significant challenge in balancing the requirements of “eas-
ily specified” input with detailed multi-robot motion control.
The theatric performance requires a human performer to
direct varying groups of robots to portray characters in
an episodic narrative. Throughout the narrative, characters
(robots) are required to move in and between formations,
maintaining constant or varying positional offsets as directed
by the performer. The performer also requires the con-
trol fidelity to specify travel speeds, flight destinations, and
motion patterns.

While tele-operating leaders in a leader-follower forma-
tion can accurately guide robots through user-input motion
paths, leader designation and tele-operation approaches
(Bashyal and Venayagamoorthy 2008; Secchi et al. 2015;
Setter et al. 2015; Stoica et al. 2013; Zhou and Schwager
2016) do not easily scale to multi-group scenarios. Con-
versely, while switching behavior modes (Brown et al. 2014;
Leonard et al. 2010; Pourmehr et al. 2013) or perform-
ing environment modification (Alonso-Mora et al. 2015;
Hauri et al. 2014; Kolling et al. 2012) can be used to direct
multi-group applications, these input methodologiesmay not
necessarily yield the high degree of inter-robot coordination
desired by our narrative and may be more appropriate for
applications which allow individual agents greater flexibility
in motion execution. We therefore describe a parameter-
matching based input methodology which allows a user to
specify multi-robot motions online through a selection of
motion descriptors, which combine to form a multi-robot
behavior. Parameter choice, interpretation to multi-robot
trajectories, and online specification are described in the fol-
lowing Sects. 3.1, 3.2, and 3.6 respectively.
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2.3 Multi-robot trajectory generation and control

The task of generating collision free, dynamically fea-
sible motion plans for all robots once the user’s intent
is known is itself a highly complex problem subject to
many requisite considerations. Depending on application
and environment, researchers have examined multi-robot
motion-planning under collision (Hoy et al. 2015), com-
munications (Doriya et al. 2015), energy (Häusler et al.
2016; Levy et al. 2014; Mitchell et al. 2016; Riazi et al.
2015), and actuator constraints (Gazi et al. 2015). The plan-
ning problem itself is computationally expensive; while
certain non-optimal formulations have been shown to be
polynomial time in complexity (Röger and Helmert 2012),
the problem of finding optimal paths for multi-robot prob-
lems is NP-hard (Ratner and Warmuth 1986). Approaches
for finding multi-robot motions are therefore numerous,
including centralized paradigms using optimization strate-
gies (Augugliaro et al. 2012;Chen et al. 2015;Mellinger et al.
2012) and search-based sampling approaches (Carpin and
Pagello 2012; Ferguson et al. 2006); decentralized formula-
tions of both planned and reactive strategies (Alonso-Mora
et al. 2016; Amato et al. 2015); and hierarchical planners
employing control techniques from across these categories
(Sharon et al. 2012; Standley 2010;Wagner andChoset 2015;
Zhou and Schwager 2015). This wealth of planning method-
ologies reflects the diverse nature of multi-robot applications
and their respective requirements.

The theatrical nature of the application requires preserv-
ing the aesthetic appeal and visual connection between the
performer input and team response, both behaviorally and
temporally. Aesthetically, it is desirable for robots to move
in distinct groups and for group motions to follow a visually
obvious structure in order to allow audience members to eas-
ily recognize narrative character groups. The performer in
the narrative acts as a story-teller, and intersperses their nar-
ration to the audience with motion commands to the robots.
The performer’s instructions to the robots are fully observ-
able by the audience, and to further link performer direction
with robot motions, we require robots to transition between
behaviors in a time-optimal manner. Therefore, we require a
system formulation that can respond to requests in real-time
(low latency) with corresponding behaviors that are time-
optimal while preserving feasibility and safety.

To meet these requirements, we therefore propose a
centralized planning architecture in order to coordinate intra-
group robot trajectories to ensure that group-level motion
plans reflect the performer’s theatric intent. A centralized
planning methodology additionally ensures that all proposed
motion plans across all multi-robot teams are collision free
in order to maintain performer safety and audience trust in
the performance. Motion plan design builds on prior work
in multi-robot trajectory generation (Turpin et al. 2013a, b)

in order to determine optimal shape assignments and ensem-
ble motion specifications for user-specified groups of robots.
To transition robots in a time optimal manner between
desired plans, optimal trajectories are generated by solving
an unconstrained quadratic program (Richter et al. 2013a),
and trajectory timing refined throughonline search (Hehnand
D’Andrea 2011; Richter et al. 2013a); the differentially flat
quadrotor model (Chamseddine et al. 2012) is used to ensure
dynamic feasibility given actuator constraints. This proposed
formulation seeks to balance low computation times with
near-optimal trajectory generation for teams of robots (Desai
et al. 2016).

3 System design

To enable human–multi-robot interactive theatric perfor-
mance,we propose a full system that provides amethodology
for inputting theatric intent online and translating performer
input into dynamically feasible and safe motion plans for
teams of robots. We propose a formation-based approach
to enable specification of robot team motion in a manner
that seeks to reduce the user interaction burden by avoid-
ing individual robot motion specifications. The performer
specifies motion descriptors such as formation shape, flight
mannerisms, or destination, and the system composes these
descriptors into dynamically feasible and safe behaviors.
These behaviors then undergo validation and verification
checks and if necessary, are modified to meet collision and
actuator constraints. The resulting trajectories are distributed
to the robot team.

A block diagram of the proposed system, showing user
input, behavior generation, validation, and verification and
mitigation components is outlined in Fig. 1. In this section,
we step through each block pictured in Fig. 1 and describe
our approach to specifying user intent (Sect. 3.1); generat-
ing multi-robot behaviors based on user input (Sect. 3.2);
validating (Sect. 3.3) and verifying (Sect. 3.4) behaviors;
andmitigating infeasible behaviors bymodifying intra-group
transitions (Sect. 3.4.1).

3.1 Operator input: behaviors

Whilewe do not define a formal grammar, specifying theatric
intent is similar to answering the questions of “who,” “what,”
“where,” “when,” and “how.” The user specifies descrip-
tors, bi , that describe which robots a performer intends to
direct, what action the robots should take, the target destina-
tion, and any characteristic flight mannerisms that the robots
should exhibit. Descriptors are composed into an m-length
vector called a behavior, b̄. Each behavior descriptor, bi , may
take a discrete number of values, and Fig. 2 highlights sev-
eral behavior descriptors and potential value assignments.
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Fig. 1 An overview of the proposed system. User-issued input in the
form of descriptors is collected by an “Interpreter.” Descriptors, orga-
nized into behaviors, are output to the trajectory generation subsystem.
The proposed multi-robot trajectories exemplifying the user-requested
behavior are then checked against the current system state to determine

validity. After passing this check, the proposed trajectories are veri-
fied for dynamic feasibility. In the event that the proposed behaviors
do not meet feasibility or safety constraints, an online search refines
trajectories to satisfy safety and feasibility limits

Denoting Bi as the set of values associated with the behavior
descriptor bi , the total number of potential behaviors achiev-
able by the system is:

perm(b̄) =
m∏

i=1

⎛

⎝
Ki∑

k=1

|Bi |!
k!(|Bi | − k)!

⎞

⎠ . (1)

Equation 1 describes the fact that the total number of potential
behaviors achievable by the system is the product of the total
number of descriptor combinations across descriptor sets.
The total number of descriptor combinations possible for a
given descriptor set Bi is given by the summation in Eq. 1,
formulated as the sum of binomial coefficients for set Bi .
If only a single descriptor may be chosen from a descriptor
set, Ki = 1. If a combination of descriptors may be chosen
(for example, if choosing k robots from the total number of
possible robots), Ki may equal up to |Bi |.

As a collection of descriptors drawn from each respective
set, a motion behavior contains all the requisite information
for definingmulti-robot trajectories. This section details each
descriptor category and explains how descriptors contribute
information to the trajectory formulation, such as trajectory
duration, endpoint constraints, and motion characteristics.

Behavior duration The starting time of a behavior, ts , is the
time at which the system receives the command from the
user.1 The “time” descriptor specifies the duration of a behav-
ior, giving ending time t f , the specified timing duration from
start time ts .

Formation specificationWedescribe a formation of robots by
specifying each robot’s state in a local reference frame (Desai

1 In practice, ts is set to a value slightly ahead of the instruction receipt
time to account for planning computation time, allowing robots to tran-
sition between trajectories without discontinuities.

Fig. 2 Representative behavior descriptors, bi , and descriptor sets, Bi ,
with associated representative values. Descriptor sets are grouped in
the table to show the contribution of a descriptor towards an element
of the multi-robot trajectory formulation. For example, the “heading”
descriptor directly specifies the group trajectory component S(t)ψ as
indicated by the column label

et al. 2016), which we call the shape frame. The positions
and headings of each robot in a local reference frame as a
function of time t are s(t) = [x(t), y(t), z(t), ψ(t)]T, s ∈
R
3×SO(2), with a vector S(t) containing all of the positions

in the local reference frame of the n robots in the formation:
S(t) = [s1(t), . . . , sn(t)]. The shape descriptor specifies
desired starting positions, sxyz(ts), in the shape frame (Desai
et al. 2016) and the heading descriptor specifies sψ(t) for
each vehicle. A vehicle’s heading is defined relative to its
current frame or oriented toward a target in the inertial frame
(a theatrical maneuver called “spotting”). Vehicle motions
are defined by both the manner and action descriptors.

Manner The manner descriptor is similar to an adjective in
language, giving more information about the flight charac-
teristics that each robot should display during the behavior.
Two characteristics of interest to the story are “drunk” and
“nervous” mannerisms, which a robot performs by mov-
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ing along a wobbly course of motion, with slower, larger
motions for “drunk” and faster, smaller motions for “ner-
vous.” We represent these motions as bounded polynomial
trajectories generated through randomly chosen keypoints
obeying timing and distance constraints. Trajectory sxyz

n (t)
for robot n is a spline fit through k keypoints in x , y,
and z (Richter et al. 2013b) so that dti j , the time between
each pair of consecutive waypoints i and j , is bounded
(dtmin ≤ dti j ≤ dtmax ) and the sum of all dt’s equals the full
time span:

∑i=k−1
i=0, j=i+1 dti j = t f − ts . The position of each

keypoint for thenth robot lieswithin a ball of radius δ centered
around the robot’s starting position, sxyz

n (ts) ∈ Bδ(s
xyz
n (ts)).

The bounding values dtmin , dtmax , and δ are defined on a
per-mannerism basis. The “fixed” mannerism denotes reg-
ular flight such that the vehicles hold their positions in the
local frame throughout the behavior.

All mannerisms, s(t), must remain within specified lim-
its ensured through appropriate choice of bounding values
dtmin , dtmax , and δ:

sxyz
n (t) ∈ Bδ(s

xyz
n (ts)), (2)

|ṡxyz
n (t)| ≤ vlim, (3)

|s̈xyz
n (t)| ≤ alim . (4)

Further, the inter-robot clearance distance, d, must be
respected at all times, so that for all combinations of robots
in b̄:

|sxyz
i (t) − sxyz

j (t)| ≥ d, ∀i, j ∈ b̄ . (5)

In general, we choose to only allow a user to specify a sin-
gle mannerism descriptor. However, for appropriate choice
of bounding values dtmin , dtmax , and δ, the combinations of
mannerisms s(t) = s1(t) ⊕ · · · ⊕ s j (t) will obey the con-
straints stated in (2)–(5), where ⊕ describes a polynomial fit
through all keypoints generated for each mannerism si . The
vehicles can therefore be “nervous drunks” if required, and
the length of the mannerism descriptor set is permitted to be
greater than one.

ActionThe action descriptor specifies themotion of the entire
formation. Combinedwith the goal descriptor, we can design
a trajectory that moves the local formation reference frame
through the inertial frame. The state of each robot is defined
in the inertial frame at time t by the vector x(t), contain-
ing position coordinates and heading of the vehicle: x(t) =
[x(t), y(t), z(t), ψ(t)]T , x ∈ R

3× SO(2). The state of an
n vehicle system is given by x̄(t) = [x1(t), . . . , xn(t)]. We
design smooth trajectories for each state-space dimension via
time parameterized polynomials up to an appropriate order
to ensure smoothness in the trajectories and their derivatives
and satisfy dynamic properties of the vehicle control model.

The position of the origin of the local frame with respect
to the inertial frame at time t is C(t) = [x(t), y(t), z(t)]T,
C(t) ∈ R

3. We denote R(t) ∈ SO(3) as the time varying
rotation computed from theEuler rotations around the inertial
x , y, and z axes, R(t) = Rz(t)Ry(t)Rx (t). To describe a
smoothly varying, differentiable rotation, Euler angles are
defined as polynomial trajectories (Mahony et al. 2012).

Actions such as “circle-target” or “turn-in-place” specify
formation rotations, while periodic actions (“forward-rev,”
“side-side,” and “up-down”) define trajectories along the
specified axis through waypoints centered about the target
location. All actions are composable with all goals and tim-
ing specifications to yield valid polynomial trajectories for
C(t) and R(t).

Trajectory initial location The starting state of a trajectory
governing the motion of a formation of robots is established
based on the current states of the robots at the time the
instruction is specified. Upon instruction receipt, the local
coordinate frame in which the formation shape is defined is
established with an identity rotation and located at the mean
of the specified robots’ current positions and with higher
order terms equal to the mean of the robots’ higher order
states, leading to the definition of states, C(ts) and R(ts).

Trajectory ending location The ending states, C(t f ) and
R(t f ), are specified by the “goal” and “action” parameters.
Goals are defined as (x, y, z) locations in the inertial frame
and actions specify motion primitives in relation to those
locations.

3.2 Multi-robot trajectory generation

Behaviors specify all the information required to generate
polynomial trajectories for each robot in a formation. As
previously described in Sect. 3.1, the descriptors forming a
behavior, taken in conjunction with the states of the specified
robots at the time the behavior instruction is issued, inform
first, the desired start, goal, and any intermediate desired
states in the local formation frame (as described by the shape,
heading, and manner descriptors); second, the desired start,
goal, and any intermediate desired states in the global refer-
ence frame (as described by the action and goal descriptors);
and third, the desired duration of the behavior. In each respec-
tive reference frame, local and global, trajectories may be
generated between the desired specified states as polynomial
functions of time, enforcing smoothness and continuity con-
straints to an appropriate order based on the robot dynamic
model, using common optimal trajectory generationmethods
(Mellinger et al. 2012; Richter et al. 2013b). Trajectories for
robots in a behavior,γγγ (t), are formed by composing the local
shape-frame trajectories, S(t), with the trajectories describ-
ing the motion of the shape frame through the inertial frame,
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Fig. 3 An illustrated overviewof behavior composition, validation, ver-
ification, and refinement. Subfigure a shows the composition of robot
motions in a local shape reference frame with an inertial motion and
rotation, illustrating Eq. 6. Subfigure b shows validation of the proposed
behavior, depicted with respect to the current robot states. Subfigures c,
d show verification given the current robot states and refined behaviors
with dynamically feasible transitions, respectively. a Proposed behav-
ior, b Validation. When started from the mean of the current robot
positions, is the convex hull of the proposed trajectory within the flight
volume? Does the proposed behaviour violate any user specified rule?
c Verification. Are the robots able to execute the proposed behavior as
specified? d St = [S1, S2, S3]. Can dynamically feasible, collision free
transition trajectories be found?

C(t) and R(t), as:

γγγ n(t) =
[
C(t) + R(t)sxyz

n (t)

sψn (t)

]
, (6)

where sn(t) is one of the n local robot trajectories as spec-
ified in S(t), and the superscripts xyz and ψ denote those
respective elements of the local state vector. A pictorial rep-
resentation of an example behavior is shown in Fig. 3a.

3.3 Validation

There are primarily two reasons why a behavior may be
invalid in an online setting. First, the current vehicle states
may lead to a specified behavior colliding with flight volume
boundaries. Second, a user may impose state-transition rules
that limit descriptor combinations.

We validate a behavior by first confirming that the descrip-
tors, given the systemstate, donot result in rule-set violations.
An allowable specification is defined as {C0(t),R0(t),S0(t)}
given the current system state and the descriptor specifi-
cations and represents the proposed desired behavior. For
example, as shown in Fig. 3b, the convex hull of the behav-
ior is confirmed to remain within the flight volume and is
marked as valid.

3.4 Verification andmitigation

Given a valid desired behavior, we verify that the behavior is
realizable by checking the following conditions (in order).

1. The current states of the robots specified by the behavior
are sufficiently close to the starting states defined by the
desired behavior, i.e., x̄(ts) � x̄0(ts).

2. The proposed trajectory accelerations arewithin the spec-
ified limit, | ¨̄γγγ (t)| ≤ alim .

3. The n robots in the behavior maintain an inter-robot
spacing greater than or equal to the minimum clearance
distance, |γγγ i (t) − γγγ j (t)| ≥ d, for i, j ∈ [1, . . . , n].

If any condition fails, we immediately proceed to design
refined trajectories to mitigate the failure, leading to a
dynamically feasible, inter-robot collision-free behavior that
remains within the arena volume. We employ the methodol-
ogy described in Desai et al. (2016) in order to mitigate these
conditions, and summarize this approach with respect to our
application in the following section.

3.4.1 Behavior transitions

A proposed theatric behavior constructed from user input,
as described in Sect. 3.1–3.2, may not meet the three condi-
tions specified at the beginning of this section. We therefore
detail a trajectory refinement technique to transition robots
from their current states at the time an instruction is issued
to the proposed behavior formed as presented in Sect. 3.2.
An illustration of this process is shown in Fig. 3c, where the
robot’s current states (colored circles) are shown next to the
proposed behavior (shown in gray dashed lines), and the solid
lines indicate transition trajectories that enable the robots to
transition from their current states to the proposed behavior
trajectories.
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Fig. 4 Overview of the behavior transition process. Figure a shows
the proposed behavior transition relative to the robots’ current states; b
shows the assignment process in the local shape frame; c shows how
different proposed time scalings for the transition trajectories affect the
overall inertial transition trajectories. a A behavior transition problem,
shown in the inertial frame, W. Yellow circles are the robots’ current
states; black arrows from the dashed white circles to the gray circles
represent the proposed behavior trajectories, moving robots from left
to right in a line formation. b Optimal assignment of robots from their
current positions (yellow) to the desired line formation, goal positions
(gray) in the local shape reference frame, S. The red arrows show the
transition trajectories moving robots from their starting positions to
their assigned goal locations. cTransition trajectories (red) in the inertial
frame,W. The red arrows depict the same transition trajectory designed
in the shape frame performed over different candidate transition times
(Color figure online)

We formulate the transition between behaviors as a goal
assignment problem. The methodology builds on techniques
related to time optimal trajectory generation and feasibility
verification with respect to kinodynamic constraints as well
as prior work in the areas of multi-robot formation control.
We generate optimal trajectories by solving an unconstrained
quadratic program to yield an initial trajectory assuming a
conservative time-scale (Richter et al. 2013b). The trajectory
time-scale is further refined through application of the bisec-
tionmethod to find candidate end times (Hehn andD’Andrea
2011; Richter et al. 2013b) that ensure dynamic feasibility
given actuator constraints and the differentially flat quadrotor
model (Chamseddine et al. 2012). The proposed formulation
seeks to balance low computation times with near-optimal
trajectory generation for teams of robots. We also ensure
inter-robot collision avoidance by leveraging robot prioriti-
zation and trajectory time-scaling to avoid collisions given
conflicting trajectories (Turpin et al. 2013b).

Optimal assignment To transition robots from their current
states to a proposed behavior, individual robots are first
assigned to specific formation positions. We assume that
robots are homogeneous and interchangeablewith no specific
preference to goal locations within a formation and require
that the region defined by the convex hull of source and goal
locations is obstacle free. Additionally, robot start and goal
positions must be located d, a predefined minimum safe dis-
tance, apart.

Assignment is performed in the local shape reference
frame (as depicted in Fig. 4) and seeks to minimize the
associated traversal time costs. The optimal assignment is

computed based on methods detailed in our prior work
(Turpin et al. 2013b) and seeks to minimize the p-norm of
the costs incurred by the team in order to reach the goal con-
figuration,

φ∗ arg min
φ

=
⎛

⎝
∑

i∈IN

||P(si , gφi )||p

⎞

⎠

1
p

, (7)

where IN is the index set of the robots in the group and si

and gφi correspond to the initial and optimally assigned goal
configurations of the i th robot, respectively. In this work, we
choose to minimize the total distance traveled by the robots
and thus let p = 2. The optimal assignment is computed via
the Hungarian algorithm with O(N 3) computational com-
plexity (Kuhn 2012).

Given the start and goal assignments, we can then use a
conservative time duration dtt to compute transition trajec-
tories St (t) in the local shape frame for the time period from
ts to tt = ts + dtt .

Feasible trajectory generation The proposed transition tra-
jectories St (t) are combined with proposed behavior trajec-
tory components C0(t) and R0(t) over the transition time
period ts to tt per (6) to yield individual robot trajectories to be
executed by the team of robots in order to transition between
shapes. However, prior to transmitting the desired trajec-
tory to each robot, we ensure that each trajectory does not
require motions that exceed platform actuator constraints. To
this end, we compute the maximummass normalized thrusts
required by each trajectoryγγγ n based on themodel (Chamsed-
dine et al. 2012) and scale the shape transition trajectory
duration, dtt , accordingly so as to ensure feasibility for all
systems.

Alternatively, we note that for visual appeal it is preferable
that the robots rapidly transition between shapes. Therefore,
if the resulting transition trajectories are overly conservative,
we pursue a minimum transition time to enable rapid and
feasible shape transitions:

minimize: tt (8)

subject to: − Tmax ≤ γ̈γγ (t) ≤ Tmax , (9)

with t ∈ [ts, tt ] , Tmax as the maximum allowable mass
normalized thrust, and

γ̈γγ (t) = C̈(t) + R̈(t)s(t) + 2Ṙ(t)ṡ(t) + R(t)s̈(t) . (10)

We solve this minimization problem online via a bisection
line search (Cormen et al. 2001), computing the correspond-
ing acceleration time-scale for each candidate time, tts , and
update the trajectory duration upon termination (tt ← tts).
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Online search forminimal-time transitionsGiven aminimum
time transition for all robots, we perform a safety check to
ensure that all trajectories preserve a minimum separation
distance between robots. If a minimum separation distance
is not preserved, prioritization and time-scaling techniques
(Turpin et al. 2013b) are applied according to an assigned
ordering derived from the robot start and goal positions with
respect to the shape specification.

Given the prioritization order, each robot trajectory is
checked for collisions against trajectories of higher priority
robots. In the event that a collision occurs between robots, the
trajectory of the lower prioritized robot is assigned a small,
positive time offset to avoid collision with the robot of higher
priority. This process is repeated iteratively until no collisions
exist between the given robot and all higher priority robots.
This prioritization results in collision free trajectories for all
robots in the formation relative to the minimum transition
time of the highest priority robot.

3.5 Offline verification

System verification is the process of analyzing a system for
desired properties, to give evidence that the systemmeets the
desired requirements. One approach to system verification is
through formal methods, mathematically based techniques
used to reason about systems and their performance (Clarke
and Wing 1996; Giammarco and Giles 2018; Kress-Gazit
et al. 2018). State of art formalmethods formulti-robot appli-
cations include approaches such as those based on Linear
Temporal Logic (DeCastro et al. 2018; Saha et al. 2014)
or satisfiability modulo theory (Saha et al. 2016). These
approaches, however, have drawbacks which limit their use
for our application. Approaches (DeCastro et al. 2018; Saha
et al. 2014, 2016) cite computation times roughly on the
order of minutes for problems using two or more robots,
which is not conducive to online use or responsive inter-
action with a human user. While (Saha et al. 2016) presents
relaxationswhich can be used to compute sub-optimal trajec-
tories at faster time scales (problems for ten to twenty robots
can be solved on the order of 1–2.5 min), these timescales
and the use of discretized motion primitives and sub-optimal
trajectories still present drawbacks within the context of our
application, where we seek to follow time-optimal trajecto-
ries for visual appeal.

In the event that formal verification is not viable, statistical
verification throughmodel checking and offline simulation is
commonly performed to give quantitative insight into system
performance (Clarke and Wing 1996; Giammarco and Giles
2018; Legay et al. 2010). We therefore choose to leverage
offline simulation using a high fidelity dynamic simula-
tion environment, simulating all vehicle dynamics including
motor response times, across a large number of trials to ver-
ify all descriptor combinations assuming a discretization of

Fig. 5 Plots showing coverage over representative behavior descrip-
tor combinations. Behaviors are validated across varying numbers of
robots, with instructions issued at randomly chosen time intervals. Suc-
cess indicates that the descriptor combination produces a valid behavior
and the system is able to interpret, refine, and transform the behavior
into a dynamically feasible, collision-free trajectory. Top plot: Arcs
describe transition success rates between behaviors, where blue and red
correspond to success and failure, respectively. Bottom plot: Behav-
ior validation count. These figures were generated from 48,000 online
issued behaviors in simulation, as discussed in Sect. 4.2

the state-space of the system that approximately covers all
possible starting and ending states within the flight volume.
We depict the results of these offline trials in Fig. 5 and detail
both the number of times a descriptor combination is tested
and the number of successful behavior transitions. A behav-
ior transition is considered successful if:

1. The descriptor combination forms a valid {C, R, S} tuple,
meaning the code implementation is error-free;

2. The descriptor combination does not violate a user spec-
ified rule; and

3. A dynamically feasible, inter-robot collision-free trajec-
tory is generated from the specified behavior input.

The resulting transition table is employed online to assist in
performing fast online validation. Behaviors with interme-
diate success rates frequently fail due to instruction timing.
Therefore, we may choose to use this validation table as a
conservative heuristic, and rather than check every online
instruction, reject behavior transitions with success rates
below a cutoff value.

3.6 Discussion: operator interfacing

We conclude the system description by discussing a per-
former’s interaction with the system, including interface
examples and online use.
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Fig. 6 Interface examples used to convey user-specified descriptors to
the multi-robot system. The GUI a allows a user to click on simulated
robots and select behavior descriptors from organized menus. The GUI
b shows categorized descriptors as depicted in Fig. 2. Alternatively, a
performer can command robots using gestured descriptors, as shown in
c. In c, a motion capture system tracks reflective markers on the per-

former, and this motion data is passed to a gesture recognition system
to identify gestured descriptors that are sequentially combined to spec-
ify a behavior. a A graphical user interface with simulated robots and
descriptors as menu items. b A graphical user interface for descriptor
specification. c A performer commands two quadrotors via gestured
descriptors

Input space versus ease of use The descriptor based input
approach described in this work was implemented after eval-
uation by the performers in the theatrical application, as
performers preferred the balance of ease of use—specifying
several descriptors—to the level of afforded motion control.
The ability to combine descriptors yields a rich and detailed
behavior input space for theatric direction. While the input
space is large, descriptor specification was found not to be
memory intensive because the descriptor categories chosen
to define a behavior paralleled basic language structure. Per-
formers gave commands which were formulated as “You
robots (point at robots) [who], go quickly [when] to center
stage [where] and spin in place [what] as a circle formation
[how].” This “who,” “what,” “where,” “when,” and “how”
command specification structure is reflected in the descriptor
categories; performers did not struggle to remember descrip-
tors, as they effectively mimicked natural language.

Interfacing The descriptor organizational structure allowed
users to easily format behavior commandswith little rehearsal,
and several interface methodologies were trialed to facilitate
online specification. The descriptor-based input methodol-
ogy is interface agnostic, and the choice of interface was
therefore based on the requirements of the theatric appli-
cation and the performer’s preferences. For example, while
implementing a speech-based interface was appealing as a
natural extensionof the language-based example, a non-vocal
input method was pursued so that the performer could, if
desired, narrate the story and command the robot system
concurrently. Various graphical user interfaces (GUIs) were
explored as well as a gesture-based methodology. Two GUIs
for descriptor specification are shown in Fig. 6a, b. The GUI
format proved useful for system testing and user training, but
was not ideal for performance as a performer’s input through
screen, keyboard, or mouse was not easily visible to the audi-
ence, making it difficult for audience members to clearly

observe communication between the performer and the robot
system. The physical modality of a gesture-based frame-
work for specifying descriptors, in contrast, allowed a user’s
interactions with the robot system to be a visual part of the
performance.Aphoto of a performer directing robots via ges-
tured descriptors is shown in Fig. 6c. In our implementation,
individual gestures corresponded to individual descriptors.

Implementation in practice The physical modality of a
gesture-based inputwas desirable froma theatric perspective,
but required greater training time for a performer to learn the
gesture notation corresponding to descriptors. Several tech-
niqueswere therefore employed to reduce training and online
specification time. Where possible, gestures were assigned
to descriptors based on iconicity (such as making a circular
gesture to indicate a circular formation). Additionally, per-
formers chose to allow the system to initialize behaviors with
commonly used descriptors as “default” entries. Rather than
specifying each descriptor, a performer only needed to spec-
ify non-default descriptors (in any order) and send an “exe-
cute” gesture to the system. Finally, performers elected to
use a combination of both gesture and GUI interfaces to cap-
italize on the different interface strengths. For example, per-
formers could easily use didactic gestures to select individual
or groups of robots (the angle of a user’s pointing gesture was
raycast by the gesture recognition processor to select indi-
cated robots). A GUI implemented on a small, touch-based
tablet served to show performers their currently specified
descriptors (either by gesture or the tablet GUI) and allowed
them to modify behaviors before sending. The tablet display
also allowed the user to receive more detailed feedback from
the system on vehicle or behavior status, in addition to the
LED coloration or status patterns at the vehicles themselves.

The input methodology described in this work gives
detailed control of robot motions, and descriptor category
and structure choices allow intuitive behavior specification.
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Fig. 7 This series of figures shows planar, timelapsed positions of two
group behaviors illustrating the effect of online instruction timing on
planning performance. The original, safe motions of two groups are
shown in a: Group 1 moves vertically down, then up, while Group 2
moves from left to right in a triangle formation. In b, issuing a transition
instruction with instruction time ti ≤ t1 ensures that Group 2 safely
transitions without collisions. In c, issuing a transition instruction at
ti = t2 produces a collision with Group 1. In this case, the planner will
reject the user’s instruction and allow Group 2 to follow its original
trajectories. Issuing a transition instruction with ti ≥ t3 is safe again, as
shown in (d). In e, Group 2 does not have enough time to transition to
the asked for line formation and arrive at the destination in the specified
amount of time. Consequently, the planner amends the user instruction
and extends the instruction time to safely transition the formation. a
Original group motions, b safe transition, c colliding transition, d safe
transition, e extended instruction time

The flexibility of the methodology additionally allowed for
blending user-preferred input modalities to perform online
specification. Design decisions were driven by the specific
nature of the theatric application; while interface design is
not the focus of this work, this discussion illustrates how the
methodology may be adapted given user constraints.

4 Evaluation

We evaluate the proposed approach through both simula-
tion and hardware experiments. We first discuss a brief case
study that exemplifies the impact of different online-issued
instruction timings on system performance. We then show
robustness and coverage of the proposed planner through
extensive dynamic simulation, issuing approximately 48,000
randomly generated behaviors. We show that all plans obey
safety and feasibility constraints, and we illustrate timing
effects as the system scales between 1 and 10 robots. We ver-
ify simulation results through hardware experiments, using
theCrazyFlie2 platformand software framework (Preiss et al.
2016), issuing 100 random behavior instructions online for
a 10-robot system. Finally, we perform a sequence of behav-
iors designed to highlight system features including group
splitting, merging, and complex formation changes using 15
quadrotors.

4.1 Case study: impact of instruction timing on
system performance

We first explore a simple scenario of two groups moving in
close proximity to each other to provide insight into how
the timing of a user-issued command impacts the system
response. Figure 7 shows a series of illustrations depicting
planner responses to a single online instruction, where we
change only the time at which the instruction is issued. The
original motions of the two groups are shown in Fig. 7a.
Group 1 moves vertically down, then up, while Group 2
moves from left to right in a triangle formation. Figure 7b
depicts Group 2 safely transitioning to a line formation when
the instruction time ti is less than or equal to the indicated
time t1 on the timeline. However, Fig. 7c highlights that when
an instruction is issued at ti = t2, Group 2 cannot safely tran-
sition without a collision. In this case, the planner will reject
the user’s instruction and Group 2 would follow the origi-
nal trajectories. Note that if the same instruction to transition
is issued at any subsequent time, as shown in Fig. 7d, for
ti ≥ t3, the transition can again occur safely. Finally, Fig. 7
shows an example of when a user issues a dynamically infea-
sible instruction. Group 2 cannot transition from triangle to
line and reach the destination in the remaining amount of

2 https://www.bitcraze.io/crazyflie-2/.
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Fig. 8 Dynamic feasibility, inter-robot clearance distance, and timing
properties collected over 48,000 online-issued behavior instructions
in simulation. Each online issued instruction for a behavior required
the computation and execution of a dynamically feasible transition. a
Dynamic feasibility: Histogram of acceleration measurements, taken
every 0.1 s, of the acceleration required by the generated trajectories
for all robots over 48,000 online issued instructions. All accelerations

are below the specified acceleration limit b Safety: Histogram of robot–
robot distance measurements, taken every 0.1 s, across all robots over
48,000 online issued instructions. All inter-robot clearance distances
are above the specified safety threshold c Timing characterization of
various stages of the planning strategy and scaling properties given
increasing robot numbers

time. However, the planner can amend the user instruction
and extend the instruction time to safely transition the for-
mation.

4.2 Robustness and coverage

We perform evaluation in a high fidelity dynamic simula-
tion environment, simulating all vehicle dynamics including
motor response times, to show the robustness of our approach
and the associated coverage over the space of behaviors. All
behavior instructions were issued at random times during
the course of currently executing behaviors. This required
the system to generate dynamically feasible and safe transi-
tion trajectories given the (randomly chosen) current system
state, or recognize that the transition given the current system
statewas infeasible. Figure 5, as described in Sect. 3.5, shows
the coverage results over 48,000 randomly issued behaviors.
This plot reports the number of times a behavior is generated
as well as the success rate of the behavior transition.

Figure 8 shows that the planner always generates dynami-
cally feasible and safe plans for valid behavior transitions.
All motion plan accelerations remain below the specified
limit (Fig. 8a), and all plans maintain safe inter-robot clear-
ances (Fig. 8b).We further report the scaling properties of the
methodology with increasing numbers of robots in Fig. 8c,
showing how portions of the approach scale, as percent-
ages of total computation time, with increasing numbers of
robots. While the computation time required by a centralized
approach will increase as behaviors are planned for addi-
tional numbers of robots, the presented methodology is well
able to handle the numbers of robots required by the theatric
presentation even when run as an unoptimized MATLAB
implementation.

4.3 Hardware experiments

Full evaluation over all simulated behaviors is not feasible
in hardware. We therefore verify simulation results by run-
ning 100 random behavior transitions in hardware on 10
quadrotors. Each individual behavior was performed for a
random amount of time typically lasting from between 30 s
to 1 min in length, before a currently executing behavior was
interrupted with a new behavior instruction. The Crazyflie
platformswere used to validate themethodology because due
to their small size, a team of ten vehicles was able to execute
multi-group behaviors in a limited motion capture volume.
We note that the flight time of the Crazyflie robot platforms,
however, was between only 4 and 6 minutes given the energy
drain of the LEDs on the batteries and the aggressiveness of
chosen behaviors. To validate 100 behavior transitions over
a 10-robot team, we therefore flew the team in over ten trials,
performing over 100 battery changes across all vehicles, for
a total in-air flight time of approximately 1 hour.

A photo of all ten quadrotors in formation, performing a
representative behavior from the trials, is shown in Fig. 9c.
Figure 9a, b present the accelerations and minimum clear-
ance distances exhibited by all quadrotors over the full flight
time composed of all trials. These hardware results verify the
simulation experiments.We observe that the reported vehicle
accelerations remainedunder our planning acceleration limit,
and all clearance distances between vehicles remainedwithin
the stated limits. Hardware experimental data are consistent
with simulation results and confirm our dynamic simulation
trials.

While the 100 behavior transition results reported in
Fig. 9a, b were randomly chosen to cover the behavior input
space, a final demonstration of planner capability via system
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Fig. 9 Dynamic feasibility a and inter-robot clearance distances bmea-
sured over the course of 100 online-issued behavior instructions (each
requiring the computation and execution of a dynamically feasible tran-
sition) to 10 quadrotors flying in amotion caputure arena (c). aDynamic
feasibility: Histogram of acceleration measurements, taken every 0.1 s,
of themeasured acceleration exhibited by 10 quadrotors over 100 online

issued instructions. All accelerations are below the specified acceler-
ation limit. b Safety: Histogram of measured robot–robot distances,
taken every 0.1 s, across 10 quadrotors responding to 100 online issued
instructions. All inter-robot clearance distances are above the specified
safety threshold. c Image of 10 quadrotors flying in formation during a
sequence of 100 online-issued behaviors

Fig. 10 Online behavior execution for multi-group shape formation for
a fifteen quadrotor ensemble. a Two groups of quadrotors (green and
red) merge to form a circular formation of fifteen quadrotors. bA group
of 5 quadrotors (green) leave a circle formation andmove to a new loca-

tion as a triangle formation. cA further group of 5 quadrotors (blue) split
from their previous group and merge to form a line formation (Color
figure online)

Fig. 11 Photos from a theatric performance. Clockwise, from top left:
User practicing gesture-based input; two groups forming lines; one
quadrotor performing a solo; red team transitions across from the blue

team; bottom row: two groups of three quadrotors in triangle formations
circle each other by performing a rotation maneuver as a formation of
six
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performance was performed using fifteen quadrotor plat-
forms. For this performance, a set of complex behaviors was
chosen which included splitting and merging of groups and
performingperiodicmaneuverswith variedflight formations.
These instructions were issued online to the fifteen robot
fleet to demonstrate the scalability of the approach and high-
light the system’s performance abilities. This performance is
shown in an accompanying video, available online.3

Additionally, timelapsed images of representative multi-
groupmerging and splitting choreographies performedby the
15-robot team are shown in Fig. 10. We additionally show
images from a user-directed theatric performance (Fig. 11),
where a performer employed the described system to direct
varying numbers of robots in a three act narrative.

5 Conclusion and future work

In this work, we develop a system to enable multi-robot tra-
jectory generation in an online context specifically for an
improvisational theatric application, using motion descrip-
tors to allow a performer to specify theatric intent and direct
robot choreographies online and using time-aware trajec-
tory formulation methods for validation, verification, and
trajectory refinement to systematically generate dynamically
feasible and collision free motions.We show through evalua-
tion that the proposed system design yields a robust approach
capable of enabling online theatrical performances.

In the future, we will extend the system to incorporate
learning techniques to improve system performance and user
interaction over many training and performance sessions.
These extensions include the generation of new behaviors
building on past examples and creating “macros” of recur-
rent behavior combinations in order to reduce performer
command repetition. Further, we are investigating model-
ing users over repeated interactions in order to anticipate
user instructions (i.e., behavior input auto-completion) with
the goal of reducing latency by preemptively validating and
refining potential motions.
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