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Abstract
Autonomous surface and underwater vehicles (ASVs and AUVs) used for ocean monitoring are typically deployed for long
periods of time and must operate with limited energy budgets. Coupled with the increased accessibility to ocean flow data,
there has been a significant interest in developing energy efficient motion plans for these vehicles that leverage the dynamics
of the surrounding flow. In this paper, we present a graph search based method to plan time and energy optimal paths in static
and time-varying flow fields.We also use tools from topological path planning to generate optimal paths in different homotopy
classes to facilitate simultaneous exploration of the environment by multi-robot teams. The proposed strategy is validated
using analytical flow models, actual ocean data, and in experiments using an indoor laboratory testbed capable of creating
flows with ocean-like features. We also present an alternative approach using a Riemannian metric based approximation for
the cost functions in the static flow case for computing time and energy optimal paths. The Riemannian approximation results
in smoother trajectories in contrast to the graph based strategy while requiring less computational time.

Keywords Path planning · Marine robotics · Time-varying flows

1 Introduction

Scientific activities in aquatic environments that were tra-
ditionally performed manually are increasingly being auto-
matedwith autonomousmarinevehicles (AMVs) that include
surface and/or underwater vehicles. Examples include char-
acterizing the dynamics of plankton assemblages (Caron
et al. 2008), measurement of temperature profiles (Fiorelli
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et al. 2006), and monitoring of harmful algae blooms (Smith
et al. 2010). In these and similar environmental monitoring
applications in the ocean, AMVs are often deployed over
long periods while operating with limited energy budgets.
As such, researchers have to design motion strategies that
are energy efficient to maximize the use of the capabilities
of these autonomous platforms.

While the high inertia environment of the ocean couples
the environmental dynamics to the marine vehicle dynam-
ics, it presents a unique opportunity for vehicles to exploit
the surrounding flows for more efficient navigation. As such,
there is a substantial amount of recent work on determin-
ing optimal paths in flow fields. Examples include the work
by Garau et al. (2005) where the authors use a graph search
method to plan time optimal paths in static flows. Graph
search methods have also been proposed for computing
energy optimal paths in static flow fields in Koay and Chitre
(2013), Rao and Williams (2009), Kularatne et al. (2016).
In Chakrabarty and Langelaan (2013), authors present a tree
based method to compute optimal paths in a time-varying
wind field, however, this tree like structure results in an
expansion of a large number of nodes which can require
significant computation resources. Eichorn (2015) and Otte
et al. (2016) have also presented graph based methods that
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are only capable of computing time optimal paths in time-
varying flows.

Alternatives to graph search techniques include (Kruger
et al. 2007; Witt and Dunbabin 2008) for computing energy
optimal paths in time-varying flows. Since these methods
are based on iterative minimization techniques, they run the
risk of producing paths that are only locally optimal. Lolla
et al. (2012, 2014)) presented a level set expansion method
to find time optimal paths in time-varying flows. This was
then extended by Subramani et al. (2016) to determine the
energy optimal paths from the set of time optimal paths
obtained from the level set method. Similar to many existing
approaches, level set approaches require full knowledge of
the flowfield and require significant computational resources
for the various level set expansions at each iteration. Thus
these strategies are mostly applicable for pre-deployment
planning purposes and not amenable for realtime planning
purposes.

In this work, we present a graph-based path planning
approach for computing time and energy optimal paths
for vehicles operating in a general flows. Similar to Lolla
et al. (2012, 2015), Garau et al. (2005), Kruger et al.
(2007), Koay and Chitre (2013), Huynh et al. (2015),
the strategy leverages the surrounding flow field in the
synthesis of optimal trajectories. Different from these exist-
ing strategies, we employ graph search-based methods
coupled with more accurate cost functions in computing
the optimal trajectories in both static and time-varying
cases. In particular, the primary contributions of our work
are:

(a) The ability to design arbitrary cost functions with a
focus on obtaining both time and energy optimal tra-
jectories.

(b) The ability to plan optimal paths in both static and time-
varying flows. As such, in contrast to existing work, our
strategy is not limited in the cost functions allowed nor
in the type of flows that could be considered.

(c) The inclusion of a Riemannian approximation to the
cost functions presented in static flows. The ability to
model cost as Riemannian metrics enables the formu-
lation of the optimization problem as one of solving
the geodesic equation on a Riemannian manifold which
provides additional insights into the planning problem.

(d) The ability to impose kinematic constraints such asmax-
imum still-water speed of the vehicle which is useful for
planning optimal paths for small resource constrained
vehicles.

(e) The correctness of the computed paths are verified
experimentally using autonomous surface vehicles on

Fig. 1 Snapshot (August 2005) of visualization of ocean surface
currents for June 2005 through December 2007 generated using
NASA/JPLsEstimating theCirculation andClimate of theOcean, Phase
II (ECCO2) ocean model

actual flows. In addition, the results are compared
against several existing methods and to “ground truth”
optimal paths obtained from an optimal control formu-
lation.

(f) Lastly, large scale ocean circulation often exhibit sig-
nificant eddy and jet structures (see Fig. 1), which gives
rise to the presence of fixed points and invariant man-
ifolds in the flow field. Coupled with the presence of
obstacles, e.g., islands and archipelagos, the result is
multiple topological classes of trajectories. Recent work
showed the importance of reasoning about such topo-
logical classes in marine operations in the presence of
obstacles (Bhattacharya et al. 2015). As such, a funda-
mental advantage of the proposed graph-based strategy
over existing ones (Garau et al. 2005; Kruger et al. 2007;
Koay and Chitre 2013; Huynh et al. 2015; Chakrabarty
and Langelaan 2013) is the ability to use computational
tools from topological path planning in the computa-
tion of time/energy optimal paths in different homotopy
classes of the environment.

The rest of the paper is organized as follows: Sect. 2
presents the modeling preliminaries and the problem formu-
lation. Sections 3 and 4 present the methods used to solve the
problem in static and time varying flows respectively. Sec-
tion 5 shows how the method is used to compute paths in
different topological classes. Sections 6 and 7 describe the
simulation and experimental results respectively. The paper
concludes with a discussion of our findings and directions
for future work in Sect. 8.

2 Problem formulation

In this section we provide a description of the environment
and our assumptions, and then describe the development of
our time and energy cost functions. We also provide a for-
mal statement of our problem and outline our graph based
solution approach.
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Fig. 2 The flow vector,Vf at a point, x, and the flow-parallel coordinate
system

2.1 Flowmodel

In this work, we consider a 2-D aquatic environment W ⊆
R
2, subject to a time-varying flow field Vf : WT �→ R

2,
where WT = W × [ts t f ] and [ts t f ] ⊂ R≥0 denotes the
time interval under consideration. As such, for x ∈ W and
t ∈ [

ts t f
]
,

ẋ = Vf (x, t) (1)

denotes the flow velocity at the point x. The speed of the
flow is given by V f (x, t) = ‖Vf (x, t)‖ and the maximum
flow speed encountered in the domain is given by

V f m = max
x∈W, t∈[ts t f ]

V f (x, t).

It is assumed that the flow description is known a priori or a
reliable forecast is available. For ocean environments, such a
forecast could be obtained from, for example, the Coastal
Observing Research and Development Center (CORDC)
(CORDC).

We employ a flow-parallel coordinate representation of
the vector field given by (1), such that for every point x ∈ W,
its axes are aligned along the unit vectors v̂x = Vf (x,t)‖Vf (x,t)‖ (the
“x” axis) and v̂x⊥ (the “y” axis, orthogonal to the x axis –
see Fig. 2). We note that this coordinate system is not “co-
moving” with the flow.

Thus, in the flow-parallel coordinate system, the flow vec-
tor at x can simply be written as Vf = V f v̂. With a little
abuse of notation, we will also write the coordinate rep-
resentation of Vf in the flow-parallel coordinate system as
Vf = [V f , 0]T .

2.2 Vehicle model

The vehicles considered in this work are assumed to have
a holonomic kinematic motion model. This is a reasonable
assumption when the dimensions of the vehicle are small

Fig. 3 The net velocity of the vehicle is the vector sum of the flow
velocity and the vehicle’s still-water velocity

when compared with the dimensions of the flow structures
(Garau et al. 2005). It is assumed that the lower level con-
trollers of the vehicle are capable of following a trajectory
computed using this simplified model. Using this model, the
net velocity of the vehicle with respect to the inertial frame
is given by

Vnet(x, t) = Vf (x, t) + Vstill(x, t), (2)

where Vstill is the velocity of the vehicle with respect to the
flow, i.e., Vstill is the “thrust” vector of the vehicle. The net
velocity of a vehicle which travels infinitesimal distances,
dx and dy, along v̂x and v̂x⊥ respectively in time dt , can be
written as Vnet = [dx, dy]T /dt (expressed in the compo-
nents of the flow-parallel coordinates). Then, from (2), the
flow-parallel coordinate representation of the vehicle thrust
is Vstill = [ dxdt − V f ,

dy
dt ]T (see Fig. 3). Thus the speed of

the vehicle in still water is given by

Vstill = ‖Vstill‖ =
√(

dx

dt
− V f

)2

+
(
dy

dt

)2

. (3)

It is further assumed that the actuation capability of the
vehicle is limited and that its maximum speed is lower than
the speed of the surrounding flow i.e., Vstill(x, t) ≤ Vmax <

V f m .

2.3 Cost functions

Wewill assign (infinitesimal) costs to infinitesimal displace-
ments of the vehicle. In general, it is a function of differ-
entials, dx , dy and dt (where x and y are the flow-parallel
coordinates), and is of the form dc3 = f (dx, dy, dt). How-
ever, for static flows (i.e.,Vf (x, t) = Vf (x)), dt can be shown
to be a function of dx and dy, and as a results, the differential
cost has the form dc2 = f (dx, dy).
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2.3.1 Timeminimizing cost

In general, the time cost of a differential element will simply
be,

dc3,time = dt . (4)

For optimal time paths in static flows, it can be shown that
dt can be expressed as a function of dx and dy (see Sect.
3.1.1), i.e., dc3,time = dc2,time for static flows. This same
expression for dt can also be used in time-varying flows, if
the vehicle thrust Vstill is able to overcome the flow velocity
V f at all times. However, since we are considering vehicles
that have actuation limitations, we use the general time cost
given above in time varying flows as well.

2.3.2 Energy minimizing cost

The differential cost in this case is the energy expended
in achieving a differential displacement, [dx, dy]T in time
dt . It is assumed that this energy expenditure can be solely
attributed to the action of overcoming the drag force expe-
rienced by the vehicle. The drag force experienced by the
vehicle is given by

Fd(x, t) = −κV α−1
still (x, t)

Vstill

Vstill
(5)

where κ is the drag coefficient which depends on the geom-
etry of the vehicle and α ∈ {2, 3, . . .} defines the drag model
considered. For example, if α = 2 the drag model is linear
and if α = 3 it is quadratic. Thus, considering the differ-
ential displacement of the vehicle with respect to the flow
dxstill = Vstilldt , the differential energy cost is given by

dc3,energy = Fd · dxstill = κV α
stilldt

= κ

((
dx

dt
− V f

)2

+
(
dy

dt

)2
) α

2

dt

= κ

(
dx2 + dy2

dt2
− 2V f

dx

dt
+ V 2

f

) α
2

dt (6)

2.4 Problem statement

Given the above time and energy cost functions, the objective
is to find a path Γ : [ts, tg] �→ W that minimizes the total
cost. Thus the problem addressed in this paper is finding a
solution to the following optimization problem,

Γ ∗ = min
Γ

∫

Γ

dcγ,β

subject to

Fig. 4 The connectivity of a vertex with other neighboring vertices in
the graph G

Γ (ts) = xs,

Γ (tg) = xg,

Vstill(Γ (t), t) ≤ Vmax (7)

where xs and xg are the desired start and goal positions, γ

denotes the dimension of the workspace and β denotes either
t ime or energy. When γ = 2, the infinitesimal element
belongs to W and when γ = 3 it belongs to WT .

2.5 Solution approach

We use a graph based approach to find a solution to this
problem. We use a discrete graph, G = (V , E), to repre-
sent the workspace. The workspace can either be the spatial
environment W, or the extended space–time environment
WT . The workspace that the graph represents is depen-
dent on the type of flow considered (static vs time-varying).
Vertices in this graph are centroids of cells in a uniform
square/cubic discretization (in the global coordinates). As
such, if the workspace is W, a vertex vi is identified by its
global spatial coordinate xi, and if the workspace is WT , a
vertex is identified by the pair (xi, ti ). Edges are established
between immediate neighbors as well as some n-hop neigh-
bors (Fig. 4).

Each edge in the graph can now be approximately consid-
ered as an infinitesimal segment with projections dx and dy
along v̂x and v̂x⊥ respectively, where x is the position of the
vertex at the base of the edge. If the the graph is defined over
WT , each edge will have a dt component as well. This lets
us assign a cost to the edge using formula (4) (time optimal
search) or (6) (energy optimal search). The implicit assump-
tion is that the flow velocity remains constant along an edge.

In this approach, the optimal path would be a sequence
of vertices {v0, v1, . . . , vk} where v0 represents the start ver-
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tex and vk represents the goal vertex. If the workspace is
W, sometimes we use the spatial locations of the vertices
{x0, x1, . . . , xk} to represent the path, since in this case the
vertices are identified using their position coordinates alone.
Furthermore, we use the notation, xixj to refer to a sub path
of the optimal path, i.e., xixj = {xi, xi+1, . . . , xj}

Given a start and a goal vertex in the graph, we can thus
use Dijkstra’s optimal search algorithm (Cormen et al. 2001)
to find the shortest path in the graph connecting the vertices.
Whenever possible, we can also design admissible heuristic
functions, h : V → R≥0, in order to run more efficient
search algorithms such as A* (Cormen et al. 2001). For time
minimizing search, if [Xg, Yg]T is the coordinate of the
goal vertex vg in a global Euclidean coordinate system, and
[Xi , Yi ]T is the global coordinate of a vertex vi ∈ V then, a
lower bound for the minimum time required to reach vg from
vi is

htime(vi ) =
√

(Xg − Xi )2 + (Yg − Yi )2

Vmax + V f m
,

where V f m is the maximum speed of the flow over all points
inW. However for the energy minimizing search, one cannot
write a reasonable heuristic function other than the trivial
h(vi ) = 0, in which case the A* search becomes equivalent
to Dijkstra’s.

3 Optimal paths in static flow fields

In this section the graph based approach is used to find opti-
mal paths when the flow field is static, i.e., when Vf (x, t) =
Vf (x). In such a scenario, the flow at a particular point x ∈ W

does not depend on the time of arrival at x. As such, the cost
of any path segment that starts from x also does not depend on
the time of arrival at x. Thus, in static flows, the propagation
of time along a path need not be considered in the compu-
tation of the path costs. Therefore, the graph constructed for
optimal path computation in static flows only has to consider
the 2D environment W. In this case each vertex vi ∈ V will
be identified by its position xi ∈ W. Furthermore, the optimal
path will be composed of edges (path segments) which have
optimal costs individually. Thus, the general costs dc3,time

and dc3,energy given in (4) and (6) respectively, can now be
reduced to dc2,time and dc2,energy by optimizing these costs
over dt .

3.1 Cost functions for static flows

3.1.1 Timeminimizing cost for static flows

In order to minimize the time cost of travel, the vehicle has
to travel at its maximum speed along each edge. Thus, using
Vstill = Vmax , we can solve for dt using (3) as follows,

((
dx

dt
− V f

)2

+
(
dy

dt

)2
)

= V 2
max

⇒ dx2 − 2V f dxdt + (V 2
f − V 2

max )dt
2 + dy2 = 0

⇒ dt = V f

V 2
f − V 2

max

dx −
√
V 2
max (dx

2 + dy2) − V 2
f dy

2

V 2
f − V 2

max

.

(8)

Note that we discard the solution with the positive root since
when dy = 0, we should have dt = dx/(V f + Vmax ). Thus,
the time-minimizing cost for a differential element in a static
flow is

dc2,time = V f

V 2
f − V 2

max

dx−
√
V 2
max (dx

2 + dy2) − V 2
f dy

2

V 2
f − V 2

max

.

(9)

3.1.2 Energy minimizing cost for static flows

For a given dx and dy, the differential time dt that minimizes
the energy cost dc3,energy given in (6), can be computed by

solving
∂dc3,energy

∂dt = 0. Essentially, we are letting the vehicle
choose a Vstill that minimizes dc3,energy . It can easily be ver-
ified that this local energy cost minimization is accomplished
when,

dt = (2 − α)dx + √
α2dx2 + 4(α − 1)dy2

2V f
(10)

where α ∈ {2, 3, ..} depends on the drag model considered.
Thus the energy cost of a differential element in W is

dc2,energy = κ

(
dx2 + dy2

dt2
− 2V f

dx

dt
+ V 2

f

) α
2

dt (11)

where dt is the function of dx and dy given in (10).

3.2 An alternative approximatemodel for fast
computation of smooth trajectories

The optimal trajectories obtained using the graph search-
based approach, being constrained to the graph, are piece-
wise linear, and in general not smooth. In order to be able to
solve the problem efficiently, we need to employ an approxi-
mation at some level, which in case of the graph search-based
method is the discrete representation of the free space. In this
sectionwe present an alternative approximatemodel, derived
from the cost functions described in Sect. 3.1, to represent the
optimal trajectory in static flows in the form of a solution to
an ordinary differential equation. Thus the solutions obtained
using this method can be made arbitrarily smooth. Moreover
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integration of a differential equation is in general faster to
compute than running a graph search algorithm. In particu-
lar, we construct a Riemannian metric (Petersen 2006) that
approximates the cost functions. This method is particularly
useful for two reasons: (i) trajectories obtained as a solu-
tion to the geodesic differential equation are smooth, unlike
paths in a graph that are restricted to the discrete graph, and
(ii) computing solutions to the geodesic equation is often less
computationally intensive than a full-blown graph search.

The Riemannian metric, g(x), for every x ∈ W is defined
as a (symmetric, positive-definite) bilinear form over differ-
entials dx and dy such that the cost (equivalently the “length”
induced by themetric) of the differential element can bewrit-
ten as

dc =
√

[dx, dy] g(x)
[
dx
dy

]
(12)

where g(x) is a 2 × 2 matrix, and is called the matrix rep-
resentation of the Riemannian metric in the flow parallel
coordinate system. Using this framework, we propose the
following approximate time and energyminimizing Rieman-
nian metric modes for computing optimal paths in static
flows.

Riemannian Metric Model for Time Minimization: From
equation (9) one has,

dc22,time =
(V 2

max + V 2
f )dx

2 +
(
V 2
max − V 2

f

)
dy2

(
V 2
f − V 2

max

)2

−
2V f dx

√
V 2
maxdx

2 +
(
V 2
max − V 2

f

)
dy2

(
V 2
f − V 2

max

)2 .

In order to make the above quadratic in dx and dy, we use
the approximation that the velocity of the vehicle is almost

parallel to that of the flow, i.e.,
∣∣∣ dydx

∣∣∣  1. With this approxi-

mation,

√
V 2
maxdx

2 + (V 2
max − V 2

f )dy
2

� Vmaxdx + 1

2

V 2
max − V 2

f

Vmax

dy

dx
dy.

Thus we get,

dt2 �
1

(v + Vmax )2
dx2 + 1

Vmax (Vmax + v)
dy2.

Thus, the matrix representation of the metric tensor in the
2-dimensional flow-parallel coordinates can be written as,

g =
[

1
(v+Vmax )2

0

0 1
Vmax (Vmax+v)

]

. (13)

Riemannian Metric Model for Energy Minimization: For
the special case of α = 2, using (10) and (11), one can write,

dc2,energy = 2κ

(√
dx2 + dy2 − dx

)

As such,

dc22,energy = 4κ2v2

⎛

⎝2dx2 + dy2 − 2dx2

√

1 +
(
dy

dx

)2
⎞

⎠ .

Using the approximation that the velocity of the vehicle is

almost parallel to that of the flow, i.e.,
∣∣
∣ dydx

∣∣
∣  1, we could

rewrite above as,

dc22,energy = 4κ2v2dy2. (14)

However, the matrix representation of the metric tensor that
arises from (14) is singular and cannot be used with the
geodesic equation. As such, we use the following matrix rep-
resentation of the metric tensor in flow-parallel coordinates:

g =
[

ε
v2

0
0 4κ2v2

]
(15)

where ε  1.
From g, one can use a coordinate transformation, G =

RT gR, to compute the matrix representations of the metric
tensors in the global Euclidean coordinates.

R =
[

v̂X −v̂Y
v̂Y v̂X

]

is a suitable rotationmatrix for this local-to-global coordinate
transformation, where v̂X and v̂Y are the components of the
flow-parallel unit vector v̂ expressed in the global frame. We
can then solve the geodesic equation (Petersen 2006),

d2γ i

dτ 2
+ Γ i

jk
dγ j

dτ

dγ k

dτ
= 0

which is a second order ODE describing the shortest path,
γ , parameterized by τ , the cumulative cost of the trajectory.
Note that summation over repeated indices is assumed by
Einstein notation. The quantities Γ i

jk are called the Christof-
fel symbols, and are given by

Γ i
jk = 1

2
G

im
(
dGkm

dX j
+ dG jm

dXi
− dG jk

dXm

)

with G = G−1.
One consequence of the Riemannian approximation is

the fact that the metric is indifferent to the direction of the
flow, and the vector field in effect gets converted to a line
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field. Geodesics computed using the approximate Rieman-
nian metric can thus be both in the direction of the flow
and against it. However, the Riemannian model does not
involve any discretization of the free space and can perform
better than the graph search-based approach with a coarse
discretization. This is illustrated in the example of Fig. 11,
where a coarse discretization gives a path in the graph that
is significantly different and of higher cost than the geodesic
computed using the Riemannian metric. However, making
the discretization finer (increasing connectivity of the graph)
gives a path in the finer graph that matches the geodesic more
closely. Other than this particular example, however, all the
simulation and experimental results presented in this paper
use the graph search-based method and the exact cost func-
tions described in Sect. 3.1.

4 Optimal paths in time varying flow fields

In this section we extend the graph based optimal path plan-
ning approach to time-varying flow fields. In the static flows
considered in Sect. 3, the traversal cost of a path segment
starting at x is independent of the time of arrival at x. As
such, every sub path xixj of an optimal path {x0, x1, . . . , xk}
has optimal cost. In time-varying flows however, the cost of
a path segment depends explicitly on the time of arrival at the
base of that path segment, as the costs are inherently tied to
the flow speed. As such, in contrast to static flows, it is now
possible to travel to an intermediate node in a sub-optimal
manner in order to encounter a favorable current towards
the destination later on that results in minimizing the over-
all cost of the path. Hence, greedy strategies that may be
suitable for static flows are no longer valid. As such, the
search space needs to take the time dimension into account
explicitly, when computing optimal paths in time-varying
flow fields.

An exception to this discussion can be observed when the
objective function is time, if the vehicle thrust Vstill is able
to overcome the flow speed V f at all times. In this case, it is
generally possible to use the same method and cost function
(given in (9)) used for static flows, without having to expand
the graph along the time dimension, i.e., the graph search
method used for static flows can be used for this time-varying
scenario as well. However, since we are considering a more
general case, we use the time-extended graph to compute
optimal time paths as well.

4.1 Multi time-step (MTS) searchmethod

In this section, we present the Multi Time-Step Search
(MTS) method to find optimal paths in time-varying flows.
In essence, we expand the graph along the time dimension
so that we could search through different Vstill values along

Fig. 5 The spatial distribution of neighbors considered at each node.
The red square includes the spatial neighbors consideredwhen Nshops =
1, and the blue square includes the spatial neighbors considered when
Nshops = 2 (Color figure online)

each path segment, that will give a minimum overall cost.
In this method, the 3-D spatio-temporal workspace WT is
discretized uniformly with incrementsΔx,Δy andΔt in the
x, y and t directions respectively. As before, the centroid
of each cube in the discretized space is represented by a
vertex vi ∈ V , and each vertex vi is identified by the pair
(xi, ti ). Each vi also has a set of tentative neighborsN (vi ),
where each v j ∈ N (vi ) satisfies max(|x j − xi |/Δx, |y j −
yi |/Δy) ≤ NsHops and 0 < (t j − ti )/Δt ≤ NtHops . NsHops

defines the number of spatial hops considered as neighbors,
and its value is typically set to a small integer in MTS in
order to keep the average degree of the vertices in the graph
low. If NsHops = 1, only the immediate spatial neighbors are
considered and if NsHops = 2 then 2-hop spatial neighbors
are also considered (see Fig. 5). Each edge of the graph is
assigned a cost computed using the cost functions given in
(4) (optimal time) and (6) (optimal energy).

For a given vi , with associated flow speed V fi =
V f (xi, ti ), the required still-water speed and the associated
traversal cost to go to any v j ∈ N (vi ) with a given spatial
coordinate x depend primarily on dti j = t j − ti . In the case
of optimal energy paths, the cost to reach x will decrease as
dti j increases (see Fig. 6). The main idea behind the MTS
method is to search through all of these path segments to find
the least cost path from start to goal. Naturally, low cost paths
can be obtained by setting NtHops to a large value, because
it allows transitions between two adjacent spatial locations,
xi and xj, over a long period of time (dti j = NtHops × Δt).
However, such a transition breaks the implicit assumption
that the flow velocity Vfi remains constant between two ver-
tices, vi and v j , since in practice flow conditions are likely to
change over the large the transition time dti j . Thus, NtHops

should be selected such that the underlying flow remains rel-
atively constant during NtHops × Δt . In this work, NtHops

is set such that NtHops × Δt < Ts , where Ts is the sampling
period of the available flow velocity data.
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Fig. 6 Theconstructionof theMTSgraph for Nhops = 1.Only aportion
of the neighbor set is shown. For each spatial neighbor xj, multiple
neighbors are considered along the time axis. In the case of optimal
energy paths, for each xj, the cost of the segment xixj will decrease as
dti j = t j − ti is increased, since the Vstill required for the traversal is
reduced with increasing dti j

The pseudo code for the MTS method is given in Algo-
rithm 1. Initially, the start vertex is added to the heap Q with
zero cost. The getHeuristic() method computes the value of
the heuristic if one is available. The heap Q is sorted using
the (heuristic+cost) of the vertices (A*method). Only neigh-
bors with Vstill ≤ Vmax are added to the graph to satisfy the
actuation constraint. The main highlights of this method are:

– given a node vi = (xi, ti ), for every location xj who is a
neighbor of vi in the spatial domain, multiple nodes with
t j = [ti +Δt, ti +2Δt, ..., ti +NtHopsΔt] are considered
as neighbors in the 3-D graph (see Fig. 6).

– while it is possible to consider a large number of nodes
with the same spatial coordinate x with different time
coordinates as neighbors of a node, only a Nthops number
of time hops are considered, to avoid getting incorrect
results.

4.2 Extensions of the optimal path planning
problem

The objective of the problem specified in (7) is to find an
optimal path to the goal, with a specific start time ts , which
satisfy the actuation constraint. The termination time at the
goal tg is free. However, in practical applications, several
variations of the problemare encountered. In this section, two
such variations are considered and themodifications required
in the MTS method to handle such variations are introduced.
Constrained time problem: In this problem, a specific time tg
or a time window TG = [t g, t g] to arrive at the goal is speci-
fied. The objective is to find an optimal path from the start to
the goal that terminates at the goal xg exactly at tg (or within
TG if a timewindow is specified). Such problems are applica-
ble in data gathering scenarios where an AMV is required to
reach a data gathering buoy at a specified time. To solve this

Algorithm1:Multi Timestep Search (MTS) to compute optimal

paths in time-varying flows

Input : Vertex set V , Start vertex vs = (xs , ts), Goal xg
Output: Optimal cost path Γ

1 foreach vi ∈ V do
2 vi . f = ∞, vi .cost = ∞, vi .parent = ∅

3 vi .heuristic = getHeuristic(vi , xg)
4 vi .expanded = f alse
5 end
6 Q = ∅, G = ∅

7 vs . f = 0, vs .cost = 0
8 Q.insert(vs), G .addNode(vs)
9 while (Q! = ∅) do

10 vi = Q.extractMin()

11 vi .expanded = true
12 [V fi , θ] = getFlow(vi ) // get velocity at vi
13 if (xi == xg) then // goal is reached
14 while vi ! = ∅ do // retrieve path
15 Γ .push(vi )

16 vi = vi .parent
17 end
18 break;
19 end
20 foreach v j ∈ N (vi ) do // for each neighbor
21 Vstill = computeVstill(vi , v j )

22 if (Vstill < Vmax ) then
23 continue;
24 end
25 cost = computeCost(vi , v j ) // cost of viv j
26 if v j ∈ G then
27 if (!v j .expanded & v j .cost > vi .cost + cost) then
28 v j .cost = qi .cost + cost
29 v j .parent = vi
30 v j . f = v j .cost + v j .heuristic
31 Q.update(v j )

32 end
33 else
34 v j .cost = qi .cost + cost
35 v j .parent = vi
36 v j . f = v j .cost + v j .heuristic
37 Q.insert(v j ), G .addNode(v j )

38 end
39 end
40 end
41 return Γ

problem, the graph search is carried out backwards in time,
starting from the goal vertex vg = (xg, tg). If a time window
TG is specified, multiple goal vertices vgi = (xg, tgi ) are
considered, where tgi ∈ TG are discretized time coordinates
within the specified time window. To carry out a backward
time search, all flow velocity directions are reversed, and
only vertices with t j < ti , are considered in the neighbor set
N (vi ) of vertex vi .
Bounded velocity problem: In this problem, a maximum net
speed Vnetmax is specified. Thus, an additional constraint
Vnet ≤ Vnetmax is added to the problem in (7). Such problems
are applicable in data sampling scenarios where the AMV
has to travel with a bounded speed for effective data gath-
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ering. Such constraints can be easily handled with the MTS
method by pruning the neighbor setN (vi ) so that edgeswith
fast traversal speeds are ignored, i.e., if ‖xj − xi‖/|t j − ti | >

Vnetmax for any v j ∈ N (vi ), that neighbor is removed from
the neighbor set.
Remark 1 The MTS method presented above is transparent
to the cost function used for the optimization. It is general
enough to accommodate any path dependent time-varying
cost function. Thus, it is possible to use a combined time-
energy cost function, that considers the hotel load (energy
required to run the sensing and computing systems of the
vehicle), in addition to the energy required to overcome drag.
Such a cost function would have the form dc3,energy =
(κh + κ

(
dx2+dy2

dt2
− 2V f

dx
dt + V 2

f

) α
2
dt), where κh is the

hotel power draw. This cost function will penalize time spent
and result in shorter duration paths.

5 Planning optimal trajectories in different
topological classes

Inmulti-robot applications such as exploration or data collec-
tion in the ocean, it is vital that the team of surface vehicles
can be distributed effectively across the region of interest.
This task is made particularly challenging in the presence
of obstacles or fluidic structures. An effective approach to
this problem is topological exploration (Kim et al. 2013),
where robots are assigned different topological classes of
trajectories to disperse into and explore (see Fig. 7). Reason-
ing about topological classes of trajectories is also vital to
automated surface cleaning operations using surface vehicles
(Bhattacharya et al. 2015). In this section we demonstrate,
how the graph based approaches presented in Sects. 3 and 4
can be modified to perform such topological path planning.

Presence of obstacles in W give rise to multiple topo-
logical classes of trajectories, each of which belong to a
unique homotopy class. Since we plan trajectories in a graph,
our method lends itself quite naturally to homotopy-aware
path planning, where we can compute optimal trajectories
restricted to different homotopy classes. The basic algo-
rithm for doing this is outlined in Bhattacharya et al. (2012),
Kim et al. (2014). The fundamental idea is to use certain
homotopy invariants (called h-signature) (Bhattacharya and
Ghrist 2015) to construct a homotopy-augmented graph,
Gh = (Vh, Eh), in which every vertex is a pair of the form
(vm,w) ∈ Vh , with vm ∈ V and w is a “word” made up of
letters associated with non-intersecting rays emanating from
connected components of obstacles (see Fig. 8). The edge set,
Eh is described incrementally as follows: If (vm,w) ∈ Vh ,
then for every [vm, vn] ∈ E (where vm, vn ∈ V ), there exists
an edge [(vm,w), (vn,w◦h(vmvn))] ∈ Eh (wherew◦h(mn)

indicate concatenation of the wordsw and the h-signature of

Fig. 7 Homotopy-aware path planning: Simultaneous explo-
ration/sampling around a set of islands by a set of ASVs. Homotopy
aware planning allows the generation of optimal paths in different
classes of trajectories simultaneously

Fig. 8 Non-intersecting rays emanate fromevery connected component
of obstacles. The homotopy invariant (h-signature) of a path, γ , is con-
structed by tracing the curve and constructing aword, inwhichwe insert
a letter or its inverse everytime we cross a ray from right-to-left or left-
to-right respectively. Thus, in the figure, h(γ ) = “r−1

1 r4 r
−1
2 r−1

4 r−1
6 ”

the directed segment vmvn). The cost of an edge inGh is taken
to be same as the cost of the corresponding projected edges
in G . Executing a graph search in the h-augmented graph,
Gh , can give us optimal trajectories constrained to different
homotopy classes connecting given vertices vs, ve ∈ V .

6 Simulations

In this section we present simulation results for planning
time and energy optimal paths in a flow field using the graph
search methods described in the preceding sections. In these
simulations we use flow velocity information obtained from
an analytical model as well as from ocean current forecasts.
We use the wind-driven double gyre model as our analytical
model because it is often used to describe large scale recircu-
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lation regions in the ocean (Veronis 1966). Furthermore, the
flows in our experimental setup are also patterned according
to this model. In this model, the flow velocity components in
the global coordinate system are given by,

Ẋ = −π A sin

(
π
X

s

)
cos

(
π
Y

s

)
, (16a)

Ẏ = π A cos

(
π
X

s

)
sin

(
π
Y

s

)
, (16b)

where A determines the amplitude of the flow velocity vector
and s scales the dimensions of the gyres. In our simula-
tions, we set A = 0.02 and s = 1 so that the flow field
approximately matches the flow field generated in the exper-
imental setup with an average flow velocity of 0.025m/s.
The maximum flow speed obtained with these parameters is
V f m = 0.063m/s, and as such,we selectedVmax = 0.05m/s.
Note that the flow field generated with (16) is static and as
such it is only used for simulations relating to Sect. 3.

We also employ flow data generated by the Regional
Ocean Model System (ROMS) for the Santa Barbara Bay
area off the coast of southern California in these simulations.
The Southern California Coastal Ocean Observing System
(SCCOOS) generates these hourly ocean current forecasts
on a 3km grid everyday and each forecast is for 72 hours
(SCCOOS). The the data generated on July 7 2016 was used
for the simulations. The maximum flow speed observed was
V f m = 0.73m/s and as such Vmax was selected to be 0.5
m/s.When ocean data is used for simulations involving static
flows, one time slice of the available data is used.

The accuracy of the computed paths was evaluated by
comparing them against paths obtained by solving the cor-
responding optimal control problem. The optimal control
problem involves minimizing the path cost given in (7),
subject to the kinematic model in (2), and the constraint
Vstill ≤ Vmax . This minimization was done using the Pon-
tryagin’s minimization principle, which resulted in a two
point boundary value problem which was solved using the
indirect shooting method. This approach solves the govern-
ing differential equations for a succession of initial directions
until the goal position is reached. The result from the shoot-
ing method was refined using MATLAB’s BVP solver. Let
Γ ∗ : [ts, tg] �→ W be the reference path obtained from
the optimal control formulation of the problem, and let
Γ : [ts, tg] �→ W be the path computed by the proposed
method. The mean error (mE) between Γ ∗ and Γ , defined
by

mE =
∫ tg

ts

‖Γ ∗(t) − Γ (t)‖
tg − ts

dt (17)

is used to evaluate the relative accuracy of a given path. To
further validate the results, the cost of the path computed by
the proposed method was also compared against the cost of

Fig. 9 Planned optimal time paths for two start-goal combinations for
Vmax = 0.05m/s. In red: paths computed using the described method,
in black: paths computed using the optimal control formulation. Perfor-
mance parameter are given in Table 1 as a Path 1 and b Path 2 (Color
figure online)

Fig. 10 Planned optimal energy paths for two start-goal combinations
for Vmax = 0.05m/s. In red: paths computed using the described
method, in black: paths computed using the optimal control formu-
lation. Performance parameter are given in Table 2 as a Path 1 and b
Path 2 (Color figure online)

the feasible minimum distance path between the same start
and goal locations. To compute the straight line path, it was
assumed that the vehicle operates at its maximum allowable
speed Vmax . In all of the proceeding simulations involving
optimal energy paths, the parameters valuesα = 2 and κ = 1
are used.

6.1 Optimal paths in static flow fields

Figures 9 and 10 respectively show the optimal time and
energy paths planned on a static flow given by (16). In these
simulations, both x and y directions were discretized with
a resolution of 0.01m. In both figures, the traces in red are
the paths computed using our method and the traces in black
represent the ‘reference’ path computed using the optimal
control formulation. Tables 1 and 2 provide the performance
parameters for the optimal time and optimal energy paths
respectively. It can be seen that paths costs are in good agree-
ment with the reference path and that the mean error is low
(approximately 0.02m for all four paths). In addition, the
computed paths have much better costs when compared with
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Table 1 Performance parameters for the optimal time paths shown in
Fig. 9

Cost (s) mErr (m)

Graph Reference Min. Dist

Path 1 (9(a)) 32.92 32.87 248.5 0.019

Path 2 (9(b)) 30.17 30.11 88.71 0.019

Table 2 Performance parameters for the optimal energy paths shown
in Fig. 10

Cost (J) mErr (m)

Graph Reference Min. Dist

Path 1 (10(a)) 9.44e−4 9.05e−4 6.21e−1 0.019

Path 2 (10(b)) 2.05e−3 1.61e−3 3.78e−1 0.02

a straight line paths between the corresponding start and goal
coordinates.

6.1.1 Approximate Riemannian metric model for path
planning

The time and energy minimizing Riemannian metric tensors
developed in Sect. 3.2 were also used to generate time and
energy optimal paths in static flows. Finding a path from the
start position to the goal position translates to solving the two
point boundary value problem posed by the geodesic equa-
tion. This was achieved by the shooting method: integrating
the geodesic equation from the start position for a succession
of initial directions until the goal position was reached, i.e.,
the problem was solved as a series of initial value problems.

Figure 11 shows the comparison between the graph search
method and the geodesic integration method, for Vmax =
0.01m/s. Figure 11a shows an instance where the graph
search method considers 16 neighbors for each node in the
graph. Clearly the geodesic and the graph search generated
paths do not agree. The cost of the path generated by the graph
search is 1.96. In Fig. 11b, where the results of the two meth-
ods are in agreement, the graph search method considers 48
neighbors for each node in the graph, and the resulting path
cost is only 1.53 (which is less than the previous case). How-
ever, in this instance, the graph search method takes around
50s to compute the path while the geodesic method takes
less than 2s. This example clearly highlights three important
advantages of the geodesic integration method: (i) it pro-
duces smooth trajectories (see Fig. 11a), (ii) in contrast to
graph search methods, the accuracy of the generated path is
not limited by the resolution of the underlying workspace,
and (iii) the geodesic integration method is much faster.

However, it was observed that for some instances, the
geodesic integration method gave undesirable results. Fig-

Fig. 11 Comparison of optimal energy paths generated by the graph
searchmethod (blue)with the path generated by integrating the geodesic
equation (red). a Coarse graph constructed by connecting each vertex
with 16 neighbors: Paths not in agreement and the cost of the path in
graph is significantly worse, b Finer graph constructed by connecting
each vertex with 48 neighbors: Paths in agreement and produces a lower
cost path (Color figure online)

Fig. 12 Comparison of exact optimal cost paths (blue) with the paths
generated by integrating the geodesic equations obtained from the
approximate Riemannian metric model (red). In this instance the Rie-
mannian metric model fails to generate a feasible path (Color figure
online)

ure 12 shows the optimal time path obtained from geodesic
integration for Vmax = 0.05m/s. The generated path is not
necessarily a time-optimal path since parts of it fall along
flow opposing directions. This occurs due to the symmetry
of the Riemannian metric, where the cost heading against the
flow is equal to the cost heading along the flow (see discus-
sion in Sect. 3.2). However, a method can be developed to
construct a piecewise geodesic path from the start to the goal
which ignores flow opposing directions. This is a direction
for future work.

6.1.2 Performance comparison with existing methods

Wecompared the proposedmethodwith (i) a level setmethod
for planning optimal time paths (Lolla et al. 2014), (ii) a
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Fig. 13 Comparison of time optimal paths obtained from the level
set method (red) with paths from the graph search method with 48-
neighbors (black). The costs for a path 1 and b path 2 are given in
Table 3, and are comparable (Color figure online)

graph search basedmethod for planning optimal energy paths
(Koay and Chitre 2013).

Level set method for optimal time paths: In this method
introduced by Lolla et al., a virtual front (a zero level set of a
distance function), that is initialiazed around the start point,
is advected by the flow as well as by a velocity component
perpendicular to the front, until it reaches the goal position.
The point on the front that reached the goal position is then
integrated backwards in time to find the optimal time path.
We implemented a first order integration to compute time
optimal path using the level-set method. To compute the path
costs, we use the minimum-time cost function in (9), on the
discretized level set path. As seen in Fig. 13 and Table 3, the
paths and the corresponding path costs obtained from the two
methods are almost identical.

It can be seen that the proposed method produces com-
parable results to those obtained from the level set method.
However, for a workspace containing n grid points, the com-
putational cost of the level set method is O(n3) (Lolla et al.
2014) while for graph search method with E connected
neighbors, the computational cost is only O(nE log(n)) in
theworst case. Furthermore, the level setmethod periodically
performs a re-initialization step, which has a computational
cost of O(n3). In addition to lower computational cost, a
further advantage of our method is the ability to incorporate
different cost functions, whereas the level set method can
only generate time optimal paths.

Comparison with a graph search method for optimal
energy paths: We compared the optimal energy paths gen-
erated from our method with another graph search based
method presented by Koay et al. (2013) (henceforth referred
to as the Koay method). Even though the approach is sim-
ilar, the cost function proposed in the Koay method is
approximate. In their method, the authors minimize vstill
for each path segment in the graph and use this minimized
value to compute the energy cost for that path segment.
In effect, the cost of each path segment is computed to be

Table 3 Comparison of path costs against the level set method for
time optimal paths. The path costs obtained from the two methods are
comparable

Level Set Graph(48-con.) Graph(16-con.)

Path 1 30.39 30.53 31.07

Path 2 22.47 22.76 23.07

Fig. 14 Comparison of optimal energy paths generated using the pro-
posed method and the Koay method. Path costs: our method (red path):
1802 (2097) J, Koay method (blue path): 1864 (1942) J. The values out-
side parenthesis are the energy values computed using the exact energy
cost (11), while in parenthesis are the path costs calculated using the
approximate cost metric used in the Koay method (Color figure online)

∫
κ‖min(vstill)‖2dt whereas the actual energy cost should

bemin
∫

κ‖vstill‖2dt . Figure 14 shows the “optimal" energy
paths computed using the two methods near the Santa Cruz
island. The cost of the path generated from the Koaymethod,
when evaluated using the cost function given in (11), is 3%
higher than the actual optimal path, and it lies on the opposite
side of the island. Furthermore, the cost of the actual optimal
energy path (generated using the proposed method), is 16%
higher when evaluated using the cost metric used in the Koay
method.

6.2 Optimal paths in time-varying flow fields

In this sectionwe present simulation results for computing
optimal paths in time varying flows using the MTS method
described in Sect. 4. Figure 15 shows the time evolution of
an optimal time path computed using the MTS method (in
red), along with the reference path Γ ∗(t) computed using
the optimal control formulation (in black). In this case, since
the objective is to minimize the traversal time, the path takes
a direct route towards the destination, while trying to align
with the flow wherever possible to get an additional ‘push’.
Figure 16 shows the time evolution of an optimal energy
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Fig. 15 Comparison of an optimal time path computed by the MTS
method (red trace) against the optimal time path computed using the
optimal control formulation (black trace). Paths take a more direct route

towards the goal. Refer Table 4 for performance parameters of the path.
a t =1.67 h. b t =4.17h. c t =6.67h. d t =9.44 h (Color figure online)

path computed using the MTS method (in red), along with
the corresponding reference path computed using the optimal
control formulation (in black). In this case, the objective is to
reduce the energy spent while traversing. As such, the path
tries to reduce the drag force experienced by the vehicle,
by aligning the vehicle’s motion along the flow as much as
possible. This results in loop structures (in space) as can be
seen in the figure. The costs and the mean errors of these
paths are given in Table 4.

Flow reversal is a common occurrence in marine environ-
ments. This is particularly true in channels between islands
and in estuarine environments. Figure 17 shows an exam-
ple of the MTS method being used to plan optimal energy
paths in such a flow reversing environment. It can be seen
that the flow between the two islands (Santa Rosa island and
Santa Cruz island) is initially opposing the vehicle’s intended
travel direction. Thus the vehicle slows down and waits until
it encounters amore favorable current toward the destination.
This waiting can be clearly seen in the 3D time extended plot
in Fig. 17f.

In Sect. 4.2, two extensions of the path planning prob-
lem in time-varying flows, the constrained time problem
and the bounded velocity problem, were introduced. The
solution methods proposed in that section were used to
compute optimal energy paths between the same start and
goal locations as before, i.e., from xs = [20, 50] km to
xg = [50, 40] km. For the constrained time problem, a time
window TG = [43.61, 46.94]h was considered, and the
resulting optimal path is shown in Fig. 18. The computed path
had a start time of 8.89h and the time at goal was 46.94h.
Furthermore, it can be seen that this path better utilizes the
flow to get a path cost of 1816J, which is much less than the
cost of the path starting at ts = 0 h. For the bounded velocity
problem, the maximum allowable speed Vnetmax was set to
0.4m/s and the modified MTS method was used to compute
an optimal energy path. The computed path had cost of 3914J
which is higher than the cost of the optimal energy path with
no velocity bounds (seeTable 4). This is expected because the
velocity bound prevents the vehicle from approaching areas
with faster currents, which are are more conducive to energy
efficient navigation. Furthermore the maximum net velocity
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Fig. 16 Comparison of an optimal energy path computed by the MTS
(red trace) method against the optimal energy path computed using the
optimal control formulation (black trace). Paths try to follow the flow

at all times in order to reduce energy consumption. Refer Table 4 for
performance parameters of the path. a t =5.28h. b t =20.28 h. c t =33.61
h. d t =49.17 h (Color figure online)

Table 4 Performance parameters for the optimal time paths shown in
Figs. 15 and 16

Cost mErr (m)
Graph Reference Min. Dist.

Opt. Time (15) 9.44 h 8.66 h 9.48 h 893

Opt. Energy (16) 3858 J 3795 J 16218 J 394

along the computed path was 0.36m/s which is within the
specified bound.

In the method described in Sect. 3 as well as in other
graph based methods used to compute optimal paths in static
flows (Koay and Chitre 2013; Garau et al. 2005), in which
only the spatial coordinates are discretized, the accuracy of
the computed paths increases as the resolution of the dis-
cretization is increased. However, it was observed that this is
not generally true for time-varying flows. Table 5 shows the
variation of the accuracy values for an optimal energy path
computed using the MTS method, as the resolution used to

discretize the 3D space is varied. The start and goal loca-
tions for these paths are the same as the ones considered in
Fig. 16. Each path in the table refers to a result from the
MTS method for different discretization levels and different
number of neighbors in the neighbor set. Going from Path1
to Path2 and from Path3 to Path5, where Δt is held constant,
the accuracy is increased (mE is reduced) as Δx is reduced.
However, for Path4 and Path5, the accuracy decreases (mE
is almost doubled) as Δx is reduced (as the discretization
is made finer). Thus, the relationship between the accuracy
and the discretization resolution for time varying flows is not
as straight forward as it is for static flows. In Path5 - Path7,
both discretization resolutions are held constant while reduc-
ing NtHops . It can be seen that the error is the same for Paths
5 and 7, while the error increases in Path6 when NtHops = 5.
These observations indicate that the discretization resolution
needs be adapted according to the spatio-temporal scales of
the underlying flow at each expansion of the graph. This is a
research direction that is currently being investigated.
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Fig. 17 Path planning in a flow reversal scenario. Initially, the flow is opposing the intended travel direction (a)–(c). The vehicle waits for until the
flow is more favorable to proceed (d, e). The waiting can be seen clearly in the time extended plot (f)

6.3 Planning inmultiple homotopy classes

Adescribed in Sect. 5, the proposed path planning framework
can be used to plan optimal trajectories in different homo-
topy classes. This approach can be used for simultaneous
navigation in regions riddled with obstacles, e.g., the Philip-
pine archipelago. Furthermore, as mentioned in Sect. 5, this
approach is particularly attractive for energy efficient explo-
ration/sampling of ocean phenomena around a set of islands
using a teamofASVs. This approach generates optimal paths
along each coastal segment off an island. Figure 19a shows
optimal energy paths generated around the Santa Cruz island
and Fig. 19b shows optimal energy paths generated around
the Anacapa island, both off the coast of California. In both
cases, the blue path shows the globally cost optimal path
between the start and goal locations, and the red path shows
a cost optimal path that is in a different homotopy class (i.e.,
on the opposite side of the island). For this simulation, the
flow was assumed to be static (a single time slice of the
available flow data was used in the computations), and the
environment was discretized with a resolution of 125m.

7 Experimental verification

We further validate the paths computed by our proposed
graph search method through experiments. The experiments
were conducted using the multirobot Coherent Structure

Testbed (mCoSTe) which consists of a micro Autonomous
Surface Vehicle (mASV) and the 3 × 3 × 1 m3 Multi Robot
flow tank (MR tank). The mASV is a differential drive vehi-
cle with amaximum forward speed of approximately 0.2m/s.
Localization for the vehicle is provided by an externalmotion
capture system.Multi-gyre flowswere created in theMR tank
using four flow driving cylinders rotating at approximately
100 rpm. Figure 20 shows the components of the experimen-
tal setup.

The flow field generated in the tank using the flow driving
cylinders, closely resembles the flow given by the double-
gyre model given in (16). In fact, the parameters of the
model were selected such that average flow speed of the
model matches the average flow speed observed in the tank
(0.25m/s). The average flow speed in the tank was computed
by logging the uncontrolled mASV speed in the flow and
averaging those values. According to the model, the selected
parameters result in a maximum flow speed of 0.063m/s.
Note while there are subtle disturbances to the flow, it is
assumed that the flow generated in the tank is a static flow.
As such we used the methodology in Sect. 3 to compute
optimal paths between the start location [0.6, 0.6]T and goal
location [2.3, 1.3]T . The paths were computed on a graph
discretized at with a resolution of 0.01m. For the experi-
ments, we considered three paths between the start and goal
locations: the time-optimal path, the energy-optimal path and
theminimum-distance path. Theminimum-distance pathwas
considered in order to provide a baseline to compare the
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Fig. 18 Optimal energy path computed between xs = [20, 50] km and xg = [50, 40] km with a constrained time window TG = [43.6146.94] h at
the goal. The time at goal is 46.94h and the start time from the start location is 8.89h. a t =15.56 h. b t =21.11 h. c t =33.06 h. d t =46.94 h

Table 5 The variation of the path accuracy with discretization resolu-
tion for the MTS method, for an optimal energy path computed from
xs = [20, 50]km, to xg = [50, 40]km

Path1 Path2 Path3 Path4 Path5 Path6 Path7

Δt (s) 1000 1000 500 500 500 500 500

Δx (m) 200 150 200 100 150 150 150

NtHops 3 3 6 6 6 5 3

NsHops 3 3 3 3 3 3 3

mE 801 660 410 747 394 521 394

results of the time-optimal and energy-optimal paths. Dur-
ing the experiments, the paths computed by the graph based
planner was used as a reference paths for the ASV to follow.
The path following was achieved using a waypoint naviga-
tion scheme. Seven runs were carried out for each case and
results were recorded. The energy expended by the mASV
was computed as,

E =
∫ (

V 2
Lmotor + V 2

Rmotor

)
dt

≈ V 2
in

2552
Δt

∑

i

(
L2
cmdi + R2

cmdi

)

where VLmotor and VRmotor are the voltages applied to the
left and right motors respectively, Vin is the battery voltage,
Lcmdi and Rcmdi are the PWM signal commands sent out
to the mASV during the i th command cycle, and Δt is the
duration of each command cycle.

Table 6 shows the average time taken and the average
energy expended by the mASV to complete each path. As
expected, the mASV completes the time-optimal path the
quickest and expends the least amount of energy while com-
pleting the energy-optimal path. On average the time-optimal
path is 19% faster than the minimum-distance path and
the energy-optimal path expends 51% less energy than the
minimum-distance path. Figure 21 shows the paths taken
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Fig. 19 a Optimal Energy paths around Santa Cruz island. Path costs,
blue: 1607 J, red: 2871 J. b Optimal Energy paths around Anacapa
island. Path costs, blue: 396 J, red: 1390 J. In both cases, the blue path
is the globally optimal pathwhile the red path is optimal on the opposing
side of the island. The blue cross gives the start location and the red cross
gives the goal location (Color figure online)

Fig. 20 Experimental setup, right: four flow driving cylinders creat-
ing a double gyre like flow in the MR tank, left: mASVs used for the
experiments

Table 6 Path costs for the three paths averaged over seven trials. The
standard deviations of the computed values are shown within brackets

Time optimal Energy optimal Min distance

Time (s) 44.8 (1.92) 92.7 (4.64) 55.4 (8.31)

Energy (J) 250.3 (33.2) 222.3 (12.7) 449.3 (42.1)

Fig. 21 Paths taken by the mASV in the MR tank (in red) and the paths
planned by the graph search algorithm (in blue). a time-optimal path.
b Energy-optimal path (Color figure online)

by the mASV against the path planned by the graph search
method and Fig. 22 shows the path taken by the mASV over-
laid on an image of the tank.

8 Conclusions and discussion

In thisworkwe presented graph search basedmethods to plan
optimal time and optimal energy trajectories in both static

Fig. 22 Path taken by the ASV in the tank while following the optimal
energy path. The dotted white line is the reference path, the solid white
line shows the path taken by the ASV and the solid triangle represents
the ASV. The flow in the tank is assumed to be static. a t =20s. b t =40s.
c t =60s. d t =80s (Color figure online)

and time varying flow fields. We used tools from topologi-
cal path planning to extend these graphs in order to compute
optimal paths in different homotopy classes of the environ-
ment.Wewere able to verify the correctness of the computed
paths in simulations, by comparing them with paths com-
puted using an optimal control framework. Furthermore, we
compared our results of our method with other methods in
literature. The level-set method, although being computa-
tionally expensive and being able to compute time-optimal
paths only, gave comparable time-optimal path costs; and the
Koay method for energy optimal paths gave more expensive
paths than ours. We also verified the efficacy of the planned
paths through experiments conducted in an indoor laboratory
testbed,where, despite havingpartial/noisyflow information,
our method was successful in planning optimal trajectories.

We also presented a Riemannian approximations to the
cost functions used for the graph search method in static
flows. We showed how these Riemannian metrics could be
used with the geodesic equation to generate approximations
to time and energy optimal paths. Even though some draw-
backs were observed in this method, we believe that this
approach to path planning in a flow not only provides better
insights into the problem but also opens up new possibilities
for path planning in a flow field, and as a results warrants
further investigation.

When planning optimal paths in time varying flows, it was
found that the accuracy of the computed paths were depen-
dent on the discretization used for the configuration space in
a disproportionate manner. In contrast to searches in spatial
corrdinates alone (such as the ones used in static flow sce-
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narios), increasing the discretization resolution sometimes
resulted in reduced accuracy. To obtain the best accuracy, the
discretization has to match the spatio-temporal scales of the
underlying flow field. Finding this “sweet spot” remains a
challenge and is a direction for future work.

Similar to existing work on path planning in flows in lit-
erature, the presented method assumes that accurate flow
velocity forecasts are available for the computation of opti-
mal paths. However, the ocean current forecasts provided by
the CORDC databases, the regional ocean model systems
(ROMS), and/or other numerical models are often uncertain
(Huynh et al. 2015). Thus, in order for these graph search
methods to be used with such uncertain forecasts, the effect
of noise on the computed optimal paths need to be investi-
gated.
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