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Abstract
The advantage of modular self-reconfigurable robot systems is their flexibility, but this advantage can only be realized if
appropriate configurations (shapes) and behaviors (controlling programs) can be selected for a given task. In this paper,
we present an integrated system for addressing high-level tasks with modular robots, and demonstrate that it is capable
of accomplishing challenging, multi-part tasks in hardware experiments. The system consists of four tightly integrated
components: (1) a high-level mission planner, (2) a large design library spanning a wide set of functionality, (3) a design
and simulation tool for populating the library with new configurations and behaviors, and (4) modular robot hardware.
This paper builds on earlier work by Jing et al. (in: Robotics: science and systems, 2016), extending the original system to
include environmentally adaptive parametric behaviors, which integrate motion planners and feedback controllers with the
system.

Keywords Modular robots · Formal methods · Controller synthesis · Reactive mission planning

1 Introduction

Modular self-reconfigurable robots (MSRR) are systems
composed of repeated robot elements (called modules) that
have the ability to connect together to form larger robotic
structures. These systems distinguish themselves from tradi-
tional robot systems through their ability to self-reconfigure:
changing the connective structure of the modules to assume
different shapes that have different capabilities. Over the last
3 decades,many kinds ofmodular reconfigurable robots have
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been built (Østergaard et al. 2006; Kurokawa et al. 2008;
Fukuda and Kawauchi 1990; Lipson and Pollack 2000), and
many different approaches have been introduced for control-
ling and programming them (Salemi et al. 2001; Stoy et al.
2002; Zhang et al. 2003).

Robotics research is increasingly focused on deploying
robots in real-world applications such as search and rescue.
Operating in these scenarios entails handling an enormous
amount of variability in task requirements and environment
conditions. One approach to this problem is to build complex
monolithic systems, such as large humanoids (Kuindersma
et al. 2016). These systems can perform a wide range of
actions, but are extremely complex. In a sense, their broad
range of capability comes at the cost of having to solve each
individual problem in a complicated way. For example, to
pick up and move an object, a humanoid must balance on
two legs while using a high degree of freedom (DOF) arm to
manipulate the object. In contrast, a robot that was purpose-
built for that task could accomplish it with far fewer DOF,
and would require less complicated control algorithms.

The strength of MSRR systems lies in their flexibil-
ity. In principal, self-reconfiguration will allow modular
robots to transform into designs specifically tailored to
the needs of each new task they encounter, allowing them
to elegantly address a wide variety of tasks by recon-
figuring into a wide variety of solutions (Fig. 1). How-
ever, this strategy poses an obvious challenge: given a
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Fig. 1 Six configurations from the design library

task, is it possible to select an appropriate configura-
tion (robot shape) and behavior (controlling program) to
address it? This is an important unsolved problem in
the field, and remains a significant barrier to the use of
modular robots to solve real-world problems (Yim et al.
2007a).

In this paper, we present a system capable of selecting
appropriate modular robot configurations and behaviors to
solve complex high-level tasks. Our system is library-driven:
rather than attempting to generate new designs from scratch,
users specify task requirements and a high-level controller
retrieves designs satisfying the requirements from a library of
existing designs. In addition to library management, the sys-
tem integrates tools for low-level design creation, high-level
mission planning, and physical modular robot hardware.

We leverage ideas from recent work on automatic con-
troller synthesis with correctness guarantees from high-level
task specification (Belta et al. 2007; Bhatia et al. 2010; Kloet-
zer and Belta 2008; Kress-Gazit et al. 2009; Raman et al.
2015; Wongpiromsarn et al. 2010). These methods have
proven effective for addressing high-level tasks with tradi-
tional robots, allowing users to specify task requirements at
a high level using formal languages and then automatically
synthesizing low-level robot controllers with performance
guarantees. Applying these methods in the context of modu-
lar robotics introduces an additional layer of complexity due
to the fact that the morphology of the robot is not fixed.

This paper builds upon our earlier work, presented in Jing
et al. (2016). Specifically, we expand our system by intro-
ducing environmentally-adaptive parametric behaviors (EAP
behaviors) that can leverage sophisticated motion planners
and feedback controllers to continuously respond to envi-
ronment conditions.

Through hardware experiments, we demonstrate that our
system is capable of addressing challenging multi-part tasks.
This paper presents the details of the system, discusses its
strengths and weaknesses, and provides a roadmap forward
to apply a similar system in a real-world setting. We hope
others will be able to adopt our framework and utilize it to
bring modular robots into real-world applications.

Fig. 2 System flowchart

1.1 System overview

Here, we provide a brief overview of the entire system. Fig-
ure 2 provides a visual companion to this section.

The system is built around a design library that spans a
wide range of useful functionality. Library entries are config-
urations and behaviors for the SMORES-EP modular robot,
which are designed in a physics-based simulator and design
tool calledVSPARCwhichwe created for this purpose.Users
build, program, and test modular robot designs through a
graphical user interface, and can save their designs to a web
server, allowing them to be shared with others. Any config-
uration or behavior created in the simulator can be directly
ported to the hardware modular robot system, SMORES-EP.

Our system allows users to solve high-level tasks with
modular robots. Tasks are specified in a mission planning
tool using Structured English (Finucane et al. 2010), a
high-level language. Users do not specify which configu-
rations and behaviors should be used to complete the task,
but rather describe the required functionality. For exam-
ple, the user might request that the robot perform a drive
action in a tunnel environment labeled with the property
max_height=3.

To develop a solution to the task, the high-level mission
planner fulfills each of the specified functionality by auto-
matically selecting robot configurations and behaviors from
the design library, generating a controller in the form of
a finite-state automaton. In the above example, the system
could select any configuration that is capable of executing
a drive behavior while maintaining a maximum height of
3 modules or less. In a sense, the high-level planner treats
the entire modular robot system as a single robot with a set
of capabilities defined by the library. The mission planner
can then execute the controller to complete the task, directly
commanding hardware SMORES-EP robots based on envi-
ronment information from sensors.

1.2 Contributions

This paper presents an integrated system capable of address-
ing high-level tasks with modular robots. The tasks it
addresses are reactive: they require decision-making about
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what action to perform based on the sensed environment;
complex: they include multiple sub-tasks with potentially
very different requirements; and high-level: the task spec-
ification encodes the desired outcomes, and the system
intelligently synthesizes a solution that results in those out-
comes using the available configurations and behaviors from
the library.

This system is one of the first to address these kinds of
tasks with modular self-reconfigurable robots, which intro-
duce an additional layer of complexity because they can
assume many configurations. This represents a significant
contribution to the field, because such systems will be neces-
sary for modular robots to operate in realistic task scenarios.
By providing this framework and demonstrating its success
in the lab, we hope to lay the foundation for future modular
robot systems to address tasks in the real world.

The system includes four tightly integrated components:
(1) A high-level mission planner, (2) A large design library
spanning a wide set of functionality, (3) A design and simu-
lation tool for populating the library with new configurations
andbehaviors, and (4)modular robot hardware. Several of the
subcomponents represent research contributions. Our novel
design tool (VSPARC) represents a novel contribution, as
does our library of 52 configurations and 97 behaviors. We
also introduce a minor theoretical contribution by checking
the feasibility of robot behaviors prior to controller synthesis.

This paper builds on earlier work by the authors, presented
in Jing et al. (2016). In Sect. 4.3.1, we present environ-
mentally adaptive parametric behaviors, which are a major
novel extension to the system presented in Jing et al. (2016).
These behaviors allow sophisticated closed-loop behaviors
to be developed, integrating motion planners and feedback
control.

2 Related work

Modular self-reconfigurable robots (MSRR) systems have
the potential for great advantage over traditional robot sys-
tems in scenarios where flexibility is required: for example,
search-and-rescue scenarios where the environment and task
requirements may not be well-known a priori. Much of the
existing research in MSRR systems has focused on estab-
lishing the fundamental capabilities that differentiate these
systems from traditional robots. Notably, MSRR systems
have demonstrated the ability to form a wide variety of phys-
ical morphologies capable of diverse modes of locomotion,
suitable to a range of different terrains (Yim 1994). The abil-
ity to autonomously reconfigure has been demonstrated (Yim
et al. 2007b), and a number of reconfiguration planning algo-
rithms have been developed (Sung et al. 2015).

Similarly, a great deal of work has been done to develop
behaviors for MSRR. Many efforts focus on distributed con-

trol strategies, taking advantage of the distributed nature of
MSRR hardware (Walter et al. 2002). Distributed strategies
include central pattern generators (Sproewitz et al. 2008)
and hormone-based control (Salemi et al. 2001). Genetic
algorithms have been used to automatically generate both
modular robot designs and behaviors (Hornby et al. 2003).

It is clear that MSRR systems have demonstrated the
ability to accomplish low-level tasks such as reconfigura-
tion, locomotion, and manipulation. However, to truly live
up to their promise of flexibility in real-world applications,
systems must be developed that leverage these low-level
capabilities to address complex, high-level, multi-part tasks.

While there is a robust body of research into addressing
high-level tasks with traditional robots, little work has been
done in this area with modular robots. High-level control of
modular robots poses a unique challenge, because solving
tasks involves selecting not only appropriate behaviors, but
also appropriate configurations. This makes it all the more
important to develop automated systems that can synthesize
task-appropriate modular robot configurations and behaviors
from high-level specifications.

Castro et al. (2011) introduce a high-level control frame-
work for the CKBot modular robot. This framework lays the
theoretical foundations for our high-level mission planner,
one of the four major components of our system. We expand
the framework into a larger system capable of addressing sig-
nificantlymore sophisticated tasks. In addition to themission
planner, we provide design and simulation tools for creat-
ing and testing modular robot configurations and behaviors,
and a large library (52 designs, 97 behaviors, 19 properties)
with designs capable of addressing a wide range of tasks. We
expand the theoretical formalism introduced by Castro to
include both behavior and environment properties, increas-
ing the expressiveness of task specification, and introduce
a performance improvement by grounding abstract action
specifications in concrete configurations and behaviors prior
to automata synthesis.

Tosun et al. (2015) introduce a system that allows users
to rapidly synthesize modular robot designs and behaviors
by composition. The system includes a physics-based simu-
lator and a hierarchically organized library of configurations
and associated behaviors. The goal of this work is to aid in
the selection of modular robot configurations and behaviors
appropriate to complex tasks, but it takes a very differ-
ent approach than our automated system, instead providing
tools for users to manually create new designs by combining
library entries using series and parallel composition opera-
tions.

Outside the realm of modular robotics, systems have been
developed that can synthesize rapidly manufacturable robot
designs from high-level user specifications (Mehta et al.
2014a, b; Schulz et al. 2015). This work is similar to ours
in the sense that high-level specifications from the user are
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interpreted to synthesize robot designs and behaviors from
elements in a design library. The goal of these systems is
to allow novice users to rapidly design and build function-
ing robots at low cost, using fabrication techniques such
as 3D printing (Mehta et al. 2014a, b) and origami folding
(Schulz et al. 2015). Consequently, the scope of the tasks they
address is very different from ours. In these systems, library
entries are electromechanical components such as motors,
motor drivers, and microcontrollers, and a high level task
might be “Create a robot that can walk and turn.” In contrast,
library entries in our system are whole robots with associated
behaviors, and we address complex, multi-part tasks such as
“Climb on top of the table, and move any debris you find into
the trash bin.”

3 Background

In this section, we define modular robot systems and provide
background on controller synthesis techniques.

3.1 Modular robot systems

Definition 1 (Module) A module is the fundamental unit of
a modular robot system. Each module is a small robot that
can receive and respond to commands, move, and connect
to other modules. In this work, we consider only homoge-
neous modular robot systems, meaning that all modules in
the system are identical.

We define a module as m = (J , A). J = {J1, . . . , Jd} is
the set of joints of the module with d degrees of freedom.
A = {A1, . . . , Ak} is the set of attachment points where the
module can connect to other similar modules. Each attach-
ment point can only connect to one other module at a time.
We denote the attachment point Ai of module m as m.Ai .

Definition 2 (Configuration) A configuration is a connected
set of modules that acts together as a single robot. The
smallest configuration is a single module. A configuration
is denoted as C = (M, E), where M = {m1, . . . ,mq} is
the set of connected modules that form the configuration and
E is the set of connections between modules, represented
as pairs of attachment points (mi .Aa1 ,m j .Aa2) ∈ E , where
mi ,m j ∈ M , and mi �= m j .

Definition 3 (Joint Command) Joint commands are used to
control the joints of the modules. A command to a joint Ji is
defined as uJi = (α, V , t), where α ∈ {Position, Velocity} is
the type of command, V ∈ R is the value of the command,
and t ∈ R is the time duration of the command. For example,
uJi = (Position, π

2 , 2) commands joint Ji to hold the angle
θ = π

2 rad for 2 s. Similarly, uJi = (Velocity, π, 3) will
drive joint Ji with angular velocity of θ̇ = π rad

sec for 3 s. We

assume there are low-level controllers (e.g. PID controllers)
that can drive the corresponding joint to satisfy the command
uJi .

Definition 4 (Behavior) For a configuration C , we define a
behavior BC = {b1, . . . , bn} as a sequence of behavior states.
Each behavior state is defined as bi = (U , T ), where U is
the set of joint commands for all joints of all modules in the
configuration. The time duration T of each behavior state is
equal to longest duration of its joint commands U , ensuring
that behavior execution will move on to the next state only
once all joint commands in the current behavior state have
completed.

3.2 Controller synthesis

In this work, we utilize existing work on controller synthesis
(Finucane et al. 2010; Kress-Gazit et al. 2009) to generate
high-level controllers for modular robot systems. The pro-
cess of controller synthesis consists of three main steps: (1)
representing the robot and the environment using a discrete
abstraction, (2) expressing desired robot tasks with a formal
specification language, (3) searching for a control strategy
that satisfies the given task specification, or determining that
such a strategy does not exist.

Robot and environment abstraction To represent the con-
tinuous environment state and robot actions as discrete mod-
els, we abstract the environment events and robot capabilities
into sets of boolean variables. The value of each variable
represents the sensed environment state or the current robot
actions. For example, the environment variableCup is True
if and only if the robot is currently sensing a cupwith its cam-
era. Similarly, the robot variable Push is True if and only if
the robot currently performing a pushing action.

Robot task specification A wide range of robot tasks can
be defined using a formal language called Linear Temporal
Logic (LTL). In Finucane et al. (2010), authors introduce
a tool called LTLMoP that allows users who are unfamil-
iar with LTL to specify robot tasks in a formal language
calledStructuredEnglish,which is closer to natural language.
LTLMoP then automatically translates Structured English
specifications into LTL formulas. The following is an exam-
ple of a robot task specification written in the Structured
English:

– visit Classroom
– if the robot senses Student then do Greet
– do Pickup if and only if the robot senses Trash

In these examples, Student and Trash are environment
variables, while Classroom,Greet, Pickup are robot action
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variables. To connect the high-level specification with physi-
cal robot systems, users provide mappings from robot action
variables to low-level robot controllers, and from environ-
ment variables to sensors.

Controller synthesis and execution Authors of Kress-Gazit
et al. (2009) introduce a framework to automatically generate
a high-level robot controller to satisfy a task specification, or
decide such controller does not exist. The synthesized con-
troller is a finite-state automaton, and specifies robot actions
that satisfy the task. Each state in the controller is labeled
with robot variables, and each transition is labeled with envi-
ronment variables.

To accomplish a tasks, the synthesized controller is imple-
mented continuously by mapping each robot variable to a
low-level robot controller, and mapping each environment
variable to a robot sensing function.With thesemappings, the
robot is able to detect the environment and perform desired
actions to satisfy the task specification.

4 System

4.1 Modular robot hardware: SMORES-EP robot

Our system is built around the SMORES-EP modular robot,
but could be extended to other modular robot hardware
systems. In this section we provide an overview of the capa-
bilities of SMORES-EP.

Each SMORES-EP module (Fig. 3) is the size of an 80
mm cube. Four faces of the cube have magnetic connec-
tors known as EP-Faces that allow them to connect to other
modules. The EP-Face connector is an array of four electro-
permanent magnets (EP magnets) embedded in a planar
face, and provides fast, strong, energy-efficient connection
betweenmodules. Each EPmagnet consist of an electromag-
net coil wrapped around a core of two permanent magnet
rods. Short pulses of current through the coil generate a

Fig. 3 SMORES-EP module

magnetic field that re-polarizes one of the magnets in the
core, allowing the external force to be turned on (magneti-
cally attractive) or off (neutral). Once polarized, the magnets
will maintain either state indefinitely, so a pair of connected
EP-Face sustains a connection strength of 88.4 N without
consuming any power. Each face requires 80 ms and 2.5 J
of energy to switch states. The magnets are arrayed in a ring
with south poles counterclockwise of north, making the con-
nector hermaphroditic (any two faces can connect) and able
to connect at 90◦ increments (Tosun et al. 2016).

Themodules are kinematically identical to their predeces-
sor, the SMORES robot (Davey et al. 2012), and have four
actuated joints. The left and right faces of themodule are able
to rotate continuously at a maximum rate of 90◦/s and can
be used as wheels, allowing individual modules to move by
differential drive. These faces have thin rubber tires to enable
driving on a variety of surfaces. The circular top face is also
able to rotate continuously at a maximum rate of 30◦/s, and is
referred to as the pan joint. A central bending joint (referred
to as the tilt joint) has a 180◦ range of motion, allowing the
top face to bend forward or backward until it is perpendicular
to the bottom face. Each of the joints is equipped with a cus-
tom potentiometer for position sensing (Tosun et al. 2017),
and modules perform feedback control for all joints at a rate
of 20 Hz.

The motions that a SMORES-EP cluster can perform are
limited by the strength of themotors and connectors.Apair of
connected EP-Faces can sustain a maximum bending load of
1.8 Nm, equivalent to supporting 3.1 modules in cantilevered
horizontally against gravity (Tosun et al. 2016). If necessary,
this limitation can be alleviated by installing connector plates
that screw into the faces of two modules to rigidly connect
them. In this case, four modules can be supported in can-
tilever before the motor torque limits are exceeded. When
two modules are attached using connector plates, they lose
the ability to disconnect and self-reconfigure.

The SMORES-EP system also includes passive cubes that
can act as lightweight structural elements in SMORES-EP
robot configurations. These plastic cubes have the same 80
mm form factor as modules, and have an array of 8 perma-
nent magnets on each face, allowing them to make a strong
connection to modules.

Each module has its own 600 mAh LiPo battery, micro-
controller (STM32F303), and 802.11b WiFi module (TI
CC3000), allowing it to move and operate independently
or as part of a cluster. Battery life is typically about 1 h,
assuming typical usage of the motors and and wireless com-
munication. The EP-magnets require very little energy, and
usage does not significantly affect battery life.

In this work, a cluster of modules is controlled by a cen-
tral computer running a Python program that sends wireless
messages (UDP packets) to control the movement and mag-
nets of each module. Wireless networking is provided by a
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standard off-the-shelf router, with a range of about 100 feet.
Because individual SMORES-EP modules do not have any
way of sensing their environment, localization is provided
by AprilTag markers (Olson 2011) mounted to modules and
objects of interest, tracked by an overhead camera. TheApril-
Tag tracker, high-level planner, and module control software
run with a control loop time of about 4 Hz on a laptop a 2.4
GHz processor and 4 GB of RAM.

4.2 Design and simulation tool: VSPARC

VSPARC, which stands for Verification, Simulation,
Programming And Robot Construction, is our interactive
design tool that allows users to design configurations and
behaviors for SMORES-EP robots, and simulate them with
a real-time physics engine. As shown in Fig. 4, the graphi-
cal user interface, powered by the Unity3D Engine (2015),
allows users with little background in robotics to design and
test different robot configurations and behaviors. The ability
to control each joint of eachmodule grants more experienced
users the possibility to create complex designs.

VSPARC provides realistic physical modelling of
SMORES-EP, taking into consideration factors such as the
connector and actuator force limits. This allows users to test
and verify behaviors before running themwith physicalmod-
ules and receive early warning if, for example, their behavior
would likely cause the connection between two modules to
break.

VSPARC is available for free online at www.vsparc.org,
and enables users to save and share their designs to a central
server, allowing a large number of users to contribute to our
design library. VSPARC’s main features are listed below:

– Design configurationswith unlimited number ofmodules
and visualize the design in a 3D environment.

– Command positions or velocities for each joint of all
modules.

– Design behaviors for any configuration by creating a
sequence of joint commands.

Fig. 4 VSPARC user interface

Fig. 5 The same behavior file can be used by both the simulator and
the physical robot

– Simulate the performance of any behavior in a physics
engine.

– Create and share designs online. Test and improve other
users’ designs.

As shown in Fig. 5, behaviors designed in VSPARC can be
exported as XML files and then run on SMORES-EP mod-
ules, providing seamless translation of behaviors from the
simulator to physical robots.

4.3 Design library

In this section, we introduce a library-driven framework to
organize configurations and behaviors created in VSPARC.
We introduce the notion of properties, which specify the
functionality and constraints of behaviors, and the robot
design library, which can be searched to find configurations
and behaviors with desired properties.

Definition 5 (Property) Properties provide high-level
descriptions of the intended effects of a behavior, as well
as the environment in which the behavior is appropriate.
We define a property as p = (pn,Ω), where pn is the
name of the property (i.e. a description title, in English)
and Ω is the set of values of the property. For example, a
behavior with the property p = (Action, {Move, Push}) can
perform both Move and Push actions. Properties are also
used to describe the environmental conditions required for
the behavior to run as expected. For example, the property
p = (ObjectWeight, [2, 5]) indicates that the behavior can
appropriately interact with an object if its weight is between
2 and 5 module-weights. In this case, the property is a quan-
titative description of the environment. We say a property
p1 = (pn1,Ω1) satisfies a property p2 = (pn2 ,Ω2) if and
only if pn1 = pn2 and Ω1 ⊆ Ω2.

Properties connect tasks with behaviors that are appropri-
ate to address them. In Sect. 4.4.1, we discuss how correct
behaviors for a task can be automatically selected based on
requirements over property values. Table 1 lists some exam-
ples of environment and behavior properties that might be
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Table 1 Examples of property names

Properties for robot behavior Properties for environment

Speed Box_Mass

Width Stair_Height

Height Ground_Roughness

Action Tunnel_Height

used for common robot tasks. In the library, the unit for
length is the side length of a single SMORES-EP module,
and the unit for mass is the mass of a single SMORES-EP
module.

Definition 6 (Robot Design Library) The design library is
a collection of modular robot configurations and behaviors
labeled with environment and robot behavior properties. The
libraryL consists of a set of library entries,L = {l1, l2, . . . }.
Each library entry is defined as l = (C, BC , Pe, Pr ), whereC
is the configuration and BC is a behavior associated with C .
Pe and Pr are sets of properties that describe the environment
conditions and robot behavior functionality, respectively.

As an example, the library entry:

l = (C = snake, BC = climb, Pe, Pr )

where : Pe = {(Ledge_Height, [2, 3])}
and : Pr = {(Action, [Climb]), (Speed, [1])}

represents a snake shape configuration with a climb
behavior that can climb a ledge with a height of two to three
module-lengths, with the speed of 1 module-length per sec-
ond. Moreover, we say a library entry l satisfies a property p
if there exist a property p′ ∈ Pe ∪ Pr such that p′ satisfies p.

To populate the library with different configurations and
behaviors designs, we made our design tool available online
at www.vsparc.org and distributed the tool to undergraduate
and graduate student volunteers, hosting three hackathons in
which participants created designs for various robot tasks.
Currently, the library includes 52 configurations and 97
behaviors contributed by 20 volunteers. Since the full library
is too large to list in this paper, we provide a representa-
tive sampling of configurations, behaviors, and properties in
Table 2.

4.3.1 Environmentally adaptive parametric behaviors

In this section, we introduce an extension to the formalism
we presented in Jing et al. (2016). As explained in Sect. 3,
standard behaviors are defined as a series of joint angles or
joint velocities for the modular robot cluster. These discrete,
open-loop actions canbe sequencedby the high-levelmission

planner to complete tasks. Here, we present environmentally-
adaptive parametric behaviors (EAP behaviors) which pro-
vide additional functionality, allowing low-level behaviors to
directly respond to sensed conditions in sophisticated ways.
These behaviors are parametric because they take input
arguments, called parameters, which allow them to produce
a continuous range of motions. They are environmentally
adaptive because their parameters are intelligently assigned
as a function of the state of the robot and environment.

Definition 7 (Environmentally Adaptive Parametric Behav-
ior) We define an Environmentally-Adaptive Parametric
Behavior as BEAP

C = ({b1, b2, . . . , bn},p, f ), where
{b1, b2, . . . , bn} is a sequence of behavior states, p ∈ R

m

is a vector of parameters, and f : Rk → R
m is the controller

function, where R
k is the space representing information

about the robot and environment.

Like standard behaviors, EAP behaviors consist of a
sequence of behavior states {b1, b2, . . . , bn}. However, some
of the joint commands of these states are parametric: instead
of encoding fixed joint angles or velocities, they introduce
a variable (called a parameter of the behavior) that can be
assigned their value whenever the behavior is called. Addi-
tionally, we associate with each EAP behavior a controller
function f : Rk → R

m , which takes as input information
about the robot and environment and produces as output
the parameters of the behavior. This function is a feedback
controller which lets the behavior adapt to environment con-
ditions.

EAP behaviors expand the capabilities of our system. For
example, consider a single SMORES-EP module, which can
drive on smooth terrain using its twowheels.UsingVSPARC,
we can create a parametric Drive behavior that commands
it to turn its wheels, assigning the wheel velocities to two
parameters, e.g. p = {

Vleft, Vright
}
. Using Python, we can

now write a controller function for path following, taking
as input the current location of the module and producing
as output appropriate parameter values (wheel velocities) to
drive the module along the path. In Sect. 5.2, we demonstrate
how a similar Drive behavior and a path planner are used
to direct a module to explore different regions on a table-
top.

As another example, consider theBackhoe configuration
in Table 2. Using VSPARC, we can create a behavior that
assigns parameters to the angles of all pan and tilt joints of
the arm, providing access to the 7-DOF forward kinematics
of the robot. For the controller function, we can write code
that takes the position of an object as input and solves an
inverse kinematics problem, providing output joint angles
that cause the arm to touch an object.

As the above examples imply, EAP behaviors have a two-
step design process. First, a parametric behavior is created
using VSPARC, which we have extended to allow users to

123

www.vsparc.org


1344 Autonomous Robots (2018) 42:1337–1354

Table 2 Matrix of designs and properties

Length and mass units are module-lengths and module-masses
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assign any joint value to a parameter rather than a fixed
value. This process is no more difficult than creating a non-
parametric behavior. Next, a controller function is written, to
provide the mapping from sensor data to parameter values.
Controller functions can be quite sophisticated (examples
include motion planners and feedback controllers) and are
typically written in Python by an expert user. However, if
existing controller functions are available, novice users can
re-use them to produce new EAP behaviors. For example,
the path-following controller developed for a single module
could be re-used by a novice user to create a similar behavior
for the DoubleDriver configuration (Table 2), which is
also capable of differential drive.

4.4 Reactive controller synthesis and execution with
the library

In this section, we describe how our high-level mission
planner synthesizes and executes controllers capable of
accomplishing tasks using configurations and behaviors from
the design library. This process has three parts: (1) match-
ing library entries with boolean variables, (2) generating
additional LTL constraints imposed bymapping, and (3) exe-
cuting the controller. This framework is illustrated in Fig. 6,
and described in the following subsections.

4.4.1 Matching library entries with boolean variables

As discussed in Sect. 3.2, users specify tasks using robot
and environment variables that abstract robot actions and
environmental conditions, as well as the mapping from these
variables to low-level robot controllers. Unlike conventional
robots, modular robot systems can have multiple config-
urations and behaviors with similar capabilities. Rather
than providing a mapping to specific behaviors, users label
each variable in the task specification with sets of behav-
ior and environment properties from the design library, to
encode the desired functionality and constraints. Our system
searches the design library for a set of library entries that

Fig. 6 Controller synthesis and execution

satisfy the properties, and maps them to the corresponding
boolean variable. Consider an example robot task specifica-
tion:
if the robot senses Cup then do Push.

The robot variable Push might be described with:

P = { {(Cup_Mass, [1, 3])},
{(Action, [Drive]), (Speed, [1])} }

indicating that robot needs to be able to drive with speed
of 1 with a cup that weights 1–3 module-weights. With this
specification, we can search through the robot design library
to find a set of library entries Ly = {l1, . . . , lk} that satisfies
all properties in the set P .

4.4.2 Generating additional LTL formulas imposed by
matching

During the matching process, additional necessary LTL con-
straints are automatically created among the robot variables.
Consider a set of robot boolean variables Y used in a task
specification. We define a mapping relation λ : Y → 2L that
maps each variable y ∈ Y to a set of library entries Ly that
satisfies the user specified set of properties P for y. We say
a library entry l can implement a variable y if l ∈ λ(y). For
any y ∈ Y , if λ(y) = ∅, we need to make sure variable y is
never True, because no library entry can implement y. For
example, users specify the robot action variable ClimbHigh
to be P = { {(Height, [1, 6])}{(Action, [Climb])} }, and no
matching behavior is found from the design library to imple-
ment the variable. The system will generate addition LTL
constraint to guarantee ClimbHigh be False at all times.
Since there maybe multiple robot controllers that satisfy the
given task specifications, the additional LTL constraint will
force the robot to satisfy the task without ever perform the
action ClimbHigh, if possible. If not, the additional LTL
constraint will result in a failure to find a satisfying robot
controller, in which case users need to modify the specifi-
cation or design new robot behaviors. For any y, y′ ∈ Y , if
λ(y) ∩ λ(y′) = ∅, we need to make sure variable y and y′
can never be True at the same time, because there does not
exist a library entry that can implement both y and y′. For
example, additional constraints may be required to guaran-
tee variables ClimbHigh and Stop are never True at the
same time. To encode the mutual exclusion between robot
variables into the task specification, we specify them in the
form of LTL formulas that are used together with the orig-
inal task specification to generate robot controllers during
synthesis.
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rollingLoop.backward rollingLoop.forward rollingLoop.forward

backhoe.pressButton doubleDriver.turnAndDrive stairClimber.climb

Fig. 7 Simulated demo

4.4.3 Controller execution

The synthesized finite-state automaton can be used to control
simulated or the physical robots. If synthesis fails, possibly
due to lack of library entries that implement some robot vari-
ables, LTLMoP will notify the user, who can then design
suitable configurations and behaviors with VSPARC.

A synthesized controller is executed by running behav-
iors based on the value of each robot action variable. If a
variable maps to a non-parametric behavior, the behavior is
simply executed when the variable becomes True. A behav-
ior is stopped when the corresponding variable becomes
False.

To execute an environmentally-adaptive parametric
behavior, the values of all parametric joint commands are
decided during execution by calling the controller function
each time the behavior is executed. For example, if the robot
variable Explorematches with the EAP Drive behavior of
the Single Module configuration, the behavior will be
executed whenever Explore is True. A path planner func-
tion computes values of parameters in Drive in order to
control the robot as a two-wheel differential-drive car.

If two consecutive behaviors must be satisfied by two dif-
ferent configurations, reconfiguration is required. To reduce
overall mission time, when multiple behaviors match with

a robot boolean variable, we avoid unnecessary reconfig-
uration by biasing towards the behavior that requires no
reconfiguration.

5 Experimental results

We validate the capabilities of our system through exper-
iments in simulation and hardware, illustrated in Figs. 7,
8 and 9, as well as the attached video.1 Faced with vari-
ous task requirements, the system responds by synthesizing
appropriate solutions. The simulation experiments demon-
strate how the high-level mission planner can automatically
synthesize and execute solutions to tasks using configurations
and behaviors from the library. The hardware experiments
validate that the system is capable of accomplishing com-
plex physical tasks, such as carrying objects and climbing
ledges.

5.1 Simulated task scenarios

We present two simulated task scenarios. A straightfor-
ward task is matched with a simple solution that uses

1 Video is also available online: https://youtu.be/0rtXv4Z1E-o.
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swerveLifter.goUnder swerveLifter.carry swerveLifter.dropOff swerveLifter.driveUp

Fig. 8 Moving the waste bin

snake7.climb module.spin module.push snake7.descend

Fig. 9 Cleaning the table

one configuration, while a more complex task is addressed
by reconfiguring between three different configurations, to
leverage their wide-ranging capabilities.

5.1.1 Scenario 1

In Scenario 1, our system must solve a multi-part task in the
environment shown at the top of Fig. 10. The environment
includes a button, a lightweight block, a gap in the ground,
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Fig. 10 Environments for Scenarios 1 (top) and 2 (bottom) in the sim-
ulator

Table 3 High-level action definitions for Scenario 1

Action definition Properties

pushButton Type = Manipulation_Push

Height = 1.5

pushBox Type = Manipulation_Push

Payload = 2

Distance_x = 3

climb Type = Locomotion

Drive = Straight

Terrain = Sloped

and a ramp, all in a straight line. Pressing the button causes
the block to drop to the ground, where it can be pushed into
the gap, forming a bridge between the flat region and ramp.
When the task begins, the robot is initially positioned in front
of the button. The objective is to reach a goal area at the top
of the ramp. The high-level action definitions for this task are
provided in Table 3.

After searching the library, the high-level mission planner
discovers that the rollingLoop configuration has behav-
iors that satisfy the requirements of all three actions needed
for this task (see Table 2). To complete the task, the mission
planner synthesizes a controller that commands the loop to
press the button, push the block into the gap, and ascend the
ramp, as shown in Fig. 10.

In response to this straightforward task, our system pro-
duces a simple solution. As discussed in Sect. 4.4.3, the
system attempts to minimize reconfiguration when complet-
ing a task, and so will opt to solve the entire task with a single
configuration whenever possible.

5.1.2 Scenario 2

Like Scenario 1, Scenario 2 requires the robot to move from
a starting position to a goal position. However, several small

Table 4 High-level action definitions for Scenario 2

Action definition Properties

pushButton Type = Manipulation_Push

Height = 4

pushBox Type = Manipulation_Push

Payload = 4

Distance_x = 3

climb Type = Locomotion

Drive = Straight

Ledge height = 0.75

changes have been made to the environment that makes the
task more difficult. The button has been moved to the side
of the map, and floats at a height of 4 module-lengths above
the ground. The box is twice as heavy, weighing 4 module-
weights rather than 2. The ramp has been replaced with stairs
with a step height of 0.75 module-lengths. Table 4 provides
the high-level action definitions for this scenario.

These changesmake it impossible for therollingLoop
to complete the task—it can’t reach the button, it’s not strong
enough to push the block, and it can’t ascend steps more than
0.25 module-lengths high. Instead, the high-level planner
compiles a more complicated controller that uses behaviors
from three different configurations in the library, shown in
Fig. 10. To push the button, the planner selects thebackhoe,
because it is the only configuration with a large enough ver-
tical workspace. To push the block into the gap, the robot
reconfigures into the doubleDriver, which is capable of
driving, turning, and pushing objects as heavy as 5 module-
weights. To climb the stairs, the robot reconfigures into the
stairClimber, which can easily ascend 0.75 module-
length steps.

This scenario demonstrates how our system leverages
the flexibility of modular robots. This challenging task
requires the diverse capabilities provided by all three con-
figurations, and could not be accomplished by any one of
them alone. Note that for the purposes of this work we
do not provide strategies to autonomously perform self-
reconfiguration. Instead, we assume that the robot can
self-reconfigure between any two configurations as long as
the initial configuration has an equal or greater number of
modules than the final configuration. This does not fun-
damentally limit the power of our system: techniques for
autonomous self-reconfiguration with SMORES-EP have
been recently developed, and could easily be incorporated
(Daudelin et al. 2017).

5.2 Hardware experiments

Our hardware experiments demonstrate that our system
can accomplish a complex physical task using physical
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Fig. 11 Map of the hardware demo

SMORES-EP robot modules. The robot is required to clean
the top of a table, operating in the environment shown in
Fig. 11. To do so, the robot must first move a waste bin from
its initial location (labelled “Pickup”) to a target location next
to the table (labelled “Dropoff”). Then, the robot must climb
to the top of the table and explore the surface. Whenever
it encounters an object, it must react appropriately: if it is
garbage, it should push it off the table and into the waste bin,
and if not, it should notify a human to remove it.

This experiment showcases the seamless translation of
behaviors from the VSPARC simulator to hardware, and the
ability to use the LTLMoP high-level planner to create mis-
sion plans that can be directly executed by the modules.
AprilTags tracked by an overhead camera provide infor-
mation about the position of modules and objects in the
environment, serving as sensory feedback for the high-level
planner.

This experiment also demonstrates how the design library
is continually expanded as users develop designs to address
new tasks. While the library encompasses a wide range of
functionality, it is by no means complete: when a high-level
specificationwasfirst created for this experiment, themission
planner reported that it could not be satisfied using existing
elements in the library. Consequently, two new configura-
tions (the swerveLifter and snake7 configurations)
were created, and low-level behaviors were iteratively devel-
oped to fulfill the needs of each component of the task. Once
these configurations and behaviors were made available in
the library, the high-level planner was able to successfully
synthesize and execute controllers to accomplish the tasks.

5.2.1 Moving the waste bin

The robot begins its task in region Start1, and must move
the waste bin from Pickup to Dropoff, a distance of 10
module lengths. Once the waste bin is in place beside the
table, the robotmust travel to the edge of the table (Start2),
where it can begin the next phase of the task (exploring the
tabletop).

The waste bin is a box supported by four legs, making it
impossible for any design less than two module-heights tall
to push it. This constraint rules out most car-like configura-
tions in the library. The 10-module distance over which the
bin must be transported imposes a workspace requirement
that rules out all stationary manipulators. Consequently, the
swerveLifter configurations was designed to meet all
the criteria. The swerveLifter uses four SMORES-EP
modules as powered caster wheels, allowing omnidirectional
movement (sometimes called swerve drive). It can also raise
and lower, enabling it to lift and carry objects by driving
underneath them.

The high-level description of this phase of the task is
shown in Specification 1, and Fig. 8 shows how the robot
completes it. The task is reactive: the robot waits until it
senses the waste bin before beginning the pickup action
(Line 3 of Specification 1). Once the waste bin appears (i.e.
the AprilTag marking it comes the camera view), the robot
lowers itself, drives beneath thewaste bin, and carries it to the
Dropoff region. It then moves back out from beneath the
waste bin, and executes a series of omnidirectional driving
behaviors to travel to the edge of the table.

Specification 1Moving the Wastebin

1. carry is set on pickup and reset on false
2. dropped is set on drop and reset on false
3. do pickup if and only if you were sensing wasteBin

and you are not activating carry
4. do goToTable if and only if you are activating dropped
5. do drop if and only if you were activating carry

and you are not activating dropped

5.2.2 Table exploration

With thewaste bin in place, the robot begins the second phase
of the task: cleaning the top of the table. The robot needs to
climb to the tabletop, explore, and react to what it finds.
The snake7 configuration was designed to be capable to
do this. As shown in Table 2, the snake7 configuration can
use its climbup and climbdown behaviors to ascend and
descend ledges up to 3 module-heights tall. However, it is
unable to lift its entire body up to the tabletop, and even if it
could, it would be too large to effectively explore. Instead, the
robot reconfigures, detaching the front module of the snake
to act as a module1 configuration that can use its EAP
behavior differentialDrive to explore the tabletop,
and its spin, and push behaviors to clean.

Specification 2 provides the high-level task description,
and Fig. 9 shows the robot completing the task. The robot
begins in the snake7 configuration, positioned at the edge
of the table in the ground region. An AprilTag is fixed to
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the front module of the snake, allowing the mission planner
to determine its location at all times. Sensing that it is in
the ground region, the snake7 executes climbup (line 8 of
Specification 2). After climbing, the mission planner senses
that the head of the snake has reached the dock region at the
edge of the tabletop, and executes the undock behavior to
detach the head module from the snake (line 6), allowing it
to operate on its own as a module1.

The module then uses differentialDrive to visit
two regions of interest on the tabletop (loc1 and loc2).
differentialDrive is an EAP behavior that allows
the robot to explore its environment in a continuous fash-
ion. The driving behavior and its parameters are the same as
the driving behavior presented as an example in Sect. 4.3.1:
two parameters specify the left and right wheel velocities.
The controller function is a potential field path planner that
maps the robot’s current position (sensed via AprilTag) to a
desired linear and angular velocity, which are converted to
wheel velocities.

When it reaches loc1, the robot senses a coffee mug
(markedwith anAprilTag), and responds by executing a spin
behavior to notify a nearby human that it should be removed
(line 1). When it reaches loc2, it senses a piece of trash, and
it correctly responds by performing a push to move it off
the table and into the waste bin. Having fully explored the
table, the module returns to the dock point and re-attaches
to the body of the snake (line 5). The snake then executes
climbdown to descend back to the floor, completing its
mission.

Specification 2 Cleaning the Tabletop

1. if you are sensing mug then do spin
2. if you are sensing trash then do push
3. loc1visited is set on loc1 and reset on false
4. loc2visited is set on loc2 and reset on false
5. do docking if and only if you were in dock and you

are activating (loc1visited and loc2visited)
6. do undock if and only if you were in dock and you

are not activating (loc1visited or loc2visited)
7. do climbdown if and only if you were in dock and

you activated (loc1visited and loc2visited)
8. do climbup if and only if you were in ground and

you are not activating (loc1visited or loc2visited)
9. infinitely often do docking

5.2.3 Challenges

In general, the hardware experiment was successful, with the
high-level planner successfully executing library behaviors
to complete this task. While running the experiment, several
notable challenges were encountered. During the first phase
(moving the waste bin), achieving accurate steering with the

swerveLifter proved difficult. The swerveLifter
steers by aligning four caster wheels in the same direction, a
process that is sensitive to encoder calibration errors across
modules. Recently, more sophisticated calibration proce-
dures for the SMORES-EP encoders have been developed,
and encoder performance has been improved (Tosun et al.
2017).

During the second phase of the experiment (exploring
the tabletop), careful initial positioning was required for the
open-loop climbUp behavior to succeed—in several trials,
the snake was started too close to the ledge, causing it to
collide with the corner of the table and break. This problem
could be alleviated by developing an EAP behavior allowing
the robot to autonomously drive to the appropriate distance
before beginning to climb.

In both phases of the experiment, limited magnetic con-
nector strength between modules presented a significant
challenge. The swerveLifter configuration had to be
constructed with a passive cube in its center in order to per-
form its raising and lowering behaviors without breaking.
During descent from the table, bending forces experienced
at the center of the snake7 configuration would sometimes
cause connections between modules to break.

The limited strength of the magnetic connectors can be
viewed as a trade-off for ease of reconfiguration. Connection
and disconnection between the head and body of the snake
takes very little time, and the forgiving area-of-acceptance of
the connector (Tosun et al. 2016) makes it possible to dock
the head of the snake to the body even though the exact posi-
tion of the body is not known (only the head module had
an AprilTag). Autonomous docking succeeded about 25%
of the time. This performance could be improved by apply-
ing more recently developed techniques for autonomous
self-reconfiguration with SMORES-EP. recently, improved
docking strategies for SMORES-EP have been developed
that succeed about 90% of the time (Daudelin et al. 2017).

6 Discussion and future work

6.1 Simulator-to-hardware translation

Translation of behaviors from VSPARC to the hardware
was largely successful, and the ability to prototype designs
and behaviors in a simulator resulted in significant time
savings over prototyping in hardware. Disparities between
performance in the simulator and hardware tended to arise
from real-world phenomena the simulator did not model
accurately. For example, variability in magnetic connec-
tor strength [which differs from module to module (Tosun
et al., 2016)] sometimes resulted in connections breaking
unexpectedly, and encoder calibration errors could cause
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behaviors requiring very precise position control to perform
poorly.

Utilizing EAP behaviors can improve the robustness of
behaviors designed with VSPARC. Users can create behav-
iors whose joint commands depend on the robot encoder
reading on the fly. Moreover, incorporation of on-board
sensing will allow our system to operate autonomously in
unknown environments. At the time of writing, a “sensor
module” has been developed that allows SMORES-EP clus-
ters to carry an RGB-D camera and computer unit (Daudelin
et al. 2017). Using sensing information to decide joint values
for EAP behaviors creates robust closed-loop behaviors. In
the future, VSPARC could be expanded to include simulated
sensing capabilities, making it easier to develop closed-loop
EAP behaviors.

6.2 Library creation: lessons learned

Early on in the development of this system, we intended to
populate our design library through crowdsourcing, using
a system such as Amazon Mechanical Turk where a large
number of online users could create configurations and
behaviors using VSPARC. We quickly realized that this
strategy would not produce high-quality designs: developing
sophisticated designs and behaviors in the simulator requires
skill and experience. Holding hackathons with undergradu-
ate engineers proved to be a much more effective strategy,
because participants would become significantly more adept
at creating designs and behaviors through hours of practice.
Newcomers would typically spend about an hour creat-
ing a useful behavior, where well-practiced users would
spend about 20 min. Introducing EAP behaviors to VSPARC
greatly expanded the design space and thus the capabilities
of the designed robots. A well-designed EAP behaviors can
handle a wider range of environments, such as stairs with
different heights, which would normally require users to cre-
ate multiple static behaviors. EAP behaviors can also be
combined with environment perception to create complex
behaviors such as obstacle avoidance and target following
that are very hard to achieve with static behaviors.

Interestingly, users spent significantly more time creating
behaviors than configurations. Most users required only a
few minutes to build a new configuration and conceive of the
fundamental motions they wanted it to perform. The major-
ity of the design time was spent coding joint trajectories to
achieve the desired motion while maintaining balance and
avoiding connector strength overload. With EAP behaviors,
users can focus the design on high-level without explicitly
coding joint angles, which can reduce designing time. Evolu-
tionary techniqueswill also be explored to generate behaviors
automatically.

An existing algorithm for modular robot design embed-
ding detection could also be used to automatically generate

behaviors for new configurations (Mantzouratos et al. 2015).
This algorithm can automatically detect when one a subset
of the joints of one configuration can be used to replicate the
kinematics of another (a condition known as embedding), and
generates a mapping that can be used to transfer behaviors
originally developed for one configuration to any other con-
figuration that embeds it. This could also allow behaviors
developed for SMORES-EP to be ported to other modular
robot systems, or vice-versa.

6.3 Composing library elements to complete
missions

Environment and behavior properties provide an expressive
way for the user to specify the requirements of a task. How-
ever, the fact that a behavior is labeledwith a specific property
does not guarantee it will perform as intended in all circum-
stances. Adapting behaviors to environments different from
the one in which they were designed can cause them to fail,
as evidenced by the problems in establishing proper initial
robot position for the climbUp behavior in the table clean-
ing scenario. Development of more closed-loop parametric
behaviors will help address this issue.

Methods for automatically analyzing tasks and environ-
ments are actively being researched (Sung et al. 2016).
Determining optimal sets of environment factors and inte-
grating methods for automatic task analysis and would be an
interesting avenue for future work.

It’s worth noting that some behaviors are much more
tolerant to varying environments than others. In our hard-
ware experiments with the stairClimber configuration,
we found that a single open-loop gait was able to climb
steps of several varying sizes with no problems. Establish-
ing confidence bounds on behavior success as a function of
environment parameters and including this information in the
library is future work.

In this work, we assume that reconfiguration is possible
between any two configurations as long as the initial configu-
ration has at least as manymodules as the final configuration.
In practice, autonomous self-reconfiguration often requires
complicated behaviors that have implications for high-level
planning: for example, if the robot is holding an object,
that may affect its ability to reconfigure. Autonomous self-
reconfiguration with SMORES-EP is addressed in another
paper by the authors (Daudelin et al. 2017). Other work on
autonomous self-reconfiguration includes (Yim et al. 2007c;
Rubenstein et al. 2004; Murata et al. 2006).

Our architecture would rely on a library with a large
number of behaviors and attributes in order to encode robot
capabilities and environment properties for real-world exper-
iments.When searching the library for behaviors, ourmethod
scales linearly with respect to the size of the library.

123



1352 Autonomous Robots (2018) 42:1337–1354

7 Conclusion

We presented a system for addressing high-level tasks with
modular self-reconfigurable robots. We demonstrated how
our physics-based simulator allows SMORES-EP configura-
tions and behaviors to be easily created and stored in the
design library, and how our framework for labeling each
entry in the library with descriptive properties allows them
to be organized by functionality. Integration with a high-
level mission planner allowed users to provide high-level
task specifications, which were used to synthesize reactive
controllers that use configurations and behaviors from the
library. The capabilities of our system are validated through
experiments in simulation and with physical modular robots.
Building beyond our earlier work, we also expanded the
system by introducing environmentally-adaptive parametric
behaviors, which allowed sophisticated motion planners and
feedback controllers to be used within our framework.

This system is among the first to address complex,
reactive, high-level tasks with modular self-reconfigurable
robots. By providing this framework and demonstrating its
success in the lab, we hope to lay the foundation for future
modular robot systems to address tasks in the real world.
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