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Abstract
This paper presents an optimization strategy to coordinate a fleet of Automated Guided Vehicles (AGVs) traveling on ad-
hoc pre-defined roadmaps. Specifically, the objective is to maximize traffic throughput of AGVs navigating in an automated
warehouse byminimizing the timeAGVs spendnegotiating complex traffic patterns to avoid collisionswith otherAGVs. In this
work, the coordination problem is posed as a Quadratic Program where the optimization is performed in a centralized manner.
The proposed method is validated by means of simulations and experiments for different industrial warehouse scenarios. The
performance of the proposed strategy is then compared with a recently proposed decentralized coordination strategy that relies
on local negotiations for shared resources. The results show that the proposed coordination strategy successfully maximizes
vehicle throughput and significantly minimizes the time vehicles spend negotiating traffic under different scenarios.

Keywords Multi-robot coordination · Quadratic optimization · AGV systems · Path planning

1 Introduction

Automated warehouses are becoming an increasingly pop-
ular solution for end-of-line logistics due to improved effi-
ciency and flexibility (Sabattini et al. 2013). In order to meet
the increasing delivery throughput requirements, warehouses
are employing more and more Automated Guided Vehicles
(AGVs) such that it is nowcommon tofindhundreds ofAGVs
in a singlewarehouse. It is therefore not surprising thatmulti-
vehicle planning and coordination is receiving even more
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attention by the robotics community in the last years, espe-
cially in the context of AGVs for industrial applications.

Existing work addressing the multi-vehicle planning and
coordination problem for AGVs in industrial applications
includes (Zhang and Mehrjerdi 2013; Hoshino and Seki
2013; Pecora et al. 2012; Olmi et al. 2011; Secchi et al.
2015) and references therein. Recently, a hierarchical strat-
egy for the coordination of a fleet of AGVs in an automated
warehouse was proposed in Digani et al. (2014b), Digani
et al. (2015b). The hierarchical strategy first partitions the
robots’ environment into sectors. The sequence of sectors
each AGV has to cross to reach its destination is computed
using a Model Predictive Control (MPC) based centralized
planner in order to maximize the performance of the entire
fleet. Within each sector, a decentralized strategy is used to
coordinate the AGVs to provide a simple and scalable traffic
strategy. Each time an AGV enters a new sector, the central
unit determines the traffic level in each sector by counting the
number of AGVs it contains. Using the A∗ (LaValle 2006)
algorithm, the sequence of sectors the AGV needs to track is
recomputed based on the current traffic condition. The intro-
duction of such a simple traffic measure, namely counting
the number of AGVs within each sector, has significantly
increased the performance of the traffic manager, see Digani
et al. (2015b) formore details andSabattini et al. (2015) for an
industrial benchmark. The decentralized coordination within
each sector is performed by means of a negotiation strat-
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egy among the AGVs based on a priority scheme. A shared
resource, i.e., a road segment, is allocated to the winner of
each negotiation round, while the loser of the negotiation
round must wait until the shared resource becomes free. It is
worth noting that this negotiationmechanism inevitably leads
the AGVs to spend most of their time waiting. Thus a draw-
back of these previous approaches is that vehicles crossing a
sector end up spending most of their time waiting for negoti-
ations. Thus the amount of time spent locally, namely inside
each sector, dominates the overall performance of the fleet.

This paper aims at overcoming this major drawback by
minimizing the number of interactions among AGVs. The
idea is to minimize the amount of time vehicles spend nego-
tiating complex traffic patterns within each sector as they
avoid collisions with one another while navigating through
the workspace. In this work, we propose a strategy that
completely avoids negotiations by partitioning the indoor
environment into several sectors. Within each sector, a local
coordination strategy that maximizes the AGV throughput
through the sector is formulated as a centralized optimiza-
tion problem. The contribution of the paper lies in a complete
formulation of the coordination problem as a quadratic opti-
mization problem (QP), where the crossing time for the vehi-
cles, i.e., the time it takes for the vehicles to enter and leave a
given sector, is minimized with respect to the vehicle veloc-
ities. Furthermore, an exhaustive experimental validation is
provided, in real scenarios extracted from real automated
warehouses with AGV systems. The paper extends the idea
in Digani et al. (2015a) and exploits the framework presented
in Digani et al. (2014b), Digani et al. (2015b). Some prelimi-
nary results in which a draft version of the method is applied
to a virtual environment can be found inDigani et al. (2015a).

1.1 Related work

Coordination of groups of autonomous vehicles is a rel-
evant topic in multi-robot systems that has been widely
addressed in the literature (LaValle 2006). In general, existing
approaches can be divided into two main categories: central-
ized versus decentralized.Decentralized approaches (see for
instance Yang et al. 2008; Zhang and Mehrjerdi 2013) are
known to scale well with the number of robots. Namely,
decentralized approaches directly address the complexity
of large-scale multi-robot coordination problems. In these
methods, each robot autonomously determines its routes,
resolving conflicts with other robots by collecting informa-
tion from them (Habib et al. 2013; Jager and Nebel 2001;
Zheng et al. 2013). Decentralized techniques are generally
faster than centralized ones, but they present several draw-
backs. While existing works, such as Fanti et al. (2015),
Manca et al. (2011), provide deadlock-free strategies, decen-
tralized approaches can fail to find valid paths for all robots
and feasible solutions may be far from optimal. As such,

decentralized strategies may not be suitable for many indus-
trial applications where efficiency is paramount.

With centralized strategies, a single decision maker deter-
mines the entire path plan for all the robots. The main
advantage of centralized approaches is their ability to find
optimal solutions (LaValle and Hutchinson 1998). For this
reason, fleets of AGVs in industrial applications are gen-
erally coordinated by a centralized supervisor (the control
center) which manages all the information coming form the
Warehouse Management System (WMS) and from the envi-
ronment. The control center handles the coordination of the
fleet, solving a multi-robot path planning problem (see e.g
Olmi et al. 2008; Hoshino and Seki 2013). Recently, exist-
ing works have proposed dynamic strategies to coordinate
a fleet of robots where the central coordinator dynamically
re-computes the paths using local information (Secchi et al.
2015; Pecora et al. 2012). However, in most cases the dimen-
sion of the multi-robot configuration space may be very high
and require considerable computational resources to obtain
a solution.

A multi-layer structure world representation can reduce
the multi-robot path planning search space. As explained in
Park et al. (2012), the approach constructs a hierarchical map
which can abstract the traversable areas using an adequate
number of nodes and edges in a graph. The path is obtained by
searching through the graphs of the various layers.Other pop-
ular solutions to reduce the search space rely on a roadmap
approach (Kavraki et al. 1996; Makarem and Gillet 2012;
Hui 2010), where local interaction rules or local strategies for
conflict resolution are often included (Pallottino et al. 2007;
Reveliotis and Roszkowska 2011). Recently, in Digani et al.
(2014b), Digani et al. (2015b) a hierarchical strategy was
proposed that exploits the benefits of both centralized and
decentralized approaches for the coordination of an AGV
fleet. Based on this approach, a dynamic traffic model was
derived in Digani et al. (2016).While centralized approaches
are known to scale poorly with respect to the number of
agents, they are often preferred in many industrial applica-
tions because of their solution optimality guarantees which
provide performance assurances. The reliance on centralized
approaches is also further backed by the ever decreasing cost
of fast high-end computing and the potential loss in revenue
caused by deadlocks.

Lastly, path planning strategies can also be performed
by employing prioritized schemes. Namely, the paths are
sequentially computed based on the priorities of the robots
in order to avoid conflicts (Cap et al. 2015; van den Berg and
Overmars 2005). These approaches have been shown to be
effective in practice, but they are incomplete, i.e., there are
solvable problem instances that the algorithms fail and thus
provide no guarantees of success: completeness guarantees
can be provided by appropriately structuring the operational
environment (van den Berg and Overmars 2005). Other
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approaches include fixed-path coordination which aims at
coordinating robots on a predefined set of paths to avoid col-
lision (LaValle 2006). This work falls in this last category,
where the vehicles are constrained to move on a predefined
roadmap.

Irrespective of the approach, existing work has shown the
impact of uncertainties on the overall system performance of
large-scale multi-agent systems. Specifically, Mather et al.
(2010), Mather and Hsieh (2010) have shown how uncertain-
ties inherent in any systems deployed in a realistic setting
can detrimentally impact the overall system performance.
These uncertainties may arise from sensor/actuation noise,
model parameters, and local vehicle-to-vehicle interactions
can lead to ensemble effects that are difficult to diagnose
without an appropriate macroscopic view of the system. In
Mather et al. (2010), Mather and Hsieh (2010) showed how
these detrimental impacts can bemitigated byminimizing the
local vehicle-to-vehicle interactions within a given system.
As such, this work focuses on maximizing traffic throughput
in specific regions of the workspace and thus minimizing the
local vehicle-to-vehicle interactions that can lead to detri-
mental ensemble effects.

Coordination along a roadmap in a specific region can be
achieved using different approaches (Alami et al. 1998). In
particular, complete and optimal solutions have been devel-
oped (see e.g. Peng and Akella 2005; Siméon et al. 2002;
Olmi et al. 2011), but are known to be very computation-
ally expensive. The method proposed in this work provides
a solution that is only locally optimal, but is shown to have
very low computational requirements.

1.2 Organization

The paper is organized as follows: the problem formulation
and key assumptions to the approach are stated in Sect. 2.
Section 3 describes the optimization problem and the for-
mulation of the problem as a quadratic program. Section 4
shows the implementationof the proposedmethod andSect. 5
presents simulation and experimental results. Finally Sect. 6
summarizes key results and Sect. 7 concludes with some dis-
cussions for future works.

2 Problem definition

We consider the problem of coordinating a fleet of N̄ AGVs
in an automatic warehouse. In modern AGV systems, the
vehicles are constrained to move on a predefined (virtual)
roadmap R. The roadmap is partitioned into a collection of
segments P = {p1, . . . , pW }. The tasks the AGVs have to
accomplish correspond to picking some goods in a location
of the roadmap and delivering it to another location. Thus,
each time a task is assigned to AGV i , the path πi the vehicle

has to follow is computed. A path is simply a sequence of

adjacent segments, i.e., πi =
{
p1i , . . . , p

Mi
i

}
.

Each vehicle is modeled as a circle with the center on the
path it is following and radius δ/2, where δ > 0 is chosen in
order to obtain a circle sufficiently big to enclose the biggest
AGV traveling along the roadmap.1 For each segment p ∈ P ,
we denote with V(p) the portion of space occupied by a
vehicle moving along p, i.e., the trace of the vehicle along
that segment. Two AGVs traveling on two segments that are
too close to each other may collide. Formally, two segments
pi , p j ∈ P are colliding segments if V(pi ) ∩ V(p j ) �= ∅.
Consequently, given a segment p ∈ P , theCollision Segment
Set of p (CSS(p)) of p is given by:

CSS(p) = {ρ ∈ P, ρ �= p s.t. V(p) ∩ V(ρ) �= ∅} (1)

As shown in Digani et al. (2014a), Beinschob et al. (2017), it
is possible to automatically build a roadmap and a partition
of the warehouse into a finite set of sectors S = {S1, . . . , SQ}
such that each sector contains at most an intersection area,
i.e., a portion of the roadmpap where the AGVs need to coor-
dinate their motion in order to avoid collisions. In this paper
we will consider a constant partitioning of the environment.
In Sabattini et al. (2016) an algorithm for the dynamic parti-
tioning of the warehouse has been proposed.

Consider the sector Sσ , where σ ∈ {1, . . . , Q}. The set of
segments contained in Sσ is given by Pσ = ⋃N̄

i=1(πi ∩ Sσ ).
The intersection area (that can be empty) of Sσ is given by

Aσ =
⋃
p∈Pσ

CSS(p) (2)

An example of the partitioning of a real workspace is
shown in Figs. 1 and 2 highlights segments and paths within
a sector.

Given a set of N̄ tasks to complete and, consequently, N̄
paths the AGVS have to track, the following metrics are used
for evaluating the performance of the AGV system.

– Completion Time the time needed by one AGV for track-
ing its assigned path

– AGV-Time the time necessary for tracking all the paths,
i.e., the sum of all the completion times

The sector partitioning can be exploited to deal with
the complexity of the AGV coordination problem. This can
be accomplished using hierarchical approaches where the
coordination problem is solved within each sector and the
planning problem is solved between sectors. For example, in
Digani et al. (2015b), the trafficmanagerworks on two layers.

1 This condition is usually not conservative. In fact, in an automated
warehouse, all the AGVs have typically the same size.
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Fig. 1 Roadmap and sectors in a real environment: black areas are obstacles, red lines represents sectors’ borders and red dots are the centres of
the sectors (Color figure online)

Fig. 2 Definitions of path and
segment for a sector

PATH
SEGMENT

Thefirst layer performs a high level finite-horizon centralized
planning that computes the sequence of sectors each AGV
has to cross to reach its destination using the A∗ algorithm on
the sectors. The second layer represents a low level decen-
tralized coordination strategy for safe navigation inside each
sector. Thus, coordination is only requiredwithin each sector,
and in particular within at most one intersection area, where
the number of interactions among the agents is given by the
number of local negotiations among them.A shared resource,
i.e., a segment, is then allocated to the winner of each nego-
tiation round, while the losers of the negotiation round must
wait until the shared resource becomes free. It is worth noting
that the results of these negotiations are not known a priori
and that they depend on the paths and on possible priorities of
the AGVs. Thus, the system is not deterministic and the traf-

fic control and management is not trivial. In particular, the
negotiation process affects the total time a vehicle spends
traversing a given sector.

The goal of this paper is to propose a novel coordination
strategy for AGVs crossing an intersection area. The pro-
posed methodology aims at determining for each AGV the
best speed it should travel along its path in order to minimize
the total crossing time while avoiding conflicts (i.e., possible
collisions) with other vehicles. This will allow rid the sys-
tem of non deterministic negotiations or of other heuristics
for shared resource allocations.

Coordination happens in sectors, which contain at most
one intersection area. Thus, the problem of coordinating N̄
AGVs moving on R can be recast into the problem of coor-
dinating N ≤ N̄ AGVs moving inside a generic sector.
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Fig. 3 Multi AGV coordination problem in an intersection area of a
sector

Improving the coordination performance inside a sector will
lead to an improvment of the coordination performance of
the overall fleet on the roadmap.

Formally, we aim at solving the following problem

Problem 1 Given a group of N ≤ N̄ AGVs crossing a sec-
tor on paths {π1, . . . , πN }, define the velocity profile of each
AGV in order tominimize the AGV-Time necessary for com-
pleting the tasks while avoiding conflicts among the AGVs.

Figure 3 shows a simple example of the problem where three
AGVs have to follow the assigned paths while avoiding col-
lisions. Each AGV starts in an initial position along its path
and has to reach its own final position.

We will make the following assumptions:

A1 No external obstacles (e.g. people, manual forklifts) can
be found on the roadmap.

A2 The velocity along a segment is constant
A3 The velocity of each AGV is bounded:

0 < Vmin < ν < Vmax < ∞ (3)

where ν represents the velocity of an AGV and Vmin and
Vmax are the lower and upper velocity bounds respec-
tively.2

A4 Each segment can be occupied by at most one AGV
A5 EachAGVhas a different pair of initial andfinal positions

We would like to remark that these assumptions do not
introduce significant limitations to the applicability of the
proposed strategy. In particular, Assumption A1 is generally
verified, during normal operations, since human operators
and manual forklifts are not allowed to occupy areas traveled

2 The boundsmaydependon theAGVandon the segment to be crossed.
In order to keep the notation simple,we have considered constant values.
All the results obtained in the paper can be easily extended to variable
bounds.

by AGVs: their presence on the AGVs’ path is handled by
safety systems.

Assumption A2 is imposed for the sake of simplicity of
explanation: while it would be possible to extend the pro-
posed approach considering acceleration and deceleration
along each segment,weprefer to keep the explanation simple,
and consider only the average velocity. Conversely, Assump-
tion A3 is trivially verified for any real AGV.

Assumption A4 is generally imposed in any AGV system
used for industrial logistics, for safety and coordination rea-
sons: in fact, it helps in guaranteeing collision avoidance, and
it simplifies the coordination problem.

Finally, Assumption A5 is, in general, trivially verified,
thanks to the redundancy of roadmaps typically utilized in
industrial environments.

3 Modeling and optimization problem

In this section we show how to model the AGV coordination
problem (Problem 1) as a QP problem. The output is a set of
velocities that guarantees a safe minimum distance between
all agents and that minimizes the total time the AGVs need
to accomplish the tasks.

Let πi =
{
p1i , . . . , p

Mi
i

}
, i = 1, . . . , N , be the path the

i-th AGV has to track inside the sector. Let dki and vki be the
length of pki and the velocity of the AGV i along segment pki
respectively. Since, according to Assumption A2, vki is con-
stant, the completion time for AGV i to track πi is given by:

Δti =
Mi∑
k=1

dki
vki

(4)

and the AGV-Time is given by

ΔT =
N∑
i=1

Mi∑
k=1

Δti =
N∑
i=1

Mi∑
k=1

dki
vki

. (5)

Let M̄ = M1 + · · · + MN be the total number of segments
to be crossed by N AGVs and let v ∈ R

M̄ and d ∈ R
M̄ be

defined as

v =
(
v11, . . . , v

M1
1 , . . . , v

MN
N

)T
(6)

d =
(
d11 , . . . , d

M1
1 , . . . , dMN

N

)T
(7)

Moreover, let vi ∈ R and di ∈ R, i = 1, . . . , M̄ , denote the
i-th component of v and d, respectively.

Minimizing the AGV-Time corresponds to finding a set of
velocities each AGV has to track the segments of its paths
with. Formally

123



544 Autonomous Robots (2019) 43:539–555

argmin
v

ΔT = argmin
v

N∑
i=1

Mi∑
k=1

dki
vki

(8)

We introduce now a new vector of optimization variables
φ ∈ R

M̄ defined as follows:

φ =
(

1

v11
, . . . ,

1

v
M1
1

, . . . ,
1

v
MN
N

)T

(9)

Moreover, let φi ∈ R, i = 1, . . . , M̄ , denote the i-th com-
ponent of φ. Clearly, finding optimal the value of φ leads to
directly defining the corresponding optimal value of v.

The functional to minimize is the weighted sum of terms
depending only on one of the variables φi to optimized, and
the weights are represented by the elements of vector d.
Hence, solving (8) can be written as the problem of mini-
mizing the following linear objective function:

f (φ) = −
M̄∑
i=1

diφi . (10)

We consider two constraints for the optimization problem.
The first is related to the boundedness of the velocities and
the second is the maintenance of a safe distance between the
AGVs. Considering (3), we have that each component of φ

is bounded as:

Φmin ≤ φi ≤ Φmax, ∀i = 1, . . . , M̄ (11)

which can be represented as a linear constraint with respect
to φ. According to (3), Φmin = 1/Vmax and Φmax = 1/Vmin.

As remarked in Sect. 2, each AGV is modeled as a cir-
cle with radius δ/2. Let the center of the circle representing
the i-th AGV be denoted by Xi (t) = [xi (t), yi (t)]T , where
[xi (t), yi (t)]T is the cartesian position of the vehicle. Col-
lision avoidance is guaranteed by ensuring that the relative
distance γi, j between any two AGVs is greater than δ, i.e.:

γi, j (t) = ||Xi (t) − X j (t)||
=

√
(xi (t) − x j (t))2 + (yi (t) − y j (t))2 > δ

i �= j ∈ {1, . . . , N } (12)

This is a non convex constraint that needs to be imposed for
all the pairs of AGVs all over their paths. The non convexity
of (12) makes the optimization problem too complex to be
solved continuously for each sector, especially if the number
of AGVs is quite big. Luckily, the constraint in (12) can
be reformulated as a quadratic constraint, which leads to a
computationally efficient solution.

Let eachpathπi beparameterizedby a curvilinear abscissa
si ∈ [0, di ], where di = ∑Mi

k=1 d
k
i , and indicate, with a slight

abuse of notation, with πi (si ) the cartesian position (x, y) on
path πi corresponding to the value of the curvilinear abscissa
si . We denote with:

ΔXi, j = {
si | ∃s j such that ||πi (si ) − π j (s j )|| ≤ δ

}
. (13)

the portion of the of path πi where a collision between AGV
i and AGV j can happen on path i . It is worth noting that
the collision regions can be computed totally off-line since
they are based solely on geometric information regarding the
roadmap and the size of the vehicles.

Let smini j and smaxi j be the values of the curvilinear abscissa
corresponding to the beginning of the segment that contains
minΔXi j and the end of the segment that containsmaxΔXi j .
Thus, the portion [smini j , smaxi j ] represents the smallest subset
of segments of πi containing the collision region ΔXi, j .

In order to keep the notation simple, wewill hereafter con-
sider that ΔXi j is a single connected sub-interval of [0, di ].
While this may not be true when considering the paths along
the whole roadmap, this is always true in practice when con-
sidering a single intersection area in a sector. All the results
of the paper can be straightforwardly generalized to the case
in which ΔXi, j is a disconnected subset. In particular, this
can be achieved, for instance, splitting the paths into sub-
paths that contain at most a connected component of ΔXi, j ,
and then apply the results that will be derived in the sequel
to each pair of intersecting sub-paths.

Furthermore, let ωmin
i, j and ωmax

i, j be the time instants at

which AGV i reaches πi

(
smini j

)
and πi

(
smaxi j

)
respectively.

Thus, AGV i can collide with AGV j in the time interval

Ωi, j =
[
ωmin
i, j , ωmax

i, j

]
. Similarly, it is possible to define the

portion of the path π j where a collision between AGV j
and AGV i can happen on π j and, consequently, the time
interval Ω j,i where a collision between AGV j and AGV
i can happen. Collision avoidance between the AGV i and
AGV j is verified only if:

Ωi, j ∩ Ω j,i = ∅. (14)

Figure 4 pictorially depicts the described problem: with
an abuse of notation, the vertical axis represents both the
parameter si and s j . The condition (14) implies that the set
Ωi, j ,Ω j,i , denoted by the red and blue line segments on the
time axis in Fig. 4, are disjoint.

It is possible to reformulate (14) using the midpoints of
the sets Ωi, j ,Ω j,i . In particular the distance between two
mid-points has to be grater than the sum of the distances
between the mid-point and one extreme point of both the
sets. Formally, we define

αi, j = ωmax
i, j + ωmin

i, j

βi, j = ωmax
i, j − ωmin

i, j
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t

Fig. 4 Coordination space in the case of two agents: the lines represent
the velocities of the AGVs

The condition described by (14) can then be formalized as
follows:

∣∣∣αi, j

2
− α j,i

2

∣∣∣ >
βi, j

2
+ β j,i

2
(15)

which simplifies to

|αi, j − α j,i | > βi, j + β j,i (16)

and squaring (16), the constraint becomes quadratic:

(αi, j − α j,i )
2 >

(
βi, j + β j,i

)2
. (17)

Let us now introduce the following Propositionwhichwill
show that (17) is quadratic with respect to φ. This will be
instrumental in the formulation of the problem as a QP.

Proposition 1 The constraint in (17) can be represented in
the following form

(
φT
i , φT

j

)T
Λi j

(
φT
i , φT

j

)
> 0

for an appropriately defined matrix Λi j .

Proof Let
{
pmi
i , . . . pmi+ni

i

}
and

{
p
m j
j , . . . p

m j+n j
j

}
, where

mi ,m j , ni , n j ≥ 1, mi + ni ≤ Mi and m j + n j ≤ Mj , be
the set of segments containing ΔXi j and ΔX ji respectively.
Considering that the velocity of theAGVs is constant on each
segment, we can write:

αi, j =
mi+ni∑
k=1

dki
vki

+
mi−1∑
k=1

dki
vki

=
mi+ni∑
k=1

aik
1

vki

(18)

where

aik =
{
2dki if k < mi

dki if k ≥ mi
(19)

Similarly,

α j,i =
m j+n j∑
k=1

a jk
1

vkj

(20)

where

a jk =
{
2dkj if k < m j

dkj if k ≥ m j
(21)

It is convenient to write (18) and (20) in matrix form as:

αi, j = 1T(mi+ni )Aiφi

α j,i = 1T(m j+n j )
A jφ j (22)

where 1ρ indicates a vector of ones of dimension ρ. Further-
more,

Ai = diag(ai1, . . . , ai(mi+ni ))

and

φi =
(

1

v1i
, . . . ,

1

v
(mi+ni )
i

)T

The quantities A j and φ j are defined analogously. Thus, we
can write

(αi, j − α j,i )
2 =

(
1T(mi+ni )Aiφi − 1T(m j+n j )

A jφ j

)T

×
(
1T(mi+ni )Aiφi − 1T(m j+n j )

A jφ j

)
(23)

By straightforward computations we can write:

(αi, j − α j,i )
2 = φT

i j Mi jφi j (24)

where φi j =
(
φT
i , φT

j

)T
and

Mi j =
(

Ai1mi+ni 1
T
mi+ni Ai −Ai1(mi+ni )1

T
(m j+n j )

A j

−A j1(m j+n j )1
T
(mi+ni )

Ai A j1m j+n j 1
T
m j+n j

A j

)

(25)

Similarly, we can write:

βi, j =
mi+ni∑
k=1

dki
vki

−
mi−1∑
k=1

dki
vki

=
mi+ni∑
k=1

bik
1

vki

(26)

where

bik =
{
0 if k < mi

dki if k ≥ mi
(27)
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and

β j,i =
m j+n j∑
k=1

b jk
1

vkj

(28)

where

b jk =
{
0 if k < m j

dkj if k ≥ m j
(29)

Thus, using a vector notation as for obtaining (25), we can
write:

(bi, j + b ji )
2 = φT

i j Ni jφi j (30)

with

Ni j =
(

Bi1mi+ni 1
T
mi+ni Bi Bi1(mi+ni )1

T
(m j+n j )

Bj

B j1(m j+n j )1
T
(mi+ni )

Bi B j1m j+n j 1
T
m j+n j

B j

)

(31)

where Bi = diag(bi1, . . . , bi(mi+ni )) and Bj = diag(b j1,

. . . , b j(m j+n j )).
Thus, we can rewrite (17) as:

φT
i j (Mi j − Ni j )φi j > 0 (32)

DefinenowmatrixΛi j ∈ R(mi+ni+m j+n j)×(mi+ni+m j+n j)

as follows:

Λi j = Mi j − Ni j (33)

The inequality in (32) can then be rewritten as follows:

φT
i jΛi jφi j > 0 (34)

Since φi j =
(
φT
i , φT

j

)T
, then the statement is proven. �

3.1 Quadratic constraints linear programming

The coordination within a single sector is modeled as an
optimization problem using a linear objective function, and
a set of quadratic constraints with linear constraints on the
boundary.

For this purpose, consider the inequality in (34). Matrix
Λi j can be partitioned as follows:

Λi j =
(

Λi i
i j Λ

i j
i j

Λ
j i
i j Λ

j j
i j

)
(35)

where Λi i
i j ∈ R

(mi+ni )×(mi+ni ), Λ
j j
i j ∈ R(m j+n j)×(m j+n j),

and Λ
i j
i j = Λ

j i
i j

T ∈ R
(mi+ni )×(m j+n j).

The optimization problem is then given by:

minimize f (φ) (36a)

subject to Aφ ≤ b (36b)

and φT Hi jφ ≤ 0 ∀i, j = 1, . . . , M̄, with j > i
(36c)

Matrix A ∈ R
2M̄×M̄ and vector b ∈ R

2M̄ in the linear
constraint (36b) encode the bounds on the elements of φ

defined in (11).
The quadratic constraint (36c) represents the collision

avoidance constraint, according to Proposition 1: matrix
Hi j ∈ R

M̄×M̄ represents the inequality (32). It is defined
as a block matrix, whose block (h, k) is given by

Hhk
i j =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Λi i
i j if h = i, k = i

Λ
j j
i j if h = j, k = j

Λ
i j
i j if h = i, k = j

Λ
j i
i j if h = j, k = i

O otherwise

(37)

where O is a zero matrix of appropriate dimension.

4 Implementation

The proposed method aims at coordinating a fleet of agents
on a map composed by several sectors. For this reason,
each sector is provided with a dedicated process which
manages the optimization routine in order to implement
the proposed methodology. The optimization algorithm runs
independently in each sector whenever a new agent enters or
leaves the intersection area.

Some variations are introduced in order to implement the
methodology among several sectors and thus among several
intersections. Themethodology proposed in the previous sec-
tions is based on the assumption that all the vehicles are at
the initial position of their paths in the sector. The optimiza-
tion algorithm runs whenever a new agent enters or leaves
the intersection area. Thus, in general, at each computation
of the algorithm a vehicle i can be at any position along its
path, not necessary the initial position (where si = 0).

Algorithm 1 shows the actual implemented method where
Qnew(Aq) represents the current list of vehicles contained the
intersection area Aq , and Qold(Aq) represents list of vehi-
cles at the previous iteration of the algorithm. The starting
position of each vehicle along its path, namely the current
position at the instant of iteration of the algorithm, is col-
lected in the vector ini t(Aq). Finally v is the vector of the
optimized velocities, obtained by the solution φ of the opti-
mization problem. Algorithm 1 is performed at each sample
time τ .
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Algorithm 1: Optimized Coordination Main Routine

1 foreach Aq do
2 if Qnew(Aq ) �= Qold(Aq ) then
3 Qold(Aq ) = Qnew(Aq );
4 get ini t(Aq ) ∀ paths π ∈ Aq ;
5 φ ← solve (36);

6 vi = 1

φi
∀i ;

7 end
8 else
9 continue;

10 end
11 end

Algorithm 2 describes the single implemented controller
for the i-th vehicle. It is worth noting that each AGV is con-
trolled in a decentralized manner. Thus, each AGV entering

a new intersection areaAq updates its position on the vector
init(Aq) in order to get the correct and optimized velocity
vector

v(i) =
[
v1i , . . . , v

Mi
i

]
.

The i-th AGV stays in the queue Qold(Aq) and Qnew(Aq)

until it leaves the intersection area.

5 Validation

The proposed optimized coordination is validated by means
of comparison with the coordination strategy first presented
in Digani et al. (2014b) which relies on local negotiations.
Hereafter we refer to the current proposed methodology as
the Optimized Strategy, and to the other one as Negotiated

(a) (b)

(c) (d)

Fig. 5 Different intersections used during the simulations. a Intersection 1, b intersection 2, c intersection 3, d intersection 4
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Algorithm 2: Agent’s controller
Data: AGV i

1 while do
2 if i enters Aq then
3 Qnew(Aq ) ← i ;
4 get v(i);
5 end
6 else if i is moving within Aq then
7 update init(Aq ) of i along path πi ;
8 get v(i);
9 end

10 else
11 remove i from Qold(Aq );
12 remove i from Qnew(Aq );
13 end
14 end

Strategy. A decoupled optimal priority scheme (Bennewitz
et al. 2001) is applied to the Negotiated Strategy in order to
obtain a better comparison.

The simulations are performed on different single inter-
sections extracted form the roadmap of real warehouses, as
shown in Fig. 5. Subsequently experimental tests are per-
formed on a complete real environment. Figure 6a shows a
simple real environment composed by four rectangular obsta-
cles and nine sectors. A roadmap is built for that environment
using the algorithm described in Digani et al. (2014a).

5.1 Simulations

The topological complexity of the roadmaps is different in
each scenariowhichdepends on thenumber of possible paths,

the number of possible interactions, and physical size of the
environment. Repeated tests have been conducted under the
following conditions:

– 4 topology of intersection
– number of AGVs ∈ [2, 11],
– the simulation stops when the intersection area is cleared,
– the priorities (Digani et al. 2014b) for the Negotiated
Strategy are optimized each time,

– the same paths assigned to the AGVs are considered for
the comparison, and

– the paths are assigned randomly.

Ten simulation runs were performed for each configuration.
To compare, we consider the time needed for all AGVs

to clear the sector or the maximum of the crossing time
(tclearing). We also considered the worst waiting time (twait),
the average waiting time (t̄wait), and the computational time
needed to obtain a solution (tcalc). The waiting time is the
time that the AGVs have to wait in the same position, with
zero velocity, when yielding to other robots with higher pri-
orities at an intersection in the roadmap. The worst waiting
time is the maximum waiting time for all the AGVs in the
sector. The computational time is the actual time to com-
pute a solution to the centralized optimization problem. The
worst waiting time and the average waiting time are com-
puted for the Negotiated Strategy, while the computational
time is computed for the Optimized Strategy.

The simulations were performed in Matlab with the stan-
dard optimization solver. The results are summarized in
Fig. 7.
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Fig. 6 Real map used in the simulations. a Real map, b sectors
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Fig. 7 Average of the clearing
time versus number of AGVs in
the different single intersections
on 10 runs. a Negotiated
strategy, b Optimized strategy
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5.2 Experiments

The proposed approach has been implemented on a real
indoor environment. The experimental environment and the
implemented roadmap are shown in Fig. 8. The roadmap is
divided into several sectors as shown in Fig. 6a.

The robots are differential-drive robots equipped with an
onboard processor and odometry, an RGB-D sensor, and
wifi networking capabilities. Localization for the vehicles
is provided by an external motion capture system. Figure 9
shows the implementation architecture of the system. The
core of the system, namely the Optimized Coordination, is
implemented in the Matlab workspace. Then each robot is
controlled by means of an independent ROS (Robot Operat-
ing System Quigley et al. 2009) module which manages the
tracking of the trajectories of the roadmap.

The experiments aim at validating the proposed optimized
coordination method in a real scenario. As such a mixed-
reality approach was employed where additional simulated
robots are deployed with the real ones in order to increase
the number of the fleet and thus the number of inter-robot
interactions. The validation has been conducted under the
following experimental set-up:

– 5 real robots
– 3 to 15 simulated robots
– tasks randomly assigned both to real and simulated robots

A representative instance of the performed experiments is
shown in the accompanying video.

The main difference compared to the single intersection
simulation is that the coordination of the fleet is based on the
hierarchical control architecture presented in Digani et al.
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Fig. 8 Real environment used
for the experimental validation

Fig. 9 Implementation and
architecture of the system

Fig. 10 Total time versus
number of agents in the
complete map with standard
deviation
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Table 1 Statistical validity of
the comparison

#AGV h p-value

3 1 0.0346

5 1 0.0422

10 1 0.0163

15 1 0.0249

(2014b). The proposed method (Optimized Strategy) is still
compared to the Negotiated Strategywith respect to the time
needed for all AGVs to reach their final destination, that is
ttotal. Figure 10 shows the trend of the ttotal with respect the
number of AGVs on both of the strategies.

The data was also evaluated in terms of significance.
Table 1 shows the statistical evaluationwhere h = 1 indicates
a rejection of the null hypothesis at the 5% significance level
and h = 0 indicates a failure to reject the null hypothesis at
the 5% significance level.

6 Discussion

The simulations for a single intersection show that the
average clearing time (or the maximum crossing time) is
always smaller using the Optimized Strategy compared to
the Negotiated Strategy. The results clearly show the pro-
posed methodology performs better than the previous one.
Figure 11 shows the relationship between the waiting time
and the time a vehicle is actually moving (i.e., the time in
which its velocity is non-zero) in the sector for the Negoti-
ated Strategy. Overall, the time a vehicle spends waiting or
idling is considerable when the Negotiated Strategy is used.
In particular, the results show that the average waiting time
is almost 50% of the total time a vehicle spends within the
sector and the worst waiting time is up to 90% of the total
time. One can conclude that under the Negotiated Strategy

the time an AGV spends at an intersection is mostly spent
on waiting for its turn to cross. It is important to note that by
construction thewaiting time for each vehicle under theOpti-
mized Strategy is always null. Here, coordination is achieved
by managing the relative velocities of the agents to ensure
collision avoidance while constraining the velocities to be
always higher than zero.

In light of the average per vehicle waiting time resulting
from the Negotiated Strategy, the computational time of the
Optimized Strategy is essentially negligible (see Fig. 12). The
optimization algorithm does not suffer from a high compu-
tational burden despite being implemented in a centralized
manner. This claim is supported by the fact that the strategy
is designed to work with specific roadmaps and thus always
tuned to the worst case scenario (Fig. 5d). Furthermore, the
required computation burden still stays lowwhen the number
of segments increases. The Optimized Strategy is concerned
only with the number of vehicles since the collision regions
are computed totally offline. Figure 13 shows a comparison
between the scalability of the Negotiated Strategy, which is
almost linear, and theOptimized Strategy. We note that in the
Optimized Strategy the maximum crossing time does not lin-
early increase with the number of agents but rather its trend
is piecewise linear. This suggests that theOptimized Strategy
can potentially be further exploited when the system is com-
plex. This is further supported by the fact that the waiting
time for the Negotiated Strategy is two orders of magnitude
higher than the computational time for the Optimized Strat-
egy.

For the complete scenario and for the real experiments,
the results were very similar to the previous simulation. In
particular ttotal in the Optimized Strategy is always less then
in the Negotiated Strategy. In addition, on a complete and
real map theOptimized Strategyworks better in term of total
time. It is worth noting that the coordination and the perfor-
mances within a sector are, in general, independent of the

Fig. 11 Waiting time versus
clearing time for the Negotiated
strategy. Data presented for
intersection 4
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Fig. 12 Computational time for
the optimized strategy with
respect to the number of AGVs

Fig. 13 Clearing time versus
number of agents in the
intersection 3 with standard
deviation
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other sectors. Thus the complete behavior of the proposed
methodology on the full map is approximately a linear com-
bination of the local behavior within each sector.

Lastly, Fig. 10 shows the difference between the total time
between the two strategies increases as the number of AGVs
increases. As more vehicles are added to the workspace, the
bigger the difference between the total time of the two strate-
gies. While the complexity of the scenario affects the total
time, the Optimized Strategy consistently performs better in
the presence of more agents. The experiments also show that
the proposed method works well under realistic conditions,
where noise and disturbances normally arise (e.g. localiza-
tion, delay, etc.).

7 Conclusion

An optimized coordination strategy which aims at minimiz-
ing the time a fleet of AGVs takes to traverse different sectors

has been proposed. The typical applicable scenario of such
a strategy is an indoor environment for industrial applica-
tions like automated warehouses. The coordination problem
among the vehicles is modeled as an optimization problem
and a procedure was used to transform a non-linear and non-
convex optimization problem into an equivalent quadratic
program. Coordination is then achieved by efficiently solv-
ing the optimization problem in a centralized fashion within
each sector of the warehouse and a set of optimal velocities
is assigned to each vehicle.

Several simulations and real experiments validate the the-
oretical assertions and confirm the existence of solutions
to the optimization problem. The method was compared
to a decentralized negotiated strategy presented in a previ-
ous work. The negotiated strategy allowed AGVs to traverse
through a desired sector in the environment while avoiding
collisions with other AGVs in the same sector by assigning
different priorities to each AGV. The experimental set-up
provided a realistic validation scenario where real robots

123



Autonomous Robots (2019) 43:539–555 553

together with virtual ones move on the roadmap. Simulation
and experimental results show that the proposed optimized
strategy significantly outperforms the decentralized negoti-
ated strategy.

In this paper, the problem of coordinating the motion of
the AGVs on the higher layer was not considered, focusing
on the coordination within each sector. While the coordina-
tion within each sector can be performed independently, the
overall performance of the AGV fleet may depend on the
interplay between inter-sector and intra-sector coordination
and is a direction for future work. Nevertheless, the proposed
strategy can be used to compliment any existing coordination
strategy to further improve the overall system performance
by smoothing out potential traffic congestions in high volume
sectors that may arise from any system uncertainties that are
difficult to model.

The method proposed in this paper aims at minimizing
the sum of the travel times for all the AGVs. Future work
will aim at considering different cost functions, comparing
the obtained solutions in different scenarios.
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