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Abstract
Many applications demand a dynamical system to reach a goal state under kinematic and dynamic (i.e., kinodynamic)
constraints. Moreover, industrial robots perform such motions over and over again and therefore demand efficiency, i.e.,
optimal motion. In many applications, the initial state may not be constrained and can be taken as an additional variable
for optimization. The semi-stochastic kinodynamic planning (SKIP) algorithm presented in this paper is a novel method
for trajectory optimization of a fully actuated dynamic system to reach a goal state under kinodynamic constraints. The
basic principle of the algorithm is the parameterization of the motion trajectory to a vector in a high-dimensional space. The
kinematic and dynamic constraints are formulated in terms of time and the trajectory parameters vector. That is, the constraints
define a time-varying domain in the high dimensional parameters space. We propose a semi stochastic technique that finds
a feasible set of parameters satisfying the constraints within the time interval dedicated to task completion. The algorithm
chooses the optimal solution based on a given cost function. Statistical analysis shows the probability to find a solution if one
exists. For simulations, we found a time-optimal trajectory for a 6R manipulator to hit a disk in a desired state.

Keywords Motion planning · Kinodynamic constraints · Trajectory optimization

1 Introduction

For the robotic system to accomplish its designated tasks,
it must be able to generate a feasible motion. Usually, the
motion is along a trajectory from an initial state (generaliza-
tion vector of the position and velocity) to a desired goal state
under kinematic and dynamic constraints, denoted in short
as kinodynamic constraints. Examples for such motions are
robotic arm manipulation tasks (Kim et al. 2013), motion
of autonomous vehicles (Heo and Chung 2013), and UAV’s
(Motonaka et al. 2013). Feasible motions are those that obey
the mechanical and environmental constraints of the sys-
tem, i.e., satisfy the kinodynamic constraints (Donald et al.
1993; Pham et al. 2013). Mechanical constraints are physical
limitations of the system such as joints limits or maximum
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and minimum bounds of the joints’ velocities and torques.
Environmental constraints are generally static or dynamic
obstacles in the workspace of the system that limit its motion
in some states. To acquire a feasible motion of the dynamic
system, a planning algorithm is required to generate a trajec-
tory that allows motion satisfying all constraints.

An unconstrained robot may perform motion with exces-
sively high velocities and torques to reach a desired state.
However, when obvious limitations on actuators’ position,
velocity and torques are applied, and additional workspace
obstacles are present, a feasible collision-free trajectory
must be found. Moreover, in industrial processes, achiev-
ing efficient manufacturing is essential for maximizing the
productivity (Verscheure et al. 2009). An industrial robotwill
perform a routine trajectory over and over again. Therefore,
an optimal motion that minimizes, for example, time, energy,
torques/forces, path length, or velocities, must be applied.
Hence, we seek an optimal collision-free trajectory that sat-
isfies the kinodynamic constraints.

A general trajectory optimization for a given task requires
start and goal states. The start state is usually the current pose
of the robot while the goal state is defined by the desired
task. In many applications, the goal state is the parameter
that matters. For example, throwing an object from a desired
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position and velocity, hitting an object in a specific force,
regrasping an object, soft catching a free-flying object, etc.
When a specific initial state is not a necessary constraint as in
the examples above, the optimal trajectory problem has addi-
tional free parameters for optimization. Thus, the number of
possible solutions will increase and the acquisition of better
ones is possible. Therefore, in this work we propose to apply
a trajectory-optimization algorithm that also optimizes the
initial state of the robot. This planning problem is given the
term: theGoal State driven Trajectory Optimization Problem
(GSTOP).

We propose to divide the planning into two parts: plan
a trajectory to the goal while optimizing the initial state as
well, and plan an administrative path to that initial state from
the current pose of the robot. The main trajectory will sat-
isfy the kinodynamic constraints and will be optimized. On
the contrary, the planning of the administrative path can rely
solely on kinematic constraints. A prominent real-life exam-
ple of this approach can be taken from the world of baseball
where a batter tries to hit a thrown ball. The batter will take
an administrative motion to position the bat above his shoul-
der. Then, he will execute a somewhat optimal trajectory
for the bat to hit the ball flying toward him. It would not
make sense nor be optimal for the batter to start the hitting
motion from an arbitrary pose. Another example is in-hand
regrasping motions where a robotic arm releases the object
and catches it in a different relative pose (Sintov and Shapiro
2017). The choice of the release pose is essential for a suc-
cessful completion of the task and should thus be optimized.
Thus, the motion is no longer constrained by the initial pose
and the administrative path enables the choice of the right
starting state. We also note that this approach could be used
to improve the performance of any kinodynamic systemwith
an existing trajectory previously found for some initial state
(excluding pick-and-place operations where the initial state
cannot be changed). Thus, by throwing away the initial state
and replanning with the proposed approach, one could find a
new and better initial state that reduces the operational cost.
In this paper we disregard the planning of the administrative
path where many planners exist and focus on the GSTOP.

We present a novel algorithm termed Semi-Stochastic
KInodynamic Planning (SKIP) as a method for finding an
optimal solution for the motion planning problem taking the
kinodynamic constraints into account. Applications of the
algorithm for object throwing and regrasping have been pre-
sented by the authors in Sintov andShapiro (2015) andSintov
and Shapiro (2017), respectively. However, in this paper we
present a general and extended algorithm for any dynamic
system. We focus on finding a feasible and optimal trajec-
tory in some finite time while only the goal state is given.
We propose a different parameterization of any trajectory for
a dynamical system. In addition, as opposed to the previous
work, here we also consider equality constraints. The pro-

posed method can generally optimize both initial pose and
velocity. We note however that for practical applications, the
administrative path should be simple and move the robot to
complete stop at the required initial pose. Therefore, without
loss of generality, we only focus on the optimization of the
initial pose and set the velocity to zero.

The key component of the algorithm is parameterizing
an analytic trajectory function with redundant parameters to
serve along with the goal time as free parameters for the
optimization. We formulate the kinodynamic constraints of
the problem in the free parameters space. The formulated set
of constraints defines the Time-Varying Constraint (TVC)
problem and an easy-to-use numerical method is proposed.
The numerical method is a semi-stochastic algorithm, and a
statistical analysis is presented to calculate the probability
to find a solution if one exists. In general, similar to other
sampling-based approaches, we show that the probability to
find a solution if one exists, approaches one as the number
of generated random points increases to infinity. The statis-
tical analysis provides an automatic parameter selection for
determining certain parameters for the algorithm. An impor-
tant advantage of this method is the ability to calculate the
probability to find a solution based on the allowed computa-
tional run-time.

The paper is organized as follows. Related work is pre-
sented in Sect. 2. Section 3 defines the motion planning
problem with its constraints. In Sect. 4 some preliminary
background notions are presented. In Sect. 5 we formulate
the kinodynamic constraints in a specific manner based on
mechanical limitations and the control method. The formu-
lated constraints define the TVC problem, which is solved in
Sect. 6. Section 7 performs statistical and complexity anal-
ysis of the algorithm. In Sect. 8 we present simulations of a
6R manipulator motion while avoiding dynamic obstacles to
show the feasibility of the algorithm. Conclusions and future
work are presented in Sect. 9.

2 Related work

Themotionplanningproblemunder kinodynamic constraints
has been under extensive research in the past three decades.
During that time, it has been shown that a complete algorithm
for only the kinematic planning problem is sufficiently dif-
ficult in terms of computational costs (Schwartz and Sharir
1983; Brooks and Lozano-Perez 1983; Canny 1988; Reif
1979). Therefore, it is hard to implement them in practical
applications. Somework applied some assumptions to reduce
complexity; in Van der Stappen et al. (1998) the algorithm
assumes low density obstacles and therefore lower complex-
ity bounds exist, or in Van der Stappen et al. (1993) the
assumption is that the robot is relatively small compared to
the obstacles.
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Finding an optimal trajectory under kinodynamic con-
straints has twomain approaches: trajectory optimization and
optimal control. Distinction between the two is well defined
in Rao (2009). While in optimal control we desire an input
function to acquire an optimal trajectory, in trajectory opti-
mizationwe seek for static parameters that define the optimal
trajectory. Although optimal control is a well-established
method for finding an optimal trajectory, its capabilities to
handle obstacle avoidance is rather inadequate (Zucker et al.
2013). Moreover, the solution of an optimal control demands
an initial state of the system, which invalidates its usage for
GSTOP. In addition, thework presented in this paper is closer
to trajectory optimization and therefore, we focus on related
work in that field. Khatib (1986) first introduced artificial
potential fields for finding a collision-free trajectory. Rimon
and Koditschek (1992) later extended the method with nav-
igation functions free of local minima. One of the recent
and prominent methods is the CHOMP (Ratliff et al. 2009;
Zucker et al. 2013) and its variants (Dragan et al. 2011;
Kalakrishnan et al. 2011; Byravan et al. 2014; Park et al.
2012). CHOMP is a functional gradient descent method that
continuously refines the trajectory toward collision freeness.
More prominent methods are the TrajOpt (Schulman et al.
2013) and the shooting-method (Keller 1976). An extended
survey on trajectory optimization methods can be found in
Rao (2014).

In the motivation to find more practical algorithms, prob-
abilistic sampling methods have become common. They
provide easy to implement methods with relatively low
complexity, good results, and efficiency planning in high-
dimensional configuration spaces. Moreover, they do not
require an analytical representation of the obstacles. The
most common probabilistic methods are the Probabilistic
Roadmaps (PRM) and the Rapidly-exploring Random Trees
(RRT). PRM (Kavraki et al. 1996; Hsu et al. 2002; Song and
Amato 2001; Clark 2005; Denny et al. 2013) is a kinematic
planning method that generates random states in the state
space and constructs a graph by connecting the random states
with collision-free trajectories. RRT was first introduced in
Lavalle (1998) and LaValle and Kuffner (1999) as a random-
ized approach for kinodynamic planning. It incrementally
builds a search tree in the state space while integrating the
control inputs to ensure that the kinodynamic constraints
are satisfied. Some other extensions of the RRT are the CL-
RRT (Luders et al. 2010), and TB-RRT (Sintov and Shapiro
2014). One of the drawbacks of PRM and RRT algorithms is
that they provide an arbitrary solution rather than an optimal
one. Karaman and Frazzoli introduced the PRM* and RRT*
(Karaman and Frazzoli 2011), which use the notion of PRM
and RRT, respectively, but ensures an optimal solution with
probability one as the number of random points approaches
infinity. However, both extended methods can be applied to
systems where motion between any two states can be made

on a straight line. Hence, differential constraints of the sys-
tem cannot be applied. The work in Webb and van den Berg
(2013) extended theRRT* for systemswith linear differential
constraints, this by optimally connecting any pair of states
in the tree. All of the above mentioned methods demand an
initial state for the motion. Hence, they cannot be applied for
the GSTOP discussed in this paper.

3 Problem formulation

In this section we define the dynamic motion planning prob-
lem including the constraints and assumptions.

3.1 Given system and environment

Let Q ⊆ R
n be the configuration space of a fully actuated

dynamic system with n degrees of freedom and let U ⊆ R
n

be its set of all possible force/torque inputs. Moreover, let
Υ ⊂ R≥0 be the time space of the problem. The equations
of motion of the dynamic system are given

M(φ)φ̈ + C(φ, φ̇)φ̇ + G(φ) = u, (1)

where φ(t) ∈ Q is the configuration of the system at time
t ∈ Υ , M is an n × n inertia matrix, C is an n × n matrix
of centrifugal and Coriolis acceleration terms, G is an n × 1
vector of gravitational effects, and u(t) ∈ U is a vector of
control input forces and torques to the actuated degrees of
freedom (DOF) at time t ∈ Υ .

Let Qres ⊂ Q be a restricted subspace of the configu-
ration space defined by physical limitations of the system’s
DOF, e.g., joint mechanical limitations in a robotic arm. In
addition, the environment of the system comprises dynamic
obstacles. Formally, the obstacle region is a restricted time-
varying subset denoted by QT obs ⊂ Q × Υ . Therefore, we
define a projection map from such space to the configuration
space as follows.

Definition 1 Let the map Πt : Q × Υ → Q be a projection
map of the time-varying configuration space to the configu-
ration space at time t .

With this system and its environment we can now define the
bounding constraints.

3.2 Constraints

The motion of the dynamic system is limited under the fol-
lowing constraints:

1. The dynamic system is constrained to be in the allowed
configuration space Qt

f ree = Q \ (Qres ∪ Qt
obs) at

all times t , where Qt
f ree is the allowed configuration

Q f ree ⊆ Q at time t and Qt
obs = Πt ◦ QT obs .
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2. The allowed control inputs are defined by the abilities of
the actuators and given by Ual ⊆ U .

3. Let V ⊆ R
n denote the set of all maximal and minimal

velocity bounds of the DOF. The allowed DOF velocities
are defined by the abilities of the actuators and given by
Val ⊆ V .

4. Let Ls : Q → S, where S ⊆ R
e and e ≤ n, be a map

from the configuration space to an e-dimensional sub-
space in Q. We constrain a trajectory φ(t) ∈ Q to be on
the sub-space such that

Ls(φ(t)) ∈ S ⊂ Q (2)

for all t ∈ [0, tg]. This is a formulation of an equality
constraint and examples for such could be: maintaining a
coffee cup upright or sliding amanipulator’s end-effector
on a surface. Limitations on Ls(·) will be set further on.

A trajectory Œ(t) ∈ Q is said to be a feasible trajectory in
t ∈ [0, tg] if it satisfies the above constraints at that time
frame.

3.3 Optimality criterion

Let H : Q × U × Υ → R≥0 be a scalar cost func-
tional that maps a trajectory to a non-negative cost. An
optimal trajectory is the one that minimizes the given cost-
functional H(φ(t),u(t), tg) where tg is the time when the
system reaches the goal state. Examples of possible cost func-
tions to minimize could reflect: the operation time, actuator’s
torques/forces, energy consumption, the negative of the prox-
imity from the boundaries of the kinodynamic constraints,
etc.

3.4 Motion planning problem

The motion planning problem under kinodynamic con-
straints is defined as follows. Given the desired goal state
q(tg) = [φ(tg) φ̇(tg)]T of the system and the cost function
H(φ,u, tg), compute the optimal trajectory φ∗(t) ∈ Q f ree,
φ̇∗(t) ∈ Val for the dynamic system to reach the goal state
at some finite time tg ∈ [0, T ] where T ∈ Υ . The open-loop
control input u∗(t) ∈ Ual for t ∈ [0, tg] would also be pro-
vided to form an optimal trajectory. The required initial state
of the motion would be the result of φ∗(0).

3.5 Assumptions

The assumptions for this work are as follows:

1. We assume full knowledge of the system’s dynamics.
2. The trajectories of the dynamic obstacles are fully known.

3. The goal position is in Q f ree and its desired velocity is
in Val .

4. For practical applications, as stated in the introduction,
the trajectory’s initial velocity is considered zero. This
assumption can be easily released as will be discussed in
Sect. 4.2.

4 Preliminaries

In this section we present some notions that are used in the
proposed algorithm.

4.1 Configuration and task spaces

This paper uses the notion of the configuration space
(C-space) to parameterize the general coordinates of the
dynamical system. Moreover, we use the notion of the Task
Space (T-space) to parameterize some coordinates of the sys-
tem that are essential to the designated work task.

Let T ⊆ R
m be the T-space of the dynamic system given

in Eq. (1), where m is dimension of the T-space, and let
p(t) ∈ T be some task of the system at time t . For example,
a task of a robotic manipulator is the end-effector’s posi-
tion and orientation. Moreover, let T f ree denote the allowed
T-space corresponding to the allowed C-spaceQ f ree. Trans-
formation from the C-space to T-space is performed using
the direct kinematics of the system. Therefore, we define a
transformation map LM : R

n → R
m based on the direct

kinematics of the system. That is,

T = LM ◦ Q. (3)

An arbitrary configuration φ(t) ∈ Q f ree is mapped to a task
p(t) ∈ T f ree according to

p(t) = LM (φ(t)). (4)

Mapping of a velocity in the C-space to velocity in the T-
space is given by

ṗ(t) = J φ̇(t), (5)

where J = J (φ(t)) = dp
dφ

is the Jacobian matrix of the
system. Same could be done to the task acceleration

p̈(t) = J φ̈(t) + J̇ φ̇(t). (6)

In this paper, the planning is performed in the T-space
for generality and demonstration of using both C-space and
T-space. However, without loss of generality, the planning
could also be performed in the C-space with no reference to
the T-space.
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4.2 Trajectory parameterization

We propose a parameterization formulation for a trajectory
to reach the goal state. First we define an optional candidate
trajectory that could complete the task.

Definition 2 A trajectory function s(t) ∈ T is a candidate
trajectory if it is twice differentiable and satisfies some h
boundary constraints.

That is, in our motion planning problem, a trajectory s(t)
is a candidate trajectory if it satisfies the following h = 3m
boundary constraints that impose the initial velocity (accord-
ing to Assumption 4) and final state:

⎧
⎪⎨

⎪⎩

ṡ(0) = 0

s(tg) = LM (φ(tg)).

ṡ(tg) = J φ̇(tg)

(7)

Note that, although out of the scope of this paper, if one
desires to constrain an initial position as well, then m more
boundary constraints are added for s(0). Similarly, if wewish
to have a non-zero initial velocity (to remove Assumption 4),
the first constraint in (7) should be removed and the veloc-
ity parameters must be added to the parameterization vector
described next.

The following definition describes a candidate trajectory
function that is constrained by the problems boundary con-
straints and has redundant parameters to optimize.

Definition 3 A candidate trajectory function s(t) = fs(t,w)

∈ T , wherew = [w1 · · · wm·k]T ∈ R
m·k and has h boundary

constraints, is redundant if m · k > h for k ∈ R
+.

The parameters inw are coefficients of the trajectory function
s(t) that can be taken as, for example, coefficients of a poly-
nomial function or of a Fourier series. The three constraints
in (7) impose the values for wi , i = 1, . . . , h and leave
d = m ·k−h free parameters for the function to be optimized.
Moreover, the goal time tg can also be chosen as a free param-
eter if no time constraint is imposed. Therefore, the redundant
parameters are denoted as σ = [wh+1 · · · wm·k tg]T ∈ Ω ,
where Ω ⊆ R

d × Υ . If the goal time tg is fixed and
known, it should not be included in the parameters vec-
tor σ . The parameterization vector σ is therefore, the set
of free parameters of s(t) that are not constrained by (7).
As such,the boundary constraints are imposed on function
s(t) = fs(t, σ ) while providing a desired number of free
parameters in σ for motion planning and optimization. The
following is an example of the parameterization.

Example 1 Consider a one-dimensional system with the fol-
lowing boundary constraints: ṡ(0) = 0, s(tg) = sg , and
ṡ(tg) = vg . The trajectory can be chosen as an 7-dimensional
polynomial function of the form:

s(t) =
7∑

n=0

ant
n . (8)

Therefore, the constraints can be written as

⎧
⎪⎨

⎪⎩

a0 = 0
∑7

n=0 ant
n
g = sg

∑7
n=1 nant

n−1
g = vg

. (9)

Thus, a0 and twomore parameters, say a1 and a2, are defined
in terms of the remaining parameters, a3, . . . , a7 and the goal
time tg . Hence, the parameterization vector is defined by
these six free parameters to be

σ = [a3, a4, a5, a6, a7, tg]T . (10)

s(t) = fs(t, σ ) is now a function of the values in σ and the
goal time. The trajectory in the configuration space can be
expressed as

φ(t) = L−1
M (s(t)), φ̇(t) = J−1ṡ(t). (11)

These expressions can now be used to reformulate the con-
straints as described in Sect. 5. ��

4.3 Open-loop control input

Given a desired task trajectory p(t) = f p(t, σ ) defined by σ ,
an expression of the desired open-loop control force/torque
is required. Using Eqs. (4)–(6), the expression for φ(t), φ̇(t)
and φ̈(t) in terms of σ are given by

φ(t, σ ) = L−1
M

(
f p(t, σ )

)
, (12)

φ̇(t, σ ) = J−1 (
ḟ p(t, σ )

)
(13)

and

φ̈(t, σ ) = J−1 (
f̈ p(t, σ ) − J̇ φ̇(t)

)
, (14)

where J = J (φ(t, σ )) = J (L−1
m f p(t, σ )). We assume the

existence of L−1
m (·) and J−1(·) due to the fully actuated sys-

tem in (1). Substituting (12)–(14) in (1) yields an expression
for u(t) ∈ U :

u(t) = Θ(t, σ ) or Θ(t, σ ) − u(t) = 0, (15)

where Θ(t, σ ) = M φ̈(t, σ ) + Cφ̇(t, σ ) + G. One may see
Θ(t, σ ) = 0 as a time-varying d-dimensional hyper-surface
inΩ expressing the dynamics of the system. To track a trajec-
toryφ(t) parameterized by σ , the hyper-surfacemust contain
σ for all times t ∈ [0, tg]. Therefore, in expression (15) we
have the open-loop control input u(t) which is used to force
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the hyper-surface to contain σ throughout themotion. Hence,
satisfying condition (15) is required to follow the desired tra-
jectory. Another way to look at (15) is as an inverse dynamics
(Spong et al. 2006) expression in terms of t and σ .We choose
the open-loop control input, i.e., force/torque u(t), such that
the constraint is satisfied.

We have acquired expressions for the task response which
depend on the choice of the free parameter σ of the problem.
Therefore, we seek to find a choice of σ that will provide an
optimal trajectory under the kinodynamic constraints.

5 Constraints formulation

In this section we formulate the constraints of the system’s
motion in terms of the free parameters of the problem.
We formulate C-space constraints that define Q f ree, other
constraints in the T-space, and finally velocity and torque
constraints imposed by the limitations of the system. In the
following section, we denote the i th component of a vector
with index i in the subscript, e.g., (·)i .

As mentioned in Sect. 3.2, it is possible that not all the C-
space Q is accessible. Therefore, we can formulate the free
space Q f ree explicitly as a set of z1 constraints Φ ∈ R

z1

Φi (φ(t)) ≤ 0, ∀i = 1, . . . , z1. (16)

The set of constraints is composed of limitations of the actu-
ator’s range and forbidden regions due to obstacles. The set
of constraints in Eq. (16) could also be written in terms of
the task using (12) as

Φi

(
L−1
M ( f p(t, σ ))

)
≤ 0, ∀i = 1, . . . , z1. (17)

Note that if some obstacles cannot be described explicitly,
conventional sampling-based collision checking can also be
applied in the algorithm straight forward. Other constraints
in the T-space could be formulated as gc ∈ R

z2 by

gci (p(t)) = gci
(
f p(t, σ )

) ≤ 0, ∀i = 1, . . . , z2. (18)

The set of allowed velocities Val in C-space is the actuator’s
velocities within defined bounds for each joint i

ωmini ≤ φ̇i (t) ≤ ωmaxi , ∀i = 1, . . . , n. (19)

Using (13), the velocity constraints of (19) in terms of t and
σ are equivalent to

⎧
⎨

⎩

(
J−1 ∂ f p(t,σ )

∂t

)

i
− ωmaxi ≤ 0

−
(
J−1 ∂ f p(t,σ )

∂t

)

i
+ ωmini ≤ 0

, ∀i = 1, . . . , n, (20)

if both are satisfied.
The same could be done to constrain the necessary

forces/torques such that u(t) ∈ Ual . Explicitly we can
set upper and lower bounds to the open-loop control input
required to track the trajectory such that

umini ≤ ui (t) ≤ umaxi , ∀i = 1, . . . , n. (21)

Therefore, in terms of t and σ and according to (15), the
force/torque constraints are written as

{
Θi (t, σ ) − umaxi ≤ 0

−Θi (t, σ ) + umini ≤ 0
, ∀i = 1, . . . , n (22)

and are equivalent to (21) if both are satisfied. The set of
inequalities given in (17), (18), (20), (22) could be written as

Ψi (t, σ ) ≤ 0, i = 1, . . . , z, (23)

where Ψ (t, σ ) is a set of z functions:

Ψ (t, σ ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Φ
(
L−1
M ( f p(t, σ ))

)

gc
(
f p(t, σ )

)

J−1 ∂ f p(t,σ )

∂t − ωmax

−J−1 ∂ f p(t,σ )

∂t + ωmin

Θ(t, σ ) − umax

−Θ(t, σ ) + umin

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

z×1

(24)

and z = z1 + z2 + 4n.
Equation (23) expresses the inequality constraints of the

problem. Further, we must formulate the equality constraints
presented in (2) in terms of σ . Explicitly, a trajectory φ(t) is
constrained to be on the sub-space S for all times t ∈ [0, tg],
if it satisfies an equality constraint of the form he(φ(t)) = 0.
Using (12) we can acquire the constraint

he(t, σ ) = 0. (25)

Equality constraint (25) is a time-varying surface inΩ . How-
ever, the aim is to find a single σ which is on the surface
at all times. Therefore, we impose limitations on function
he(t, σ ) such that he ∈ Cl is continuously differentiable l
times, where l < ∞ and there exist a time-invariant region
h̄e in he obtained by explicitly solving the set of equations

h( j)
e (t, σ ) = 0 (26)
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where h( j)
e is the j th time derivative of he for j = 1, . . . , l.

Therefore, the new time-invariant equality constraint will be

h̄e(σ ) = 0. (27)

We defineH ⊂ Ω as the subset containing the points which
satisfy (27). If no equality constraints exist, then H = Ω .
If formulation (27) could not be obtained by solving (26), it
means that a time-invariant region does not exist in h. There-
fore, a singleσ satisfying (25) could not be obtained and there
is no solution to the desired trajectory optimization problem.

The inequalities in (23) define the feasible region of the
dynamic system in terms of time and the desired trajectory
parameter σ . That is, we obtained a set of analytical con-
straints that defines a time-varying region in Ω . The next
section presents the time-varying constraint problem and the
search algorithm to find an optimal trajectory satisfying the
constraints.

6 Feasibility search algorithm

In this section we define the trajectory feasibility problem
and present an algorithm for solving it.

6.1 Time-varying constraint (TVC) problem

In the previous section we obtained a set of inequalities
depending on t and the parameters vector σ . Recall that the
components in σ are independent of the time. Therefore, we
would like to find an optimal vector σ ∗ ∈ Ω that satisfies
the constraints from initial to goal time and minimizes some
cost function. Such an optimal vector will sufficiently define
the motion of the system under the kinodynamic constraints.
Let Σ ⊂ Ω be a user defined allowed region for σ . The
range of set Σ is chosen in a pre-processing step where the
user simulates sets of points in Ω with different ranges. The
user then chooses the range that best fits the workspace of
the robot. The range for the time parameter in Σ is chosen
according to the allowed time frame for the motion. Next, we
define the notion of a feasible set.

Definition 4 A set Ω f ⊂ Ω is a feasible set in t ∈ [t1, t2]
if Ω f ⊆ Σ and each σ ∈ Ω f satisfies inequality (23) and
equality (27) for all time t ∈ [t1, t2].
We now define a feasible vector.

Definition 5 A vector of trajectory parameters σ ∈ Ω is said
to be feasible in t ∈ [t1, t2] if σ ∈ Ω f .

The above two definitions conclude that a vector is feasible
if

σ = {σ ∈ Ω f |σ ∈ Σ,Ψi (t, σ ) ≤ 0, h̄e(σ ) = 0,

∀t ∈ [t1(σ ), t2(σ )]} (28)

for all i = 1, . . . , z. Notice that the time interval is written
in general [t1(σ ), t2(σ )] and is a function of σ . This is due to
the definition of the free parameters vector σ , which could
include parameters that define the operation time. Therefore,
the choice of σ determines the boundary time. We now face
the problem of finding the feasibility set Ω f ⊆ Σ where for
all vectors within it, inequality (23) is maintained at all times.
Formally, the problem is as follows.

Problem 1 Given the set of constraints in (23) and the setΣ ,
find the feasibility set Ω f ⊆ Σ .

Solving the above problem provides the feasible setΩ f from
which the optimal solution is to be chosen. Hence, we define
the following minimization problem.

Problem 2 Find the vector σ ∗ ∈ Ω f where Ω f ⊆ Σ such
that

σ ∗ = argmin
σ

H(σ )

subject to σ ∗ ∈ Ω f

(29)

where H(σ ) is some cost function to minimize.

In other words, the above general problem is finding an
optimal vector σ ∗ that is feasible and minimizes some cost
function H(σ ). Figure 1 illustrates the two problems. The
position and volume ofΨ (t, σ ) inΩ varies in time and there-
fore, the solution of the problem is in a domain formed by
projecting the constraints for time t1 to t2 on space Ω . The
intersection formed by these projections, if one exists, is the
feasibility domain that the optimal solution σ ∗ should be
chosen from.

The above problem seeks a feasibility set over a period of
time. It is important to note that we seek a feasibility set if
such exists. In the next subsectionwepresent an algorithm for
finding the feasibility set and choosing an optimal solution

Ψ(t1, σ) = 0

Ψ(ta, σ) = 0

Ψ(tb, σ) = 0
Ψ(t2, σ) = 0

σ∗

Ωf

Fig. 1 The TVC problem where t1 < ta < tb < t2
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from it. The probability to find a solution if one exists is also
presented.

6.2 Feasibility search algorithm

A search algorithm is now presented to find the set Ω f of
feasible vectors. The domain formed by the set of constraints
in inequality (23) is non-linear, non-convex, and not contin-
uous. Therefore, an analytical solution of the reachable set
is only possible in rare and simple instances. We present a
numerical search algorithm to find a set of vectors satisfy-
ing the above constraints. Further, we can choose one vector
from the set that best minimizes the cost function. We begin
by presenting a simple definition for normalizing the time
interval.

Lemma 1 A vector σ is feasible in t ∈ [t1, t2] if the constraint
Ψi (λt1 + (1− λ)t2, σ ) ≤ 0 is satisfied for all 0 ≤ λ ≤ 1 and
for all i = 1, . . . , z.

Proof For each time instant t ∈ [t1, t2] there exists λ such
that t = λt1 + (1 − λ)t2 and 0 ≤ λ ≤ 1. Therefore, if
a vector σ satisfies Ψi (t, σ ) ≤ 0 for all i = 1, . . . , z and
t1 ≤ t ≤ t2, it must also satisfy Ψi (λt1 + (1 − λ)t2, σ ) ≤ 0
for all i = 1, . . . , z and 0 ≤ λ ≤ 1. ��
Lemma 1 is utilized as a criterion for determining whether
a vector σ is feasible. Numerically, for σ we check the con-
straint for time t = λt1+ (1−λ)t2 with λ = {0,Δλ1,Δλ1+
Δλ2, . . . , 1}. The value of the step Δλ j will be further
defined. Figure 2 illustrates an abstraction of the feasibility
problem and the line in time defined by Lemma 1. Without
loss of generality, from this pointwewill address the problem
with the time frame [t1, t2] = [0, tg].

The basis of the algorithm’s operation is selecting a set
of N random points within Σ and checking each for its fea-
sibility. The feasibility search algorithm is presented as the
Feasibility_Search(·) function in Algorithm 1. The

t

σ1
σ2

Ψ(t1, σ) = 0

Ψ(t2, σ) = 0

(t1, σj)

(t2, σj)

(λt1 + (1 − λ)t2, σj)

Fig. 2 Vector σ satisfying Lemma 1

algorithm’s input is the allowed setΣ chosen the user, equal-
ity setH and the set of constraints of Eq. (23). The first step of
the algorithm is to determine the number of random points N
such that the probability to find a solution is more than a user
defined probability 1 − Pmax . The calculation of N based
on the choice of Pmax will be presented later in the algo-
rithm’s analysis. The next step is to sample N random points
P = {σ1, . . . , σN } uniformly distributed in Σ . The allowed
region formed by Σ is a hyper-rectangle in Ω and therefore
we sample points in each axis of Ω within the boundaries
defined byΣ . Such sampling provides a Poisson distribution
over the volume ofΣ . However, due to the equality constraint
(27), we sample points in Σ ∩ H. That is, we sample points
that are in Σ and satisfy (27). Thus, imposing the equality
constraint on the desired trajectory.

The next step is going over all the N points in P and fil-
tering out those that are not feasible. The final time tgi (σi )
is determined for each point σi checked. We check if the
constraints are satisfied for time t = λtgi where λ =
{0,Δλ1,Δλ1 + Δλ2, . . . , 1}. Those that do not satisfy the
constraints are eliminated and the filtered set P with size
M ≤ N is outputted.

Algorithm1Feasibility_search(Σ,H, Ψ , Pmax , εb)

Input: The allowed set Σ , equality set H, set of constraints Ψ , the
probability Pmax , and tolerance εb.

Output: Set of feasible points Ω f .
1: Calculate number of random points N such that the probability to

find a solution is more than 1 − Pmax .
2: Generate the set P = {σ1, . . . , σN } of N uniformly distributed ran-

dom points within Σ ∩ H.
3: Calculate Smax . // using optimization prob. in (32).

4: for δS = ΔS
ΔS−→ 1 do

5: for i = 1 → N do
6: if ¬(Adaptive_Check(σi , Ψ , δS · Smax , εb)) then
7: Remove σi from P .
8: end if
9: end for
10: end for
11: return Ω f = P = {σ1, . . . , σM } // M ≤ N

Scanning the constraint Ψ (λtgi , σi ) for λ = {0,Δλ,

2Δλ, . . . , 1} where Δλ is a constant value is rather risky.
The value ofΨ might ascend over 0 and descend below again
within the discretized step size. An example of such is shown
in Fig. 3 where with step size above 0.03 failure of the con-
straints might not be discovered. Moreover, too small step
sizes could be unnecessary and the price would include very
high complexity. Therefore, we present a simple adaptive
step size algorithm to fine tune the time steps and diagnose
or rule out such scenarios.
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Fig. 3 The maximum constraint value along time with change of the
step size Δλ

Definition 6 The constraint value of a feasible point σi at
time λtgi is defined to be

Ψ̃i,λ = max
j

{
Ψ j (λtgi , σi )

}
, (30)

where Ψ j is the j th component of the constraint vector Ψ .

That is, the constraint value is the shortest distance at time
λtgi from point σi to the boundary of the closest constraint.
Notice that we refer to a distance with a positive value, but
the value of Ψ̃i,λ is maintained negative for an indication that
σi is a feasible point. Assume that the change rate of the
constraint value with regards to λ is bounded by

ΔΨ̃i,λ

Δλ
≤ Smax , ∀ 0 ≤ λ ≤ 1. (31)

That is, the maximum slope of the constraint value Ψ̃i,λ is
Smax . Under this assumption we can say that if at time λtgi
the constraints are satisfied, Ψ̃i,λ < 0, then the minimum
time for the constraint to reach 0 is (λ + Δλmin)tgi where

Δλmin = − Ψ̃i,λ
Smax

. Therefore, as we get closer to a boundary
of a constraint, we decrease Δλ such that reaching above the
zero line in that time frame is not possible. Figure 4 illustrates
the selection of Δλ as it gets smaller when approaching the
zero line and larger when receding. However, in this adaptive
approach, even though Ψ̃i,λ passes the zero line, the algorithm
will never do so as it will continue to decrease Δλ. There-
fore, we bound such that the algorithmwill stop checking the
current σi (and remove it) if Ψ̃i,λ < εb < 0, where εb is a
value that will be defined further in the algorithm’s analysis.
This also serves as a safety distance, assuring the solution is
far enough from the constraints boundary. To calculate Smax

we differentiate the constraint vector by λ to acquire its slope
∂Ψ (λtg,σ )

∂λ
, where tg is the maximum possible goal time based

on the allowed time interval given inΣ . Smax is themaximum

Fig. 4 Adaptive step size algorithm

slope of all components over all time and can be computed
by the following maximization problem

Smax = max
λ,σ, j

S j (λtg, σ )

subject to 0 ≤ λ ≤ 1

σ ∈ Σ

(32)

where S j is the j th component of the constraints derivative

S(λtg, σ ) = ∂Ψ (λtg,σ )

∂λ
. This could be computed analyt-

ically using Kuhn–Tucker conditions (Kuhn and Tucker
1950) or numerically. The adaptive step size function
Adaptive_Check(·) is presented in Algorithm 2.

Algorithm 2 Adaptive_Check(σi , Ψ , Smax , εb)

Input: σi , the set of constraints Ψ , slope Smax and the tolerance εb.
Output: Boolean: 1 if σi is feasible, 0 if not feasible.
1: Set λ = 0.
2: Extract tgi from the last component of σi .
3: while ( λ ≤ 1 ) do
4: Calculate Ψ̃i,λ = max

j

{
Ψ j (λtgi , σi )

}
.

5: if ¬( Ψ̃i,λ < εb ) then
6: Return 0.
7: else
8: Calculate Δλ = − Ψ̃i,λ

Smax
.

9: λ = λ + Δλ.
10: end if
11: end while
12: Return 1.

The adaptive step size with the maximum slope Smax pro-
vides efficient sweep of the generated points by reducing the
number of checks for each point in P . However, for high-
dimensional systems such adaptive search by its own can
take a long time. Therefore, we propose a filtering process
in which we start with a fraction 0 ≤ δS ≤ 1 of Smax . That
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Fig. 5 Typical runtime with respect to change of ΔS

is, in the first iteration of the Adaptive_Check(·) func-
tion, the maximum allowed slope will be δS · Smax . Vectors
which are diagnosed to be non-feasible with maximum slope
of δS · Smax will surely be non-feasible with the full max-
imum slope Smax . Therefore we can eliminate them with
less checks. In the next iterations δS is increased and so on,
until the last iteration where δS = 1. In this process, with
small δS in the beginning, large time steps would be taken
to reduce runtime avoiding excessive calculations. For each
iteration we take the fraction as δS = i ·ΔS where ΔS is the
step size, i = 1, . . . , b and bΔS = 1. Hence, the following
problem is the determination of the step size ΔS. Small ΔS
can cause excessive iterations which could cause the oppo-
site and increase the runtime. Experiments on the algorithms
runtime on several systems have revealed a typical behavior
as shown in Fig. 5. The optimal step size should be ΔS = 1

3
which decreases the runtime by an average of 50%.

In high-dimensional systems, computation of the dynamic
system (Eq. (15)) takes a large percentage of the runtime.
Therefore, in addition to filtering-out non-feasible solutions
using δS , we can separate the torque constraint check from
the other constraints. In that way, only candidate trajecto-
ries which passed the kinematic constraints will be checked
for the torque constrains. Experiments have shown a 90%
runtime reduction compared to a non-separated constraint
check.

6.3 Optimal solution

The final step of the algorithm is selecting the optimal solu-
tion among the set of feasible points Ω f = {σ1, . . . , σM }
found inAlgorithm1 and perform local fine-tuning optimiza-
tion. Given the cost function H(σ ), the optimal solution σ ∗ is
found according toAlgorithm 3. In this algorithm, first a sim-
ple naive search is performed on the feasibility setΩ f to find
a feasible point σk that best minimizes H(σ ) (Line 1). Recall

Ωf

σk
σ∗

Ωf

σk

σ∗

Fig. 6 Two examples of the optimal solution refinement; one (left)
descended to the local minimum while the other (right) was stopped by
the constraint boundary

that the trajectory is an analytical function and therefore, in
most cases, the derivative of H(σ ) can be acquired. Thus, we
can utilize a Gradient Descent (GD) method (Cauchy 1847)
to refine the solution and find a local minimum in the neigh-
borhood of σk . The GDmethod is an iterative algorithm with
an update law (Line 5) of the form

σ (i+1) = σ (i) − γ∇H(σ (i)) (33)

where γ > 0 is chosen using exact or backtracking line
search (Boyd and Vandenberghe 2004). In each iteration the
constraints is checked. Notice that the Adaptive_Check
function prevents the solution from approaching the con-
straint boundary with distance less than εb. The iterations
are terminated if the new point breaks the constraints or if
the convergence condition is satisfied (Line 10 of Algorithm
3). Figure 6 presents two examples of local refinement of the
optimal solution; one was stopped by the constraint while the
other managed to reach the local minimum. The convergence
condition checks if the norm of the current descent is smaller
than a predefined tolerance εd , that is, we have reached a local
minimum with εd accuracy. The last point of the iteration is
the optimal solution and is returned by the algorithm.

Algorithm 3 Local_Optimization(Ω f , εd)

Input: Feasible set Ω f = {σ1, . . . , σM } and tolerance εd .
Output: Optimal solution σ ∗.
1: k = argmin

i
H(σi ), i = 1, . . . , M

2: Define σ (0) = σk .
3: i = 0.
4: repeat
5: σ (i+1) = σ (i) − γ∇H(σ (i)).
6: if ¬(Adaptive_Check(σ (i+1))) then
7: Return σ (i).
8: end if
9: i = i + 1.
10: until

∥
∥∇H(σ (i))

∥
∥
2 < εd

11: σ ∗ = σ (i).
12: Return σ ∗.
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6.4 Overall algorithm

The full SKIP algorithm is presented in Algorithm 4. The
algorithm receives input of the system’s constraints in the
form of inequalities (23), the desired probability Pmax (will
be presented in the next section), and the convergence tol-
erances εb and εd . If Algorithm 1 returns an empty set, the
algorithm reports a failed search. Else, its final output is,
according to (12), the desired optimal trajectory

φ∗(t) = L−1
M (fp(t,œ∗)), (34)

The optimal open-loop control signals could also be obtained
according to (15) and are

u∗(t) = Θ(t, σ ∗). (35)

Once a trajectory is found, trajectory tracking methods such
as inverse-dynamics and PD control (Spong et al. 2006) can
be applied straightforward.

7 Analysis

In this section a statistical and complexity analysis is per-
formed for the proposed SKIP algorithm.

Algorithm 4 SKIP algorithm
Input: Set of constraints Ψ , probability Pmax , and tolerances εb, εd .
Output: Optimal C-space trajectory φ∗(t).
1: Define allowed subset Σ ∈ Ω

2: Ω f = Feasibility_search(Σ,Ψ , Pmax , εb).
3: if Ω f = ∅ then
4: return fail.
5: end if
6: σ ∗ = Local_Optimization(Ω f , εd ).
7: Output optimal trajectory φ∗(t) = L−1

M (fp(t,œ∗))

7.1 Statistical analysis

A statistical analysis is performed in this subsection to cal-
culate the probability to find a solution if it exists. First, we
define an operator that measures the volume of a set.

Definition 7 Let a map LV : Γ → R>0 such that Γ ⊂
R
d . The value of LV ◦ Γ is the hyper-volume measure of

Γ according to the Lebesgue measure (Lebesgue and May
1966).

Let us assume Ω f is known and let 0 ≤ ρ ≤ 1 be the
relative portion ofΣ that is feasible; that is, the ratio between
the hyper-volumes of Ω f and Σ :

Ω

Σ

Ωf

Fig. 7 Two-dimensional example of Σ and Ω f in Ω

ρ = LV ◦ Ω f

LV ◦ Σ
. (36)

For simplification and practical usage, we will refer to Σ as
a hyper-rectangle in Ω (Fig. 7). Let X j be a random variable
that takes the value 1 if σ j ∈ Σ falls within Ω f and 0 if not.
Thus, X j is defined

X j =
{
1, σ j ∈ Ω f

0, σ j /∈ Ω f
. (37)

Because X j can take only two values {0, 1} and the prob-
ability of a random σ j ∈ Σ to fall in Ω f is ρ, then
X j ∼ Bernoulli(ρ). Therefore, the probability for a ran-
dom point σ j to have a compatible random variable X j = y
is

P(X j = y) = ρ y(1 − ρ)1−y f or y ∈ {0, 1}. (38)

If a set of N points P = {σ1, . . . , σN } ∈ Σ are independent,
identically distributed random variables, and their compat-
ible random variables Xi , i = 1, . . . , N are all Bernoulli
distributed with success probability ρ, then the sum of the
random variables is

Y =
∑

Xi ∼ Binomial(N , ρ). (39)

Therefore, the probability to have k points in Ω f for N ran-
dom points (k = 0, 1, . . . , N ) is

P(Y = k) =
(
N
k

)

ρk(1 − ρ)N−k (40)

where

(
N
k

)

is the binomial coefficient representing the

number of combinations distributing k successes in N ran-
dom points. The Poisson distribution can be used as an
approximation of the Binomial distribution if the number
of random points N goes to infinity (N → ∞) and the
Bernoulli probability is sufficiently small (ρ → 0). There-
fore, Y ∼ Poisson(λ) where λ = Nρ. That is,
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P(Y = k) � λ
k

k! e
−λ. (41)

We determine that if a solution exists, the highest allowed
probability that the solution will not be found (k = 0) out of
N random points is defined to be

P(Y = 0|ρ) = e−Nρ. (42)

In the next Theoremwe show the probability to find a solution
in Σ if one exists.

Theorem 1 The probability to find a solution in Σ , if one
exists, approaches 1 as the number of generated random
points approaches infinity.

Proof The probability not to find a solution in Σ is given in
(42). Therefore, the probability to find a solution is

Ps(N ) = P(Y > 0|ρ) = 1 − e−Nρ. (43)

If we increase N to infinity, then e−Nρ and the limit for the
probability is

lim
N→∞ Ps(N ) = 1. (44)

That is, as N approaches infinity, the probability to find a
solution in Σ approaches 1. ��
However, taking infinite number of points is not feasible.
Hence, we provide a formula for finding the number of ran-
dom points to be taken given the highest allowed probability
Pmax not to find a solution. Based on (42), the number N of
random points in Σ must be chosen such that

e−Nρ ≤ Pmax . (45)

This condition states that given ρ, the number of random
points to be chosen such that if a solution exists, the proba-
bility not to find it is lower than Pmax . That is, the probability
to find a solution is higher than 1 − Pmax .

The last issue that must be addressed is how to determine
ρ such that (45) could be used to calculate N given Pmax . The
determination of ρ is a resolution of how close we allow the
desired parameters vector to be from the constraints bound-
aries. That is, how small do we allow the feasibility set to
be in order to be considered to exist. If the volume of the
feasibility set Ω f is very small, the points within it must be
very close to the constraints boundary. This is an undesired
situation. Such a case must be bounded so that if Ω f is too
small, we would determine that a solution does not exist.
For that matter, we propose a heuristic approach of approxi-
mating a characteristic measure of the constraints. We define
a characteristic measure that is the average minimum dis-
tance from the center of the feasible region to the constraints

boundaries over time. The centroid of the subspace formed
by the constraints in (23) at time λi tg is calculated by

σbi = argmin
σ

⎧
⎨

⎩

z∑

j=1

a j,iΨ j (λi tg, σ )

⎫
⎬

⎭
, (46)

Ψ j is the j th component of the constraint vector Ψ , λi =
0,Δλ, .., βΔλ, where β = 1/Δλ, and tg is the last compo-
nent of vector σ . Because each constraint inΨ has a different
gradient, which affects the distance-value ratio, it is multi-
plied by its relative weight a j,i given by

a j,i =
∑z,k �= j

k=1 Ψk(λi tg, σ )
∑z

k=1 Ψk(λi tg, σ )
. (47)

Hence, the average distance over time (with step size Δλtg)
is given by

r = 1

β

β∑

i=1

⎛

⎝
1

z

z∑

j=1

Ψ j (λi tg, σbi )

⎞

⎠ (48)

and is a characteristic measure of the constraint’s size.
Heuristically, the average is computed in β time steps and
increasing β will increase the accuracy. Then, the minimum
allowed volume Ωmin is defined as

LV ◦ Ωmin = (αr)d , (49)

where 0 < α ≤ 1 is the allowed fraction of r and is user-
defined. That is, we define a hyper-cube with edge length
αr and compute its volume to be the minimal allowed one.
Thus, ρ is chosen as ρmin = (LV ◦Ωmin)/(LV ◦Σ) and the
minimal number of random points N for a given Pmax can
be calculated according to (45) by

N ≥ − 1

ρ
log(Pmax ). (50)

Moreover, the value of εb defined in Sect. 6.2 to be the
minimum allowed distance from the constraint boundary is
chosen using the characteristic measure calculated in (48) to
be εb = αr .

In the following Theorem we conclude the probability to
find a solution if such exists.

Theorem 2 If a solution for the time-varying problem exists
in Σ and N satisfies (50), the probability for the algorithm
to find a solution is at least 1 − Pmax .

Proof The probability not to find a solution if one exists is
given in (42). If the algorithm selects N random points in the
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allowed set Σ such that (50) is satisfied with given proba-
bility Pmax and a minimum allowed volume ratio ρmin , then
substituting it in (42) yields

P(Y = 0|ρmin) = Pmax , (51)

which is the probability not to find a solution. Hence, the
probability to find a solution is 1 − Pmax . ��
The choice of N is done ensuring finding a solution if such
exists above a known probability 1 − Pmax . It should be
noted that the local optimization performed in Algorithm 3
does not affect the probability to find a solution because it is
performed only if a solution is found.

The following corollary extends Theorem 2 to calculate
the probability to find a solution given a maximal calculation
runtime Tc and assuming the time for computing one point
is known to be τc.

Corollary 1 Given a desired calculation time Tc and the com-
puter cycle time τc to calculate one point, the probability to
find a solution if one exists is

Ps = 1 − e− Tc
τc

ρ
. (52)

Proof The maximal number of random points that can be

generated is Nc =
⌊
Tc
τc

⌋
. Therefore, given ρ and according

to (42), the probability not to find a solution is

P(Y = 0|ρ) = e−Ncρ = e− Tc
τc

ρ
. (53)

Therefore, the probability to find a solution is 1 − e− Tc
τc

ρ . ��
It is important to note that this analysis addresses the

probability of finding a solution if one exists. It does not,
however, prove that the result is indeed optimal. As like
other sampling-based optimal planners (Karaman and Fraz-
zoli 2011), optimality will be achieved if the planner is
allowed to run long enough.

7.2 Complexity

The complexity of the proposed algorithm is presented next.

Theorem 3 The upper bound time complexity of the proposed
algorithm is in the order of O(ξN ).

Proof We generate N random points in Σ and therefore,
the N points are to be checked for feasibility. Given the
maximum constraint slope Smax and the maximum allowed
boundary constraint distance εb. In the worst case, the con-
straint value Ψ̃i,λ approximately equals εb for all 0 ≤ λ ≤ 1.
Moreover, in the worst case, during the δS iterations, no

Table 1 Kinematic and dynamic properties of the manipulator used in
the simulations

Mass (kg) Length (m) C.O.M (m)

m1 22.3 L1 0.24 l1 0.021

m2 21.2 L2 0.25 l2 0.127

m3 8.51 L3 0.10 l3 0.032

m4 7.58 L4 0.19 l4 0.090

m5 1.34 L5 0.05 l5 0.008

m6 1.85 L6 0.14 l6 0.058

Inertia (kgm2)

Ix1 0.063 Iy1 0.106 Iz1 0.010

Ix2 0.120 Iy2 0.077 Iz2 0.120

Ix3 0.029 Iy3 0.034 Iz3 0.015

Ix4 0.010 Iy4 0.092 Iz4 0.085

Ix5 6.0 × 10−4 Iy5 9.8 × 10−4 Iz5 7.9 × 10−4

Ix6 1.9 × 10−3 Iy6 9.1 × 10−3 Iz6 7.7 × 10−3

points will be filtered-out but in the last iteration. There-
fore, each time step size will be Δλ = εb

Smax
and the number

of time steps each σi will be checked for satisfying the con-
straints is ξ = b 1

Δλ
= b Smax

εb
. Hereafter, N random points

will be checked, in the worst case, ξ times. Thus, the upper
bound time complexity of the algorithm is in the order of
O(ξN ). ��

8 Simulations

In this section we demonstrate the algorithm’s operation.
We present a trajectory planning and optimization for a 6R
manipulator for hitting a disk in a desired goal state. Here,
we demonstrate planning for a high-dimensional systemwith
no initial state, i.e., the initial state is left for planning. The
algorithm was implemented in Matlab1 on an Intel-Core i7-
2620M 2.7 GHz laptop computer with 8 GB of RAM. The
simulation videos can be seen on-line in resource 1.

The manipulator’s dynamics is given by (1), where its
physical properties are given in Table 1; mi , Ii , Li , and li
are the mass, moment of inertia, length, and center of mass
position (relative to the links joint) of link i , respectively.
The joints’ angles are φ(t) = [ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6]T and the
end-effectors task is p(t) = LM (φ(t)) = [px (t) py(t) pz(t)
ϕ(t) θ(t) ψ(t)]T , where ϕ, θ, ψ are the roll, pitch, and yaw,
respectively.

The aim of the planning is to slide a cylinder, held by the
end-effector, on an horizontal table. The cylinder must avoid
static and dynamic obstacles, and hit a disk at a required
position and velocity:

1 Matlab is a registered trademark of The Mathworks, Inc.
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Fig. 8 The 6R simulation setup

p(tg) =

⎛

⎜
⎜
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⎝
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0 [m]
0 [m]
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, ṗ(tg) =
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⎞

⎟
⎟
⎟
⎟
⎟
⎟
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, (54)

where zt is the desired end-effector’s height in order to main-
tain the grasped cylinder on the table. The setup for the
simulation is seen in Fig. 8. The desired trajectory function
s(t) ∈ T , where

s(t) = (sx (t) sy(t) sθ (t))
T , (55)

is given in the T-space by a g-order polynomial vector as

s(t) =
g∑

i=0

mit
i , (56)

where mi = [ai bi ci di ei fi ]T , i = 0, . . . , g are the coef-
ficients of the polynoms. The desired goal state (54) and
zero initial velocity impose the values for m1 = ṗ(0) = 0,
m2, andm3. Hence, the parameters’ vector is defined by the
remaining coefficients and the goal time such that

σ = [
m0

T m4
T · · · mg

T tg
]T

, (57)

and the desired trajectory is defined by σ such that s(t) =
s(t, σ ). The static and dynamic obstacles are constraints in
the form of

r2o − (sx (t) − xb(t))
2 − (sy(t) − yb(t))

2 ≤ 0, (58)

where ro is the sum of the cylinder and obstacle radii, xb(t)
and yb(t) are obstacles’ center coordinate. Note that for static
obstacles, the center coordinates are constant in time.We use

Table 2 Angle, angular velocity and torque bounds of themanipulation
used in the simulations

Min. value Max. value

Angles φ1,4,5,6 − 180◦ 180◦

φ2 − 90◦ 30◦

φ3 − 150◦ 150◦

Angular velocity ω1,4,6 − 10 [RPM] 10 [RPM]
ω2,3,5 − 20 [RPM] 20 [RPM]

Torques u1,3(t) − 30 [Nm] 30 [Nm]
u2(t) − 120 [Nm] 120 [Nm]
u4,5,6(t) − 10 [Nm] 10 [Nm]

the desired trajectory (56) and the kinematic and dynamic
model of the arm. By that, the obstacle constraints of (58),
and the angle, angular velocity, and torque bounds shown in
Table 2, are formed as (23) in terms of time and σ .

In addition to the inequality constraints above, we have
some equality constraints. First, because the end-effector’s
motion is on a 2D plane parallel to the table, its height is
constrained such that sz(t, σ ) = zt . Moreover, we constrain
the end-effector to be perpendicular to the table, that is, have
constant pitch such that θ(t, σ ) = π/2. In more complex
problemswewould have to generate the randompoints on the
constraints. However, these two equality constraints impose
some values in σ , in particular, c0 = zt , ci = 0, which are
the coefficients for the sz(t) polynom, and e0 = π/2 and
ei = 0, which are the coefficients of the pitch polynom θ(t),
for i = 1, . . . , g. These values could be maintained in σ or
could be removed by reducing the dimension of σ , either way
would not change runtime.

We have formed kinodynamic constraints as a function
of σ and t in the form of Eqs. (23) and (24). Moreover,
we have embedded the equality constraints in the structure
of σ . Next, we set the parameters for the adaptive search.
The desired trajectory polynomials s(t, σ ) are chosen to be
in the order of g = 20 and therefore the dimension of the
parameter set is Ω ⊆ R

108 × Υ . This value was chosen
by means of trial and error to have enough free param-
eters for optimization but small enough not to negatively
affect the performance. In the preprocessing step we chose
Σ such that the free trajectory parameters are in the range
of ai , bi , di , fi = [−10, 10] × 10−12, i = 0, 4, . . . , g − 1,
ag, bg = [−0.7, 0.7], dg, fg = [0, 2π ] and the goal time
interval to be tg = [0.5, 3.5]. These values were set based
on preliminary analysis showing the range of values for fea-
sible polynomials. This step is currently manual and future
work should consider ways for choosing the right values.
Therefore, the set Σ is a 109-dimensional hyper-rectangle
in Ω . Numeric calculation of ρ with user selection of α =
0.18 (18% of the average distance) yields the relative por-
tion ρ = 0.0021. After choosing the maximum probability
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Fig. 9 The 6R manipulator’s trajectory avoiding the obstacles and hitting the disk. The red obstacles are dynamic with a cyclic trajectory while the
blue obstacles are static

Pmax = 0.05 not to find a solution, the minimum number of
random points needed is N = 1426 [Eq. (45)]. Therefore,
by generating the N points in Σ , the probability to find a
solution if one exists is 95%.

With generating N random points in Σ and using Smax

calculated to be 3.28, the algorithm outputted 12 feasible
solutions after 4.01 min. Choosing a minimum time cost
function

H(σ ) = min{tg}, (59)

an optimal trajectory solution is outputted. Snapshots of the
optimal motion are illustrated in Fig. 9. The end-effector
navigates the grasped cylinder between the obstacles to hit the
disk. The joints angle, angular velocity, and torque response
of the optimal trajectory are shown in Figs. 10, 11 and 12,
respectively. As could be seen, they are within the bounds
defined by the kinodynamic constraints. The task response
of the end-effector is presented in Fig. 13. The goal state is
reached after 1.17 s while maintaining the height and pitch
constraints. The resultswere repeatable in all attempted trials.
The outputted trajectory now provides the optimal trajectory
over all possible start states. In addition, for this particular
start state, the trajectory is the optimal one.

The computation runtime is due to the 6×6matrices com-
putation of the dynamic model in (15). Removing the torque
constraint (21) yields runtime of 24.17 s, that is, 89.93%
less. In this simulation we have used ΔS = 1/3 and sepa-
rated between the constraint checks as discussed in Sect. 6.2.

Fig. 10 The 6R joint angles within the allowed bounds

Without these methods, the runtime would excessively be
1.45 h.

We wish also to demonstrate the optimality of the SKIP
solution compared to the known RRT* algorithm (Karaman
and Frazzoli 2011). We tested both algorithm on the planar
three degrees of freedom manipulator seen in Fig. 14 mov-
ing through dynamic obstacles and with a minimal time cost
function. For that matter, an initial configuration was set and
not optimized for SKIP. The joint angles, angular velocity
and torque limits were set to± 150◦,± 70RPM and± 2Nm,
respectively. For the SKIP implementation, the desired tra-
jectory function in the task spacewas chosen to be a 5th order
polynomial. N = 1061 random points were generated with
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Fig. 11 The 6R joint angular velocities within the allowed bounds

Fig. 12 The 6R joint torques within the allowed bounds

Fig. 13 The 6R end-effector task taken to the desired goal state

Fig. 14 A three degrees of freedom manipulator moving through
dynamic obstacles from start (left) to goal (right) configurations

Fig. 15 The joints angles response for the 3R manipulator solved with
the SKIP and RRT* algorithms (Color figure online)

98% probability of finding a solution. A time optimal solu-
tion with goal time of tg = 0.77 s was found after runtime
of 0.28 s. The RRT* algorithm was implemented as in Webb
and van den Berg (2013) with state-time representation (Sin-
tov and Shapiro 2014) for dynamic obstacles avoidance. The
RRT* ran for 20,000 iterations generating a trajectory with
tg = 0.756 s. The angle response of both algorithms can be
seen in Fig. 15. The SKIP output is near optimal since it is
confined to a polynomial trajectory. That is, the SKIP algo-
rithm found an optimal solution under the restrictions of a
polynomial trajectory.

9 Conclusions

We present an algorithm for goal state driven trajectory opti-
mization taking into account the kinodynamic constraints
of the system. The trajectory is parameterized to a high-
dimensional parameter space based on the goal state and
the trajectory function. The algorithm uses the formalized
constraints in the parameter space to find a feasible set of
solutions. The set is found by generating random points
within the allowed region of the free parameters and check-
ing each one for feasibility. The feasibility analysis was done
with an adaptive step size algorithm, decreasing the step size
if the point approaches the constraint boundary.Moreover, an
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optimal solution is chosen from the set of feasible solutions
and a gradient descent approach is used to refine the solu-
tion to the near by local optimum. The probability to find a
solution was shown to approach one if the number of random
points increases to infinity. Moreover, the statistical analysis
enabled an automatic parameter selection for the algorithm
to find a solution in a given probability or runtime.

It was shown that the algorithm has the worst case time
complexity in the order of O(ξN ). It should be noticed that
the algorithm plans the motion off-line prior to the motion.
To reduce the runtime, the computation could be done with
less strict parameters to see if solutions could be found more
quickly. Future work will involve runtime reduction and
application for online planning.

Currently, the allowed region Σ is user defined by pre-
processing simulations. Future work will deal with the
definition of the allowed region Σ . That is, finding opti-
mal boundaries of the set Σ while decreasing the number
of random points to be generated and of the runtime.
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