
Autonomous Robots (2018) 42:1543–1562
https://doi.org/10.1007/s10514-018-9719-4

ALAN: adaptive learning for multi-agent navigation

Julio Godoy1 · Tiannan Chen2 · Stephen J. Guy2 · Ioannis Karamouzas3 ·Maria Gini2

Received: 17 February 2017 / Accepted: 9 February 2018 / Published online: 19 February 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
In multi-agent navigation, agents need to move towards their goal locations while avoiding collisions with other agents and
obstacles, often without communication. Existingmethods compute motions that are locally optimal but do not account for the
aggregated motions of all agents, producing inefficient global behavior especially when agents move in a crowded space. In
this work, we develop a method that allows agents to dynamically adapt their behavior to their local conditions. We formulate
the multi-agent navigation problem as an action-selection problem and propose an approach, ALAN, that allows agents to
compute time-efficient and collision-free motions. ALAN is highly scalable because each agent makes its own decisions on
how to move, using a set of velocities optimized for a variety of navigation tasks. Experimental results show that agents using
ALAN, in general, reach their destinations faster than using ORCA, a state-of-the-art collision avoidance framework, and
two other navigation models.

Keywords Multi-agent navigation · Online learning · Action selection · Multi-agent coordination

1 Introduction

Real-time goal-directed navigation of multiple agents is
required in many domains, such as swarm robotics, pedes-
trian navigation, planning for evacuation, and traffic engi-
neering. Conflicting constraints and the need to operate in
real-time make this problem challenging. Agents need to
move towards their goals in a timely manner, but also need to
avoid collisionswith each other and the environment. In addi-
tion, agents often need to compute their own motion without
any communication with other agents.

While decentralization is essential for scalability and
robustness, achieving globally efficient motions is criti-
cal, especially in applications such as search and rescue,

This is one of several papers published in Autonomous Robots
comprising the “Special Issue on Distributed Robotics: From
Fundamentals to Applications”.

B Julio Godoy
juliogodoy@udec.cl

1 Department of Computer Science, Universidad de
Concepcion, Edmundo Larenas 219, Concepcion, Chile

2 Department of Computer Science and Engineering,
University of Minnesota, 200 Union Street SE, Minneapolis,
MN 55455, USA

3 School of Computing, Clemson University, 100 McAdams
Hall, Clemson, SC 29634, USA

aerial surveillance, and evacuation planning, where time
is critical. Over the past twenty years, many decentralized
techniques for real-time multi-agent navigation have been
proposed, with approaches such as Optimal Reciprocal Col-
lision Avoidance (ORCA) (van den Berg et al. 2011a) being
able to provide guarantees about collision-freemotion for the
agents. Although such techniques generate locally efficient
motions for each agent, the overall flow and global behavior
of the agents can be far from efficient; agents plan only for
themselves and do not consider how their motions affect the
other agents. This can lead to inefficientmotions, congestion,
and even deadlocks.

In this paper, we are interested in situations where agents
have to minimize their overall travel time. We assume each
agent has a preferred velocity indicating its desired direction
of motion (typically oriented towards its goal) and speed. An
agent runs a continuous cycle of sensing and acting. In each
cycle, it has to choose a new velocity that avoids obstacles but
is as close as possible to its preferred velocity. We show that
by intelligently selecting preferred velocities that account for
the global state of the multi-agent system, the time efficiency
of the entire crowd can be significantly improved compared
to state of the art algorithms.

In our setting, agents learn how to select their veloci-
ties in an online fashion without communicating with each
other. To do so, we adapt amulti-armed bandit formulation to

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-018-9719-4&domain=pdf
http://orcid.org/0000-0002-4912-1837

1544 Autonomous Robots (2018) 42:1543–1562

the preferred velocity selection problem and present ALAN
(Adaptive Learning Approach for Multi-Agent Navigation).
With ALAN, agents choose from a set of actions, one at
each time step, based on a combination of their goals and
how their motions will affect other agents. We show how
critical the set of available actions is to performance, and
we present a Markov Chain Monte Carlo learning method
to learn an optimized action space for navigation in a vari-
ety of environments. Together with a scheme that guarantees
collision-free motions, these features allow ALAN agents to
minimize their overall travel time.1

Main results This paper presents four main contributions.
First, we formulate the multi-agent navigation problem in a
multi-armed bandit setting. This enables each agent to decide
its motions independently of the other agents. The other
agents influence indirectly how an agentmoves, because they
affect the reward the agent receives. The independence of the
choices made by each agent makes the approach highly scal-
able. Second, we propose an online action selection method
inspired by the Softmax action selection technique (Sutton
and Barto 1998), which achieves the exploration exploitation
tradeoff. Third, we propose a Markov Chain Monte Carlo
method to learn offline an optimized action set for specific
navigation environments, as well as an action set optimized
for multiple navigation scenarios. Last, we show experimen-
tally that our approach leads to more time efficient motions
in a variety of scenarios, reducing the travel time of all agents
as compared to ORCA, the Social Forces model for simulat-
ing pedestrian dynamics (Helbing and Molnar 1995), and
the pedestrian model for collision avoidance proposed in
Karamouzas et al. (2009).

This work is an extended version of Godoy et al. (2015),
which introduced a multi-armed bandit formulation for
multi-agent navigation problems. Compared to Godoy et al.
(2015), here we reduce ALAN’s dependency on parameters,
present an offline approach to learn an optimized action set,
and include an extended experimental analysis of ALAN.

The rest of the paper is organized as follows. In Sect. 2,
we review relevant related work. In Sect. 3, we provide
background on ORCA, the collision avoidance method used
in ALAN. In Sect. 4, we present our problem formulation
for multi-agent navigation. ALAN and its components are
described in Sect. 5, while our experimental setup and perfor-
mance metric are described in Sect. 6, where we also present
the scenarios we use to evaluate our approach, and experi-
mental results. Section 7 presents our Markov Chain Monte
Carlo method for learning action spaces for different naviga-
tion environments. A thorough experimental analysis of the
performance of ALAN is in Sect. 8, where we also discuss

1 Videos highlighting our work can be found in http://motion.cs.umn.
edu/r/ActionSelection.

its applicability in multi-robot systems. Finally, we conclude
and present future research plans in Sect. 9.

2 Related work

Extensive research in the areas of multi-agent navigation and
learning has been conducted over the last decade. In this
section, we present an overview of prior work most closely
related to our approach. For a more comprehensive discus-
sion on multi-agent navigation and learning we refer the
reader to the surveys of Pelechano et al. (2007b) and Buşoniu
et al. (2008), respectively.

2.1 Multi-agent navigation

Numerous models have been proposed to simulate individ-
uals and groups of interacting agents. The seminal work of
Reynolds on boids has been influential on this field (Reynolds
1987). Reynolds used simple local rules to create visually
compelling flocks of birds and schools of fishes. Later he
extended his model to include autonomous agent behav-
iors (Reynolds 1999). Since Reynolds’s original work, many
crowd simulation models have been introduced that account
for groups (Bayazit et al. 2003), cognitive and behavioral
rules (Funge et al. 1999; Shao andTerzopoulos 2007), biome-
chanical principles (Guy et al. 2010) and sociological or
psychological factors (Pelechano et al. 2007a; Guy et al.
2011; Popelová et al. 2011; Tsai et al. 2013).

An extensive literature also exists on modeling the
local dynamics of the agents and computing collision-free
motions. Methods that have been proposed to prevent col-
lisions during navigation can be classified as reactive and
anticipatory.

In reactive collision avoidance, agents adapt their motion
to other agents and obstacles along their paths.Many reactive
methods (Reynolds 1987, 1999; Helbing et al. 2000; Khatib
1986; Ratering and Gini 1995) use artificial repulsive forces
to avoid collisions. However, these techniques do not antici-
pate collisions. Only when agents are sufficiently close, they
react to avoid collisions. This can lead to oscillations and
local minima. Another limitation of these methods is that the
forces must be tuned separately for each scenario, limiting
their robustness.

In anticipatory collision avoidance, agents predict and
avoid potential upcoming collisions by linearly extrapolat-
ing their current velocities. In this line, geometrically based
algorithms compute collision-free velocities for the agents
using either sampling (van den Berg et al. 2008; Pettré et al.
2009; Karamouzas and Overmars 2012; Ondřej et al. 2010)
or optimization techniques (van den Berg et al. 2011a; Guy
et al. 2009).

123

http://motion.cs.umn.edu/r/ActionSelection
http://motion.cs.umn.edu/r/ActionSelection

Autonomous Robots (2018) 42:1543–1562 1545

We focus on minimizing the travel time of the agents, but
other metrics have been studied. For example, the work in
(Solovey et al. 2015; Yu and LaValle 2013; Karamouzas et al.
2013) minimizes the total length of the path of the agents by
formulating the path planning problem as a mixed integer
linear program. Coordinating the motion of a set of pebbles
in a graph to minimize the number of moves was studied in
Kornhauser et al. (1984).

2.2 Reinforcement learning

Many learning approaches used for robots and agents
derive from the reinforcement learning literature (Buşoniu
et al. 2008). Reinforcement Learning (RL) addresses how
autonomous agents can learn by interacting with the envi-
ronment to achieve their desired goal (Sutton 1988).

AnRL agent performs actions that affect its state and envi-
ronment, and receives a reward value which indicates the
quality of the performed action. This reward is used as feed-
back for the agent to improve its future decisions. Different
approaches have been proposed to incorporate RLwhenmul-
tiple agents share the environment [see Buşoniu et al. (2008);
Kober et al. (2013); Uther and Veloso (1997) for extensive
overviews].

Inmulti-agentRL algorithms, agents typically need to col-
lect information on how other agents behave and find a policy
that maximizes their reward. This is expensive when the state
space is large and requires a significant degree of explo-
ration to create an accurate model for each agent. Hence,
approaches that model the entire environment focus on small
problems and/or a small number of agents. To reduce com-
plexity, some approaches focus on the local neighborhood
of each agent (Zhang and Lesser 2012, 2013). By consid-
ering a local neighborhood, the state space of each agent is
reduced. To completely avoid the state space complexity, the
learning problem can be formulated as a multi-armed bandit
problem (Sutton 1988), where the agents use the reward of
each action to make future decisions. In multi-armed ban-
dit problems, it is critical to balance exploiting the current
best action and exploring potentially better actions (Audibert
et al. 2009; Macready and Wolpert 1998).

2.2.1 Action selection techniques

A variety of approaches aim at balancing exploration and
exploitation, which is critical for online learning problems
such as ours.

A simple approach is ε-greedy, which selects the highest
valued action with probability 1-ε, and a random action with
probability ε, for 0 ≤ ε ≤ 1. The value of ε indicates the
degree of exploration that the agent performs (Sutton and
Barto 1998). Because of its probabilistic nature, ε-greedy
can find the optimal action, without taking into account the

difference between the values of the actions. This means that
ε-greedy does the same amount of exploration regardless of
how much better the best known action is, compared to the
other actions.

Another widely used action-selection technique is the
upper confidence bounds (UCB) algorithm (Auer et al. 2002).
UCB is a deterministic method that samples the actions pro-
portionally to the upper-bound of the estimated value of their
rewards (based on their current average reward) and their
confidence interval (computed using a relation between the
number of times each action was selected and the total num-
ber of action taken so far by the agent). Unlike ε-greedy,UCB
considers the value of all actions when deciding which one
to choose. However, it does unnecessary exploration when
the reward distribution is static (i.e., the best action does not
change).

A method that combines the probabilistic nature of ε-
greedy and that accounts for the changing reward structure
is the Softmax action selection strategy. Softmax biases the
action choice depending on the relative reward value, which
means that it increases exploration when all actions have
similar value, and it reduces it when some (or one) action is
significantly better than the rest. The action selection method
we use is based on the Softmax strategy, due to these prop-
erties.

2.3 Learning inmulti-agent navigation

Extensive work has also been done on learning and adapt-
ing motion behavior of agents in crowded environments.
Depending on the nature of the learning process, the work
can be classified in two main categories: offline and online
learning. In offline learning, agents repeatedly explore the
environment and try to learn the optimal policy given an
objective function. Examples of desired learned behaviors
include collision avoidance, shortest path to destination, and
specific group formations. As an example, the work in Henry
et al. (2010) uses inverse reinforcement learning for agents
to learn paths from recorded training data. Similarly, the
approach in Torrey (2010) applies Q-learning to plan paths
for agents in crowds. In this approach, agents learn in a series
of episodes the best path to their destination. A SARSA-
based (Sutton and Barto 1998) learning algorithm has also
been used inMartinez-Gil et al. (2012) for offline learning of
behaviors in crowd simulations. The approach in Cunning-
ham and Cao (2012) analyzes different strategies for sharing
policies between agents to speed up the learning process in
crowd simulations. In the area of swarm intelligence, the
work in Hettiarachchi (2010) uses evolutionary algorithms
for robotics, learning offline the parameters of the fitness
function and sharing the learned rules in unknown environ-
ments.

123

1546 Autonomous Robots (2018) 42:1543–1562

y

x0

vi

vj

Aj

Ai

ri

rj

V Oi|j

vy

vx

O
R
C
A

i|j

0

vi − vj vi

r i
+
r j

u

(a) (b)

Fig. 1 a Two agents, Ai and A j , moving towards a potential collision. b The set of allowed velocities for agent i induced by agent j is indicated
by the half-plane delimited by the line perpendicular to û through the point vi + 1

2u, where u is the vector from vi − vj to the closest point on the
boundary of V Oi | j

Offline learning has significant limitations, which arise
from the need to train the agents before the environment is
known. In contrast, the main part of our work is an online
learning approach. In online methods, agents are given only
partial knowledge of the environment, and are expected to
adapt their strategies as they discover more of the envi-
ronment. Our approach allows agents to adapt online to
unknown environments, without needing explicit commu-
nication between the agents.

3 Background

In this section, we provide background information on the
method that agents employ to avoid collisions.

3.1 ORCA

The Optimal Reciprocal Collision Avoidance framework
(ORCA) is an anticipatory collision avoidance that builds on
the concept of Velocity Obstacles (VO) (Fiorini and Shiller
1998), where agents detect and avoid potential collisions
by linearly extrapolating their current velocities. Given two
agents, Ai and A j , the set of velocity obstacles V OAi |A j

represents the set of all relative velocities between i and j
that will result in a collision at some future moment. Using
the VO formulation, we can guarantee collision avoidance by
choosing a relative velocity that lies outside the set V OAi |A j .
Let u denote the minimum change in the relative velocity of
i and j needed to avoid the collision. ORCA assumes that
the two agents will share the responsibility of avoiding it and
requires each agent to change its current velocity by at least

1
2u. Then, the set of feasible velocities for i induced by j is
the half-plane of velocities given by:

ORCAAi |A j =
{
v |

(
v −

(
vi + 1

2
u
))

· û
}

,

where û is the normalized vector u (see Fig. 1). Similar
formulation can be derived for determining Ai ’s permitted
velocities with respect to a static obstacle Ok . We denote this
set as ORCAAi |Ok .

In a multi-agent setting, ORCAworks as follows. At each
time step of the simulation, each agent Ai infers its set of fea-
sible velocities, FVAi , from the intersection of all permitted
half-planes ORCAAi |A j and ORCAAi |Ok induced by each
neighboring agent j and obstacle Ok , respectively. Having
computed FVAi , the agent selects a new velocity vnewi for

itself that is closest to a given preferred velocity vprefi and
lies inside the region of feasible velocities:

vnewi = arg min
v∈FVAi

‖v − vprefi ‖. (1)

The optimization problem in (1) can be efficiently solved
using linear programming, since FVAi is a convex region
bounded by linear constraints. Finally, agent i updates its
position based on the newly computed velocity. As ORCA is
a decentralized approach, each agent computes its velocity
independently.

In addition, each agent typically uses its goal-oriented
velocity vgoali as the preferred velocity given as input to
ORCA in (1). We refer the reader to van den Berg et al.
(2011a) for more details.

123

Autonomous Robots (2018) 42:1543–1562 1547

(a) (b) (c) (d)

Fig. 2 Three agents cross paths. a Initial positions of the agents. bGoal
positions of the agents. c When navigating with ORCA, the agents run
into and push each other resulting in inefficient paths. d When using

ALAN the agents select different preferred velocities which avoid local
minima, resulting in more efficient paths

3.2 Limitations of ORCA

Although ORCA guarantees collision-free motions and pro-
vides a locally optimal behavior for each agent, the lack of
coordination between agents can lead to globally inefficient
motions. For an example, see Fig. 2. Here, because the agents
follow only their goal-oriented preferred velocity, they get
stuck in a localminimumresulting in the trajectories shown in
Fig. 2c. If instead the agents behaved differently, for instance,
by selecting a different vpref for a short period of time, they
might find a larger region of feasible velocities. This might
indirectly help to alleviate the overall congestion, benefit-
ing all agents. Our proposed approach, ALAN, addresses
this limitation, by allowing agents to adapt their preferred
velocity in an online manner, hence improving their motion
efficiency. An example of the trajectories generated by our
approach can be seen in Fig. 2d.

4 Problem formulation

In our problem setting, given an environment and a set A
of agents, each with a start and a goal position, our goal is
to enable the agents to reach their goals as soon as possible
and without collisions. We also require that the agents move
independently and without explicitly communicating with
each other. For simplicity, we model each agent as a disc
which moves on a 2D plane that may also contain a set of k
static obstacles O (approximated by line segments in all our
experiments).

Given n agents, let agent Ai have radius ri , goal posi-
tion gi , and maximum speed υmax

i . Let also pti and v
t
i denote

the agent’s position and velocity, respectively, at time t . Fur-
thermore, agent Ai has a preferred velocity vprefi at which it

prefers to move. Let vgoali be the preferred velocity directed
towards the agent’s goal gi with a magnitude equal to υmax

i .
The main objective of our work is to minimize the travel
time of the set of agents A to their goals, while guaranteeing
collision-freemotions. Tomeasure this global travel time, we
could consider the travel time of the last agent that reaches its
goal. However, this value does not provide any information
of the travel time of all the other agents. Instead, we measure
this travel time, T T ime(A), by accounting for the average
travel time of all the agents in A and its spread. Formally:

TTime(A) = μ (TimeToGoal(A))

+ 3 σ (TimeToGoal(A)) (2)

where T imeToGoal(A) is the set of travel times of all
agents in A from their start positions to their goals, and μ(·)
and σ(·) are the average and the standard deviation (using
the unbiased estimator) of T imeToGoal(A), respectively.
If the times to goals of the agents follow a normal distri-
bution, then T T ime(A) represents the upper bound of the
T imeToGoal(A) for approximately 99.7% of the agents.
Even if the distribution is not normal, at least 89% of the
times will fall within three standard deviations (Chebyshev’s
inequality). Our objective can be formalized as follows:

minimize T T ime(A)

s.t. ‖pti − ptj‖ > ri + r j ,
i �= j

∀i, j ∈ [1, n]
dist(pti , Oj) > ri , ∀i ∈ [1, n], j ∈ [1, k]
‖vti‖ ≤ υmax

i , ∀i ∈ [1, n]

(3)

wheredist(·)denotes the shortest distance between twoposi-
tions. To simplify the notation, in the rest of the paper we
omit the index of the specific agent being referred, unless it
is needed for clarity.

123

1548 Autonomous Robots (2018) 42:1543–1562

Minimizing Eq. 3 for a large number of agents using a
centralized planner with complete information is intractable
(PSPACE-hardHopcroft et al. 1984), given the combinatorial
nature of the optimization problem and the continuous space
of movement for the agents. Since we require that the agents
navigate independently and without explicit communication
with each other, Eq. 3 has to be minimized in a decentralized
manner. As the agents do not know in advance which trajec-
tories are feasible, the problem becomes for each agent to
decide how to move at each timestep, given its perception of
the local environment. This is the question addressed by our
online learning approach, ALAN, which is described next.

5 ALAN

ALAN is an action selection framework, which provides a
set of preferred velocities an agent can choose from, and a
reward function the agent uses to evaluate the velocities and
select the velocity to be used next. ALAN keeps an updated
reward value for each action using a moving time window
of the recently obtained rewards. If information about the
set of navigation environments is available, ALAN can take
advantage of an action learning approach to compute, in an
offline manner, an action set that is optimized for one or a set
of scenarios (see Sect. 7).

In ALAN, each agent runs a continuous cycle of sensing
and action until it reaches its destination. To guarantee real-
time behavior, we impose a hard time constraint of 50 ms
per cycle. We assume that the radii, positions and velocities
of nearby agents and obstacles can be obtained by sens-
ing. At each cycle the agent senses and computes its new
collision-free velocity which is used until the next cycle. The
velocity has to respect the agent’s geometric and kinematics
constraints while ensuring progress towards its goal.

To achieve this, ALAN follows a two-step process. First,
the agent selects a preferred velocity vpref (as described later
in Sect. 5.3). Next, this vpref is passed to ORCA which pro-
duces a collision-free velocity vnew, which is the velocity the
agent will use during the next timestep.

Algorithm 1 shows an overview of ALAN. This algorithm
is executed at every cycle. If an action is to be selected in
the current cycle (line 3, in average every 0.2 s), the Soft-
max action selection method (presented in Sect. 5.3) returns
a vpref (line 4), which is passed to ORCA. After comput-
ing potential collisions, ORCA returns a new collision-free
velocity vnew (line 6), and the get Action method returns the
action a that corresponds to the vpref selected (line 7). This
action a is executed (line 8), which moves the agent with
the collision-free velocity vnew for the duration of the cycle,
before updating the agent’s position for the next simulation
step (line 9). The agent determines the quality of the action a
(lines 10-12) by computing its reward value (see Sect. 5.1).

This value becomes available to the action selection mech-
anism, which will select a new vpref in the next cycle. This
cycle repeats until the agent reaches its goal.

Algorithm 1: The ALAN algorithm for an agent
1: initialize simulation
2: while not at the goal do
3: if UpdateAction(t) then
4: vpref ← Sof tmax(Act)
5: end if
6: vnew ← ORCA(vpref)
7: a ← get Action(vpref)
8: Execute(a)

9: pt ← pt-1 + vnew · �t

10: Rgoal
a ← GoalReward(at−1) (cf. Eq. 5)

11: Rpoli te
a ← Poli teReward(at−1) (cf. Eq. 6)

12: Ra ← (1 − γ) · Rgoal
a + γ · Rpoli te

a
13: end while

Themain issue is how an agent should choose its preferred
velocity. Typically, an agent would prefer a velocity that
drives it closer to its goal, but different velocities may help
the entire set of agents to reach their destinations faster (con-
sider, for example, an agent moving backwards to alleviate
congestion). Therefore, we allow the agents to use different
actions, which correspond to different preferred velocities
(throughout the rest of this paper, we will use the terms pre-
ferred velocities and actions interchangeably). In principle,
finding the best motion would require each agent to make
a choice at every step in a continuous 2D space, the space
of all possible speeds and directions. This is not practical in
real-time domains. Instead, agents plan their motions over a
discretized set of a small number of preferred velocities, the
set Act . An example set of 8 actions uniformly distributed
in the space of directions is shown in Fig. 3. We call this set
Sample set.

Different action sets affect the performance of the agents.
We analyze this in Sect. 7, where we present an offline learn-
ing method to find an optimal set of actions.

GoalAgent
0

1
2

3

4

5

6
7

Fig. 3 Example set of actions with the corresponding action ID. The
eight actions correspond to moving at 1.5m/s with different angles with
respect to the goal: 0◦, 45◦, 90◦, 135◦, − 45◦, − 90◦, − 135◦ and 180◦

123

Autonomous Robots (2018) 42:1543–1562 1549

(a) (b)

(c)

(d)

Fig. 4 Two agents moving to their goals in opposite sides of the corri-
dor. Different behaviors are produced by optimizing different metrics.
b When meeting in the middle of the corridor, agents cannot continue
their goal oriented motions without colliding. c Considering only goal

progress when choosing actions results in one agent slowly pushing the
other out of the corridor. d Considering both goal progress and effect of
action on other agents results in one agent moving backwards to help
the other move to its goal, reducing the travel time for both

5.1 Reward function

The quality of an agent’s selected vpref is evaluated based
on two criteria: how much it moves the agent to its goal,
and its effect on the motion of nearby agents. The first cri-
terion allows agents to reach their goals, finding non-direct
goal paths when facing congestion or static obstacles. The
second criterion encourages actions that do not slow down
the motion of other agents. To do this, agents take advantage
of the reciprocity assumption of ORCA: when a collision
is predicted, both potentially colliding agents will deviate to
avoid each other. Hence, if a collision-free vnew computed by
ORCA is different from the selected preferred velocity vpref ,
it also indicates a deviation for another agent. Therefore, to
minimize the negative impact of its decisions on the nearby
agents, i.e., to be polite towards them, each agent should
choose actions whose vnew is similar to the vpref that pro-
duced it. This duality of goal oriented and “socially aware"
behaviors, in humans, has been recently studied in Sieben
et al. (2017). Here, we show that considering both criteria in
the evaluation of each action reduces the travel time of the
agents overall. See Fig. 4 for an example.

Specifically, we define the reward Ra for an agent
performing action a to be a convex combination of a goal-
oriented component and a politeness component:

Ra = (1 − γ) · Rgoal
a + γ · Rpoli te

a , (4)

where the parameter γ , called coordination f actor , con-
trols the influence of each component in the total reward (0
≤ γ < 1).

The goal-oriented component Rgoal
a computes the scalar

product of the collision-free velocity vnew of the agent with
the normalized vector pointing from the position p of the
agent to its goal g. This component promotes preferred veloc-

ities that lead the agent as quickly as possible to its goal.
Formally:

Rgoal
a = vnew · g − p

‖g − p‖ (5)

The politeness componentRpoli te
a compares the executed

preferred velocity with the resulting collision-free velocity.
These two velocitieswill be similarwhen the preferred veloc-
ity does not conflict with other agents’ motions, and will
be different when it leads to potential collisions. Hence, the
similarity between vnew and vpref indicates how polite is the
corresponding action, with respect to the motion of the other
agents. Polite actions reduce the constraints on other agents’
motions, allowing them to move and therefore advancing the
global simulation state. Formally:

Rpoli te
a = vnew · vpref (6)

If an agent maximizes Rgoal
a , it would not consider the

effects of its actions on the other agents. On the other hand,
if the agent tries to maximize Rpoli te

a , it has no incentive to
move towards its goal, which means it might never reach it.
Therefore, an agent should aim at maximizing a combination
of both components. Different behaviors may be obtained
with different values of γ . In Sect. 6.7, we analyze how sen-
sitive the performance of ALAN is to different values of γ .
Overall, we found that γ = 0.4 provides an appropriate bal-
ance between these two extremes.

Figure 5 shows an example of conditions an agent may
encounter. Here, there is congestion on one side of the agent,
which results in low reward values for the left angled motion.
The other actions are not constrained, and consequently their
reward value is higher. In this case, the agent will choose the
straight goal-oriented action, as it maximizes Ra .

123

1550 Autonomous Robots (2018) 42:1543–1562

(1, 1)

(0.2, 0.1)

(0.5, 1)

Goal(-1, 1)

Fig. 5 Example of reward values for different actions under partially
congested local conditions. The reward Ra of each action a is shown
as a pair of goal-oriented and a politeness components (Rgoal

a ,Rpoli te
a)

5.2 Multi-armed bandit formulation

As the number of states is very large, we adapt a stateless
representation. Each agent can select one action at a time,
hence the question is which one should the agent execute
at a given time. In ALAN, agents learn the reward value of
each action through its execution, in an online manner, and
keep the recently obtained rewards (using a moving time
window of the rewards) to decide how to act. We allow a
chosen action to be executed for a number of cycles, and per-
form an a-posteriori evaluation to account for bad decisions.
This way, the problem of deciding how to move becomes
a resource allocation problem, where agents have a set of
alternatives strategies and have to learn their estimated value
via sampling, choosing one at each time in an online manner
until they reach their goals.

Online learning problems with a discrete set of actions
and stateless representation can be well formulated as multi-
armed bandit problems. In a multi-armed bandit problem, an
agent makes sequential decisions on a set of actions to max-
imize its expected reward. This formulation is well-suited
for stationary problems, as existing algorithms guarantee a
logarithmic bound on the regret (Auer et al. 2002). Although
our problem is non-stationary in a global sense, as the joint
local conditions of the agents are highly dynamic, individ-
ual agents can undergo periods where the reward distribution
changes very slowly. We refer to Fig. 6 for an example of a

navigation task, where we can distinguish three periods with
different reward distributions.

Therefore, by learning the action that maximizes a local
reward function (Eq. 4) in each of these periods, agents can
adapt to the local conditions.

5.3 Action selection

We now describe how ALAN selects, at each action decision
step, one of the available actions based on their computed
reward values and a probabilistic action selection strategy,
Softmax.

5.3.1 Softmax

Softmax is a general action selection method that balances
exploration and exploitation in a probabilistic manner (Sut-
ton andBarto 1998; Ziebart et al. 2009;Whiteson et al. 2007).
This method biases the action selection towards actions that
have higher value (or reward, in our terminology), bymaking
the probability of selecting an action dependent on its current
estimated value. The most popular Softmax method uses the
Boltzmann distribution to select among the actions. Assum-
ing that Ra is the reward value of action a, the probability
of choosing a is given by the following equation (Sutton and
Barto 1998):

Softmax(a) = exp

(Ra

τ

)/|Act |∑
a=1

exp

(Ra

τ

)
(7)

The degree of exploration performed by a Boltzmann-based
Softmax method is controlled by the parameter τ , also called
the temperature. With values of τ close to zero the highest-
valued actions aremore likely to be chosen,while high values
of τ make the probability of choosing each action similar.
We use a value of τ=0.2, as we found that it shows enough
differentiation between different action values without being
too greedy.

Another critical design issue of our action selection
method is the duration of the time window used. Keeping
old samples with low values might make a good action look

(a) (b) (c) (d)

Fig. 6 Distinguishable periods of different reward distribution for the
agent on the left. a The agent must reach its goal on the other side
of a group of agents moving in the opposite direction. The optimal

action in each period changes between b the goal oriented motion, c the
sideways motion to avoid the incoming group, and d the goal oriented
motion again, once the agent has avoided the group

123

Autonomous Robots (2018) 42:1543–1562 1551

Goal Goal Goal

(a) (b) (c)

Fig. 7 Screen shots of three states of a navigation problem. a Initially,
the black agent can move unconstrained towards the goal. b During its
interaction with other agents, the black agent moves sideways since this

increases its reward. c Finally, when its goal path is free, the black agent
moves again towards the goal

Table 1 Reward values and
probability for each action to be
chosen by the black agent using
ALAN in the three different
states shown in Fig. 7

Simulation state Action ID

0 1 2 3 4 5 6 7

Initial

Reward 0.997 0 0 0.147 0 0.145 0 0

Prob 94.1% 0.64% 0.64% 1.34% 0.64% 1.33% 0.64% 0.64%

Middle

Reward − 0.05 −0.42 −0.54 0 0.001 −0.192 0.456 0

Prob 5.4% 0.83% 0.46% 7.1% 7.1% 2.7% 69.3% 7.1%

End

Reward 0.63 0.47 0 0.48 0 0 0.177 0

Prob 56.7% 25% 2.4% 3% 2.4% 2.4% 5.8% 2.4%

See Fig. 3 for the corresponding set of actions
The numbers in bold correspond to the action chosen by ALAN in each of the simulation states

bad, but discarding them too quickly will ignore the past.
Because of this, we use a moving time window of the most
recently obtained rewards, and compute the estimated value
of each action based only on the rewards in that time win-
dow, using the last sampled reward for each. If an action has
not been sampled recently, it is assumed to have a neutral
(zero) value, which represents the uncertainty of the agent
with respect to the real value of the action. Actions with a
neutral value have a low probability of being selected if the
currently chosen action has a “good" value (> 0), and have
a high probability of being selected if the currently chosen
action has a “bad" value (< 0). When making an action deci-
sion, an agent retrieves the last sampled reward value for
each action in the time window, or zero if the action has not
been sampled recently. These values are then used by Soft-
max (Eq. 7) to determine the probability of each action being
chosen.

In Sect. 6.6 we analyze the effect of different sizes of time
window on the performance of ALAN.

5.3.2 Evolution of rewards during simulation

As agents move to their goals, their evaluation of the avail-
able actions affects the probability of choosing each action.
Figure 7 shows three simulation states of a navigation task
while Table 1 shows, for each action of the black agent, the
computed rewards and probability of being chosen as the next
action. The goal of this evaluation is to empirically show how
the estimated value of each action changes as the agent faces
different conditions, and how these estimates affect the prob-
ability of the action being chosen.

In the Initial state (Fig. 7a), the black agent can move
unconstrained towards the goal, which is reflected in the high
reward and corresponding probability of the goal oriented
action (ID 0). In the Middle state (Fig. 7b), the black agent
faces congestion that translates into a low reward for the goal
oriented action. Instead, it determines that the action with the
highest value ismoving left (ID 6), which also has the highest
probability of being chosen. Finally, in theEnd state (Fig. 7c),

123

1552 Autonomous Robots (2018) 42:1543–1562

the goal path of the black agent is free. Through exploration,
the black agent determines that the goal oriented motion (ID
0) is again the one with the best value, though with lower
reward value than in the beginning, as the wall prevents the
agent from moving at full speed. With a 56.7% probability,
the agent selects the goal oriented motion and eventually
reaches its goal. Note that the actions not sampled during the
time window used in this experiment (2 s) are assigned the
neutral zero value.

6 Evaluation

We now present the experimental setup, performance met-
rics, and scenarios used to compare the performance of
ALAN to other navigation approaches (Sect. 6.4). We
also evaluate the design choices of ALAN, specifically the
action selection method (Sect. 6.5), the time window length
(Sect. 6.6), and the balance between goal progress and polite-
ness, controlled by the coordination factor γ (Sect. 6.7) in the
reward function. Additional results are presented later, after
we extend the action selectionmethod to include learning the
action space.

6.1 Experimental setup

We implemented ALAN in C++. Results were gathered on
an Intel Core i7 at 3.5 GHz. Each experimental result is the
average over 30 simulations. In all our runs, we updated the
positions of the agents every Δt = 50ms and set the max-
imum speed υmax of each agent to 1.5m/s and its radius to
0.5m. Agents could sense other agents within a 15m radius,
and obstacles within 1m. To avoid synchronization artifacts,
agents are given a small random delay in how frequently
they can update their vpref (with new vpref decisions com-
puted every 0.2 s on average). This delay also gives ORCA a
few timesteps to incorporate sudden velocity changes before
the actions are evaluated. Small random perturbations were
added to the preferred velocities of the agents to prevent sym-
metry problems.

6.2 Performancemetric

To evaluate the performance of ALAN, we measure the time
that the agents take to reach their goals compared to the upper
bound of their theoretical minimum travel time. We call this
metric interaction overhead.
Definition: Interaction Overhead. The interaction overhead
is the difference between the travel time of the set of agents,
as measured by Eq. 2, and the upper bound of their travel
time if all the agents could follow their shortest paths to their
goals at maximum speed without interacting with each other,
i.e.:

Interaction Overhead = TTime(A) − MinTTime(A)

where MinT T ime(A) is the upper bound of the theoretical
minimum travel time of the set of agents A, evaluated as
follows:

MinTTime(A) = μ (MinimumGoalTime(A)))

+3σ (MinimumGoalTime(A)) (8)

where MinimumGoalT ime(A) is the set of travel times for
all agents in A, if they could follow their shortest route to
their goals, unconstrained, at maximum speed.

The interaction overhead metric allows us to evaluate the
performance of ALAN from a theoretical standpoint in each
of the navigation scenarios. An interaction overhead of zero
represents a lower bound on the optimal travel time for the
agents, and it is the best result that any optimal centralized
approach could potentially achieve.

6.3 Scenarios

To evaluate ALAN we used a variety of scenarios, with dif-
ferent numbers of agents and, in some cases, with static
obstacles. Figure 8 shows the different simulation scenarios.
These include: (a) Congested: 32 agents are placed very
close to the narrow exit of an open hallway and must escape
the hallway through this exit (Fig. 8a); (b) Deadlock: Ten
agents start at opposite sides of a long, narrow corridor. Only
one agent can fit in the narrow space (Fig. 8b); (c) Incoming:
A single agent interacts with a group of 15 agents moving
in the opposite direction (Fig. 8c); (d) Blocks: Five agents
must avoid a set of block-shaped obstacles to reach their goals
(Fig. 8d); (e) Bidirectional: two groups of 9 agents each
move in opposite directions inside a corridor (Fig. 8e); (f)
Circle: 80 agents walk to their antipodal points on a circle
(Fig. 8f); (g) Intersection: 80 agents in four perpendicular
streams meet in an intersection (Fig. 8g); (h) Crowd: 400
randomly placed agents must reach their randomly assigned
goal positions, whilemoving inside a squared room (Fig. 8h).

6.4 Comparison of ALAN to other navigation
approaches

We compare the interaction overhead of ALAN with other
navigation algorithms: ORCA, the Social Forces model pro-
posed by Helbing and Molnar (1995) (extensively used to
simulate the navigation of pedestrians Helbing et al. 2000;
Johansson et al. 2007;Helbing et al. 2003, 2001), and thePre-
dictive collision avoidance model proposed in Karamouzas
et al. (2009). Results can be observed in Fig. 9. In most cases,
ALAN outperforms the other approaches and gets agents
to their goals even when the other three approaches fail to
do so. In scenarios with obstacles, ALAN is able to move

123

Autonomous Robots (2018) 42:1543–1562 1553

(c)

(f)

Goal

(a) (b)

(d)

(e)

(g)

(h)

Fig. 8 Simulated scenarios: a Congested, b Deadlock, c Incoming, d Blocks, e Bidirectional, f Circle, g Intersection and h Crowd

Fig. 9 Interaction overhead of ORCA, the Social Forces model, the
Predictivemodel, andALAN in all scenarios.N/A indicates caseswhere
the corresponding method was unable to get agents to their goals

the agents to their goals while some (sometimes all) other
evaluated approaches cannot. Here, the diversity of motions
available and the behavior encouraged by the reward func-
tion in ALAN allows agents to find alternative paths to the
goal while avoiding obstacles, and “get out of the way” of
other agents when such paths do not exist, backtracking and
allowing them to move to their goals.

In obstacle-free scenarios (Circle and Incoming), agents
have more space to maneuver while moving to their goals.
In the Circle scenario, the exploratory behavior of ALAN
before and after congestion develops prevents it from out-
performing ORCA and the Social Force models. In a smaller
scenario like Incoming, the overhead of exploration does
not affect ALAN as much as in Circle, allowing it to out-
perform both ORCA and the Social Force model. However,
with the Predictive model, agents in the group make space

Fig. 10 Interaction overhead of ALAN, using different action selection
methods (Softmax, ε-greedy, and UCB) with the Sample action set
(Fig.3) in all scenarios

for the single agent to move directly to its goal, reaching it
faster than with ALAN.

From this evaluation, we can observe that ALAN works
especially well when agents are highly constrained by both
other agents and static obstacles, and its performance advan-
tage is more moderate when agents go through long periods
of unconstrained motion.

6.5 Evaluation of action selectionmethod

A key component of ALAN is its Softmax inspired action
selection method. Here, we validate this design choice by
comparing the interaction overhead of different action selec-
tion methods, namely, ε-greedy (Sutton and Barto 1998)
(with an ε value of 0.1) and UCB (Auer et al. 2002), within
the context of ALAN. This evaluation is done using the Sam-
ple action set (Fig. 3).

Results (Fig. 10) indicate that the Softmax action selection
helps ALAN achieve the best results. This can be explained

123

1554 Autonomous Robots (2018) 42:1543–1562

Fig. 11 Interaction overhead of ALAN in all scenarios, for different
sizes of the time window used for computing the estimated value of
each action

by the combination of Softmax’s probabilistic nature and its
non-uniform randomized exploration. Unlike ε-greedy, Soft-
max exploration is inversely proportional to action values.
Unlike UCB, the action choice is probabilistic, and it does
not depend on the frequency with which each action has been
chosen, which is important as that number is not necessarily
related to the optimal action.

6.6 Effect of time window size

Figure 11 shows a summary of the interaction overhead
results obtained by varying the size of the time window (up
to 20 secs). As the figure shows, in general, keeping the esti-
mated values for too long or too little time hurts performance.
Discarding action estimates too quickly (which turns their
value into zero) makes the agent “forget” the previously cho-
sen actions; agents do not have intuition of which actions
can provide a better reward value, as all have the same prob-
ability of being chosen. On the other hand, keeping action
estimates for too long perpetuates possibly outdated values,
and reduces the probability of choosing an action that might
have recently increased its quality. Results show that a time
window of 1-5 seconds provides a good balance: it provides
agents with some recent information, useful for biasing the
exploration towards recently tried “good” actions and away
from “bad” actions, while also preventing an outdated reward
value from introducing noise in the action decision of the
agent. Unless otherwise noted, we use a time window of 2 s
throughout all our experiments. This corresponds to approx-
imately 10 action decisions (as a decision is made on average
every 0.2 s).

6.7 Coordination factor γ

The coordination factor γ controls how goal oriented or
polite is the behavior of the agents in ALAN, based on

Fig. 12 Interaction overhead ofALAN in all eight scenarios, for a range
of values of the coordination factor parameter γ

the reward function (Eq. 4). Figure 12 shows how the
value of γ affects the performance of our approach. We
varied the value of γ between 0 and 0.9, where γ=0
means that agents optimize their actions only based on
their goal progress, while γ=0.9 implies that agents opti-
mize their actions based mostly on their politeness, and
barely take into account their goal progress. With γ=1
agents have no incentive to make progress towards their
goals.

Figure 12 shows that a high weight on the politeness
component (a high value of γ) increases the interaction over-
head in all scenarios. This is more noticeable with values of
γ > 0.6.Here, the agents are too deferent towards each other,
which ends up slowing down their progress. On the other
hand, a high weight on the goal oriented component (low
values of γ) seems to only have a significant negative effect
on the Deadlock scenario, and a slight negative effect on
the Intersection. In the Deadlock scenario, maximizing
the goal progress prevents agents (of one of the two groups)
from quickly backtracking and clearing the way for agents
in the opposite group. In this case, a balance between goal
oriented and polite behavior (γ values between 0.3 and 0.6)
allows agents to more quickly switch between both types of
behavior. In other scenarios, ALAN is robust to a wide vari-
ety of γ values, minimizing the interaction overhead values
when γ < 0.5. In these cases, optimizing the action selec-
tion based mostly on the goal progress allows agents to find
alternative goal paths, using the open space to avoid conges-
tion.

Overall, giving slightly more weight to the goal oriented
component than the politeness component allows agents to
alternate between goal oriented and polite behaviors based to
their local conditions. For these reasons, we used a γ value
of 0.4 in all ALAN experiments.

123

Autonomous Robots (2018) 42:1543–1562 1555

7 Action space learning

Up until now, we used the pre-defined sample set of actions
shown in Fig. 3 to choose a new preferred velocity. How-
ever, depending on the environment, different sets of actions
might improve the navigation.We propose an offline learning
approach based on a Markov Chain Monte Carlo (MCMC)
method (Hastings 1970; Metropolis et al. 1953) with sim-
ulated annealing (Kirkpatrick et al. 1983) to determine, for
a given environment (or a set of environments), the set of
actions that minimize the travel time.

Although MCMC is typically used as a sampling method,
we use it as an optimization method of sampling with a bias
towards regions of better performance. We chose MCMC
over other methods due the nature of our problem, as in
our case the effectiveness of any subset of actions depends
on the others. Consequently, greedy methods like gradient
descent cannot succeed due to local minima issues. Further-
more, the bandit formulation for choosing actions within an
action set does not apply because the optimization cannot be
decomposed to each action. Finally, evolutionary methods
only work well when better solutions to subproblems (sub-
sets of the actions) are likely to provide a better solution to
the whole problem, which is not the case in our domain.

Our method is summarized in Algorithm 2. It starts from
a set composed of two actions, one action along the goal
direction, the other action in a random direction. TheMCMC
process searches through the action space with biased explo-
ration towards action sets that promote more time-efficient
interactions. The explored action set with the highest per-
formance is regarded as the result at the end of the process.
Below we describe each step in more detail.

Algorithm 2: The MCMC action space learning
Act ← {GoalDir , RandomDir}, Actopt ← Act

2: F ← Evaluate(Act), Fopt ← F
T ← Tini t , dT ← (T f inal − Tini t)/(N − 1)

4: for i = 1 to N do
M ← SelectModi f ication(Act, i)

6: Act ′ ← ApplyModi f ication(Act, M)

F ′ ← Evaluate(Act ′, i)
8: if F ′ < Fopt then

Fopt ← F ′, Actopt ← Act ′
10: end if

if Rand(0, 1) < q(Act, Act ′)exp((F − F ′)/T) then
12: F ← F ′, Act ← Act ′

end if
14: T ← T − dT

end for
16: return Actopt

Action set modification In each iteration, we perform one
of the following types of modifications:

– Modify an action within an interval around its current
direction,symmetric on both sides.

– Remove an action that is not the initial goal-directing one.
– Add an actionwithin themodification interval of an exist-
ing action.

The first type of modification is explored with higher weight
(i.e. performed more often), because we consider the qual-
ity of the actions to be more important than the number of
actions. Following the simulated annealing scheme, themod-
ification range decreases over iterations as the simulation
moves from global exploration to local refinement. Themod-
ification ranges are determined by short learning processes.

Action set evaluation The performance of each new action
set is evaluated via ALAN simulation runs. Equation 2 is
used to estimate the travel time of the set of agents. Here
the set of agents is made implicit, while the action set is an
explicit input to the simulation. We evaluate an action set
Act with the function F , whose definition is equivalent to
the definition of T T ime in Eq. 2 but with action set as the
explicit argument rather than the set of agents. The simulation
is repeated multiple times and the average evaluation from
all repeated runs is used to evaluate the action set. Following
the simulated annealing scheme, the number of simulation
runs increases over iterations, as later local refinement has
less uncertainty.

Action set update We use a common version of MCMC,
theMetropolis-HastingMonteCarlo (Hastings 1970) scheme
to reject some of the attempted modifications to efficiently
explore better action sets. The probability of keeping a
change is related to how it changes the evaluation F , which is
the key to biasing towards action sets with lower evaluation
values. The probability to accept a new action set Act ′ over
a previous action set Act is

min

(
1, q(Act, Act ′) exp

(F − F ′

T
))

, (9)

where F and F ′ are the evaluation with action set Act
and Act ′ respectively, q(Act, Act ′) is a factor accounting
for the asymmetric likelihood of attempted transitioning
between Act and Act ′, and T is a parameter within the sim-
ulated annealing scheme. The parameter T decreases over
iterations, making the probability of accepting unfavorable
changes decrease, whichmoves the optimization from global
exploration towards local refinement.

After a predefined set of iterations of the MCMC process,
the action set Act with the lowest travel time is returned.
In our domain, agents have no previous knowledge of the
environment, which means that they cannot determine which
actions are available beforehand. However, this MCMC
approach allows us to do a qualitative analysis ofwhat behav-

123

1556 Autonomous Robots (2018) 42:1543–1562

GoalAgent GoalAgent
GoalAgent

(a) (b) (c)

Fig. 13 Optimized set of actions found by the MCMC method for the a Congested, b Deadlock and c Blocks scenarios

GoalAgent GoalAgent GoalAgent

(a) (b) (c)

Fig. 14 Optimized set of actions found by the MCMC method for the a Bidirectional, b Intersection and c Crowd scenarios

iors aremost effective in each type of environment, aswewill
see next.

7.1 Optimized action sets

Below we discuss the optimized set of actions that MCMC
returned for each of the scenarios shown in Fig. 8, along with
a learned action set that would work well across different
scenarios, even ones not considered in the learning process.

7.1.1 Action sets optimized for each scenario

Figures 13 and 14 show the set of actions computed by
MCMC for different scenarios that include static obstacles.
As a general observation, the action sets learned for all these
scenarios contain at least one action that moves the agent,
to some degree, backwards from its goal. This backtrack-
ing helps in reducing congestion, allowing agents to quickly
move to their goals. In the Congested, Deadlock, and
Crowd scenarios, our MCMC approach found that a set of
just three actions is enough to minimize the arrival time of
the agents, while only two actions are needed for the Inter-
section. In contrast, the action set found in the Blocks
scenario is larger and highly asymmetrical as compared to
the previous cases. Most actions in this scenario move the
agents closer to their goals, unlike the dominant backtrack-
ing motions of the previous scenarios. Similar to theBlocks
scenario, in theBidirectional scenario, a number of actions

GoalAgent GoalAgent

(a) (b)

Fig. 15 Optimized set of actions (velocities) found by the MCMC
method for the a Incoming and b Circle scenarios

were computed byMCMC that mostly bias the motion of the
agents to their right. This bias allows agents to create lanes
in each side of the corridor, increasing the efficiency of their
own motions and creating space for agents coming in the
opposite direction.

Figure 15 shows the optimized set of actions for the
Incoming and Circle scenarios that are void of static
obstacles. A common pattern found by MCMC for these
environments is that the actions are heavily biased towards
one of the sides of the agents. This bias, along with the
absence of obstacles, allows agents to move around other
agents using the available space. In the Circle scenario, for
example, the optimized actions allow a vortex-shaped pattern
to emerge when agents reach the center of the environment,
which avoids congestion and helps the agents reach their
goals faster. Note that, in both scenarios, the two sideways
actions are very similar to each other. This gives agents a
more fine grained control of their avoidance behavior, mini-
mizing the detour from their goal oriented motion.

123

Autonomous Robots (2018) 42:1543–1562 1557

GoalAgent

Fig. 16 Optimized set of actions (velocities) found by the MCMC
method when trained on five of the eight scenarios in Fig. 8

Fig. 17 Interaction overhead (s) of ALAN, using the sample action
set, the multi-scenario optimized action set, and per scenario optimized
action set

7.1.2 Multi-scenario optimized action set

To learn amulti-scenario optimized action set, firstwe trained
MCMC on five scenarios, leaving out the Crowd, Bidi-
rectional, and Intersection scenarios as test examples.
We chose to leave out these scenarios because without being
identical to other scenarios, they share some features with the
training set: they have obstacles which constrain the motion
of the agents, and also require agents to interact with each
other. Then, we evaluated the resulting multi-scenario opti-
mized action set in the entire set of eight scenarios.

The learned multi-scenario optimized action set can be
seen in Fig. 16.We can observe twomain features. First, there
is asymmetry in the actions, which is helpful in obstacle-
free environments to implicitly coordinate the motion of
agents and avoid congestion. Second, half of the actionsmove
the agents backwards from their goals, which is useful in
very constrained scenarios. Again, the presence of redun-
dant actions, both backwards as well as towards the goal,
give agents better control of their behaviors.

7.2 Comparison of performance between action sets

Wecompared the interactionoverhead results of usingALAN
with different action sets: the sample set shown in Fig. 3, and
the per-scenario andmulti-scenario optimized sets computed
using ourMCMCapproach. Figure 17 shows the correspond-
ing results.

Overall, ourMCMCapproach learns optimized action sets
that outperform the sample actions. When computed on a
per-scenario basis, this optimized action set outperforms the
sample action set in all scenarios (in all paired t-tests, p <

0.05). When computed using five of the eight evaluated sce-
narios, it still outperforms the sample set in most scenarios
(p< 0.05) while performing similarly in the Bidirectional
scenario. Note that while the Bidirectional, Intersec-
tion and Crowd scenarios were not included in the training
process of the multi-scenario optimized action set, this set
still outperforms the Sample action set in the Intersection
and Crowd. This indicates that the multi-scenario action set
generalizes well to previously unseen environments.

As expected, the interaction overhead results of the
per-scenario optimized action set are better than the multi-
scenario action set, with pairwise differences being statisti-
cally significant (p< 0.05) inmost scenarios.We can observe
that agents using the multi-scenario optimized action set dis-
play behaviors typically attributed to social conventions in
human crowds, where pedestrians defer to others to improve
the flow and avoid clogging situations. An example can be
seen in theDeadlock scenario (agents backtrack to defer to
incoming agents). These behaviors enable agents to reduce
their travel time without the need for specific (and often
unavailable) domain knowledge. Agents show human-like
behaviors in the Bidirectional scenario (each group of
agents avoids incoming agents moving to their right), and
implicitly coordinatedmotion in theCircle scenario (agents
form a vortex in the middle of the scenario to avoid conges-
tion).

8 Analysis of ALAN

In this section, we analyze different aspects of ALAN, such
as its runtime, how its performance scales with respect to the
number of agents, as well as its robustness to failure in the
actuators of the agents. We also compare the performance
of ALAN with a strategy where the preferred velocity of
each agent is randomized at different time intervals. Unless
otherwise noted, results labeled with ALAN are obtained
with the multi-scenario optimized set of actions (Fig. 16).

8.1 Runtime complexity

During each simulation cycle, each agent performs two main
operations: it first chooses a preferred velocity using its
online action-selection algorithm and then maps this veloc-
ity to a collision-free one using ORCA. In practice, since the
number of actions that need to be evaluated is small, selecting
a new action has a negligible runtime, while ORCA domi-
nates the overall runtime performance. Consequently, similar
to ORCA, ALAN runs inO(n) time per agent, where n is the

123

1558 Autonomous Robots (2018) 42:1543–1562

Table 2 Comparison of interaction overhead of ORCA, ALAN, and a sample action chosen randomly every few seconds

Method Congested Deadlock Incoming Block Bidirectional Circle Intersection Crowd

ORCA w/random action every 1s. 238.2 337.5 12.7 48.2 37.7 49.4 164 151.6

ORCA w/random action every 2s. 290.3 553.2 10.6 106.6 34.4 31.8 166.2 138.5

ORCA w/random action every 3s. 263.4 768.9 10.9 151.9 36.4 28.6 129.6 137.9

ORCA 299.7 N/A 19.8 N/A 94.9 27.4 178.2 144.6

ALAN 149.5 74.4 3.9 15.7 33.9 33.4 115.6 107.9

Bold numbers indicate best results, which may be more than one if there is no statistically significant difference between them

number of neighboring agents and obstacles used to com-
pute the non-colliding velocity of the agent. In time units,
ORCA takes approx. 1.5 × 10−5 seconds to compute a new
collision-free velocity,whileALANtakes approx. 3×10−6 to
select a new preferred velocity. In total, ALAN takes approx.
1.8 × 10−5 of processing time for each agent. This corre-
sponds to less than a thousandth of a simulation timestep,
which allows us to simulate hundreds of agents in real-time.
The runtime performance reported above was obtained on an
Intel i7 CPU at 3.5 GHz using a single core in the Crowd
scenario.

8.2 ALAN vs random velocity perturbation

Table 2 compares the interaction overhead performance of
ALAN, ORCA, and a random action selection, where agents
select a random action (from the Sample action set) every 1,
2 or 3 seconds. Results indicate that, in most scenarios, ran-
domizing the selection of the preferred velocity does prevent
(or solve) congestion, which results in lower travel times than
ORCA in many cases, or even allows agents to reach their
goals when ORCA alone cannot. However, as can be seen
in the table, selecting random actions leads to higher inter-
action overhead values compared to ALAN, as it does not
allow agents to adapt to the changes in the local navigation
conditions.

8.3 Scalability

To analyze how the performance of ALAN scales with the
number of agents, we varied the number of agents in the
Intersection and Crowd scenarios (Fig. 8), and evaluated
the interaction overhead time.

Results, shown inFig. 18, indicate thatALANscales better
than ORCA in both scenarios. In the Crowd environment,
the performance of ALAN and ORCA is similar with 350
agents, but as we increase the number of agents, the dif-
ference is more noticeable. In the Intersection scenario,
the difference in performance between ORCA and ALAN is
noticeable starting at 40 agents, and increases as the number
of agents increases.

(a) (b)

Fig. 18 Interaction overhead as a function of the number of agents in
the Crowd and Intersection scenarios

8.4 Limitations of ALAN

Although ALAN successfully reduces the travel time of the
agents compared to existing navigation approaches, it is not
free of limitations. One such limitation relates to the proba-
bilistic nature of its action selection. Specifically, there is
no guarantee that agents will always choose the optimal
action. Also, agents evaluate their actions based only on their
past observations without considering their long-term conse-
quences. This might prevent an agent from reaching its goal,
for example, when large obstacles block its goal oriented
paths.

In scenarios where the agent density is very high (approx.
1 agent per square meter), ALAN has difficulties in moving
all agents to their goal locations, when they have conflicting
goal paths. Note that in such high density scenarios, similar
to real pedestrians, ALAN agents focus mainly on not col-
liding rather than on progressing to their goals. Under these
settings, the maximum number of agents that ALAN can
simulate, in real time, is approximately 1850. This makes
ALAN usable for other multi-robot domains such as swarm
robotics.

8.4.1 Applicability of ALAN to multi-robot systems

To use ALAN in multi-robot systems, some assumptions
would need to be changed. Since ALAN depends on ORCA
for computing collision-free velocities, it makes the same
assumptions of holonomic disc-shaped robots as ORCA.
Hence, ORCA would need to be adapted to account for

123

Autonomous Robots (2018) 42:1543–1562 1559

Fig. 19 Interaction overhead of ALAN in the eight scenarios shown in
Fig. 8, when there is a probability actions will not be executed

other robot shapes. Currently, we do not assume bounds
on the acceleration of the agents and do not consider
rotations in the time to take an action. Robots with non-
holonomic constraints would need to account for rotations
and other kinematic constraints, which could be done,
for example, using recent extensions to ORCA (van den
Berg et al. 2011b; Giese et al. 2014; Alonso-Mora et al.
2013). Even without bounds on the acceleration, the motions
produced by ALAN look realistic in many of the scenar-
ios.

ORCA assumes that agents can sense perfectly the posi-
tions and velocities of other agents, which is not necessarily
true in robot systems. Fortunately, this problem has been
tackled previously by other researchers [for example, Hennes
et al. (2012), where authors deal with the problem of uncer-
tainty in the localization of agents]. Hence, we can use
existing solutions to reduce the gap between simulation and
real world execution of ALAN.

Imperfect actuatorsWe always include a small amount of
noise in the computed preferred velocities to avoid symme-
try issues. This noise can reflect some level of inaccuracy
of the actuators. Since in the real world actuators can fail,
we evaluated the performance of ALAN when each action
chosen has some probability of not being executed, because
the actuators failed. Results shown in Fig. 19, indicate that
ALAN is robust to failure in the actuators.

Performance degrades gracefully as the probability of
actions not being executed increases. Specifically, the rate
at which the interaction overhead values increase depends
on the frequency of change of the locally optimal action.
In the Incoming scenario, for example, the locally optimal
action for the single agent only changes a couple of times (to
avoid the group and to resume goal oriented motion), hence
the performance degradation is not noticeable until the prob-
ability of actuator failure is over 70%. On the other hand, in
theCongested scenario the performance degradation is vis-
ible at around 20% of probability of actuator failure. Overall,
ALAN still performs well under these conditions.

9 Conclusions and future work

In this paper, we addressed the problem of computing time-
efficientmotions inmulti-agent navigation tasks, where there
is no communication or prior coordination between the
agents. We proposed ALAN, an adaptive learning approach
for multi-agent navigation. We formulated the multi-agent
navigation problem as an action selection problem in a
multi-armed bandit setting, and proposed an action selection
algorithm to reduce the travel time of the agents.

ALAN uses principles of the Softmax action selection
strategy and a limited time window of rewards to dynami-
cally adapt the motion of the agents to their local conditions.
We also introduced an offline Markov Chain Monte Carlo
method that allows agents to learn an optimized action space
in each individual environment, and in a larger set of scenar-
ios. This enables agents to reach their goals faster than using
a predefined set of actions.

Experimental results in a variety of scenarios andwith dif-
ferent numbers of agents show that, in general, agents using
ALANmake more time-efficient motions than using ORCA,
the Social Forces model, and a predictive model for pedes-
trian navigation. ALAN’s low computational complexity and
completely distributed nature make it an ideal choice for
multi-robot systems that have to operate in real-time, often
with limited processing resources.

There are many avenues for future research. We plan to
investigate the applicability of ALAN to heterogeneous envi-
ronments, for example, by letting ALAN agents learn the
types of the other agents present in the environment and their
intended goals. This would allow an agent tomore accurately
account for the behavior of nearby agents during action selec-
tion. Finally, we would also like to port our approach to real
robots and test it in real-world environments, such as for
search and rescue operations or evacuation planning.

Acknowledgements This work was partially funded by the Uni-
versity of Minnesota Informatics Institute, the CONICYT PFCHA/
DOCTORADOBECASCHILE/2009 - 72100243 and the NSF through
grants #CHS-1526693, #CNS-1544887, #IIS-1748541 and #IIP-
1439728.

References

Alonso-Mora, J., Breitenmoser, A., Rufli,M., Beardsley, P.,&Siegwart,
R. (2013).Optimal reciprocal collision avoidance formultiple non-
holonomic robots. In A. Martinoli, F. Mondada, N. Correll, G.
Mermoud, M. Egerstedt, Hsieh M. Ani, et al. (Eds.), Distributed
autonomous robotic systems (pp. 203–216). Berlin: Springer.

Audibert, J. Y., Munos, R., & Szepesvári, C. (2009). Exploration-
exploitation tradeoff using variance estimates in multi-armed
bandits. Theoretical Computer Science, 410(19), 1876–1902.

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis
of the multiarmed bandit problem. Machine Learning, 47(2–3),
235–256.

123

1560 Autonomous Robots (2018) 42:1543–1562

Bayazit, O., Lien, J. M., & Amato, N. (2003). Better group behaviors in
complex environments using global roadmaps. In 8th international
conference on artificial life (pp. 362–370).

Buşoniu, L., Babuška, R., & De Schutter, B. (2008). A comprehensive
survey of multi-agent reinforcement learning. IEEE Transactions
on Systems, Man, and Cybernetics, Part C Applications and
Reviews, 38(2), 156–172.

Cunningham, B., & Cao, Y. (2012). Levels of realism for cooperative
multi-agent reinforcement learning. In Advances in swarm intelli-
gence (pp. 573–582). Springer.

Fiorini, P., & Shiller, Z. (1998). Motion planning in dynamic envi-
ronments using velocity obstacles. The International Journal of
Robotics Research, 17, 760–772.

Funge, J., Tu, X., & Terzopoulos, D. (1999). Cognitive modeling:
knowledge, reasoning and planning for intelligent characters. In
26th annual conference on computer graphics and interactive tech-
niques (pp. 29–38).

Giese, A., Latypov, D., & Amato, N. M. (2014). Reciprocally-rotating
velocity obstacles. In IEEE international conference on robotics
and automation (pp. 3234–3241).

Godoy, J., Karamouzas, I., Guy, S. J., & Gini, M. (2015). Adaptive
learning for multi-agent navigation. In Proceedings of interna-
tional conference on autonomous agents and multi-agent systems
(pp. 1577–1585).

Guy, S., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., &
Dubey, P. (2009). Clearpath: Highly parallel collision avoidance
for multi-agent simulation. In ACM SIGGRAPH/Eurographics
symposium on computer animation (pp. 177–187).

Guy, S., Kim, S., Lin, M., & Manocha, D. (2011). Simulating het-
erogeneous crowd behaviors using personality trait theory. In
Proceedings ACM SIGGRAPH/Eurographics symposium on com-
puter animation (pp. 43–52).

Guy, S.J., Chhugani, J., Curtis, S., Pradeep, D., Lin, M., & Manocha,
D. (2010). PLEdestrians: A least-effort approach to crowd simula-
tion. In ACM SIGGRAPH/Eurographics symposium on computer
animation (pp. 119–128).

Hastings, W. K. (1970). Monte carlo sampling methods using markov
chains and their applications. Biometrika, 57(1), 97–109.

Helbing, D., Buzna, L., &Werner, T. (2003). Self-organized pedestrian
crowd dynamics and design solutions. Traffic Forum 12.

Helbing, D., Farkas, I., & Vicsek, T. (2000). Simulating dynamical
features of escape panic. Nature, 407(6803), 487–490.

Helbing, D., & Molnar, P. (1995). Social force model for pedestrian
dynamics. Physical Review E, 51(5), 4282.

Helbing, D., Molnar, P., Farkas, I. J., & Bolay, K. (2001). Self-
organizing pedestrian movement. Environment and Planning B:
Planning and Design, 28(3), 361–384.

Hennes, D., Claes, D., Meeussen, W., & Tuyls, K. (2012). Multi-robot
collision avoidance with localization uncertainty. In Proceedings
of international conference on autonomous agents andmulti-agent
systems (pp. 147–154).

Henry, P., Vollmer, C., Ferris, B.,&Fox,D. (2010). Learning to navigate
through crowded environments. In Proceedings of ieee interna-
tional conference on robotics and automation (pp. 981–986).

Hettiarachchi, S. (2010). An evolutionary approach to swarm adapta-
tion in dense environments. In IEEE Int’l conference on control
automation and systems (pp. 962–966).

Hopcroft, J. E., Schwartz, J. T., & Sharir, M. (1984). On the complexity
of motion planning for multiple independent objects; pspace-
hardness of the" warehouseman’s problem". The International
Journal of Robotics Research, 3(4), 76–88.

Johansson, A., Helbing, D., & Shukla, P. K. (2007). Specification of the
social force pedestrian model by evolutionary adjustment to video
tracking data. Advances in Complex Systems, 10, 271–288.

Karamouzas, I., Geraerts, R., & van der Stappen, A. F. (2013). Space-
time group motion planning. In E. Frazzoli, T. Lozano-Perez, N.

Roy, & D. Rus (Eds.), Algorithmic foundations of robotics X (pp.
227–243). Berlin: Springer.

Karamouzas, I., Heil, P., vanBeek, P.,&Overmars,M. (2009).A predic-
tive collision avoidancemodel for pedestrian simulation. InMotion
in games, LNCS, (vol. 5884, pp. 41–52). Springer.

Karamouzas, I., & Overmars, M. (2012). Simulating and evaluating the
local behavior of small pedestrian groups. IEEE Transactions on
Visualization and Computer Graphics, 18(3), 394–406.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and
mobile robots. International Journal of Robotics Research, 5(1),
90–98.

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., et al. (1983). Optimization
by simmulated annealing. Science, 220(4598), 671–680.

Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learn-
ing in robotics: A survey. The International Journal of Robotics
Research, 32(11), 1238–1274.

Kornhauser, D.M.,Miller, G. L., & Spirakis, P. G. (1984). Coordinating
pebble motion on graphs, the diameter of permutation groups, and
applications. Master’s thesis, M. I. T., Deptartment of Electrical
Engineering and Computer Science.

Macready, W. G., & Wolpert, D. H. (1998). Bandit problems and the
exploration/exploitation tradeoff. IEEE Transactions on Evolu-
tionary Computation, 2(1), 2–22.

Martinez-Gil, F., Lozano, M., & Fernández, F. (2012). Multi-agent
reinforcement learning for simulating pedestrian navigation. In
Adaptive and learning agents, (pp. 54–69). Springer.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., &
Teller, E. (1953). Equation of state calculations by fast computing
machines. The Journal of Chemical Physics, 21(6), 1087–1092.

Ondřej, J., Pettré, J., Olivier, A. H., & Donikian, S. (2010). A
synthetic-vision based steering approach for crowd simulation.
ACM Transactions on Graphics, 29(4), 123.

Pelechano, N., Allbeck, J., & Badler, N. (2007). Controlling individ-
ual agents in high-density crowd simulation. In Proceedings of
ACM SIGGRAPH/Eurographics symposium on computer anima-
tion (pp. 99–108).

Pelechano, N., Allbeck, J. M., & Badler, N. I. (2008). Virtual crowds:
Methods, simulation, and control. Synthesis lectures on computer
graphics and animation (vol. 3, No. 1, pp. 1–176).

Pettré, J., Ondrej, J., Olivier, A. H., Crétual, A., & Donikian, S. (2009).
Experiment-based modeling, simulation and validation of interac-
tions between virtual walkers. In ACM SIGGRAPH/Eurographics
symposium on computer animation (pp. 189–198).

Popelová, M., Bída, M., Brom, C., Gemrot, J., & Tomek, J. (2011).
When a couple goes together: Walk along steering. In Motion in
games, LNCS (vol. 7060, pp. 278–289). Springer.

Ratering, S., & Gini, M. (1995). Robot navigation in a known environ-
ment with unknown moving obstacles. Autonomous Robots, 1(2),
149–165.

Reynolds, C. (1999). Steering behaviors for autonomous characters. In
Game developers conference (pp. 763–782).

Reynolds,C.W. (1987). Flocks, herds, and schools:Adistributedbehav-
ioral model. Computer Graphics, 21(4), 24–34.

Shao, W., & Terzopoulos, D. (2007). Autonomous pedestrians. Graph-
ical Models, 69(5–6), 246–274.

Sieben, A., Schumann, J., & Seyfried, A. (2017). Collective phenom-
ena in crowdswhere pedestrian dynamics need social psychology.
PLoS ONE, 12(6), 1–9.

Solovey, K., Yu, J., Zamir, O., & Halperin, D. (2015). Motion planning
for unlabeled discs with optimality guarantees. In Proceedings
of Robotics: Science and Systems. https://doi.org/10.15607/RSS.
2015.XI.011.

Sutton, R. S. (1988). Learning to predict by the methods of temporal
differences. Machine Learning, 3(1), 9–44.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An intro-
duction. Cambridge: MIT Press.

123

https://doi.org/10.15607/RSS.2015.XI.011
https://doi.org/10.15607/RSS.2015.XI.011

Autonomous Robots (2018) 42:1543–1562 1561

Torrey, L. (2010). Crowd simulation via multi-agent reinforcement
learning. In Proceedings of artificial intelligence and interactive
digital entertainment (pp. 89–94).

Tsai, J., Bowring, E., Marsella, S., & Tambe, M. (2013). Empirical
evaluation of computational fear contagion models in crowd dis-
persions. Autonomous agents and multi-agent systems (pp. 1–18).

Uther, W., & Veloso, M. (1997). Adversarial reinforcement learning.
Technical report, Carnegie Mellon University.

van den Berg, J., Lin, M., & Manocha, D. (2008). Reciprocal velocity
obstacles for real-time multi-agent navigation. In Proceedings of
IEEE international conference on robotics and automation (pp.
1928–1935).

van den Berg, J., Guy, S.J., Lin, M.,& Manocha, D. (2011). Recipro-
cal n-body collision avoidance. In Proceedings of international
symposium of robotics research (pp. 3–19). Springer.

van denBerg, J., Snape, J., Guy, S. J.,&Manocha,D. (2011). Reciprocal
collision avoidance with acceleration-velocity obstacles. In IEEE
international conference on robotics and automation (pp. 3475–
3482).

Whiteson, S., Taylor, M. E., & Stone, P. (2007). Empirical studies in
action selection with reinforcement learning. Adaptive Behavior,
15(1), 33–50.

Yu, J., & LaValle, S. M. (2013). Planning optimal paths for multiple
robots on graphs. In Proceedings IEEE international conference
on robotics and automation (pp. 3612–3617). IEEE.

Zhang, C., & Lesser, V. (2012). Coordinated multi-agent learning for
decentralized POMDPs. In 7th annual workshop on multiagent
sequential decision-making under uncertainty (MSDM) at AAMAS
(pp. 72–78).

Zhang, C.,&Lesser, V. (2013). Coordinatingmulti-agent reinforcement
learning with limited communication. In Proceedings of interna-
tional conference on autonomous agents and multi-agent systems
(pp. 1101–1108).

Ziebart, B. D., Ratliff, N., Gallagher, G., Mertz, C., Peterson, K.,
Bagnell, J. A., Hebert, M., Dey, A. K., & Srinivasa, S. (2009).
Planning-based prediction for pedestrians. In Proceedings of
IEEE/RSJ international conference on intelligent robots and sys-
tems (pp. 3931–3936).

Julio Godoy is an Assistant Pro-
fessor in the Department of Com-
puter Science at Universidad de
Concepcion, Chile. He obtained
his Ph.D. from the University of
Minnesota, in 2016, his M.Sc. and
his B.Sc. from Universidad de Con-
cepcion, in 2008 and 2005, respec-
tively. His research interests span
the areas of Artificial Intelligence,
Robotics, and Optimization.

Tiannan Chen is a graduate stu-
dent in the Department of Com-
puter Science and Engineering at
the University of Minnesota and
a Ph.D. candidate working with
Professor Stephen Guy. His main
research interest and work is in
game related artificial intelligence,
and especially in the domain of
procedural content generation. He
previously obtained a B.S. degree
in Nanjing University, China and
an M.S. degree in the Univer-
sity of Minnesota, both majored
in chemistry.

Stephen J. Guy is an assis-
tant professor in the Department
of Computer Science and Engi-
neering at the University of Min-
nesota. His research focuses on
the areas of interactive computer
graphics (real-time crowd simu-
lation, path planning, intelligent
virtual characters) and multi-robot
coordination (collision avoidance,
sensor fusion, path planning under
uncertainty). Stephen’s work on
motion planning has been licensed
for use in games and virtual envi-
ronments by Relic Entertainment,

EA, and other companies; his work in crowd simulation has been rec-
ognized by best paper awards at international conferences. Prior to
joining Minnesota, he received his Ph.D. in Computer Science in 2012
from the University of North Carolina - Chapel Hill with support from
fellowships from Google, Intel, and the UNCF, and his B.S. in Com-
puter Engineering with honors from the University of Virginia in 2006.

Ioannis Karamouzas is currently
an Assistant Professor in the
School of Computing at Clemson
University. His research focuses
on motion planning algorithms for
autonomous agents, robots and
crowds of virtual characters. He is
an Associate Editor in Elsevier’s
Robotics and Autonomous Sys-
tems. He has also served as pro-
gram committee member for lead-
ing AI and robotics conferences.
His work has been integrated into
commercial gaming applications
including driving simulators and

pedestrian simulation suites.

123

1562 Autonomous Robots (2018) 42:1543–1562

Maria Gini is a Professor in
the Department of Computer Sci-
ence and Engineering and a Dis-
tinguished Professor of the Col-
lege of Science and Engineering
at the University of Minnesota.
She works on decision making
for autonomous agents in many
domain, ranging from distributed
methods for allocation of tasks to
robots, to methods for robots to
explore an unknown environment,
teamwork for search and rescue,
and navigation in dense crowds.
She is a Fellow of the Associ-

ation for the Advancement of Artificial Intelligence. She is Co-
Editor in Chief of Robotics and Autonomous Systems, and is on
the editorial board of numerous journals, including Artificial Intelli-
gence, Autonomous Agents and Multi-Agent Systems, and Integrated
Computer-Aided Engineering.

123

	ALAN: adaptive learning for multi-agent navigation
	Abstract
	1 Introduction
	2 Related work
	2.1 Multi-agent navigation
	2.2 Reinforcement learning
	2.2.1 Action selection techniques

	2.3 Learning in multi-agent navigation

	3 Background
	3.1 ORCA
	3.2 Limitations of ORCA

	4 Problem formulation
	5 ALAN
	5.1 Reward function
	5.2 Multi-armed bandit formulation
	5.3 Action selection
	5.3.1 Softmax
	5.3.2 Evolution of rewards during simulation

	6 Evaluation
	6.1 Experimental setup
	6.2 Performance metric
	6.3 Scenarios
	6.4 Comparison of ALAN to other navigation approaches
	6.5 Evaluation of action selection method
	6.6 Effect of time window size
	6.7 Coordination factor γ

	7 Action space learning
	7.1 Optimized action sets
	7.1.1 Action sets optimized for each scenario
	7.1.2 Multi-scenario optimized action set

	7.2 Comparison of performance between action sets

	8 Analysis of ALAN
	8.1 Runtime complexity
	8.2 ALAN vs random velocity perturbation
	8.3 Scalability
	8.4 Limitations of ALAN
	8.4.1 Applicability of ALAN to multi-robot systems

	9 Conclusions and future work
	Acknowledgements
	References

