
Autonomous Robots (2018) 42:1731–1748
https://doi.org/10.1007/s10514-018-9713-x

Limited range spatial load balancing in non-convex environments
using sampling-basedmotion planners

Beth Boardman1 · Troy Harden1 · Sonia Martínez2

Received: 15 February 2017 / Accepted: 2 February 2018 / Published online: 19 February 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
This paper analyzes the limited range, spatial load balancing problem for agents deployed in non-convex environments and
subject to differential constraints which restricts how the agents can move. First, the (unlimited range) spatial load balancing
problem is introduced and the minimization problem with area constraints is defined. Then, to extend the problem for limited
ranges, two cost functions and a sub-partition are defined. The problems are then analyzed and the results prove the existence of
a partition that satisfies the area constraints. The non-convex environment makes the problem difficult to solve in continuous-
space. Therefore, a probabilistic roadmap is used to approximate agents’ cells via a graph. A distributed algorithm is proven
to converge to an approximate solution. Finally, the convergence of the algorithm is shown in simulation.

Keywords Spatial load balancing · Limited range · Multi-agent coverage

1 Introduction

This paper presents coverage algorithms that multiple agents
can use to solve area-constrained, limited range, spatial load
balancing problems when deployed in non-convex envi-
ronments. By accounting for how the agents can move
via differential constraints, a multi-robot system can more
efficiently divide the load of acquiring information or of
servicing tasks in a given environment in a fair way. How-
ever, non-convex environments and differential constraints
generally make the description of assigned regions challeng-

This is one of several papers published in Autonomous Robots compris-
ing the “Special Issue on Distributed Robotics: From Fundamentals to
Applications”.

This work was supported by Los Alamos National Laboratory and is
approved for release under LA-UR-16-27817.

B Beth Boardman
bboardman@lanl.gov

Troy Harden
harden@lanl.gov

Sonia Martínez
soniamd@ucsd.edu

1 Applied Engineering and Technology, Los Alamos National
Laboratory, Los Alamos, NM 87545, USA

2 Department of Mechanical and Aerospace Engineering,
University of California, San Diego, La Jolla, CA 92093, USA

ing. Thus, we aim to design and analyze algorithms based
on region approximation via sampling which can reduce
the communication or computation of agents effectively.
Motivated by making the spatial load balancing algorithm
distributed over a graph with limited communication ranges,
limited traveling ranges for agents are employed.

The gradient-based descent Lloyd algorithm (1982) is the
basis of many multi-agent coverage strategies. A limited
sample of work building on this approach includes limited
sensor footprints (Laventall andCortés 2008), heterogeneous
agents with different sensing radii (Stergiopoulos and Tzes
2011; Pimenta et al. 2008), non-holonomic agents (Kwok
and Martínez 2010b; Enright et al. 2008; Savla et al. 2007),
and power constraints (Kwok andMartínez 2010a). The area-
constrained problem is studied in Cortés (2010), Patel et al.
(2014) and Pavone et al. (2011), where a partition of the
environment based on weights, is used. This partition, com-
bined with an appropriately modified objective, is sufficient
to force agents’ regions to have the desired area. In Jiang
and Zefran (2013), a sink node is used to aggregate informa-
tion collected by all of the agents. When the communication
cost is being minimized, the agents must all communicate
with the sink node. These papers assume the agents have
unlimited ranges and are deployed in a convex environment.
InMahboubi et al. (2014), the area of a convex region covered
by sensors is maximized by minimizing the area uncovered
in the agents’ cell. Even though the algorithms have certain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-018-9713-x&domain=pdf
http://orcid.org/0000-0001-8152-5578

1732 Autonomous Robots (2018) 42:1731–1748

distributed properties, they cannot, in general, implemented
over a limited-range communication graph.

Closely related to this paper is the research on multi-
agent coverage in non-convex environments. A first paper
is Caicedo-Nunez and Zefran (2008), which applies a dif-
feomorphism to transform the non-convex environment into
an almost convex one, where only a finite number of points
have been subtracted. The coverage problem is then solved
in the transformed environment and a solution is obtained
via the inverse transformation. The diffeomorphism limits
this algorithm to two-dimensional environments. Environ-
ments with polygonal obstacles are considered in Zhong
and Cassandras (2011) and Breitenmoser et al. (2010). A
solution to the multi-agent coverage problem for non-point
robots in non-convex environments can be found in Pimenta
et al. (2008). The approach to solve the non-convex multi-
agent coverage problem taken by Kantaros et al. (2014) is to
use visibility-based Voronoi diagrams while maximizing the
coverage area. The authors of Kantaros et al. (2014) extend
their work in Kantaros et al. (2015) to include heterogeneous
sensing. Most of the above papers do not present solutions
for agents subject to differential constraints. The papers
that do account for differential constraints do not consider
obstacles.

The following papers are for coverage in an unknown
non-convex environment with agents not subject to differ-
ential constraints. A Voronoi partition and potential field
are used in Renzaglia and Martinelli (2009) to find a solu-
tion to the coverage problem in non-convex environments
with unknown obstacles. The authors of Bhattacharya et al.
(2013) let the agents learn and build a gridded environ-
ment map which is used to determine which grid points
belong to each agents’ generalized Voronoi cells. This grid-
based approach is limited to low dimensional spaces and
differential constraints are difficult to handle in this man-
ner. The paper Bhattacharya et al. (2014) is an extension
of Bhattacharya et al. (2013) to Reimannian manifolds with
non-convex boundaries.

This paper builds on the preliminary results presented
in our previous conference papers Boardman et al. (2016)
and Boardman et al. (2017), to present a unified solution to
a more general problem, thus addressing the limitations of
each paper. The first paper Boardman et al. (2016) introduces
the Graph- based Spatial Load Balancing (GSLB)
algorithm for approximately solving a non-convex spatial
load balancing problem. Under some conditions, the algo-
rithm constructs a lower-approximation, based on a lower
bound of the cost function, of sample assigned regions to
enable decentralization and to simplify computations. These
lower approximations are dropped in thismanuscript; instead
we consider limited ranges. The second paper (Boardman
et al. 2017) develops a distributed algorithm for solving
a continuous-space, limited range, spatial load balancing

problem in convex environments. In this manuscript, we
go beyond both formulations and consider a limited range,
non-convex spatial load balancing problem for dynamically
constrained agents. We approach this problem by employ-
ing locational optimization techniques that are based on
generalized Voronoi partitions of the environment. Due to
the obstacles and differential constraints, obtaining an exact
description of the Voronoi partition can be difficult. Thus,
we expand our objective by using an approximation of
the agents’ configuration space by means of a probabilistic
roadmap star (PRM*).

More precisely, we start from a continuous-space ver-
sion of the load balancing problem subject to a variable
area constraint. With the objective of obtaining distributed
algorithms, we introduce limited travel ranges and associ-
ated areas and mixed-type performance metric functions. To
solve the problem, we introduce “sub-partitions” of the space
dependent on a set of additiveweights,ω, and agent positions,
P . Then, we prove the existence of a set of weights that make
the sub-partition satisfy the variable area constraint and thus
solve the problem. Based on this result, we provide an update
law for agents that allows them to converge to a set of such
weights. The agent positions are updated using a gradient law
aimed at decreasing the cost function with respect to posi-
tion. We then define a class of deployment algorithms for
solving the problem and show convergence to a solution for
the area-type performance metric case.

Building on the continuous-space version, the graph-
based algorithm builds a PRM* type graph to describe the
cost of an agent subject to differential constraints moving
between any two configurations in a known non-convex envi-
ronment. In this way, the coverage regions are approximated
by assigning each agent a subset of nodes from the PRM*.
This subset of nodes is further exploited to estimate the
coverage regions’ corresponding areas. We provide a char-
acterization of how the limited range algorithm is distributed
over a communication graph for radially-unbounded cost
functions. We provide an analysis of the algorithm’s con-
vergence as the number of nodes in the optimal probabilistic
roadmap tends to infinity. Finally, we present a simulation of
the convergence of agents whose costs to move is given by
the Euclidean norm squared.

This paper is organized as follows. Section 2 contains
notation and details on the Probabilistic Roadmap con-
struction. The continuous-space (limited range) spatial load
balancing is in Sect. 3 followed by the graph-based spatial
load balancing in Sect. 4. Analysis for the distributed proper-
ties of the algorithm is in Sect. 5 and for the convergence of
the algorithm is in Sect. 6. Then, Sect. 7 has the simulations
of the limited and unlimited range Graph- based Spatial
Load Balancing algorithm. Finally, the conclusion and
future work can be found in Sect. 8.

123

Autonomous Robots (2018) 42:1731–1748 1733

2 Preliminaries

To begin with, we introduce some notations. Let X ⊆ R
d

be the d-dimensional configuration space of the agents
and denote the obstacle space as Xobs. The free space,
Q = X\Xobs, is defined as the set of all collision-free
agent configurations. In general, Q is a non-convex con-
figuration space that is assumed to be simply connected
by dynamic paths of a mobile robot so that all of Q is
reachable by all agents. A sub-partition of a subset of Q,
W = {W1, . . . ,Wn}, is a collection of n cells, Wi ⊂ Q,
i ∈ {1, . . . , n}, whose interiors are disjoint and whose union
covers a subset Q′ ⊆ Q. Denote the boundary of cell Wi

as ∂Wi . Define the shared boundary between cells i and
j as �i j = Wi ∩ Wj and denote the unshared bound-
ary of cell i as �i = ∂Wi\

(∪ j 	=i W j
)
. Finally, we let

1n = (1, . . . , 1)
 ∈ R
n and 0n = (0, . . . , 0)
 ∈ R

n .

2.1 Optimal probabilistic roadmap building

This section briefly describes how to construct an asymptoti-
cally optimal probabilistic roadmap (PRM*), denoted by G,
for a known environment. Note that the PRM* is limited to
dynamics that can be solved with a two point boundary value
problem. The graph G allows the agents to approximate the
optimal path cost between two configurations in the graph as
the sum of the costs of the edges defining the path. The edge
cost is the cost an agent incurs while traveling between the
nodes that define that edge, e.g. it can be given by length of
the edge. The path cost is used in Problem 2 (Sect. 4) as an
element of the cost functional beingminimized. The graphG
is composed of a set of nodesNG and a set of edges EG con-
structed in the same was as Karaman and Frazzoli (2011).
A node q ∈ NG is a sampled configuration from Q, and
each edge, e ∈ EG , is an ordered pair, e = (q1, q2), which
corresponds to an optimal path in Q, satisfies all constraints,
and has a cost Je(q1, q2). The cost J (q1, q2) is assumed to be
additive; given an optimal path from q1 to q2, and a node q ′ in
that path, it holds that, J (q1, q2) = J (q1, q ′)+J (q ′, q2). The
additive assumption is used in Sect. 4.1.1. We denote the out
neighbors ofq inG asN out

G (q) = {q j ∈ NG | (q, q j) ∈ EG}.
Each iteration of the construction of G begins by taking

a uniformly sampled random configuration from the free-
space, qrand ∈ Q. Next, all graph vertices that are within a
ball centered at qrand with radius, r = γG(log(m)/m)1/d , are
determined. Here, γG is a fixed parameter,m is the number of
vertices currently inNG , and d is the dimension of Q. Let the
near vertices of qrand be denoted by Qnear. If Qnear is empty,
then the graph vertex that is closest to qrand is added to Qnear.
The least-cost paths, whose cost is Je(qrand, qnear), from qrand
to qnear ∈ Qnear are determined; these are outgoing edges of
qrand. If the cost depends on direction, as is the case with
differential constraints, then the least-cost path from qnear

to qrand is also determined, these are the incoming edges of
qrand. Each collision-free path, e, is added to EG as an edge.
The application of spatial load balancing requires that G be
strongly connected; a necessary condition is that all q ∈ NG

must have both an outgoing and incoming edge, so that if
an agent reaches that node it may also leave that node. A
sufficient condition is to construct a graph which only allows
(q1, q2) ∈ EG if and only if (q2, q1) ∈ EG .

The free-space Q is discretized by G while maintaining
an asymptotically optimal roadmap of the environment. Each
node q ∈ NG has an associated area, β(q), which is calcu-
lated as follows. Let NX = NG ∪ Nobs, where Nobs is a set
of configurations inside Xobs. Then, determine the Voronoi
partition of X using NX . The β(q) for each q ∈ NG is the
area of its associated cell in this partition. A description of
the external boundary of X is needed and we assume this
description is available. In this paper, nodes refer to the ver-
tices in the graph, q ∈ NG , and not to the n agents that move
in the environment.

3 Continuous-space spatial load balancing

The limited range spatial load balancing problem aims to
find optimal locations for n agents, with positions P =
{p1, . . . , pn}, pi ∈ Q, i ∈ {1, . . . , n}, and region assign-
ments Wi ⊆ Q, i ∈ {1, . . . , n}, as described below. Let the
optimal cost of robot i to move from configuration q1 ∈ Q
to q2 ∈ Q when subject to the differential constraint, ṗi =
f (pi , ui) with control input ui , be J (q1, q2) ≥ 0. A proba-
bility density function, φ(q), defined over Q, φ : Q → R≥0,
describes the likelihood of an event occurring at a configu-
ration in Q.

Let a1, . . . , an ∈ R>0, be targeted cell areas that distribute
the load of covering Q among the group of agents. The ai , i ∈
{1, . . . , n}, are such that

∑n
i=1 ai = ∫

Q φ(q)dq, which can
be understood as a full load-balancing condition. Ideally, we
would like to achieve

∫
Wi

φ(q)dq = ai , for i ∈ {1, . . . , n},
with the region assignment {Wi }ni=1. However, if the {Wi }ni=1
strictly satisfy ∪n

i=1Wi = Q′
� Q, full load balancing will

not be achievable. Because of this restriction, a new variable
area constraint is defined,

a′
i = ai

∫
Q′ φ(q)dq

∫
Q φ(q)dq

, i ∈ {1, . . . , n},

which corresponds to load-balancingover the restricted space
Q′. Of particular interest is the equal area case, ai = a j for
all i, j , which results in a′

i = a′
j , for all i, j ∈ {1, . . . , n}.

Note that, when Q′ = Q, we recover the original, full load-
balancing condition. Then, the objective is to find positions,
pi , and regions, Wi ⊆ Q, for i ∈ {1, . . . , n}, that solve

123

1734 Autonomous Robots (2018) 42:1731–1748

the following minimization problem subject to the area and
dynamic constraints,

Problem 1 (Multicenter optimization problem with dynamic
and area constraints)

min H(P,W)

s.t. pi ∈ Q, ṗi = f (pi , ui),

a′
i =

∫

Wi

φ(q)dq, i ∈ {1, . . . , n}.

In other words, the n agents want to minimize a cost func-
tional while making sure each agent’s cell,Wi in the partition
W , has area a′

i . The agents cannot leave Q andmust obey the
differential constraints that define their movement. In what
follows, we describe specific cost functions,H, and types of
subpartitions motivated by coverage control objectives.

3.1 Unlimited range agents in convex spaces

The solution to Problem 1 with limited ranges builds on the
previouswork inCortés (2010), Patel et al. (2014) andPavone
et al. (2011) where Q is convex and the agents have unlimited
range such that ∪n

i=1Wi = Q. Then ai = a′
i and the cost

function that is minimized takes the form,

Hcentroid(P,W) =
n∑

i=1

∫

Wi

J (pi , q)φ(q)dq.

The cost function Hcentroid(P,W) quantifies the network
performance and is called centroid because the agent posi-
tions that minimize it are the centroids of the cells. This is
the problem solved in Cortés (2010).

For trivial first order dynamics, the results inCortés (2010)
state that, given a set of positions, P , there exists a weight
assignment, ω, that makes a generalized weighted Voronoi
partition, Vweighted(P, ω; J), feasible and that this partition
is the best among all the partitions W that satisfy the area
constraint. Here, Vweighted(P, ω; J) = {Vweighted

i (ω)}ni=1 is
such that, for all i ∈ {1, . . . , n},

Vweighted
i (ω) = {q ∈ Q | J (pi , q)−ωi ≤ J (p j , q)−ω j , ∀ i 	= j}.

The feasible set of weights is U = {ω ∈ R
n | |ωi − ω j | ≤

J (pi , p j) i, j ∈ {1, . . . , n}}. If ω /∈ U , then at least one
cell is empty. In convex environments, given a partition, the
best agent positions are the centroids of their cells. For cer-
tain metrics, such as Euclidean metrics, these centroids are
given by a closed-form formula. However, in non-convex
environmentsmultiple agent positionsmayminimize the cost
function. These positions are referred to as a generalized cen-
troid.

3.2 Limited ranges

When the agents have a limited travel range, referred to as
limited range, a sub-partition, ∪n

i=1Wi ⊂ Q, is found and
ai ≥ a′

i . Here, limited travel range refers to the maximum
distance an agent can travel from its final coverage config-
uration position. Since the area of the sub-partition changes
as a function of agent position, the cost function being mini-
mized is modified to account for the current area covered by
the agents. This leads to a cost function that either maximizes
the area covered by the regions,

Harea(P,W) = −
n∑

i=1

∫

Wi

φ(q)dq,

or combines Hcentroid(P,W) and Harea(P,W) in the con-
venient form of,

Hmixed(P,W) =
n∑

i=1

(∫

Wi

J (pi , q)φ(q)dq − ki

∫

Wi

φ(q)dq

)
,

where ki ∈ R>0, are constants, see Sect. 3.3.2 for a particular
choice.

3.2.1 Limited range sub-partition

Define the limited ranges of the agents as the reachable sets,
D = {D1, . . . , Dn}, such that, for all i ∈ {1, . . . , n},

Di = {q ∈ Q | J (pi , q) − ωi + 1

n

n∑

k=1

ωk ≤ c}, (1)

where c ∈ R is the travel range of the agents and is a con-
stant. When ωi = 1

n

∑n
k=1 ωk , then J (pi , q) ≤ c making

c the upper bound, or limited range, on the cost J (pi , q).
When ωi 	= 1

n

∑n
k=1 ωk , those terms act as a perturba-

tion on the limited range c. These perturbations are why
the effective limited range for each agent can be differ-
ent. There are certain properties of Vweighted from Cortés
(2010) that the limited range sub-partition should maintain
in order to obtain analogous results. One such property is
that the cells, Vweighted

i , are invariant under translation of ω,

Vweighted
i (P, ω; J) = Vweighted

i (P, ω+ t ·1n; J). This prop-

erty leads to the area of Vweighted
i also being invariant under

translations ofω. Including the mean ofω term allows the set
Di to be invariant under translation in ω. The limited range
sub-partition is defined as VLR(P, ω, c) = {V LR

i }ni=1, such

that, for all i ∈ {1, . . . , n}, V LR
i = Vweighted

i ∩ Di . An exam-
ple of a limited range sub-partition can be found in Fig. 1.
The shared boundaries are from Vweighted

i while the unshared
arcs are from Di . Note that one of the agents has no shared
boundaries, so its cell V LR

i = Di . In this example, the Di

123

Autonomous Robots (2018) 42:1731–1748 1735

Fig. 1 An example of a limited range sub-partition for four agents, each
with a different ωi

boundaries are circular arcs because the cost is the Euclidean
norm squared, J (pi , q) = ‖pi − q‖2.

The limited range sub-partition defines a graph which is
used to describe the algorithm and its properties. This graph,
GLR(P, ω) = (N , E), has vertices, vi ∈ N , that correspond
to the n agents. In this graph, e = (vi , v j) ∈ E , between
agents i and j , if and only if V LR

i ∩V LR
j 	= ∅. If agents i and

j share an edge in GLR(P, ω), (vi , v j) ∈ E , then agents i and
j are neighbors. LetNi denote the set of neighbors for agent i .
When Q′ 	= Q, GLR(P, ω)may not be connected. The edges
of GLR(P, ω) change as the agent positions and weights are
updated. Because Di , and hence V LR

i , is dependent upon all
agent weights, GLR(P, ω) is not necessarily representative of
the agents’ communication graph.The remainder of the paper
will abbreviate GLR(P, ω) as GLR. This graph is analyzed
further in Sect. 5.2.

Let η be the number of connected components in GLR
and Gl be a single connected component of GLR such that
GLR = ∪η

l=1Gl and Gl ∩Gl ′ = ∅ for all l, l ′ ∈ {1, . . . , η} and
l 	= l ′. Denote the number of vertices in Gl as nl . Define the
vector vl ∈ R

n such that the i th entry of vl is equal to one
if agent i is in Gl and is zero otherwise. Note that {vl} for
l ∈ {1, . . . , η} form an orthogonal basis.

3.2.2 Existence and choice of weights

This section proves the existence of weights that allow VLR

to satisfy the variable area constraint. Recall,VLR is invariant
under translations in the weights and define the weights-to-
area map as,

M(P, ω) =
(∫

V LR
1 (ω)

φ(q)dq, . . . ,

∫

V LR
n (ω)

φ(q)dq

)
.

For conciseness, in the following V LR
i = V LR

i (ω).

Lemma 1 The weights-to-area map, M, is the gradient,
∇F = −M, where F : R

n → R,

F(ω) = −n

1 − n

n∑

j=1

∫

V LR
j

(J (p j , q) − ω j + 1

n

n∑

k=1

ωk − c)φ(q)dq.

The proof of Lemma 1, and all other proofs, can be found in
the “Appendix”.

The following equations show how to update an initial
weight assignment, ω0, to new weights that satisfy the area
constraints.

Define A �
∑n

i=1Mi (ω
0) and

āi � A
ai∫

Q φ(q)dq
. (2)

In the equal area case, ai = a j = 1
n

∫
Q φ(q)dq and

āi = A
n . Note that Mi (ω

0) = āi does not necessarily hold.

DefineU 0 =
{
ω ∈ U |

∑n

i=1
Mi (ω) =

∑n

i=1
Mi (ω

0)
}
.

RestrictM to ω ∈ U 0, and denote this restriction as M0.
Lemma 2, which gives properties for the Jacobian ofM0,

is analogous to Prop. IV.2 from Cortés (2010) but has a more
complicated proof due to the sub-partition, VLR. Note that
M0 is a continuous function of ω.

Lemma 2 Let J (M0) denote the Jacobian matrix of M0 :
U 0 ⊂ R

n → R
n. Then

1. J (M0) is symmetric;
2. Choose ω ∈ U 0, and consider the graph GLR(P, ω)

with η connected components and associated 1n and vl ,
for all l ∈ {1, . . . , η}. Then, these are eigenvectors of
J (M0)(ω) with eigenvalue 0;

3. The rank of J (M0)(ω) is n − η.

From here, the existence of a weight assignment that satis-
fies the āi constraint can be proven. The proof of Theorem 1
follows that of Prop. IV.4 fromCortés (2010) except that here
GLR is not necessarily connected.

Theorem 1 Let a1, . . . , an > 0 such that
∑n

i=1 ai =∫
Q φ(q)dq and let p1, . . . , pn ∈ Q. Let there exist some

initial weights, ω0, such that Mi (ω
0) > 0 for each i ∈

{1, . . . , n}. Let {ā1, . . . , ān} be as defined in (2). Then there
exists a set of weights ω = {ω1, . . . , ωn} such that

∫

V LR
i (P,ω,c)

φ(q)dq = āi , i ∈ {1, . . . , n}.

3.3 Continuous-space algorithm

This section describes the algorithm used to solve Problem 1.
The algorithm alternately updates the agents’ weights and

123

1736 Autonomous Robots (2018) 42:1731–1748

Voronoi cells until the area of the cells has converged to
the desired areas. Then, the agents update their positions.
Concisely, the algorithm dynamics can be expressed as,

(
ω+
P+

)
= ψ

(
ω

P

)
,

where ψ is a function combining (3) and (4). The details of
the dynamic weight and position update are presented next.

3.3.1 Weights update

From Theorem 1 and Lemma 2, there exists weights for
which VLR(ω) satisfies the area constraints while main-
taining constant area in each connected component of GLR.
Instead of maintaining constant areas by numerically solv-
ing for the nth weight, the next procedure is followed in our
algorithm. All the weights are iteratively updated so they
eventually converge to ω∗, such that V LR

i (P, ω∗) = āi ,

thus preserving,
∑n

i=1
Mi (P, ω0) =

∑n

i=1
Mi (P, ω∗).

First, define F(ω) = −F(ω) −
∑n

i=1
ωi āi , and set

∇F(ω) = g(ω) = 0n, where g(ω) = M(ω1, . . . , ωn) −
(ā1, . . . , ān) = 0n . The Jacobi algorithm,Bertsekas andTsit-
siklis (1997),

ω+ = ω − γ diag

(
∂g1
∂ω1

, . . . ,
∂gn
∂ωn

)−1

g(ω), (3)

is then used to find the ω values that optimize F . The step
size can be characterized as in Cortés (2010) Prop. IV.5 to
guarantee convergence in the weights. More precisely, let L
be a level set of F(ω), and then, γ ∈ (0, Y/B), where,

Y= min
i∈{1,...,n}min

ω∈L
∂gi (ω)

∂ωi
> 0, B= max

i∈{1,...,n}max
ω∈L

∂gi (ω)

∂ωi
>0.

To implement this algorithm, the agents each need to com-
pute their gi (ω) = Mi (ω) − āi and

∂gi
∂ωi

, where,

∂gi (ω)

∂ωi
= ∂Mi (ω)

∂ωi
−

�
�
��
0

∂ āi
∂ωi

=
∫

�i

n̂
 ∂q

∂ωi
φ(q)dq +

∫

�i j

n̂
 ∂q

∂ωi
φ(q)dq.

3.3.2 Gradient function computation

The agents update their positions according to the deriva-
tive ofH(P,VLR(P, ω, c)) with respect to position to solve
Problem 1. The gradient computation details can be found
in Cortés et al. (2005). For a general H, the dynamics for

agent i are

p+
i = pi − h

∂H(P,VLR(P, ω, c))

∂ pi
, (4)

where h is an appropriate step size, found via a line search.
Eq. 4 only works for convex Q and when the agents are
not subject to differential constraints, ṗi = f (pi , ui). The
graph-based algorithm is introduced specifically to handle
these issues, see Sect. 4.2.2.

For the area only cost function, the gradient is

∂Harea(P,VLR(P, ω, c))

∂ pi
= −

∫

�i

φ(q)n̂
 ∂q

∂ pi
dq. (5)

Here, q are at the unshared boundary configurations, q ∈
�i = ∂V LR

i ∩Di , and n̂ is the vector normal to the boundary
at q. In other words, the agents move toward the (weighted)
center of the unshared boundary of V LR

i , and stay put when
�i = ∅.

When using Hmixed(P,VLR), the right selection of ki
reduces the gradient computation to moving to a generalized
centroid of V LR

i ,

∂Hmixed(P,VLR(P, ω, c))

∂ pi
=

∫

V LR
i

∂ J (pi , q)

∂ pi
φ(q)dq

−
∫

�i

J (pi , q)φ(q)n̂
 ∂q

∂ pi
dq + ki

∫

�i

φ(q)n̂
 ∂q

∂ pi
dq.

For J (pi , q) = ‖pi − q‖2 or J (pi , q) = ‖pi − q‖, choose
ki = Ri � c + ωi − 1

n

∑n
k=1 ωk .

4 Graph-based limited range spatial load
balancing

This section details the graph-based version of Problem 1.
As a preprocessing step, a PRM*, G, is constructed in the
non-convex environment Q, see Sect. 2.1. The cost to travel
between two configurations q1 and q2, J (q1, q2), is approxi-
mated by the sumof edge costs of the best path inG fromq1 to
q2. Define a sub-partition of a subset ofNG as W̃ = {W̃i }ni=1,
such that ∪n

i=1W̃i ⊆ NG and W̃i ∩ W̃ j = ∅.
Let ã1, . . . , ãn ∈ R>0, such that

∑n
i=1 ãi = ∑

q∈NG

φ(q)β(q), then define the approximate variable area con-
straint as

ã′
i = ãi

∑
q∈W̃ φ(q)β(q)

∑
q∈NG

φ(q)β(q)
, i ∈ {1, . . . , n}.

The approximated area covered by q ∈ NG , β(q), is pre-
computed as described in Sect. 2.1. The

∑
q∈W̃ φ(q)β(q)

123

Autonomous Robots (2018) 42:1731–1748 1737

requires knowledge fromall agents and varieswith each algo-
rithm iteration.

The n agents solve graph-based Problem 2, which approx-
imates the integral as a summation over a set of nodes.

Problem 2 (Graph-based multicenter optimization problem
with area constraints)

min H̃(P, W̃)

s.t. pi ∈ NG ,

ã′
i =

∑

q∈W̃i

φ(q)β(q), i ∈ {1, . . . , n}.

Note that the differential constraint on pi is removed
because it is incorporated into G.

The cost function that the agents minimize is an approxi-
mation to either Hcentroid, Harea, or Hmixed, given as

H̃centroid(P, W̃) =
n∑

i=1

∑

q∈W̃i

J (pi , q)φ(q)β(q),

H̃area(P, W̃) = −
n∑

i=1

∑

q∈W̃i

φ(q)β(q),

and

H̃mixed(P, W̃) =
n∑

i=1

(∑

q∈W̃i

J (pi , q)φ(q)β(q)

− ki
∑

q∈W̃i

φ(q)β(q)
)
.

To solve Problem 2 algorithmically, each agent has a copy
of G and it is assumed that the agents know the positions P
and the weightsω of the other agents by communicating with
each other to interchange this information. The assumption
on P and ω can be relaxed in some cases so that it is only
necessary to know the positions and weights of a subset of
the other agents; this relaxation will be discussed further in
Sect. 5.

4.1 Approximate general Voronoi tessellations

Different options are considered for an approximate general-
izedVoronoi partition. For conciseness, V̂ is used to represent
all approximated Voronoi partitions. In other words, if a
results pertains to all the approximate Voronoi partitions,
we use V̂ (e.g. V̂ = Ṽweighted or V̂ = ṼLR in the fol-
lowing). When the agents have unlimited range, such that
∪n
i=1Wi = NG , they find the weighted approximate Voronoi

partition, Ṽweighted = {Ṽweighted
i }ni=1,

Ṽweighted
i = {q ∈ NG | J (pi , q) − ωi

≤ J (p j , q) − ω j , ∀ j 	= i}.

Here, J (pi , q) is the minimum sum of the edge costs of the
optimal path in G defined from pi to q. Due to the random
selection of q when buildingG, the probability that one node
belongs to two different cells of V̂ is zero.

The limited range agents find a sub-partition, ∪n
i=1Wi ⊂

NG , defined as a limited range Voronoi sub-partition ṼLR =
{Ṽ LR

i }ni=1, Ṽ
LR
i = Ṽweighted

i ∩ D̃i , where

D̃i =
{

q ∈ NG | J (pi , q) − ωi + 1

n

n∑

k=1

ωk ≤ c

}

.

In order to calculate the approximation of its own cell, V̂i ,
agent i does a Dijkstra graph search, Dijkstra (1959), starting
from its current configuration, pi , and keeps a queue of the
vertices it needs to check. To start with, pi is added to V̂i ,
and all the outgoing neighboring nodes of pi are added to the
queue. The agent then takes one of the nodes, qcheck, from
the queue and checks to see if it is part of V̂i . If qcheck is a
part of V̂i then its outgoing neighboring nodes are added to
the queue. If qcheck is not added to V̂i , then its neighbors are
not added to the queue, see Proposition 1 for the result on
why this approach is correct. Agent i constructs V̂i until the
queue is empty.

4.1.1 Properties of ̂V

For Ṽweighted the weights need to belong to U = {ω ∈
R
n | |ωi − ω j | ≤ J (pi , p j) i, j ∈ {1, . . . , n}}. If ω /∈ U

then at least one cell is empty. Since ṼLR is a subset of
Ṽweighted then the weights must also belong to the set U .

Lemma 3 gives a lower bound on the constant c for a
general J (pi , q) so that ∂ Ṽweighted

i ∩ ∂ D̃i 	= ∅ for each i . If

the initial agent conditions lead to ∂ Ṽweighted
i ∩ ∂ D̃i = ∅ for

all i , then, assuming that ṼLR satisfies the area constraint,
Problem 2 is trivially satisfied.

Lemma 3 Assume the triangle inequality holds for J (pi , q).

If ∂ Ṽweighted
i ∩∂ D̃i 	= ∅, then c ≥ J (pi ,p j)+ 2

n

∑n
k=1 ωk+ωi−ω j

2 .

A tighter bound can be found for particular J (pi , q). Lem-
mas 4 and 5 compute such bounds.

Lemma 4 Let J (pi , q) = ‖pi−q‖2. If ∂ Ṽweighted
i ∩∂ D̃i 	= ∅,

then c ≥ (‖pi−p j‖2+ωi−ω j)
2

4‖pi−p j‖2 − ωi + 1
n

∑n
k=1 ωk .

Lemma 5 Let J (pi , q) = ‖pi −q‖. If ∂ Ṽweighted
i ∩∂ D̃i 	= ∅

then c ≥ (‖pi−p j‖+ωi−ω j)

2 − ωi + 1
n

∑n
k=1 ωk .

The proof of Lemma 5 is similar to that of Lemma 4, and
therefore omitted for brevity.

123

1738 Autonomous Robots (2018) 42:1731–1748

Algorithm 1 (P∗, V̂(P∗, ω∗; J)) ← GSLB(P0, ω0, V̂, Q)

1: G ← PRM∗(Q);
2: (P, ω) ← Initialize(P0, ω0);
3: for all {Agent i}ni=1 do
4: while P 	= P+ do
5: P = P+
6: V̂i (P, ω; J) ← VoronoiPartition(P, ω, c,G);
7: Ã ← getArea(V̂(P, ω));
8: while ‖ω − ω+‖ > error do
9: ω = ω+;
10: ω+

i ← UpdateWeights(P, ω, V̂i , Ã,G);
11: ω+ ← TransmitAndReceive(ω+

i);
12: V̂i (P, ω; J) ← VoronoiPartition(P, ω, c,G);
13: end while
14: p+

i ← UpdateAgentPosition(pi , V̂i ,G);
15: P+ ← TransmitAndReceive(p+

i);
16: end while
17: end for
18: return (P, V̂(P, ω; J));

The additive property of J allows the agents to only check
a connected subset of nodes, q ∈ NG , to find the approxi-
mated regions Ṽweighted

i .

Proposition 1 Assume that J is an additive cost and let there
exist an optimal path from pi to q passing through q ′. Then,
if q ′ is not part of Ṽweighted

i then q is not part of Ṽweighted
i .

Note that ṼLR may not be connected but still only needs
to check the same q as Ṽweighted.

Another useful property of Ṽweighted and ṼLR is that they
are invariant under translation in the weights, V̂(ω + t1) =
V̂(ω), which follows from the invariance property of their
continuous-space counterparts.

4.2 Discrete-space algorithm

Algorithm 1 briefly outlines the general algorithm procedure
for Problem 2 with limited ranges that leads to an approxi-
mate solution. Note that V̂ refers to a generic approximation
of a Voronoi sub-partition in terms of graph nodes; we refer
to V̂ as approximate generalized Voronoi partitions. First, the
agents each determine such a partition, (see Sect. 4.1 for def-
inition and details). Then the weights are updated to reflect
the error in the area constraint, the details of which are in
Sect. 4.2.1. These two steps are alternated until the area con-
straints are satisfied to within a specified error, which can be
reduced by increasing the number of nodes in G. Next, the
agents move to a neighboring node that will decrease H̃, see
Sect. 4.2.2. The steps are repeated until none of the agents
are able to update their positions, P = P+.

4.2.1 Updating the agent weights

Recall, for Problem 2, each agent’s cell should satisfy an
approximate area constraint, ã′

i .When the agents have unlim-

ited ranges, ã′
i = ãi . Agents with limited range follow the

procedure outlined in Sect. 3.2.2 to find a weight assign-
ment for ṼLR. Let ω0 be the set of weights, then define
Ã = ∑

q∈ṼLR(ω0)
φ(q)β(q). The new variable area con-

straint is āi = ãi Ã∑
q∈NG

φ(q)β(q)
. Let âi indicate either ãi or

āi .
Define the error between the current and specified area as

g̃(ω) =
(∑

q∈V̂1(ω)

φ(q)β(q) − â1, . . . ,
∑

q∈V̂n(ω)

φ(q)β(q) − ân

)
.

Next, each agent updates ω to reduce the area error.
FromBertsekas and Tsitsiklis (1997), the Jacobian update

used to minimize g̃(ω) is approximated as

ω+
i = ωi − γ

(
∂ g̃(ω)

∂ωi

)−1

g̃i (ω),

which converges for a small enough γ > 0. The partial
derivatives of g̃ are approximated as,

∂ g̃

∂ωi
(ω) ≈

∑
q∈V̂ i

i
φ(q)β(q) − ∑

q∈V̂i φ(q)β(q)

ωi
, (6)

where V̂ i
i is the Voronoi cell for agent i with ω =

{ω1, . . . , ωi +
ωi , . . . , ωn}. Note that
ωi > 0 needs to be
small enough to guarantee convergence but also large enough
that V̂ i

i 	= V̂i . The V̂ i
i can be computed with a single Dijkstra

graph search so agent i can easily compute (6).
The algorithm loops through determining V̂ and updating

ω until the area constraint is satisfied to within a specified
error.

4.2.2 Updating the agent positions

After V̂i and ω have been determined, agent i decides where
to move. Ideally, each agent minimizing H̃centroid or H̃mixed

wouldmove to a position in the generalized centroid set on V̂i ,
which is computationally intensive. Instead, agent i moves in
the direction of one of the generalized centroids by moving
to a neighboring node of pi such that

p+
i ∈ argminp∈N out

G (pi)

∑

q∈V̂i
J (p, q)φ(q)β(q).

If the agents have limited range, and are solving Problem 2
with H̃area, they update their position by approximating (5),

∂H̃area(P, ṼLR)

∂ pi
=

n∑

i=1

∑

q∈λi

φ(q)n̂
(q)
∂q

∂ pi
.

123

Autonomous Robots (2018) 42:1731–1748 1739

The agent then moves to a neighboring node in the graph that

is in a direction as close as possible to ∂H̃area(P,ṼLR)
∂ pi

.
Note that because the agent is moving to another node in

the graph, the new agent position will automatically be in Q.
The new agent position is shared among the Voronoi neigh-
bors of agent i , whoneed it to calculate theirVoronoi cell. The
algorithm loops through these steps until the agents’ positions
become fixed; indicating that convergence has been reached.
Note that when iterating these steps in the continuous-space
version, Problem 1, agents are locally minimizing the func-
tional with respect to their positions.

5 Distributed algorithm properties

This section looks at the distributed nature of the Graph-
based Spatial Load Balancing algorithm using
Ṽweighted and ṼLR. The following discussion focuses on the
discrete-space case, but analogous considerations hold for
the continuous-space counterpart.

The information that agent i needs for the implemen-
tation of the Graph- based Spatial Load Balancing
using Vweighted is limited to those other agents j whose
approximated regions are connected to the approximated
region of i via boundary nodes (or Vweighted

i (P, ω; J) ∩
Vweighted
j (P, ω; J) 	= ∅ in the continuous-space coun-

terpart). In the case where no obstacles are present, this
property generally involves a limited number of agentswhich
depends on the specific metric. In the Euclidean metric case,
where, for equal weights, the generic number of neighbors
is six (Okabe et al. 2000). When obstacles are present, this
characterization is more difficult. The distributed properties
of the Graph- based Spatial Load Balancing using
ṼLR are discussed below, but first an alternate definition of
D̃ using a maximum radius is introduced.

5.1 Alternate definition of ˜D

Under certain costs, J (pi , q), Di can be defined as a ball
with radius Ri . This definition is intuitive in a way that the
c definition, (1), is not. Assume J (pi , q) = ‖pi − q‖2 or
J (pi , q) = ‖pi − q‖, then the radius of the ball defined by
D̃i is denoted by Ri for all i ∈ {1, . . . , n}. Recall Ri �
c + ωi − 1

n

∑n
k=1 ωk , then, using the definition of Di at the

boundary, J (pi , q) = ‖pi − q‖2 implies Ri = R1/2
i and

J (pi , q) = ‖pi − q‖ implies Ri = Ri .
Depending upon the physical system, an upper boundmay

be imposed on Ri , denoted by Rmax. We want to remove c
from the definition of Di and replace it with the fixed Rmax.
To remove c, let c be a function of Rmax and ω, instead of a

constant. Then, define cmax = Rmax − max
k

(ω) + 1

n

n∑

k=1

ωk .

Substituting cmax intoRi � c + ωi − 1
n

∑n
k=1 ωk , gives,

Ri = Rmax − max
k

(ω) + 1

n

n∑

k=1

ωk + ωi − 1

n

n∑

k=1

ωk,

= Rmax − max
k

(ω) + ωi .

Notice that now Ri , and hence Ri , are no longer dependent
on c nor the mean of ω, but on Rmax and the maximum value
of ω. The new definition of Di is,

Di = {q ∈ Q | J (pi , q) ≤ Rmax − max
k

(ω) + ωi }, (7)

when J (pi , q) = ‖pi − q‖, and is

Di = {q ∈ Q | J (pi , q) ≤ √
Rmax − max

k
(ω) + ωi },

when J (pi , q) = ‖pi −q‖2. Algorithm 1 needs some minor
modifications to account for the maximum radius constraint.
First, in Lines 6 and 12, the primitive VoronoiPartition now
takes inputs Rmax and Ri instead of c. Then, after Line 11,
Ri is determined.

Let Di denote the continuous-space counterpart of D̃i .
Then defining Di using Rmax causes problems in Lemma 1
becausemaxk ω is not differentiable.However, given themax
operator’s properties, one can conjecture that an analogous
result exists using generalized gradients. As a consequence,
assuming the analogous result leads to M(ω) being gradi-
ent (i.e. that the weights-to-area map is in the generalized
gradient of F ,) then all other results follow. In particular,
in Lemma 2, the new Di still satisfies the conditions on the
partial derivatives. With the assumption that Lemma 1 holds,
a weight assignment exists that satisfies the area constraint.
Then, the convergence result in Theorem 2 still holds for the
Di definition using Rmax, (7).

5.2 Distributed properties using ˜VLR

While the algorithm in Cortés (2010) for solving the spatial
load balancing problem is distributed in the sense that only
information is needed for neighboring agents, these neigh-
boring agentsmaybe significantly far away fromone another.
Especially when Euclidean norms are used, the limited range
constraint forces the agents to only consider neighborswithin
a certain distance of each other.

More precisely, the computation of Ṽ LR
i (P, ω) requires

knowledge of the positions and weights of agent i’s neigh-
bors and knowledge of the mean of the weights for D̃i . The
latter can be computed using a distributed consensus algo-
rithm performed over a connected communication graph.

123

1740 Autonomous Robots (2018) 42:1731–1748

This communication graph might not be GLR, since GLR is
not necessarily connected. If D̃i is defined as in Sect. 5.1,
the agents need the maximum ω value instead of the mean.
The maximum value is found using a max operation over a
connected system, requiring fewer communications between
the agents.

Before eachweight update, the area covered by ṼLR needs
to be determined. Again, a distributed consensus algorithm
over a connected communication graph is needed. Once
inside the weights update loop, agents only need the infor-
mation from their cell, Ṽ LR

i , to determine ω+
i . Likewise,

the position update using the gradient of H̃area(P, ṼLR)

or the centroid of Ṽ LR
i for H̃mixed(P, ṼLR), only requires

knowledge from the agent’s own cell. In all, the algorithm
is distributed over the smallest connected graph containing
GLR.

The Rmax constraint can be used to define a disk graph
G2Rmax that is sufficient for agents to determine neighbors
in GLR. When using a general J , the balls are defined as a
reachable set. If J is radially unbounded, the balls are com-
pact sets. In the Euclidean metric case, the balls are circles
whose radii are related to Rmax and correspond to the stan-
dard r-disk graph. Define G2Rmax over the set of agents, where
a (communication) edge exists between agents i and j if and
only if the balls centered at the agents’ position with radius
Rmax intersect, B(pi , Rmax)∩ B(p j , Rmax) 	= ∅. The G2Rmax

can be used to determine an over approximation of the sets of
neighboring agents in GLR. To see this approximation, note
that Ṽ LR

i ⊆ D̃i ⊆ B(pi , Rmax), for all i ∈ {1, . . . , n}. There-
fore, Ṽ LR

i ∩ Ṽ LR
j 	= ∅ only if D̃i ∩ D̃ j 	= ∅, which happens

only if B(pi , Rmax) ∩ B(p j , Rmax) 	= ∅. This result implies
that agent i can compute its cell, Ṽ LR

i , communicating only
with neighbors j in G2Rmax . In other words, an agent only
needs to communicate with other agents within a distance of
2Rmax of itself, ‖pi − p j‖ ≤ 2Rmax.

6 Convergence

The spatial load balancing algorithm in Cortés (2010) is
shown to converge to a (P∗,Vweighted(P∗, ω∗; J)) solution
of Problem 1 for convex environments. A similar result holds
for non-convex Q since there exists ω that allows a gen-
eralized Voronoi partition Vweighted(P, ω; J) to satisfy the
constraints. Lemma6 is used to extendProp. IV.4 fromCortés
(2010) to non-convex Q; Prop. IV.4 sates there exists a set
of weights that make Vweighted satisfy the area constraints in
a convex continuous-space.

Lemma 6 Let Vweighted, J (pi , q), φ(q), and ω be defined as
above. Define the weights-to-area map as

M(P, ω) =
(∫

Vweighted
i (ω)

φ(q)dq, . . . ,

∫

Vweighted
n (ω)

φ(q)dq

)

.

Then, M is gradient, ∇F = −M, where F : R
n → R,

F(ω) =
n∑

j=1

∫

Vweighted
j (ω)

(J (p j , q) − ω j)φ(q)dq.

The proof of Lemma 6 is similar to that of Lemma 1 and
therefore omitted.

For the discrete case note that for any W̃ = {W̃i }ni=1 parti-
tion ofNG , one can find (many) continuous-space partitions
W = {Wi }ni=1 such that W̃i = Wi ∩ NG andW satisfies the
constraints. As the number of nodes in NG goes to infinity,
W̃ will converge to a W . Due to integration properties, and
because Hcentroid(P,W) is continuous,

|Hcentroid(P,W) − H̃centroid(P, W̃)| ≤ε, (8)

is true for a sufficiently small sample dispersion.
The Graph- based Spatial Load Balancing algo-

rithm with Vweighted cannot converge to the exact partition
and centroids of the continuous problem, but an approximate
solution is guaranteed, see Theorem 2.

Theorem 2 The unlimited range Graph- based Spatial
Load Balancing algorithm is guaranteed to converge to
an approximate solution (P∗, Ṽweighted(P∗, ω∗)) which is in
a continuous-space set defined by ‖Hcentroid(P∗,Vweighted)

(P, ω) − Hcentroid(P∗,Vweighted(P∗, ω∗))‖ ≤ 2ε.

Proving convergence of the limited range
Graph- based Spatial Load Balancing relies on the
continuous-space convergence Theorem 3 which is only
shown to converge forHarea(P,VLR).

Theorem 3 The continuous-space version of Algorithm 1,
used to solve the limited range spatial load balancing prob-
lem, converges to a solution (P∗,VLR(P∗, ω∗)) when H =
Harea(P,VLR).

Then, convergence to an approximate solution is guaran-
teed by Lemma 7.

Lemma 7 The limited rangeGraph- based Spatial Load
Balancing using H̃area is guaranteed to converge to an
approximate solution (P∗, ṼLR(P∗, ω∗)) which is in a
continuous-space set defined by ‖Harea(P∗,VLR(P), ω) −
Harea(P∗,VLR(P∗, ω∗))‖ ≤ 2ε.

The proof of Lemma 7 is similar to that of Theorem 2 and
therefore omitted.

123

Autonomous Robots (2018) 42:1731–1748 1741

Fig. 2 The initial 5000 node graph Ṽweighted for six agents before solv-
ing Problem 2 with H̃centroid

7 Simulations

The simulations below examine agents without differential
constraints whose edge cost, Je, is Euclidean distance and
for Dubins vehicle agents whose edge cost is the distance
traveled. There are simulations for six agents each of them
solving graph-based Problem 2 with an equal area constraint
and a uniform probability density function, φ(q) = 1, ∀ q ∈
NG . Each agent is initialized with ωi = 5. The simulations
compare the limited range defined by a constant c = 3 and
Rmax = 3.5.

All simulations have the same initial agent positions; clus-
tered together in the top right corner. The simulations were
run for a graph constructed with 2000 samples and a more
dense graph constructed using 5000 samples. The graph
should be constructed such that the edge lengths are less than
∂ D̃i . This will ensure that there exists neighboring nodes of
pi within Ṽ LR

i for the agent to move to.

7.1 Voronoi graph partitions

This section compares the weighted Voronoi graph partition,
Ṽweighted for six agents solving Problem2. Figures 2 and 3 are
the initial and final Ṽweighted partitions, respectively, in the
non-convex environment using the graph with 5000 samples.

The initial and final limited range Voronoi graph parti-
tions for agents solving Problem 2 with H̃ = H̃area in the
non-convex environment using the 5000 sample graph are
in Figs. 4, 5 and 6. Figure 5 is the final ṼLR partition when
c = 3. When Rmax = 3.5, the agents’ final ṼLR partition is
in Fig. 6. The final ṼLR partitions for the 5000 sample graph
in the non-convex environment under H̃ = H̃Mixed are Fig. 7
when c = 3, and Fig. 8 when Rmax = 3.5.

Fig. 3 The final 5000 node graph Ṽweighted for six agents obtained by
solving Problem 2 with H̃centroid

Fig. 4 The Initial 5000 node graph ṼLR with c = 3 for six agents
obtained by solving Problem 2 with H̃area

Fig. 5 Thefinal 5000nodegraph ṼLR with c = 3 for six agents obtained
by solving Problem 2 with H̃area

123

1742 Autonomous Robots (2018) 42:1731–1748

Fig. 6 The final 5000 node graph ṼLR with Rmax = 3.5 for six agents
obtained by solving Problem 2 with H̃area

Fig. 7 Thefinal 5000 node graph ṼLR for six agents obtained by solving
Problem 2 with H̃mixed

Fig. 8 Thefinal 5000 node graph ṼLR for six agents obtained by solving
Problem 2 with H̃mixed

Fig. 9 The evolution of H̃centroid obtained by solving Problem 2 using
Ṽweighted, where the solid line is the 5000 node graph and the dashed is
the 2000 node graph

7.2 Evolution of ˜H

The following simulations are a comparison of the evolution
of the different cost functions for the various problems. The
plots show the algorithm converges to a solution.

The evolution of H̃centroid for agents solving Problem 2
in the non-convex environment using partition Ṽweighted is
in Fig. 9. The cost function decreases monotonically as
expected.

Figure 10 is the evolution of H̃area for the agents solving
Problem 2 with limited ranges in the non-convex environ-
ment. The evolution of H̃mixed for the limited range agents
in the convex environment solving Problem 2 is in Fig 11.
Both the 2000 and 5000 sample graphs produce costs that
decrease smoothly until the algorithm gets close to conver-
gence then chatters slightly. It is important to note that when
the algorithm uses H̃area or H̃mixed, the position update is
approximate. The agents do not follow the gradient exactly,
but rather a close approximation based on the neighboring
nodes. The more nodes there are in the graph, the less error
there will be in following the gradient. This can be seen by
comparing the 2000 and 5000 node graphs. The 5000 node
graph produces a cost function plot with less pronounced
increases and less chattering.

The following simulation is with seven agents in a hall-
way type environment. The initial and final agent partitions
are shown in Figs. 12 and 13. The area-only cost function is
plotted in Fig. 14 for both the c and Rmax definitions of the
limited range sub-partition. The cost function decreases and
then chatters due to the error in the gradient. Figure 15 is the
mixed cost function. The c definition decreases monotoni-
cally while the Rmax definition increases first then decreases
monotonically.

123

Autonomous Robots (2018) 42:1731–1748 1743

Fig. 10 The evolution of H̃area obtained by solving Problem 2 using
ṼLR from the 2000 node graph with c = 3 (blue dash-dot line), Rmax =
3.5 (red solid line), from the 5000 node graph with c = 3 (cyan dashed
line), Rmax = 3.5 (magenta dotted line) (Color figure online)

Fig. 11 The evolution of H̃mixed obtained by solving Problem 2 using
ṼLR from the 2000 node graph with c = 3 (blue dash-dot line), Rmax =
3.5 (red solid line), from the 5000 node graph with c = 3 (cyan dashed
line), Rmax = 3.5 (magenta dotted line) (Color figure online)

Fig. 12 A 5000 node graph initial ṼLR for seven agents obtained by
solving Problem 2 with H̃area

Fig. 13 A 5000 node graph final ṼLR for seven agents obtained by
solving Problem 2 with H̃area

Fig. 14 The evolution of H̃area obtained by solving Problem 2 using
ṼLR from a 5000 node graph with c = 3 (blue dash-dot line), Rmax =
3.5 (red solid line) (Color figure online)

Fig. 15 The evolution of H̃mixed obtained by solving Problem 2 using
ṼLR from a 5000 node graph with c = 3 (blue dash-dot line), Rmax =
3.5 (red solid line) (Color figure online)

123

1744 Autonomous Robots (2018) 42:1731–1748

Fig. 16 The evolution of H̃area obtained by solving Problems 2 for
Dubins’ vehicle using ṼLR, where the blue dashed line is with c = 7
and solid red line is with Rmax = 8 (Color figure online)

Fig. 17 The evolution of H̃mixed obtained by solving Problems 2 for
Dubins’ vehicle using ṼLR, where the blue dashed line is with c = 7
and solid red line is with Rmax = 8 (Color figure online)

7.2.1 Dubins’ vehicle results

Simulations for Dubins’ vehicle agents, subject to limited
ranges, solving Problem 2 using ṼLR were run for a 2000
node graph. Figure 16 is the evolution of H̃area and Fig. 17
is the evolution of H̃mixed in the non-convex environment.
The blue dashed lines are for ṼLR with a constant c = 7
and the red solid lines are for Rmax = 8. The H̃area and
H̃mixed decrease initially and then chatters until convergence
is reached. The H̃mixed decreases smoothly for ṼLR with a
constant c = 7. The chattering produced by the Dubins’
vehicle is due to the resolution in the graph. If the graph
were to have more nodes, the position update would have
less error and therefore less chattering. Because an increase
in the number of nodes in the graph causes the algorithm to
increase in run time, a balance between the run time and the
smoothness of the cost function decrease is needed.

8 Conclusions

A limited range spatial load balancing problem for agents
subject to differential constraints in a non-convex envi-
ronment is defined and discussed. To handle differential
constraints, the problem is redefined using a probabilistic
roadmap star (PRM*) and an algorithm is given that finds
an approximate solution to the original problem. We discuss
how introducing the limited range sub-partition and deter-
mining a subset of agents containing theVoronoi neighbors of
a specific agent limits the amount of communication between
agents. A convergence proof is given for the Graph- based
Spatial Load Balancing algorithm. All other defined
approximated problems are shown to converge in simulation.
Future work includes more extensive differential constraint
simulations as well as implementation of the algorithm on a
set of mobile robots.

Appendix

Proof of Lemma 1 Take the derivative of F(ω) with respect
to ωi using the Leibniz rule (Flanders 1973), which applies
over general domains,

∂F(ω)

∂ωi
= −n

1 − n

⎛

⎝
n∑

j=1

∫

V LR
j

−
[

∂q

∂ωi

×
(

∂

∂q

(

J (p j , q) − ω j + 1

n

n∑

k=1

ωk − c

)

φ(q)

)]

· dq

+
n∑

j=1

∫

∂V LR
j

∂q

∂ωi
·
((

J (p j , q) − ω j + 1

n

n∑

k=1

ωk − c

)

φ(q)

)

dq

+
n∑

j=1

∫

V LR
j

∂

∂ωi

((

J (p j , q) − ω j + 1

n

n∑

k=1

ωk − c

)

φ(q)

)

dq

⎞

⎠ .

The first term,

n∑

j=1

∫

V LR
j

−
[

∂q

∂ωi

×
(

∂

∂q

(

J (p j , q) − ω j + 1

n

n∑

k=1

ωk − c

)

φ(q)

)]

· dq = 0.

There are two vectors in the (q1, q2) plane being crossed,
resulting in a vector perpendicular to the (q1, q2) plane, in
dot product with a vector in the (q1, q2) plane, thus resulting
in a zero value. The second term becomes

123

Autonomous Robots (2018) 42:1731–1748 1745

n∑

j=1

∫

∂V LR
j

∂q

∂ωi
·
((

J (p j , q) − ω j + 1

n

n∑

k=1

ωk − c

)

φ(q)

)

dq

=
n∑

j=1

∫

�i j

n̂
 ∂q

∂ωi

((

J (p j , q) − ω j + 1

n

n∑

k=1

ωk − c

)

φ(q)

)

dq

+
n∑

j=1

∫

� j

n̂
 ∂q

∂ωi

((

J (p j , q) − ω j + 1

n

n∑

k=1

ωk − c

)

φ(q)

)

dq.

This term then vanishes along�i j because the opposing nor-
mal vectors aremultiplying the same termswhich then cancel
each other out. For all q ∈ � j , J (p j , q)−ω j + 1

n

∑n
k=1 ωk−

c = 0. The third term,

n∑

j=1

∫

V LR
j

∂

∂ωi

(
(J (p j , q) − ω j + 1

n

n∑

k=1

ωk − c)φ(q)

)
dq

=
n∑

j=1

∫

V LR
j

(

������0 ∀ j
∂ J (p j , q)

∂ωi
φ(q) −

�
�
��
1, i = j

∂ω j

∂ωi
φ(q)

+ 1

n
�

�
�

��
1, i = k

n∑

k=1

∂ωk

∂ωi
φ(q) −

�
�
��
0 ∀ j

∂c

∂ωi
φ(q)

+ (J (p j , q) − ω j + 1

n

n∑

k=1

ωk − c)
�

�
���

0 ∀ j

∂φ(q)

∂ωi

)
dq

= 1 − n

n

∫

V LR
i

φ(q)dq.

Putting everything together results in

∂F

∂ωi
= −

∫

V LR
i

φ(q)dq = −Mi (ω), i ∈ {1, . . . , n}.

��
Proof of Lemma 2 Fact 1 follows from M, and thus M0,
being gradient. For Fact 2, by definition, the sum of M0

stays constant when ω is updated, therefore, the range of
M0 is in {m ∈ R

n≥0 | 1

n m = A}, and thus, 1

n J (M0) = 0n .
Because J (M0) is symmetric, 1n is a right eigenvector with
eigenvalue 0. Consider ω ∈ U 0 and let η be the number
of connected components to GLR ≡ GLR(P, ω), such that
each connected component, Gl , has a corresponding vec-
tor vl associated with it. Then, because each Gl maintains
a constant area during the weights update, additional eigen-
vectorswith eigenvalue zero can be defined, v

l J (M0)(ω) =
0n . For Fact 3, first show that for i ∈ {1, . . . , n} and
(ω1, . . . , ωi , . . . , ωn), (ω1, . . . , ω

′
i , . . . , ωn) such that ω′

i ≥
ωi ,

M0
i (ω1, . . . , ω

′
i , . . . , ωn) ≥M0

i (ω1, . . . , ωi , . . . , ωn),

M0
j (ω1, . . . , ω

′
i , . . . , ωn) ≤M0

j (ω1, . . . , ωi , . . . , ωn), j 	=i .

Recall, V LR
i = Vweighted

i ∩ Di . First, how ∂Vweighted
i

changes with respect to ω is examined. When q ∈ �i j

then J (pi , q) − ωi = J (p j , q) − ω j . If ωi increases,
then the boundary �i j moves further away from pi which

increases the area of Vweighted
i and decreases the area of

Vweighted
j . Second, examine the change in the boundary of

Di . Let Jmax(pi , q) be the cost at the boundary of Di , then
Jmax(pi , q) = c + ωi − 1

n

∑n
k=1 ωk . If ωi increases then so

does Jmax(pi , q) which in turn increases the area of Di . For
Dj , if ωi increases then Jmax(p j , q) decreases and hence the
area of Dj decreases. Then, the partial derivatives ofM0 for
VLR at ω satisfy

∂M0
i

∂ωi
≥ 0,

∂M0
j

∂ωi
≤ 0, j 	= i .

The above expression, when combined with Facts 1 and 2,
leads to J (M0)(ω) being the Laplacian ofGLR. BecauseGLR
has exactlyη connected components, the rank(J (M0))(ω) =
n − η. ��

Proof of Theorem 1 First, consider the function G : U 0 →
R defined as

G(ω) = 1

2
‖M0(ω) − (ā1, . . . , ān)‖2. (9)

This function is continuous and invariant under translations.
Therefore, it induces a continuous function on U 0/ ∼, the
quotient set of U 0 for which ω1 ∼ ω2 if they differ in a
translation. It can be proven thatU 0/ ∼ is a compact set and
there is a minimizer of G on U 0/ ∼. Evaluate the derivative
of (9) with respect to ω at ω∗,

0 = ∂

∂ωi

∣∣∣∣
ω=ω∗

(
1

2
‖M0(ω) − (ā1, . . . , ān)‖2

)

=
n∑

k=1

(
M0

k(ω
∗) − āk

) ∂M0
k

∂ωi

∣
∣∣∣
ω=ω∗

, ∀ i ∈ {1, . . . , n},

which can then be expressed as (M0(ω∗) − (ā1, . . . , ān))
J (M0)(ω∗) = 0n . The weights-to-area map, M0(ω), is
differentiable in the same way that F(ω) from Lemma 1
is differentiable. Note that ω∗ is in the interior of U 0/ ∼
because āi > 0 (boundary points are those for which the cell
of an agent is empty). Recall that, over U 0, there are eigen-
vectors such that v

l J (M0)(ω∗) = 0n for all l ∈ {1, . . . , η}
and that the rank(J (M0)(ω∗)) = n − η. From here, deduce
that M0(ω∗) − (ā1, . . . , ān) = ∑n

l=1 blvl for some bl ∈ R.
Next, notice that 0 = v

l (M0(ω∗) − (ā1, . . . , ān)) = blnl ,
and therefore bl = 0 for all l ∈ {1, . . . , η}, or M0(ω∗) =
(ā1, . . . , ān). ��

123

1746 Autonomous Robots (2018) 42:1731–1748

Proof of Lemma 3 Because q ∈ ∂ D̃i , J (pi , q) = c + ωi −
1
n

∑n
k=1 ωk . This same q is also in ∂ Ṽweighted

i ,

J (pi , q) − ωi + ω j = J (p j , q), for some j .

Substituting the above expression into the triangle inequality,
J (pi , q) + J (p j , q) ≥ J (pi , p j), gives

2c − 2

n

n∑

k=1

ωk + ωi + ω j ≥ J (pi , p j).

Therefore, the c must be larger than

c ≥ J (pi , p j) + 2
n

∑n
k=1 ωk − ωi − ω j

2
.

��
Proof of Lemma 4 Because q ∈ Ṽweighted

i then

‖pi − q‖2 − ωi = ‖p j − q‖2 − ω j for some j . (10)

Now, squaring the triangle inequality of the Euclidean norm,

‖p j − q‖2 ≥ ‖pi − p j‖2 + ‖pi − q‖2 − 2‖pi − p j‖‖pi − q‖.

Substitute this equation into (10), and rearranging, gives

‖pi − q‖ ≥‖pi − p j‖2 + ωi − ω j

2‖pi − p j‖ .

Usingq ∈ ∂ D̃i , leads to‖pi−q‖ = (c+ωi− 1
n

∑n
k=1 ωk)

1/2,
which is substituted into the above expression giving the
bound on c,

c ≥ (‖pi − p j‖2 + ωi − ω j)
2

4‖pi − p j‖2 − ωi + 1

n

n∑

k=1

ωk for all j .

��
Proof of Proposition 1 The existence of an optimal path from
pi to q passing through q ′ leads to J (pi , q ′) + J (q ′, q) =
J (pi , q). From q ′ /∈ Ṽweighted

i , we have J (pi , q ′) − ωi ≥
J (p j , q ′) − ω j for some j 	= i . Putting these two equa-
tions together, along with the triangle inequality J (p j , q) ≤
J (p j , q ′) + J (q ′, q) gives

J (pi , q
′) − ωi ≥ J (p j , q

′) − ω j

J (pi , q) − J (q ′, q) − ωi ≥ J (p j , q) − J (q ′, q) − ω j

J (pi , q) − ωi ≥ J (p j , q) − ω j .

which implies that q /∈ Ṽweighted
i . ��

Proof of Theorem 2 Convergence can be proved by show-
ing that H̃centroid decreases monotonically at every step.
Recall that the agent positions are updated specifically
so that H̃centroid decreases, H̃centroid(P, Ṽweighted(P)) ≥
H̃centroid(P+, Ṽweighted(P)). Next, using (8),

H̃centroid(P+, Ṽweighted(P))

≥ Hcentroid(P+,Vweighted(P)) − ε

≥ Hcentroid(P+,Vweighted(P+)) − ε

≥ H̃centroid(P+, Ṽweighted(P+)) − 2ε.

Thus, H̃centroid decreases as long asHcentroid(P+,Vweighted)

(P) is 2ε larger than Hcentroid(P+,Vweighted(P+)). ��
Proof of Theorem 3 Note that Q be compact and invariant
under the dynamics T , and define Hv(P) = Harea(P,VLR

(P,A(P)). Because the limited range spatial load balanc-
ing algorithm alternately updates the agents’ positions and
weight assignments, the evolution ofHarea(P,VLR) is,

Hv(P) = Harea(P,VLR(P,A(P)))

= Harea(T (P),VLR(P,A(P))) ≥ Harea(T (P),VLR(T (P),A(P)))

= Harea(T (P),VLR(T (P),A(T (P)))) = Hv(T (P)),

whereVLR(P, ω) andVLR(T (P),A(T (P))) both satisfy the
variable a′ constraint. When the partition VLR is kept con-
stant and the position is updated (Harea(P,VLR(P,A(P)))

= Harea(T (P),VLR(P,A(P)))), the area covered by VLR is
constant. Because T (P) is found to specifically increase the
area, the new sub-partition, VLR(T (P),A(P)), has a greater
area than VLR(P,A(P)) (Harea(T (P),VLR(P,A(P))) ≥
Harea(T (P),VLR(T (P),A(P)))). Finally, the A(P) values
are updated in such a way that the area is kept con-
stant during the update (Harea(T (P),VLR(T (P),A(P))) =
Harea(T (P),VLR(T (P),A(T (P))))). Theorem 1 says that
A(T (P)) exists. Note that if T (P) 	= P thenHarea(P,VLR)

decreases implyingHv(P) > Hv(T (P)). Therefore,Hv(P)

= Hv(T (P)) if and only if T (P) = P . From here, apply
the LaSalle invariance principle to guarantee the trajectories
of T converge to the largest invariant set in Z = {P ∈
Q |Hv(P) = Hv(T (P))}. It can be concluded from the
above discussion thatZ is the set of limited range generalized
Voronoi configurations where the gradient ofHarea(P,VLR)

is zero. ��

References

Bertsekas, D. P., & Tsitsiklis, J. N. (1997). Parallel and dis-
tributed computation: Numerical methods. Athena Scientific.
ISBN 1886529019.

Bhattacharya, S., Ghrist, R., & Kumar, V. (2014). Multi-robot cover-
age and exploration on riemannian manifolds wth boundaries. The
International Journal of Robotics Research, 33, 113–137.

123

Autonomous Robots (2018) 42:1731–1748 1747

Bhattacharya, S., Michael, N., & Kumar, V., (2013). Distributed cov-
erage and exploration in unknown non-convex environments. In
International Symposium onDistributed Autonomous Robotic Sys-
tems, pages 61–75. Springer.

Boardman, B., Harden, T., & Martínez, S. (2016). Spatial load bal-
ancing in non-convex environments using sampling-based motion
planners. In American Control Conference.

Boardman, B., Harden, T., &Martínez, S. (2017). Limited range spatial
load balancing. In American Control Conference, Submitted.

Breitenmoser, A., Schwager, M., Metzger, J.-C., Siegwart, R., & Rus,
D. (2010). Voronoi coverage of non-convex environments with a
group of networked robots. In IEEE International Conference on
Robotics and Automation, pp. 4982–4989.

Caicedo-Nunez, C. H., & Zefran, M. (2008). Performing coverage on
nonconvex domains. In IEEE Conference Control Applications,
pp. 1019–1024.

Cortés, J. (2010). Coverage optimization and spatial load balancing by
robotic sensor networks. IEEETransactions onAutomaticControl,
55(3), 749–754.

Cortés, J., Martínez, S., & Bullo, F. (2005). Spatially-distributed cov-
erage optimization and control with limited-range interactions.
ESAIM: Control, Optimisation & Calculus of Variations, 11(4),
691–719.

Dijkstra, E. W. (1959). A note on two problems on connexion with
graphs. Numerische Mathematik, 1(1), 269–271.

Enright, J., Salva, K., & Frazzoli, E. (2008). Coverage control for non-
holonomic agents. In IEEE International Conference on Decision
and Control, pp. 4250–4256.

Flanders, H. (1973). Differentiation under the integral sign. The Amer-
ican Mathematical Monthly, 80(6), 615–627.

Jiang, W., & Zefran, M. (2013). Coverage control with information
aggregation. In IEEE International Conference on Decision and
Control (pp. 5421–5426). IEEE.

Kantaros, Y., Thanou, M., & Tzes, A. (2014). Visibility-oriented cover-
age control of mobile robotic networks on non-convex regions. In
IEEE International Conference on Robotics and Automation (pp.
1126–1131). IEEE.

Kantaros, Y., Thanou, M., & Tzes, A. (2015). Distributed coverage
control for concave areas by a heterogeneous robot-swarm with
visibility sensing constraints. Automatica, 53, 195–207.

Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for
optimal motion planning. The International Journal of Robotics
Research, 30(7), 846–894.

Kwok, A., & Martínez, S. (2010a). Deployment algorithms for a
power-constrained mobile sensor network. International Journal
on Robust and Nonlinear Control, 20(7), 725–842.

Kwok,A.,&Martínez, S. (2010b).Unicycle coverage control via hybrid
modeling. IEEE Transactions on Automatic Control, 55(2), 528–
532.

Laventall, K.,&Cortés, J. (2008). Coverage control by robotic networks
with limited-range anisotropic sensory. In American Control Con-
ference, pp. 2666–2671, Seattle, WA.

Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transac-
tions on Information Theory, 28(2), 129–137.

Mahboubi, H., Moezzi, K., Aghdam, A. G., Sayrafian-Pour, K., &Mar-
bukh, V. (2014). Distributed deployment algorithms for improved
coverage in a network of wireless mobile sensors. IEEE Transac-
tions on Industrial Informatics, 10(1), 163–174.

Okabe, A., Boots, B., Sugihara, K., & Chiu, S. N. (2000). Spatial
tessellations: Concepts and applications of voronoi diagrams
(2 ed.). Wiley Series in Probability and Statistics. Wiley. ISBN
0471986356.

Patel, R., Frasca, P.,&Bullo, F. (2014). Centroidal area-constrained par-
titioning for robot networks. ASME Journal on Dynamic Systems,
Measurement, and Control, 136(3), 031024-1–031024-8.

Pavone,M., Arsie, A., Frazzoli, E., &Bullo, F. (2011). Distributed algo-
rithms for environment partitioning in mobile robotic networks.
IEEE Transactions on Automatic Control, 56(8), 1834–1848.

Pimenta, L., Kumar, V., Mesquita, R. C., & Pereira, G. (2008). Sensing
and coverage for a network of heterogeneous robots. In IEEE Inter-
national Conference on Decision and Control, pp. 3947–3952,
Cancun, Mexico.

Renzaglia, A., & Martinelli, A. (2009). Distributed coverage control
for a multi-robot team in a non-convex environment. In IEEE/RSJ
International Conference on Intelligent Robots & Systems.

Savla, K., Bullo, F., & Frazzoli, E. (December 2007). The coverage
problem for loitering Dubins vehicles. In IEEE International Con-
ference on Decision and Control, pp. 1398–1403, New Orleans,
LA.

Stergiopoulos, Y., & Tzes, A. (2011). Coverage-oriented coordination
of mobile heterogeneous networks. InMediterranean Conference
on Control and Automation, pp. 175–180.

Zhong, M., & Cassandras, C. G. (2011). Distributed coverage control
and data collection with mobile sensor networks. IEEE Transac-
tions on Automatic Control, 56(10), 2445–2455.

Beth Boardman is a Research
and Development Engineer with
Los Alamos National Laboratory.
In 2013, she joined the Process
Hardware Automation and Robotics
team within the Process Automa-
tion and Control (AET-5) group at
Los Alamos National Laboratory.
At Los Alamos National Labora-
tory, she participates in research
for manipulator collision avoid-
ance and path planning. She is
also involved in augmented real-
ity research projects. She received
her Ph.D. in Aerospace Engineer-

ing from the University of California, San Diego in October 2017,
where her research focused on robotic motion planning and multi-
agent networks. She received her Masters and Bachelors in Aeronau-
tics and Astronautics from the University of Washington in 2012 and
2010.

Troy Harden Research and Devel-
opment Engineer, Los Alamos
National Laboratory. Troy Harden
has worked for the past 14+ years
in the Process Hardware Automa-
tion and Robotics team within the
Process Automation and Control
(AET-5) group (and its predeces-
sor organizations) at Los Alamos
National Laboratory. At Los
Alamos, he has participated in
research and development in the
areas of manipulator obstacle
avoidance, human–robot interac-
tion, and robot motion planning.

He has also provided technical leadership on a variety of automa-
tion projects. Example automation projects include development of
a robotic system to clean legacy spherical containment vessels, inte-
grating a probing system into a lathe controller, designing/building
end effectors and tooling for the Advanced Recovery and Integrated
Extraction System (ARIES) disassembly lathe and robot, development

123

1748 Autonomous Robots (2018) 42:1731–1748

of on-machine gauging software for machine tools, development of
force guided placement software for the ARIES disassembly lathe
robot, development of control systems for a variety of machine tools,
and the design and integration of custom automation hardware. Troy
currently serves as the first line manager for his team. He came to Los
Alamos as a post-doc in 2002 after receiving his Ph.D. in mechani-
cal engineering from The University of Texas at Austin (UT). While
at UT, he worked in the Robotics Research Group (RRG), where his
major research topic was manipulator obstacle avoidance. Other RRG
responsibilities included software development, hardware and soft-
ware integration, and troubleshooting and repairing a variety of robotic
manipulators (from 6 Degree of Freedom (DOF) industrial manipula-
tors to a 17 DOF dual-arm research robot). Troy has sixteen published
conference papers.

Sonia Martínez is a Professor
at the Department of Mechani-
cal and Aerospace Engineering at
the University of California, San
Diego. Prof. Martínez received her
Ph.D. degree in Engineering Math-
ematics from the Universidad Car-
los III de Madrid, Spain, in May
2002. Following a year as a Visit-
ing Assistant Professor of Applied
Mathematics at the Technical Uni-
versity of Catalonia, Spain, she
obtained a Postdoctoral Fulbright
Fellowship and held appointments
at the Coordinated Science Labo-

ratory of the University of Illinois, Urbana-Champaign during 2004,
and at the Center for Control, Dynamical systems and Computation

(CCDC) of the University of California, Santa Barbara during 2005.
From January 2006 to June 2010, she was an Assistant Professor with
the department of Mechanical and Aerospace Engineering at the Uni-
versity of California, San Diego. From July 2010 to June 2014, she
was an Associate Professor with the department of Mechanical and
Aerospace Engineering at the University of California, San Diego.
Dr Martínez’ research interests include networked control systems,
multi-agent systems, and nonlinear control theory with applications to
robotics and cyber-physical systems. In particular, she has focused on
the modeling and control of robotic sensor networks, the development
of distributed coordination algorithms for groups of autonomous vehi-
cles, and the geometric control of mechanical systems. She is a Senior
Editor of the IEEE Transactions on Control of Networked Systems.

123

	Limited range spatial load balancing in non-convex environments using sampling-based motion planners
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Optimal probabilistic roadmap building

	3 Continuous-space spatial load balancing
	3.1 Unlimited range agents in convex spaces
	3.2 Limited ranges
	3.2.1 Limited range sub-partition
	3.2.2 Existence and choice of weights

	3.3 Continuous-space algorithm
	3.3.1 Weights update
	3.3.2 Gradient function computation

	4 Graph-based limited range spatial load balancing
	4.1 Approximate general Voronoi tessellations
	4.1.1 Properties of mathcalV"0362mathcalV

	4.2 Discrete-space algorithm
	4.2.1 Updating the agent weights
	4.2.2 Updating the agent positions

	5 Distributed algorithm properties
	5.1 Alternate definition of widetildemathcalD
	5.2 Distributed properties using widetildemathcalVLR

	6 Convergence
	7 Simulations
	7.1 Voronoi graph partitions
	7.2 Evolution of widetildemathcalH
	7.2.1 Dubins' vehicle results

	8 Conclusions
	Appendix
	References

