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Abstract
In this paper we study a symbiotic aerial vehicle-ground vehicle robotic team where unmanned aerial vehicles (UAVs) are
used for aerial manipulation tasks, while unmanned ground vehicles (UGVs) aid and assist them. UGV can provide a UAV
with a safe landing area and transport it across large distances, while UAV can provide an additional degree of freedom for the
UGV, enabling it to negotiate obstacles. We propose an overall system control framework that includes high-accuracy motion
planning for each individual robot and ad-hoc decentralized mission planning for complex missions. Experimental results
obtained in a mockup arena for parcel transportation scenario show that the system is able to plan and execute missions in
various environments and that the obtained plans result in lower energy consumption.

Keywords Unmanned aerial system · Aerial manipulation · Heterogeneous robotics systems · Decentralized planning

1 Introduction

While the tremendous advances have been made in devel-
opment and control of single robots for aerial, ground and
marine applications, research focus has lately shifted to
multi-robot systems, where robots work (move) together to
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accomplish tasks that would be otherwise unachievable by a
single robot. Diverse capabilities of robots in such systems
are brought together in order to achieve better performance,
broader space coverage, improved energyutilization, andbet-
ter knowledge through data fusion.

UAV research, together with its respective market, has
been growing rapidly thanks to recent technological devel-
opments. Unfortunately, mostly due to limited payload
capabilities ofUAVs, in both research and industry, engineers
have focused their efforts to deploy them in surveillance,
reconnaissance or search and rescue missions, avoiding all
possible interactionwith the environment. However, the abil-
ity of aerial vehicles to manipulate a target or carry objects
and interact with the environment, could greatly expand the
application potential of UAVs to: infrastructure inspection
(Fumagalli et al. 2014), construction and assembly (Lindsey
et al. 2012; Jimenez-Cano et al. 2013), agriculture, urban
sanitation, high-speed grasping and payload transportation
(Thomas et al. 2014; Sreenath et al. 2013) and many more
(Fumagalli et al. 2012; Kim et al. 2013; Scholten et al. 2013).

Our previous research interest focused on aerial manipu-
lation employing a dual-arm manipulator on-board a UAV to
yield an unmanned aerial system (UAS).Within this research
we concentrated on modeling (Orsag et al. 2014) and control
(Korpela et al. 2013) for various aerial manipulation tasks,
which include but are not limited to: pick and place, construc-
tion and assembly, and perching and manipulating objects
(Korpela et al. 2014). However, most quadrotor aerial plat-
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forms can be classified as small or micro UAVs, weighing
less than 5kg (Korchenko and Illyash 2013), with the range
of less than10km, limitedpayload and time-of-flight capabil-
ities. To put things into perspective, although there have been
recent scientific results (Kondak et al. 2014), most commer-
cially available UAVs cannot be deployed in complex aerial
manipulation tasks which would normally require lifting
heavy objects and long execution time. In order to overcome
these limitations, instead of building UAVs with better capa-
bilities, we propose introducing unmanned ground vehicles
(UGVs) to aid and assist theUAS in complex aerialmanipula-
tion scenarios. In such a system of robots, the UGV provides
the UAS with a safe landing area and transportation across
large distances, thus saving precious battery life of the UAS.

To achieve the overall goal of executing complex mission
scenarios in heterogeneous systems, we propose a decentral-
ized manner of control. In order to do so, we need to tackle
both low-level andhigh-level control,which are disseminated
in this paper. Low-level includes mapping and localization,
motion planning for both UAS and UGV, landing of UAS
onto UGV and picking up lightweight UGV (L-UGV) using
UAS. High-level mission planning covers decentralized ad-
hoc reasoning about actions that need to be taken in order to
execute the missions, and their interrelations within a given
environment. For example, during the planning phase, the
optimal course of actions for the execution of the mission
needs to be determined: whether to use the UAS alone, or if
it would be beneficial to utilize the UGVs as well. Hereby
we aim to optimize a given criteria, such as mission speed
and energy consumption.

Scenario To test the proposed system we imagine a sce-
nario in which a team of robots is deployed to bring back a
parcel. The parcel is placed within different cluttered envi-
ronments. The assumption is that the environment 3Dmap is
given to the planning procedure. Given any known map, the
planning algorithm is able to design the system behaviour,
but depending on the layout the plan is going to have different
degrees of optimality. In order to have a stable localization for
each agent, the environment needs to have enough distinctive
features for the vision system. For example, a monochrome
room is not suitable. Environment examples are industry
plants, construction sites, etc. The robots are instructed to
negotiate an optimal solution (either with respect to energy
consumption or mission duration), containing the set of
actions that enable the system to map the environment and
retrieve the parcel. Execution of the proposed scenario on
selected environments is shown in video material contained
within the following playlist (LARICSlab 2017a).

The results presented herein are built upon our previous
work (Petrovic et al. 2015) and (Arbanas et al. 2016). In
(Petrovic et al. 2015) we have conducted a simulation-based
analysis of the proposed system for a simple scenario, which
includes a single UAS and a single L-UGV. In (Arbanas et al.

2016) we proceeded to experimentally verify an augmented
version of the system in amockup environment, on a scenario
involving two Pioneer UGVs (acting as UAS carriers) and a
UAV equipped with dexterous manipulator arms.

Key contributions First, we propose a novel kind of
aerial-ground systemwith a focus on symbiotic behavior that
enhances the motion capabilities of individual vehicles. To
that endwehave designed and constructedL-UGVsuitable to
work closely with UAV equipped with an aerial manipulator,
specifically designed to be carried by the UAS. The two vehi-
cles complement each other, thus forming a symbiotic aerial-
ground robot system. Next, high-accuracy trajectory plan-
ning and execution algorithms are implemented and tuned for
each vehicle. A vision-based localization and mapping algo-
rithm has been implemented for replacing themotion capture
system used to control the UAS and UGV. Used together,
the proposed trajectory planning and localization algorithms
enable our system to fly in narrow corridors (< 1.5m), while
planning trajectories longer then 12m on-board in real-time.

From a high-level mission planning perspective, we have
developed and validated a decentralized hierarchical plan-
ning method able to construct and coordinate, in real-time,
feasible team plans for any given map of the environment.
Planning is modular and able to cope with teams consisting
of any number of UASs and UGVs. Our previous work is
augmented to allow for mission representation with arbitrary
number and arrangement of obstacles detected from the start
point to the parcel. In this paper we describe in detail the
enhanced planning procedure and show experimental results
for a parcel transportation mission conducted in a mockup
arena using UAS and a L-UGV.

Paper organization In Sect. 2 we analyze related state-
of-the-art work in aerial-ground cooperative systems and
decentralized planning. In Sect. 3 we give a brief overview of
agents used in the system and their capabilities in a form of
high-level behaviors. In Sects. 4 and 5 we describe the devel-
oped planning and scheduling algorithm, while in Sects. 6
and 7 we describe hardware and software design, respec-
tively. Experimental validation is given in Sect. 8, together
with analysis of energy savings achieved through schedule
optimization. The conclusion is given in Sect. 9.

2 Related work

In this Sectionwe review someof the existingwork in the area
of heterogeneous cooperative teams, in particular UAV-UGV
teams, including methods for decentralized mission plan-
ning. The majority of the works related to UAV-UGV teams
consider cooperation in terms of: collaborative sensing, data
fusion and information sharing betweenUAV andUGV, such
as collaborative mapping of the environment (Michael et al.
2012; Papachristos and Tzes 2014), generating maps using
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UAV for aerial-ground team navigation (Hsieh et al. 2007),
sensor information sharing (Butzke et al. 2016), and target
tracking (Dias et al. 2015). Other approaches directly exploit
different energy capabilities of aerial and ground vehicles,
for example, by deploying micro-UAVs using UGV robots
for energy preservation (Mathew et al. 2015), providing refu-
eling stops for UAVs using UGVs (Maini and Sujit 2015).
Analogous systems, which are all marsupial in nature, can
as well be found in UAV–AUV systems (Miskovic et al.
2014) and UGV–UGV systems (Drenner et al. 2007; Wurm
et al. 2013). Our presented system goes a step further by
focusing on symbiotic motion relations between UAV and
UGV, specifically, UAV equipped with aerial manipulators
transports UGV over obstacles, while UGV transports UAV
over larger distances. Additionally, UAV provides a map for
UGV.

Multi-robot task and motion planning has been studied
in the past decades from different perspectives in robotics,
control and artificial intelligence research communities. In
general, decentralized task-planing can be static, where
robots use predefined plans or rules for execution (Cirillo
et al. 2014), or dynamic, where plans are constructed dur-
ing the task execution and are reactive to the state of the
environment (Gerkey and Mataric 2002). Communication
among robots can be explicit, where exchange of informa-
tion is done in a dedicated, peer-to-peer manner, and implicit,
where information from other robots is collected through
sensing of the environment (Yan et al. 2013). While static
approaches can handle more complex tasks, they are mostly
not suitable for real-time reactive applications that require
dynamic planning. Our approach is dynamic in the sense
that mission plans are constructed online, when a mission
is assigned, depending on the state of the environment. We
utilize explicit communication over the given wireless net-
work, however, ad-hoc networks can be used for that purpose
as well (Pimentel and Campos 2003).

Mission planning consists of two problems—task decom-
position (answering the question what do we do?), and task
allocation (answering who does what?) (Zlot and Stentz
2006). One of the most prominent solutions for planning are
auction and market based approaches (Gerkey and Mataric
2002; Stentz and Dias 1999). These mostly fit into the task
allocation category, where a set of simple tasks is given, and
robots use bidding mechanisms to distribute tasks amongst
themselves. Application of bidding mechanisms for more
complex missions, with loose coupling between tasks, is
given in (Zlot and Stentz 2006), however partial ordering
between tasks and tight coupling, which are the basis of our
cooperative missions, are not well supported.

Probabilistic multi-robot coordination approaches based
on usage of decentralized partially observable Markov deci-
sion processes have been studied as well (Dias et al. 2015;
Omidshafiei et al. 2015). The advantage of this approach is its

inherent suitability to uncertain environments, however, the
scalability problem is making them unsuitable for real-world
applications that include several robots and complex tasks.
Some recent approaches focus on lowering computational
complexity (Amato et al. 2015).

Many of recent state-of-the art approaches rely on off-
the-shelf automated reasoners based on, for example, Linear
Temporal Logic (LTL) (Ding et al. 2011; Guo et al. 2014;
Raman 2014), Answer Set Programming (ASP) (Saribatur
et al. 2014). Even though these approaches show significant
contributions to theoretical synthesis of correct-by-design
controllers, they too often suffer from intensive computa-
tional problems, as well as the inability to quantify planner
objectives. In (Wurm et al. 2013) the authors coordinate
a marsupial team of robots, using an integrated temporal
and cost-based planning approach for the target assignment
problem, with PDDL being used as the formal specification
language. Other relevant approaches include (Di Paola et al.
2015; Lemaire et al. 2004; Tang and Parker 2005).

As stated in (Yan et al. 2013), challenges in multi-robot
coordination include founding multi-layered control struc-
ture that combines a high-level planning and coordination
with low-level reactive execution and supervision. In this
paper we follow this approach, and propose a solution for
decentralized multi-robot control. In our solution, we utilize
dynamic high-level task planning (decomposition and alloca-
tion) based onTÆMS (TaskAnalysis, EnvironmentModeling
and Simulation) language (Lesser et al. 2004; Petrovic et al.
2015), while coordination and supervision is done using
Generalized Partial Global Planning (GPGP) coordination
framework (Decker and Lesser 1995). The advantage of
TÆMS is the ability to easily specify complex task inter-
relations (both tight and loose) and to quantify the potential
solutions. GPGP provides a framework for implementation
of communication and coordination protocols applied to
each individual robot. Further, we are combining high-level
motion planning with low-level control and are proposing
a method of constructing obstacle-free trajectories for each
vehicle. We are using state-of-the-art motion planners that
provide cost estimates to the planning module: sample-based
planners for UASs and lattice-based for UGVs (Krnjak et al.
2015).

3 Unmanned ground and aerial system

In this work we consider three distinct agents with spe-
cific capabilities: a mobile unmanned aerial vehicle with
a manipulator, a lightweight ground vehicle and a car-
rier ground vehicle. Here we describe high-level agent
behaviors (actions), while the implementation is given in
Sect. 7.
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Table 1 List of agent behaviors Behavior Description

Takeoff The UAS goes to the desired height above its current position

Land The UAS lands below its current position

Move to desired position This behavior is common for all agents (UAS, L-UGV and C-UGV).
The agent moves to the requested position and holds that position
until a new request is received

Hold position This behavior is common for all agents. The agent holds position until
a request for a different action is received

Grab L-UGV Enables visual tracking of the L-UGV, descends and grabs the L-UGV
upon successful detection

Release L-UGV Executes preplanned dual manipulator motion to release the L-UGV
and set the manipulator in the soft home position

Grab parcel Enables visual tracking of the parcel, descends and grabs the parcel
upon successful detection

Release parcel Executes preplanned dual manipulator motion to release the parcel and
set the manipulator in soft home position

Land on the L-UGV
with the parcel

Enables visual tracking of the L-UGV while parcel is acquired,
descends to the L-UGV, releases the parcel and further descends in
order to grab the L-UGV

3.1 Unmanned aerial system

UAS is the most versatile of the robot agents in the system.
It surpasses the ground vehicles with its four degrees of free-
dom enabling it to access every section of the environment.
The UAS in our work goes beyond the well known and rather
simple concept of eye-in-the-sky since it has the ability to
physically interact with its surroundings: both the parcel and
other agents. The analysis of the UAS capabilities has been
carried out by breaking them down into several behaviors,
which have been listed in Table 1.

In addition to these listed behaviors, the UAS has the
ability to pinpoint and track the target, localize itself and
other robots in the environment, as well as build the map of
the environment (SLAM). It is a well known fact that keep-
ing rotorcrafts airborne is energy inefficient. This, together
with the power requirements of performing all the algorithm
computations on-board, makes the UAS flight a very energy-
expensive task. To prolong the mission duration, it is vital to
utilize the ground agents to carry the UAS and thus conserve
energy.

3.2 Autonomous carrier vehicle

In the considered missions we envision a carrier UGV
(C-UGV), capable of transporting other agents and equip-
ment necessary to complete the mission. This agent can be
equipped with a versatile sensory apparatus and utilities, its
task being to provide other robots in the system with the
necessary information that allows them to correct their own
measurements. Since it has considerable payload and rela-
tively long autonomy time, the C-UGV can also serve as a
charging station for the UAS and L-UGV tandem. Providing
additional energy increases the duration of the mission and
thus facilitates completion of multiple objectives.

The C-UGV can also be remotely operated and guided
to the first obstacle in a cluttered environment using feed-
back from the camera and a map acquired through laser- or
stereo vision-based mapping. It serves as the entry point for
the operator to gain insight into the mission status. C-UGVs
are not used for experiments described in this paper, but we
list them here for completeness. Our previous work (Arbanas
et al. 2016) shows experiments with C-UGVs, and all meth-
ods described here can be applied for missions with C-UGVs
as well.
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3.3 Lightweight UGV

The idea of this agent is to be light enough that the UAS can
pick it up and carry it across obstacles it cannot negotiate on
its own. As non-negotiable we consider all obstacles higher
than a certain level, which is in this paper set to 2cm. At
the same time it needs to have a strong construction which
can withstand the weight of the UAS. Such a vehicle thus
needs to be stripped off of all sensors, carrying only the most
necessary devices for motor control and communication.

Such a vehicle cannot navigate through the environment
on its own because its position error would quickly accu-
mulate. Therefore it relies on the UAS to provide accurate
position measurements and, in a way, guide the L-UGV
through a cluttered environment. The portable L-UGV is
energy efficient, which makes it ideal for carrying the UAS
across long distances in the mission, and thus reduce the total
energy consumption within the system.

4 Mission representation

This chapter brings a formal definition of mission represen-
tation used in our work to express agents’ knowledge about
the missions set before them. We describe a concept of a
global and a local view on the mission structure, and finally
detail how this method was applied to the parcel transporta-
tion scenarios we have used as a case study.

4.1 Global mission representation

To coordinate the robot behavior, we first decompose each
mission into a set of subtasks contained within a tree-like
hierarchical structure using TÆMS framework. The mission
tree contains action nodes that correspond to real, actionable
robot behaviors, and task nodes that combine action nodes
into a meaningful structure, as defined by the mission objec-
tive. Sets of actions (tasks) are defined as A (T ), respectively.
Each a ∈ A can be performed by one or more robots. If we
denote the set of robots as R = {1, . . . , n}, we can specify the
set of actions robot i can perform as Ai , and the set of tasks
robot i can contribute to as Ti . The root task corresponds
to the mission objective. Notice that redundancy is possible,
hence, in general Ai ∩ A j and Ti ∩ Tj might not be empty
sets, for i �= j , i, j ∈ R.

TÆMS framework allows for definition of simple and
complex relations between tasks, as well as temporal con-
straints on their execution (Horling et al. 1999). Here we
describe relations most relevant to our application scenarios.
The most pervasive relation between tasks is a parent-child
relation, as it fosters task decomposition. If the task ta ∈ T
involves task (action) tb ∈ A∪T in its execution, we say that
task ta is a parent of the task tb and denote the said relation as

pc(ta, tb). Another important relation, mainly due to enforc-
ing precedence constraints on different tasks, is the enables
interrelationship. For instance, if wewant the task ta ∈ T ∪A
to be executed before task tb ∈ A∪T starts, we can introduce
an enables relation between the two as en(ta, tb). An exam-
ple of enables relation is given in Fig. 1. Actions a1 and
a2 are related with enables relation (en(a1, a2)), since the
UAS needs to first land carrying an L-UGV (a1), and then
travel on the L-UGV to the next position (a2). If no prece-
dence constraints between tasks exists, such limitations are
not included into the model.

To evaluate the tasks, each a ∈ Ai is assigned a triple
(qa, da, ca), where qa stands for action quality, da for dura-
tion and ca for action cost. Action quality is set a-priori by
the system designer. Each robot estimates the duration and
cost of a future action based on the current state of the system
(other robots and environment) and unit costs associatedwith
the action (Ea). Ea is a parameter specific to each vehicle and
can be, for example, power required to execute an action a.
The outcome of each task t ∈ Ti , (qt , dt , ct ), is determined
using the quality accumulation function Q : Ti → R

3
0 that

describes how subtasks and subactions contribute to the qual-
ity of a parent task. Function Q can, in general, have any
user-defined form.

In our scenario we use two types of Q: qmax and
qseq_sumall . The accumulation function qmax is used for tasks
that are performed using exactly one of its subtasks (analo-
gous to the logical XOR operator on subtasks). For such a
task the triple (qt , dt , ct ) corresponds to the value of the sin-
gle subtask that is performed, otherwise (if more than one

Fig. 1 Example of task structure for obstacle crossing task for UAS
and L-UGV agents. Actions are represented by rectangular boxes, while
round-corner boxes denote compound tasks. Full arrows illustrate task
decomposition in a hierarchical structure, and soft constraints (enables
relations) are depicted by dashed lines
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subtask is performed) it is zero. The function qseq_sumall is
used for tasks that are performed using all of its subtasks
in a predefined order (similar to the logical AND opera-
tor on subtasks, but with implicit precedence constraints).
For such a task (qt , dt , ct ) corresponds to the sum of sub-
task values if all of them are performed, otherwise its value
is zero. Figure 1 illustrates previously described concepts
of task specification on an example of cooperative obstacle
crossing task for a robot system comprised of a light-weight
UGV and a UAS. To ensure better readability of the struc-
ture, all tasks in the figure are assigned shorter labels, with a
corresponding description below the figure.

4.2 Local mission representation

Previously described mission structure contains complete
informationon thewaymission canbe executed.Even though
it is convenient to have such an overview, from agent’s
perspective, most of the information contained within is
unnecessary and overloading. Therefore, a local view on
the mission is constructed for each type of agents that can
take part in mission execution. Nodes contained within it are
actions agent can execute and tasks it can contribute to. In
Fig. 1 labels within each node denote to which agent this
node is known.

Such an approach allows for modular systems as agents
are initially oblivious to who can also participate in the mis-
sion execution. The coordination procedure ensures mutual
identification of the participating agents and updating of local
viewpoints with minimal necessary information needed.

4.3 Application to the parcel transportationmission

The envisioned application scenario includes autonomous
UASs and L-UGVs working cooperatively to transport a par-
cel between two locations in the environment. Inputs to the
described planning procedure are a 3D occupancymap of the
environment, parcel origin and destination positions, and a
local view of the mission tree that describes the parcel trans-
portation scenario (mission).

The mission structure of the described scenario can be
rather complex, depending on the number of obstacles in the
environment. Here we outline only the main task groups, as
the mission tree is too large to be conveniently included in
the paper. As Fig. 2 illustrates, at the base of the mission
structure resides the Transport parcel task, which is further
decomposed into a series of Cross the obstacle subtasks, fol-
lowed byPick up parcel and another set ofCross the obstacle
tasks, ending withDeliver parcel. The displayed graph is for
a general case of an environment containing N obstacles on
the path from the origin point to the location of the parcel.
All subtasks are temporally constrained by node to their left,

Fig. 2 Mission decomposition of parcel delivery task

Fig. 3 Various solutions to a parcel delivery mission

thanks to the seq_sum_all quality accumulation function of
the Transport parcel task.

Each Cross the obstacle task is split into multiple options
of crossing theobstacle, and canbe fulfilledonlybydoingone
of them. The decision lies in whether the obstacle is going to
be tackled jointly or the UAS is going to cross it alone. If the
UAS were to cross any of the obstacles alone, all of the sub-
sequentUAS continue with L-UGV tasks in the samemission
would not be allowed to be executed until the UAS returns
back to the same obstacle where the L-UGV is waiting. To
facilitate such a behavior, we extended the mission repre-
sentation by introducing another relation between tasks, the
excludes interrelationship. This relation simply lists tasks that
can’t appear together in the same schedule, and such cases
are discarded before schedule generation. For the instance,
the graph from Fig. 2 contains following excludes relations:
excl(D(1),G(i)), ∀i ∈ (2, 2 ∗ N )), where N denotes the
number of obstacles. Similarly, excludes relations are defined
between other tasks that semantically don’t belong to the
same execution sequence.

The proposedmodel has proved to produce scheduleswith
ample energy savings. The obtained solutions are given in
Fig. 3, where the estimated energy expenditure of each solu-
tion is illustrated with a bar next to it, accompanied by the
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exact value in MJ. Figure 3 shows a symbolic representa-
tion of a mock-up arena with two obstacles between the start
position (far left) and the parcel position (far right). The path
segment lengths are 10, 10 and 1.5m, starting from the left.
The agent average speeds are set to 0.13m/s, and the energy
expenditure is calculated using power consumption for each
agent–action pair as provided in Table 5 in Sect. 8.

The first illustration represents a base solution where the
UAS executes the whole mission alone and its energy expen-
diture is estimated to 0.194MJ. As we can see from Fig. 3,
the solution which utilizes the L-UGV on the first two seg-
ments in both directions, but the UAS crosses the far right
obstacle alone, outperforms every other schedule (illustra-
tion (6)). Since the third segment is much shorter than the
previous two, it does not pay off to cross the last obstacle
carrying the L-UGV. One interesting alternative is the one in
illustration (3), where the UAS utilizes the L-UGV to navi-
gate the first two segments, but returns to the starting point
alone, which could be beneficial if the L-UGV needs to stay
near the goal for further exploration.

5 Mission planning

In this section we describe a method used to generate plans,
given a previously defined mission structure.

The previously described mission representation is the
backbone of GPGP, a scheduling and coordination frame-
work used in our work. Its main premises are domain
independence and a generalized approach tomultiagent coor-
dination. During mission specification, special care needs to
be taken to properly define each agent’s local mission repre-
sentation, as described in the previous section.

The most prominent feature of GPGP framework is each
agent’s oblivion regarding other agents’ capabilities, which
is manifested in having a local view of the task structure.
Scheduling and coordination are performed in a decentral-
ized manner, in several steps. The first step is Update of
non-local views, where agents share their locally estimated
task and action outcomes. Coordination relationships may
come as a result of constraints on tasks (enables, disables
interrelationships) or parent-child relations between tasks.
The second step is Generation of task alternatives, where
potential redundancies are being resolved and the best alter-
native for mission execution is selected. Given the alternative
determined in this step, the Iterative schedule construction
procedure follows, which obtains the sequence of actions
for each agent with respect to temporal constraints between
them.

The task alternative s(t), s(t) ⊂ A, t ∈ T is defined
as an unordered set of all actions whose execution leads to
the completion of task t . The alternative for the root task
of the global mission representation will be denoted as s.

Fig. 4 Updated non-local viewpoints in the obstacle crossing task

The sizes (cardinal numbers) of the task alternative sets for
various tasks in the mission plan depend on the structure of
the mission task tree, and on relations between the nodes.
When missions are highly constrained, the cardinal numbers
are low (i.e. O(1)). On the other hand, for missions without
any node interrelations, the combinatorial explosion can lead
to a factorial size complexity of the task alternative set.

Update of non-local views
Since the knowledge of each agent is limited to a local

mission representation, it needs to collect necessary informa-
tion fromother agents. Tominimize the amount of exchanged
information, agents share only estimated execution outcomes
given as (q, d, c), thus encapsulating the details behind task
execution. Agent i requests from agent j the outcomes of its
related actions/nodes as follows:

(i) redundant tasks
∀t ∈ (Ai ∪ Ti ) ∩ (A j ∪ Tj ) agent i requests from agent j
the values (qt , dt , ct )

(ii) child tasks
∀ta ∈ Ti ,∀tb ∈ (Tj ∪ A j ) s.t. ∃pc(ta, tb) agent i requests
from agent j the values (qtb , dtb , ctb )

An example of updating non-local views in the scenario
from Fig. 1 has been illustrated in Fig. 4.

Determination of the best task alternatives
At the beginning of the second step, each agent has com-

plete information on the outcome estimates for tasks in its
local mission representation. The process of task alternative
generation begins at the action nodes of the local TÆMS tree
and builds up recursively, finally ending at the root of the tree.

Naturally, each task has many different ways of being
realized so the task alternative generation procedure uses
a method of focusing the solution search by pruning the
worst partial results in each step of the process, thus mak-
ing the problem tractable. Furthermore, since agents at this
point share the same outcome estimates, the same alterna-
tive set for common tasks is going to be obtained by each
agent. This means that all possible redundancies in task
execution have also been resolved during task alternative
selection. For example, all the obtained task alternatives for
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Table 2 Generated task
alternatives for the obstacle
crossing task

Agent Task alternatives

UAS C : {a1, a2}, D : {a31}, E : {a4, a51, a32}, F : {a52, a33}
A : {a1, a2}, {a31}, B : {a4, a51, a32}, {a52, a33}
UAS continue with L-UGV : {a1, a2, a4, a51, a32}
{a1, a2, a52, a33}, {a31, a4, a51, a32}, {a31, a52, a33}

L-UGV C : {a1, a2}
A : {a1, a2}, {D}
UAS continue with L-UGV : {a1, a2, B}, {D, B}

each agent in the scenario from Fig. 1 are given in Table 2.
For example, task B (UAV is holding an L-UGV and needs
to cross an obstacle) has two alternatives: {a4, a51, a32}
(release the L-UGV, takeoff and fly across the obstacle
alone) and {a52, a33} (takeoff and fly across the obstacle
with L-UGV).

The score for each task alternative is devised as sc(qt ,
dt , ct ), where qt , dt , ct are calculated from the expected
subtask (q, d, c) values. At the end, a single root task
alternative s with the best estimated score is chosen to
be scheduled. Our simplified objective function (score) is
defined as

sc(qt , dt , ct ) = αqt − βdt − γ ct , α, β, γ ∈ R, (1)

where α + β + γ = 1.

Schedule construction

Given a root task alternative s, the goal of a scheduling algo-
rithm in general is to build a schedule S = ((a1, t s1 , t

f
1 ),

. . . , (an, t sn , t
f
n )), ak ∈ s, where t sk (t fk ) denotes the time

instance at which the action starts (finishes). Moreover,
since each agent is restricted to a local view of the mis-
sion, each agent constructs a local schedule Si where
actions of other agents are taken into consideration. The
overall schedule S is a superposition of individual agents’
schedules.

At this point, each agent knows a set of actions it needs to
perform and the interrelations with tasks of other agents. The
problem itself is a form of a job-shop. Scheduling is done in
an iterative manner according to Algorithm 1.

As given in Algorithm 1, each agent first constructs an ini-
tial schedule and sends its commitments to other interested
agents. Commitments are the base concept in multiagent
schedule construction, as each agent has a capability of com-
mitting to other agents to execute a particular action by a
certain time. Logically, commitments stem from precedence
constraints put upon tasks. Formally, every commitment is
defined as comm(ta ∈ Ti ∪ Ai , end_time(ta), tb ∈ Tj ∪ A j ),
i �= j , i, j ∈ R and is stored in the commitment base of the

Data: alternative si , agent index i , mission tree, set of
neighboring agents Neigh

Result: coordinated local schedule Si

S′
i = schedule generated from alternative (si )

forall the k ∈ Neigh ∪ {i} do
Complk = tasks completed by agent k while executing S′

i
end
while True do

forall the j ∈ Neigh do
forall the ta ∈ Compli , tb ∈ Compl j , en(ta, tb) do

Comm j = Comm j ∪ {comm(ta, end_time(ta), tb)}
end
forall the disables(ta, tb), tb ∈ Compli , ta ∈ Compl j do

Comm j = Comm j ∪ {comm(tb, end_time(tb), ta)}
end
send Comm j to agent j ;

end
if | Comm j |= 0, ∀ j ∈ Neigh AND no new commitments
received then

Si = S′
i

break;
end
S′
i = schedule generated from alternative (si )

end
Algorithm 1: Scheduling procedure for agent i

agent. This commits agent i to execute task ta by the time
end_t ime(ta) and tb denotes the constrained task of agent
j . In every next iteration, the agent fits its schedule to the
received commitments of other agents and its own unmet
commitments. The procedure is repeated until all the com-
mitments are met, that is, until cardinal number of the set of
agent commitments towards each other agent j , denoted as
|Comm j |, is equal to zero.

For large-scale problems, scheduling can be done, for
example, by employing a genetic algorithm, with schedule
itself acting as a chromosome, population base being com-
prised of schedules that comply with the provided mission
structure, and a fitness function that takes total duration and a
number of broken soft constraints into account. For the appli-
cation scenario considered in this paper, we used a priority
based heuristic.

The schedule construction process is done for the previous
example as illustrated in Table 3.
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Table 3 An example of
applying the scheduling
procedure in the obstacle
crossing scenario from Fig. 1

k Schedules and commitments

1 UAS: ((a1, 0, 3), (a52, 3, 6), (a33, 6, 8))

L-UGV: ((a2, 0, 10))

Comm(UAS): (a1, 3, a2)

Comm(L-UGV): (a2, 10, B)

2 UAS: ((a1, 0, 3), (slack, 3, 10), (a52, 10, 13), (a33, 13, 15))

L-UGV: ((a2, 3, 13))

Comm(UAS): ∅
Comm(L-UGV): (a2, 13, B)

3 UAS: ((a1, 0, 3), (slack, 3, 13), (a52, 13, 16), (a33, 16, 18))

L-UGV: ((a2, 3, 13))

Comm(UAS): ∅
Comm(L-UGV): ∅

The procedure is carried out in multiple iterations k of the outer while loop

6 System design

Before we proceed with analysis of experimental results of
the proposed mission planner, in this section we describe the
actual hardware and software implementation of the agents,
and the capability that they provide to the system as a whole.

6.1 UAS hardware design

UAS aerial robot is built around the AscTec NEO hexa-
copter equipped with an Intel NUC onboard computer and
a Skybotix VI-Sensor for stereo vision-based localization.
Such a high-performance onboard computer is needed for
computationally complex image processing in stereo vision
and trajectory planning algorithms. Furthermore, a dual-arm
manipulator with two degrees of freedom is mounted on the
UAS to perform the necessary pick and place tasks. The
manipulators are designed using Dynamixel AX-12 servo
motors, with the tool at the end of both arms designed to
pick up the L-UGV and the parcel.

6.2 L-UGV hardware design

L-UGV was constructed using carbon fiber and fiber-
glass materials, providing strength and making the vehicle
lightweight at the same time. The shape was specifically tai-
lored not to affect the air flow produced by the UAS during
pickup. At the same time, the design focused on increasing
the possibility of a successful grab. We have tested several
designs of similar weight (≈ 450g), where the design c) in
Fig. 5 showed the least impact on the UAS thrust necessary
to pick the L-UGV up.

The vehicle carries the bare minimum of sensors, using
only motor mounted encoders and sensors available on the
UAS to navigate its way across the layout. L-UGV is driven

Fig. 5 Considered L-UGV designs and the amount of thrust needed to
lift them. For reference, the amount of thrust needed to lift an ideal mass
load of 450g is displayed on the right

with four FAULHABER micro motors series 1331 with a
two-channel IE2-400 magnetic encoder and powered with a
small (350mAh; 7.4V) LiPo battery. Also, four IR LEDs
which are used for finding and tracking the L-UGV are
mounted on its top.

A low-level control and sensor-collecting electronic board
was designed, built and tested. The board deals only with low
level differential drive speed control and powermanagement,
as well as communication through an XBee module. Low-
level control consists of four angular speed control loops, one
loop per motor, and an inverse kinematic model, as shown in
Fig. 6. High-level computations are performed on an external
CPU (on UAS or a C-UGV) and computed reference values
for angular ω(t) and linear v(t) speed are forwarded to the
L-UGV through XBee. A standard inverse kinematic model
for a differential drive was used:

ωL(t) = v(t)

R
+ Bω(t)

2R
,

ωR(t) = v(t)

R
− Bω(t)

2R
(2)
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Fig. 6 L-UGV low-level control structure.ωL_re f andωR_re f are angu-
lar speed references for left and right wheels, and uLF , uRF , uLB , uRB
are voltage references for the left front, right front, left back and right
back motor, respectively

where ωL(t) and ωR(t) are angular speeds of the left and
right wheels, B is the L-UGV width and R is the radius of
the wheel.

To navigate the L-UGV through environment, path plan-
ning algorithms are run on a parent vehicle using its sensors,
obtained maps, and information on the current position of
the L-UGV. UAS acts as a parent vehicle in our envisioned
system. Path planning algorithm that is used for L-UGV is
described in (Krnjak et al. 2015). The proposed approach cal-
culates an obstacle-free path from the current to the desired
final pose, based on the use of a state lattice constructed from
a set of feasible paths built around the kinematic model of the
vehicle. This algorithm can be divided into the state lattice
construction process and the search for a path in the resulting
constructed lattice. Collision detection takes into account the
size of the vehicle, as described in the following sections.

7 Software design

7.1 UAS obstacle-free trajectory

Generation of an obstacle-free trajectory is divided in three
stages: path planning in the environment map, initial poly-
nomial trajectory generation, and ensuring that the trajectory
remains obstacle free. The collision free path is acquired
through RRT* algorithm implemented within OMPL (Open
Motion Planning Library) (Şucan et al. 2012) in a map
represented using OctoMap (Hornung et al. 2013), where
the UAS is considered to be a box of fixed dimensions.
The output of the RRT* algorithm is a set of m way-
points qqqi ∈ Q, qqqi ∈ R

4×1, i ∈ (1, 2, . . . ,m), where

qqqi = [
pppTi ψi

]T
, pppi = [

xi yi zi
]T

where pppi denotes posi-
tion and ψi denotes yaw angle.

Let θ(t) denote the trajectory position polynomial, k the
order of the polynomial and l the derivative order. In thiswork
we consider derivative orders l ∈ [1, 4]. We use 6th (k = 6)
order polynomials for the first and the last segment, and 5th
(k = 5) order polynomials for segments in between. The
general formof the position polynomials and their derivatives
is:

θ(l)(t) =
⎧
⎨

⎩

∑k
i=0 akt

k, l = 0

∑k−l
i=0

[∏l−1
j=0(k − j)

]
aktk−l , l ∈ [1, 4]

(3)

The trajectory is optimized until at least one constraint is
met on at least one segment. We define a constraints vectorχχχ
that contains the maximal desired speed vmax , acceleration
amax , angular speed ωmax and angular acceleration αmax :

χχχ = [
vmax amax ωmax αmax

]T
(4)

The unknown velocities and accelerations are computed
by equalizing 3rd derivatives of adjacent segments in a
joint waypoint as well as 4th derivatives. Trajectory dura-
tion depends on trajectory optimization process.

After the generation step is finished, the initial trajectory
is fit within the radial bound ρ. We denote straight line path
for each segment with λi (t), considering that i-th straight
line path segment is defined with waypoints qqqi and qqqi+1,
and the trajectory on each segment with θi (t). To measure
maximal distance between piecewise straight line path and
the generated trajectory, we employ the Hausdorff distance
on each segment of the trajectory:

h(θ, λ) = max
t∈(0,1)

min
τ∈(0,1)

‖θ(t) − λ(τ)‖ ≤ ρ (5)

In our case, the Hausdorff distance can be analytically
obtained as the distance of a point on the trajectory segment
from the line defined with two waypoints:

wwwi (t) = θ(t) − qqqi

vvvi = qqqi+1 − qqqi
||qqqi+1 − qqqi ||

h(θ, λ) = max
t∈(0,1)

||wwwi (t) − (wwwi (t) · vvvi ) · vvvi ||
(6)

If the maximum distance exceeds the threshold ρ, a new
point is added at the maximum breach. The second part of
bounding the trajectory is through collision checks. If there is
a point where the trajectory collides with the environment, a
new point is added in the same fashion as for radial bounding.
These two steps are an iterative process which finishes when
there are no collisionswith the environment and the trajectory
is radially bounded.

7.2 UAS environment exploration

Since the environment map is not known at the beginning of
the mission, we devised an exploration strategy capable of
building the map from an unknown environment. The main
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idea of the exploration task is enabling a pilot to perform
this task remotely without crashing into obstacles. The pilot
uses available information from the UAS, i.e. the front cam-
era picture, current position, environment map, etc., and a
gamepad controller to explore the unknown area. To assist
the driver, we employ a potential field based algorithm for
obstacle avoidance on occupied space. In our algorithm, the
potential field is bounded by the maximum and minimum
distance from the UAS.

During exploration, both the 3D map and the projected
map are built by mapping obstacles and walls. The mission
goal is also acquired in this phase, for example, the point
of the inspection, parcel pickup position, or the valve turn
position. In the delivery application scenario, the parcel with
a knownQR code is detected using theUAS onboard camera.

7.3 UAS acquiring waypoints of interest

In order to plan the mission, it is necessary to determine
waypoints of interest, which are used as inputs to plan-
ning. Waypoints of interest can be, for example, ideal
rendezvous points, wall openings, etc. For our scenario
waypoints of interest are the spots before and after each
obstacle that can be used for UAS landing and takeoff
when carrying the L-UGV. They need to be as close to the
obstacle as possible, but far enough to ensure a safe UAS
flight.

Since the environment map is acquired after the explo-
ration phase and is a priori unknown, a strategy to determine
points of interest had to be devised. First, the RRT* path is
planned for the UAS from the start to the goal point in order
to make sure the UAS can carry out the mission on its own.
The start point is considered to be above the landing spot
determined at the end of the exploration phase. The goal
point is directly above the parcel. Afterwards, the planned
path is projected on the ground and the projected map is
used in the following steps of the procedure. The algorithm
goes along the projected path and searches for obstacles.
Upon hitting an obstacle, an initial point of interest is cre-
ated. This point is thenmoved backwards along the projected
RRT* path until it becomes feasible for the L-UGV and is
saved as a takeoff point. The algorithm continues from the
initial point of interest and moves along the projected path
until the point is no longer colliding with the obstacle. The
first point that becomes feasible for the L-UGV is saved as a
land point. This procedure is being repeated until it reached
the goal point. Since the goal point is directly above the
parcel, it can be treated as an obstacle after projecting the
path onto a 2D map, which prevents the L-UGV from reach-
ing that point. Thus, we compute the final reachable point
for the L-UGV in the same fashion as acquiring the takeoff
points.

7.4 UAS visual tracking of L-UGV

Tofind and track both the parcel and the L-UGV,we designed
two algorithms, one based on AR marker tracking (Silta-
nen 2012) and the other based on tracking the IR LEDs
placed on top of the L-UGV. In order to successfully find
and pick up the L-UGV, an infrared LED tracking algorithm
is designed.

There are four key stages in obtaining the position of
the L-UGV: finding the L-UGV on image and creating a
ROI (region of interest), finding blobs, removing outliers,
and solving the Perspective-4-Point (P4P) problem. Blobs
are sets of white pixels on image surrounded by black ones.
Image sharpening and lens distortion corrections are applied
at this point. For further enhancement of the image, we use
the Laplacian operator, a second-order image filter (Gon-
zalez and Woods 2006). The Laplacian is implemented as
a convolution between the image and the appropriate ker-
nel. After sharpening the image, closed contours on the
image are compared with the known L-UGV contour. Con-
tour matching is performed using a method based on Hu
invariants (Bradski and Kaehler 2008). If a contour match
is found, a ROI is created around that contour. Restrict-
ing the search to the discovered ROI simplifies finding
the right combination of blobs, which makes the proce-
dure easier on the CPU. The right combination of blobs
is a projection of IR LEDs on the image plane. Let us
denote the position of IR LEDs in L-UGV coordinate system
with:

SSSI R = [
XXXT
1 XXXT

2 XXXT
3 XXXT

4

]T
(7)

and their projection on the image plane with:

SSS′
I R =

[
XXX

′T
1 XXX

′T
2 XXXT ′

3 XXX
′T
4

]T
(8)

where XXX ′
i = [

x ′
i y

′
i

]T
, and XXXi = [

xi yi zi
]T
, i ∈ [1, 4], as

shown on Fig. 7. The next step is to find set of blob posi-
tions SSS′

B whose area is smaller than εB . To solve the P4P
problem, we have to find the right combination of blobs
SSS′
I R from set SSS′

B in way that XXX ′
i represents the projection

of XXXi .
To do so, the points SSSI R are sorted in the following way.

SSSI R is transformed to a coordinate system with the origin in
the geometric center of the blobs:

PPP = 1

4

4∑

i=1

XXXi (9)

SSSP
I R = SSSI R − PPP. (10)
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Fig. 7 The camera pose problem illustration. Reference points Xi in
the world space, corresponding to four IR LEDs in our problem, are
projected to points X ′

i in the camera image plane

Fig. 8 IR tracking algorithm steps

Next, the angle φi is calculated as follows and the points SSSI R
are sorted by φi in a descending order.

φi = arctan
yPi
x Pi

(11)

where yPi and x Pi are the transformed coordinates of the i-th
IR LED from SSSP

I R . To find SSS
′
I R , every possible combination,

(|SSS′
B |
4

)
combinations in total, needs to be sorted as described

above and the blob positions compared with the sorted points
from SSSI R , using a method based on Hu invariants. Once the
match is found, the P4P problem can be solved. The method
that we use is an iterative P4P method based on Levenberg–
Marquardt optimization (Moré 1978) and can be found in
(Bradski and Kaehler 2008). The algorithm steps are illus-
trated in Fig. 8. In the end, the position of the L-UGV in
the camera coordinate system is transformed to the global
coordinate system.

To reduce the computational complexity of the algorithm,
the position of the ROI can be estimated without searching
for the L-UGV contour in every iteration, using the rela-
tive UAS motion information between iterations as shown
in Algorithm 2. The described algorithm gives an average
root-mean-square error of 0.0203m.

8 Experimental results

For localization we use stereo visual odometry based on
feature selection and tracking (SOFT) (Cvisic and Petrovic

Data: image, XXXU AS(k), XXXU AS(k − 1), SSSI R , camera matrix C
Result: XXXL−UGV
// Getting the shift in camera position
�XXX ′

U AS = C · (XXXU AS(k) − XXXU AS(k − 1))
// Scaling factor for the ROI
rSF = zU AS(k)/zU AS(k − 1)
image = laplacianFilter(image)
while true do

if goFindUGV then
ROI = findUGV(image)
SSS′
B = findBlobs(ROI)

SSS′
I R = removeOutliers(SSS′

B , SSSI R)

XXXL−UGV = solvePnP(SSSI R , SSS′
I R)

goFindUGV = false
break

end
else

ROI = ROI + �X
′
U AS

RO I .width = ROI .width · rSF
RO I .height = ROI .height · rSF
SSS′
B = findBlobs(ROI)

SSS′
I R = removeOutliers(SSS′

B , SSSI R)
if SSS′

I R then
XXXL−UGV = solvePnP(SSSI R , SSS′

I R)
break

end
else

goFindUGV = true
end

end
end

Algorithm 2: L-UGV tracking algorithm

2015). The algorithm uses the VI-Sensor, which provides
images from two cameras as well as IMU measurements.
To be able to correct position a SLAM algorithm is used
(SOFT-SLAM) (Cvisic et al. 2017). This algorithm also
provides a 3D map of the environment as an OctoMap,
in which the path and the trajectory are planned for the
UAS. However, in order to successfully guide the ground
agents through the environment, the 3Dmap is projected onto
ground.

To achieve easier interaction with the mission planner, a
series of behaviors for the UAS are developed, as described
in Table 1. The described behaviors had to be tuned to our
experimental setup. The dimensions of both the parcel and
the L-UGV had to be taken into account for pick-up and
release behaviors. Landing on the L-UGV while carrying a
parcel is a two-stage behavior. In the first stage, the UAS
descends above the L-UGV and prepares to release the par-
cel. Due to the ground effect and other possible disturbances,
the UAS has to wait for the right moment to release the
parcel. When the drop-off point proximity conditions are
satisfied, the UAS releases the parcel, quickly descends fur-
ther down, and grabs the L-UGV. The action finishes with
landing.
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Fig. 9 Generated helical trajectory interpolated with high order poly-
nomials. In this example we set helix radius as r = 0.5m and slope as
b = 0.06m/s, from which we extracted a set of waypoints

8.1 UAS trajectory tracking

The trajectory tracking error was analyzed on a helical trajec-
tory example. We predefined a set of waypoints describing
a helix and interpolated them with the polynomial trajectory
described in Sect. 7.1. The generated trajectory, as well as
the UAS position, are shown in Fig. 9. In this case, we set the
vector of trajectory speed and acceleration constraints χχχ to
[
1.0m/s 2.0m/s2 1.0 rad/s 3.0 rad/s2

]T
, which yielded the

trajectory execution time of 16.8 s. To track the UASwe used
Optitrack motion capture system and, at this point, an obsta-
cle free space. The averagemeasured RMS error is 0.1526m.

To be able to autonomously plan and execute a trajec-
tory in a cluttered environment, some precautions had to be
made. Since we were flying in narrow corridors, we had to
keep a safety distance from the walls, thus in RRT* path
planning we consider the UAS to be a box with dimensions[
dx dy dz

] = [
1.2 1.2 0.6

]
m. This provides a safety mar-

gin of 0.2m from each side, since the diameter of the UAS
is dU AS = 0.8m. However, the trajectory can deviate from
a piecewise straight line RRT* path as described in Sect. 7,
so we are constraining the trajectory within a radial bound
ρ = 0.1m. There is also no place for aggressive maneuvers
in narrow corridors, which can be regulated using constraint
vector described in Eq. (4). To safely execute trajectories in
narrow corridors we chose conservative set of constraints:
χχχ = [

0.4m/s 0.8m/s2 1.0 rad/s 3.0 rad/s2
]T
.

8.2 Mission execution

During experimental verification, we performed several
different missions to analyze the planning method efficiency.
To complete the missions, we employed an L-UGV—UAS
team described in the previous sections and depicted in the
Fig. 10. As a baseline mission for energy consumption anal-
ysis, we completed the first parcel delivery mission using
only the UAS. At the beginning of each mission, we perform

Fig. 10 AscTec NEO hexacopter equipped with a dual armmanipulator
along with a specially designed lightweight UGV

Table 4 System classification with regard to mass

C1 C2 C3 C4

UAS 2.7kg X X X X

L-UGV 0.4kg X X

parcel 0.1kg X X

2.7kg 3.1kg 2.8kg 3.2kg

exploration of an unknown area in order to map the envi-
ronment and localize areas of interest. The objective of all
missions is to reach the target obtained in the exploration part
and execute the necessary actions, e.g. inspect area, pick up
parcel, etc.

On the first environment setup we performed three mis-
sions of the parcel delivery task, which differ only in
employed agents and task decomposition. These experiments
were meant to illustrate energy conservation capabilities of
our system. Next, we experimented with different environ-
ment configurations, where we demonstrate the robustness
of the proposed method to variable environments.

We calculate expended energy by integrating the power
needed to complete each action over the time taken to com-
plete them. Each action requires different amount of power,
due to various combinations of the overall mass, as presented
in Table 4.

All the tasks that the system needs to execute are com-
prised of the three basic behaviors: Takeoff (A1), Land (A2),
and Move to desired position—Fly (A3), Drive (A4). Based
on the characteristics of the UAV (i.e. total battery capacity
Qp,uav = 8000mAh, voltage Vavg,uav = 15.8V and flight
time t f ≈ 10min), together with the measured values of
the L-UGV, we calculate the power requirements for each
action-class pair provided in Table 5.

123



1614 Autonomous Robots (2018) 42:1601–1618

Table 5 Power needed to execute each action with regard to overall
mass

C1 C2 C3 C4

A1 579W 711W 616W 731W

A2 566W 696W 602W 729W

A3 570W 701W 606W 744W

A4 N/A N/A 3.3W 3.3W

8.2.1 Energy conservation capability

The first environment configuration is provided in Fig. 11.
The task of robotic system was to navigate the maze, pick
up the parcel at the end of it and deliver it to the starting
position. The optimization criteria was to minimize overall
energy consumption.

Mission 1
The baseline for first three experiments is a mission with

only UAS as an agent. In this mission we obtain the base-
line energy consumption, which we aim to reduce in other
missions using L-UGV as an auxiliary agent. After explo-
ration, the UAS executes a trajectory to position itself above
the parcel, upon which it picks it up and executes a return
trajectory.

Mission 2
In this mission we employ the L-UGV. At the beginning

of the mission, the UAS rests on the L-UGV, holding onto it.
As it is shown in Sect. 4, the optimal schedule with regard

Table 6 Energy expended in different experimental setups

Energy (J) Energy saving (%)

Mission 1 542.150 Baseline

Mission 2 343.118 36.7

Mission 3 101.098 81.4

to energy conservation is the one which utilizes L-UGV in
negotiating the first two sections. UAS releases the L-UGV
before the second obstacle and continues the mission alone,
as it did inMission 1. As shown in Table 6, the energy saving
utilizing L-UGV is noticeable and amounts to 36.7%.

Mission 3
To further utilize energy saving capabilities of the system,

we enabled employment of L-UGV during the return to the
start position with the parcel. To be able to do so, we had to
provide an action of landing on the L-UGV while carrying
the parcel. This modification, although seemingly similar to
Land on UGV (without parcel) task, showed to be complex
to implement due to the UAS that needs to, at the same time,
safely release the parcel from a close distance, land on the
parcel and grab L-UGV for safe transportation. The result-
ing schedule resembles the previous one, differing in L-UGV
utilization in both directions, as illustrated in Sect. 4. With
this schedule, we were able to enhance the energy conserva-
tion by another 44.7% of baseline energy, totaling savings to
81.4%.

Fig. 11 Experimental result for the parcel delivery task with the L-
UGV being utilized in only one direction (Mission 2). Starting position
for both agents is located in the lower right corner of the map, while the
parcel position is in the upper left corner. L-UGV drives the UAS to the

first obstacle, UAS takes off with the L-UGV, crosses the obstacle and
lands after it. L-UGV continues to drive with UAS to the next obstacle,
after which the UAS takes off without the L-UGV, and continues on its
own to pick up and deliver the parcel
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Fig. 12 Experimental results for parcel delivery and inspection tasks
on variable environments. Starting position for both UAV and L-UGV
is in the upper left corner of the map, while the goal position is on the
right side of the map, across the central wall. a Mission 4—L-UGV
drives the UAS to the obstacle, UAS takes off with L-UGV, flies over
it and lands behind it. L-UGV continues to drive with UAS to the goal
position where it releases from the L-UGV, takes off and performs the
inspection task. After that UAS lands on L-UGV and they continue in
the same fashion to return to the starting position. bMission 5—L-UGV
drives the UAS to the obstacle, at which UAS releases from the L-UGV,
takes off and continues to the goal position on its own. UAS performs
the inspection task, flies back to the L-UGV and lands on it. L-UGV
drives with the UAS back to the start position. c Mission 6—L-UGV
drives the UAS to the position near the parcel. UAS takes off, positions
itself above the parcel, grabs it and returns to the L-UGV. UAS lands
on the L-UGV while holding onto the parcel and L-UGV drives with
parcel and UAS to the start position

8.3 Robustness to variable environment

To demonstrate effectiveness of our method in variable envi-
ronments, we devised three additional environment setups, as
shown in Fig. 12. Missions 4 and 5 are structurally the same
as Missions 1 and 2, but they omit the parcel delivery. They
instead perform inspection (exploration) of the area of inter-
est. Finally, in Mission 6, we completed the same objective
as in Mission 3.

All of the software used in this paper is available in the
repository (LARICSlab 2017b) which contains ROS pack-
ages for planning and low-level control, maps and ROS bags
obtained during experiments.

9 Conclusion

In this paperwe have proposed and tested a decentralized task
planning and coordination framework for systems ofmultiple
robots (UAVs and UGVs) with different capabilities. Inputs
to the planning procedure are the map of the environment
and a hierarchical decomposition of system mission, both
of which are obtained in the initial (exploration) phase of
mission execution. Outputs of the sampling-based path plan-
ners are used for costs estimation in the planing procedure,
as well as input for determination of feasible, obstacle-free
trajectories.

The approach was tested experimentally using an UAS
built around anAscTec NEO hexacopter equippedwith a dual
armmanipulator along with a specially designed lightweight
UGV, dubbed L-UGV. In order to localize we deployed a
stereo visual odometry algorithm based on feature selection
and tracking. The algorithm uses aVI-Sensor which provides
images from two cameras as well as IMU measurements.
Together with the proposed trajectory planning and control
it enables our system to fly in cluttered environments with
narrow corridors (< 1.5m).

Presented results show efficiency of the planning method
with regard to energy consumption in mission execution,
saving up to 80%of energy consumedduring benchmark exe-
cution.We also present robustness of themethodwith respect
to different environmental setup, and different system config-
uration. In future work we aim to test the approach for more
complexmissions and environments, such as systems ofmul-
tiple UAVs and multiple UGVs with focus on interchanging
team behavior. We are going to consider broadening of UAV-
UGV mission spectrum to include more power-intensive
tasks, for example, using a power-tethered link connecting
UGV and UAV (Zikou et al. 2015). Moreover, we aim to
extend the algorithms to include a human agent into mission
planning and execution.
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