
Autonomous Robots (2019) 43:97–122
https://doi.org/10.1007/s10514-018-9709-6

Efficient collective shape shifting and locomotion
of massively-modular robotic structures

Jakub Lengiewicz1 · Paweł Hołobut1

Received: 29 March 2017 / Accepted: 29 January 2018 / Published online: 16 February 2018
© The Author(s) 2018. This article is an open access publication

Abstract
We propose a methodology of planning effective shape shifting and locomotion of large-ensemble modular robots based on a
cubic lattice. The modules are divided into two groups: fixed ones, that build a rigid porous frame, and mobile ones, that flow
through the frame. Mobile modules which flow out of the structure attach to the frame, advancing its boundary. Conversely, a
deficiency of mobile modules in other parts of the boundary is corrected by decomposition of the frame. Inside the structure,
appropriate module flow is arranged to transport the modules in a desired direction, which is planned by a special distributed
version of a maximum flow search algorithm. The method engages a volume of modules during reconfiguration, which
is more efficient than common surface-flow approaches. Also, the proposed interpretation as a flow in porous media with
moving boundaries seems particularly suitable for further development of more advanced global reconfiguration scenarios.
The theoretical efficiency of the method is assessed, and then partially verified by a series of simulations. The method can be
possibly also applied to a wider class of modular robots, not necessarily cubic-lattice-based.

Keywords Modular robots · Self-reconfiguration · Maximum flow search · Programmable matter · Distributed algorithms

1 Introduction

The capability of a large-ensemble self-reconfigurable robot
to change its shape, move and perform useful physical tasks
in an efficient manner is viewed as a milestone of modular
robotics—still to be reached. It is also considered to be a
promising approach to realizing the Programmable Matter
concept. The problem is difficult and manifold, encompass-
ing several strongly interrelated sub-problems, i.e., the design
of a “smart” module that can physically interact and commu-
nicate with its neighbors, its miniaturization and powering,

This work was partially supported by the Project “Micromechanics of
Programmable Matter” (Contract No. 2011/03/D/ST8/04089 with the
National Science Centre in Poland).

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s10514-018-9709-6) contains supplementary
material, which is available to authorized users.

B Jakub Lengiewicz
jleng@ippt.pan.pl

Paweł Hołobut
pholob@ippt.pan.pl

1 Institute of Fundamental Technological Research,
Polish Academy of Sciences, Warsaw, Poland

special distributed algorithms for collective decision making
and reconfiguration planning and control, and many more.
Especially difficult are densely-packed three-dimensional
modular structures. This is because of their intrinsic geo-
metrical and physical constraints which introduce additional
complications to the problemof self-reconfiguration andmay
require special module designs to be addressed efficiently.

The problem of reconfiguration/motion planning and con-
trol is strongly interrelated with the assumed design of
modules. If the modules can move independently, propelling
themselves autonomously through space, then swarm algo-
rithms can be used to drive an ensemble of modules to form
a desired shape (Rubenstein et al. 2014). The motion of
swarm-type systems can be vastly parallel, with all mod-
ules moving simultaneously towards their goal. This makes
reconfiguration faster. In typical modular robots, however,
modules can only move when they are attached to other
modules, using inter-modular actuation to propel themselves.
This introduces complications of two kinds. The first one is
of mechanical nature. Inter-modular actuation is usually rel-
atively weak and individual modules inside a massive robot
may be unable to move or even hold to their neighbors under
the action of gravity. Special approaches, such as volumet-
ric actuation (Hołobut et al. 2015; Lengiewicz et al. 2017),

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-018-9709-6&domain=pdf
http://orcid.org/0000-0003-3947-525X
https://doi.org/10.1007/s10514-018-9709-6

98 Autonomous Robots (2019) 43:97–122

which parallelize the work of modules inside the robot, seem
necessary to obtain large-ensemble systems of useful over-
all strength. The second complication is of purely geometric
nature. Because every module must always be connected to
other modules, time-efficient reconfiguration of a densely-
packed system is difficult to plan.

Several methods of reconfiguration planning and control
for densely-packed, lattice-based modular robots have been
proposed. Locomotion through reconfiguration on a cubic
lattice, over a simulated terrain and avoiding obstacles, has
been considered in Butler et al. (2004) and Fitch and But-
ler (2008). The methods are advantageous in many respects,
but only produce a surface movement of modules—with
appointed modules “flowing” over the robot from its back
to its front. This may result in slow reconfiguration of mas-
sive robots, for which the number of surface modules is
small compared with the number of interior ones. A uni-
versal, distributed reconfiguration planning for square and
hexagonal-lattice-based robots, using local rules and a recon-
figuration tree, has been presented in Hurtado et al. (2015).
The shape change, however, proceeds through a canonical,
line-shaped intermediate configuration, which slows down
the process. Other reconfiguration strategies, for the more
difficult case of square-lattice-based modules with only slid-
ing capabilities, have been proposed in Piranda et al. (2013)
and further in Piranda and Bourgeois (2016). The introduced
reconfiguration rules are quite efficient, but the movement
here is restricted to surface modules too. Several reconfigu-
ration algorithms have also been proposed in which modules
travel through the volume of the robot. In theory, such
methods can achieve the greatest parallelism of motion and
consequently the fastest reconfiguration, provided the entire
volume of the robot is simultaneously engaged. Notable
works in this direction include: Støy (2004, 2006), with par-
allel reconfiguration of a cubic-lattice-based system, using
local rules, attraction gradients, and a skeletal structure to
avoid blocking of the moving modules; (Butler and Rus
2003; Aloupis et al. 2009), in which strategies for plan-
ning non-intersecting tunnels between “source” and “target”
boundaries of square/cubic-lattice-based robots with unit-
compressible modules were proposed and developed; and
De Rosa et al. (2006), where a hexagonal-lattice-based sys-
tem reconfigured through the propagation of empty spaces
(holes) from the target boundary to the source boundary of
the robot.

In the present work, we show a new interpretation of
the problem of parallelizing the process of reconfigura-
tion. It is based on an analogy with the physical process
of flow in porous media with advancing and retreating
boundaries. A special meta-structure and reconfiguration
rules are proposed to make global reconfiguration planning
more straightforward, as it only requires specifying two
sets of meta-modules at the boundary and disjoint pathways

between them. The presented approach seems particularly
suitable for the development and analysis of, otherwise
extremely complicated, global optimal reconfiguration sce-
narios. We focus on robots on a square/cubic-lattice, and
only consider the purely geometric aspects of the problem.
The work is influenced by Støy (2004, 2006), Butler and Rus
(2003).

In Sect. 2, we introduce the concept of a porous modular
meta-structure, and rules of the flow of modules through that
structure. The inflow of modules is sustained by decompo-
sition of boundary meta-modules, and the outflow produces
new meta-modules. In Sect. 3, we review the existing hard-
ware designswhichmaybe considered for building structures
of the discussed kind. In Sect. 4, we provide a multi-step
methodology for planning and performing the reconfigura-
tion, and propose an example global reconfiguration planning
scheme, based on finding themaximumflow in a correspond-
ing network (the respective distributed max-flow algorithm
is introduced in Sect. 5). Possible extensions of the proposed
scheme are discussed in Sect. 6. The visualization and basic
analyses are provided in Sect. 7. Concluding remarks are
given in Sect. 8, and implementation details of the distributed
max-flow procedure in “Appendix A”.

2 The paradigm of discrete flow in a porous
structure

We consider modular robots based on a cubic lattice, i.e.
every module’s position is given by three integral cartesian
coordinates. We do not specify the shape of the modules,
although we shall present them as spheres. We assume that
the modules can perform two elementary moves, much like
in Butler et al. (2004) and Hurtado et al. (2015), shown in
Fig. 1 (the modules can be arbitrarily oriented with respect
to the lattice).

Move 1 is a transition to the next empty lattice cell along
two stationary modules: the red module in Fig. 1a moves
from cell 3 to the empty cell 4, along the two stationary
modules in cells 1 and 2. As a result, one coordinate of the

(a) (b)

Fig. 1 Two elementarymoves which can be performed by themodules:
a translation along two stationary modules, and b rotation by 90◦ about
a stationary module

123

Autonomous Robots (2019) 43:97–122 99

Fig. 2 Porous structure made of meta-modules. One meta-module is
singled out with more intensive colors

(a) (b)

(c) (d)

Fig. 3 Movement along a zig-zag path in a system built of meta-
modules with no empty spaces (four steps). The propagation of the
hole, located above the pink module, is slowed down by each turn of
the path. a Step 1, b step 2, c step 3, d step 4 (Color figure online)

red module changes by ± 1. Move 2 is a 90◦ rotation about
a stationary module through an empty cell: the red module
in Fig. 1b rotates, about the stationary module in cell 1, from
cell 3 to the empty cell 2, passing through the empty cell 4.
Two coordinates of the red module change by ± 1. The two
moves suffice to reconfigure any collection of modules from
any connected configuration into any other while preserving
connectivity at every step.

We shall only consider robots built of 2 × 2 × 2 meta-
modules, shown in Fig. 2. A single meta-module consists of
seven modules and one empty space. The four gray modules
form a fixed triad, which can bind with corresponding tri-
ads of adjacent meta-modules into a larger skeletal structure,
similar to the one used in Støy (2004, 2006). The skeletal
modules are fixed in the sense that they only move when
the entire meta-module to which they belong is supposed
to move. By contrast, the three red modules are active—

they can freely move between meta-modules, replacing one
another, as shown in Fig. 4b. The empty space in the meta-
module is left to allow simultaneous motion of consecutive
active modules around corners. Namely, it can be seen in
Fig. 4b that if there was an intermediate red active module
between B andC , for example, then the three modules could
not move simultaneously along the streamline. Such a dense
placement of active modules would slow down their motion
along zig-zag paths, as is shown in Fig. 3. There, the empty
space moves down the path in steps: from 1 to 2 to 3 to 4.
For a path with n turns this takes n+ 1 steps. By contrast, all
modules in Fig. 4b can move simultaneously, which allows
a hole to pass from one end of a path to another in one step,
regardless of the number of turns along the way. A thorough
discussion of the general problem of module over-crowding
and its influence on reconfiguration, an example of which
was considered above, can be found in Nguyen et al. (2000).

Remark The division of modules into fixed and active is not
permanent.When ameta-module is supposed to leave its cur-
rent location then it “melts”—all its modules become active
and move away. Similarly, when a meta-module is supposed
to appear at an empty location then active modules move
into the target location and “solidify” into a meta-module
with fixed/active members. The presented division of mod-
ules into active and fixed complies with our earlier use of
these terms (Hołobut et al. 2015; Lengiewicz et al. 2017),
where we considered modules capable of forming two types
of connections with their neighbors: strong but slow-forming
and weak but fast-forming.

The use of meta-modules of the presented kind has little
impact on the functionality of large-ensemble systems. If the
modules are suitably small then a twice greater granularity of
the system, introduced by the use of meta-modules, should
be acceptable. The meta-modules and the conceptual divi-
sion of modules into fixed and active are, however, crucial
to make reconfiguration planning easier [the use of meta-
modules in general is well discussed in Dewey et al. (2008)].
There are two reasons, both resulting from the presence of the
fixed skeleton. The first one is the automatic provision for the
mechanical rigidity of the robot during volumetric reconfig-
uration, which is an important advantage. The second one is
the existence of predefined pathways for the parallel motion
of active modules through the volume of the robot.

Themovement of activemodules through the skeleton can
be, to some extent, likened to the flow of a liquid through a
porous material. Reconfiguration can therefore be viewed as
a special flow of modules through a porous structure with
moving boundaries. At each step of reconfiguration, some
part of the boundary recedes—its meta-modules melt and
flow into the porous structure, and another part of the bound-
ary advances—modules flow out of the porous structure and
formnewboundarymeta-modules.Newboundariesmay also

123

100 Autonomous Robots (2019) 43:97–122

(a) (b) (c)

Fig. 4 Reconfiguration of a robot built of meta-modules. a The concept
of flow and streamlines between a source boundary and a target bound-
ary, with each filled cell of the lattice representing a meta-module, b
module-level view of the darkened region in a. Each 2 × 2 cell is a

meta-module viewed from the top, with the pink modules lying one
level lower than the red and gray ones. Modules move in parallel: A
replaces B, B replaces C , C replaces D, and D replaces E , c a graph
corresponding to the robot (Color figure online)

be created and old ones may disappear, changing the over-
all topology of the robot. An example sequence of module
movements during the formation of a new boundary meta-
module is shown in Fig. 5. The meta-module is constructed
by first building the gray skeleton, and then filling the places
of red active modules. The mirror process of removing a
meta-module from a boundary can be realized by running
the construction process backwards—first, the active mod-
ules are removed, and then the skeleton is dismantled.

3 Prospects for hardware implementation

Wediscuss reconfiguration in an abstract setting—as a purely
geometric problem on a square/cubic grid. We are restricted
to numerical simulations for assessing the performance of
reconfiguration algorithms, and do no hardware testing. We
therefore provide below a short description of several appli-
cable hardware solutions and obstacles which might be
encountered in a real-life implementation.

One of module designs which could be employed as a
hardware platform for the structures we propose is the spher-
ical catom, advanced by the Claytronics Group (Reid et al.
2008; Campbell and Pillai 2008; Christensen et al. 2010)—
this motivates the use of spherical modules in the figures of
Sect. 2. Catoms have no moving parts and use electrodes or
electromagnets, located around their surfaces, for attachment
and actuation. Such modules have advantages and disadvan-
tages from the viewpoint of volumetric reconfiguration on
a cubic grid. They move by rolling, which is well suited to
parallel tunneling of modules through a structure. Rolling

modules need only to be attached to the sides of a tunnel—
as required by the present reconfiguration scheme—and do
not require support from other active modules along their
streamline. In other words, the direction of movement of a
module is perpendicular to its direction of attachment. This
is in contrast to, for example, crystalline atoms (Rus and
Vona 2001; Butler and Rus 2003) or telecubes (Vassilvitskii
et al. 2002), whose direction of motion is parallel to their
direction of attachment. Within the current reconfiguration
scheme, this would require that consecutive modules along
a streamline be attached to each other and result in problems
with simultaneous motion around path corners, as shown in
Fig. 3 and discussed in Sect. 2. On the other hand, the spher-
ical shape itself is a disadvantage from the perspective of
using a cubic grid. Cubic alignment is not a favored arrange-
ment for spheres, and precise positioning of modules would
be required to perform reconfiguration as presented here.

Another possibility is to use cubic modules with sliding
capabilities, such as the EM-Cubes of An (2008). The attach-
ment and actuation of neighbor cubes is effected by sets
of permanent magnets and electromagnets placed under the
modules’ surfaces. A similar linear propulsion mechanism
was exploited by Piranda et al. (2013) to build a magnetic
conveyor for transporting microparts. By being sequentially
activated in a proper order, pairs of opposing electromagnets
attract or repel each other, enforcing sliding motion between
neighbor cubes. On the one hand, cubic shape is a natural
candidate for building cubic-grid-based robots. On the other
hand, precise positioning of modules is required in this case
as well. The original EM-Cubes are designed to move over
the surface of a robot. By contrast, the streamlines propa-

123

Autonomous Robots (2019) 43:97–122 101

Fig. 5 Consecutive steps of the formation of a new meta-module on a
boundary. a Step 1, b step 2, c step 3, d step 4, e step 5, f step 6, g step
7, h step 8

gate through the volume of the robot in tightly-fit channels,
which leaves less space for inaccuracies and might impede
the movement of modules.

Theremayarise several implementationdifficulties related
to the geometry of the system and the proposed type of vol-

umetric reconfiguration. They are connected with the fact
that active modules flow through narrow channels inside a
robot—a channel’s cross section is only one module wide.
One source of problems was already mentioned, namely
the imprecise positioning of modules. Another source is the
deformation of the robot under gravity. Depending on the
shape of the robot and the way in which it is supported,
the flow channels may bend and shrink, preventing active
modules from moving through—especially in the presence
of friction. These problems may be avoided by widening
the flow channels, for example making them 2 × 2 modules
wide. It would involve increasing the size of meta-modules
and lowering the efficiency of reconfiguration by a constant
factor, while preserving the volumetric character of recon-
figuration. This solution would additionally provide space
for cubic-shaped modules which move by rolling about their
edges, like the momentum-driven M-Blocks (Romanishin
et al. 2013). Another way of avoiding blockages to mod-
ule flow would be to somewhat increase the spacing between
moduleswhich do notmove, in particular—between the fixed
modules. To that end, the bonds between static modules
might slightly expand, in a manner employed by crystalline
atoms or telecubes. This would provide active modules with
the room to easily move through the tunnels.

Finally, large-ensemble modular-robotic structures, espe-
cially the porous ones, might tend to break or collapse under
gravity if their inter-modular connections are not strong
enough. We have discussed this issue in Hołobut et al. (2014,
2015) and Lengiewicz et al. (2017), where we suggested the
use of two types of connections between modules—stronger
ones for keeping modules together, and weaker ones for
locomotion. This solution, if realized, would be well suited
to forming the meta-modules for the present reconfigura-
tion scheme. The fixed skeleton might be built using the
strong connections, which would provide suitable mechani-
cal strength to the robot, while the active modules might use
the weak connections to move.

4 Shape transformation algorithm

4.1 Problem definition

The underlying meta-structure, presented in Sect. 2, allows
us to express the problem of shape transformation and recon-
figuration planning in a simple manner. First, we subdivide
the space into cells of the size of a singlemeta-module.Meta-
modules form some initial shape by occupying a connected
set of cells. The final shape is specified by a different con-
nected set of cells. The two sets can but do not need to overlap.
The goal is to transform the ensemble from the initial to the
final shape using the mechanisms introduced in Sect. 2.

123

102 Autonomous Robots (2019) 43:97–122

Fig. 6 Three substeps of a single step of the reconfiguration procedure

Remark The subdivision of space into discrete cells requires
from each meta-module of a robot to determine its position
in the system, which must be done in a distributed manner
(the so-called internal localization problem). As discussed in
Hołobut et al. (2016), it may in general pose a difficult task,
but it greatly simplifies if the meta-structure of the present
kind is considered.

4.2 Outline of the shape-transformation algorithm

The shape transformation is subdivided into discrete steps,
repeated sequentially. At each step it is only required to (i)
specify the source and target boundaries, (ii) connect them
with disjoint streamlines and (iii) transport modules along
the streamlines, removing meta-modules from the source
boundary and creating them at the target boundary, see Fig. 6.
Therefore, at each step the current ensemble boundary is only
modified by a single meta-module layer.

Steps (i) and (ii) are viewed as global reconfiguration
planning and step (iii) is understood as local reconfigura-
tion control. In the present work, we mainly focus on steps
(i) and (ii), while step (iii) is treated as a unit operation of
moving meta-modules from respective sources to sinks, as
discussed in Sect. 2.

For the purpose of global planning, the final shape is repre-
sented by a distance function d(x) from that shape. For a cell
located at x, d(x) is defined as the minimum number of hor-
izontal and vertical unit moves that are needed to reach the
final shape (Manhattan distance). In particular, cells form-
ing the final shape are at a distance 0, see e.g. Fig. 13. It is
assumed that each meta-module knows its current distance
and the distance of its neighboring cells.

Step (i)The proposed rules for defining source- and target-
boundary cells are related to the distance function. The idea is
to choose sourcemeta-modules at these parts of the boundary
for which the outward normal is directed along the gradient
of d(·), e.g., see red circles in Fig. 13a. Similarly, target-
boundary cells are empty cells at the boundary for which the
inward normal is directed along the gradient of d(·), e.g., see
green circles in Fig. 13a. Additionally, target-boundary cells
are always created at the boundary inside the final shape, e.g.,
see green circles in Fig. 13b.

Step (ii) Having the source and target boundaries defined,
one needs to find a set of disjoint streamlines that link them.

This can be done in many ways. In the present work, we
transform that problem into a problem of finding a maximum
flow in a special graph, see Fig. 4c. The occupied cells and
target-boundary cells are vertexes of that graph, with edges
representing adjacency of respective cells. Source-boundary
vertexes are sources of the flow and target-boundary vertexes
are sinks. In order to find disjoint paths of themaximumflow,
both vertex- and edge capacities are set to 1. (A specific
distributed version of the maximum-flow search algorithm
applied in this work is presented in Sect. 5.)

Step (iii)After the streamlines are found, transport ofmod-
ules along them is performed. That operation can be fully
parallelized and takes the same amount of time regardless of
the streamlines’ lengths. This is only possible because the
algorithm combines three necessary ingredients. The first
one is the maintained porosity, which allows undisturbed
motion along zig-zag pathways; see the discussion in Sect. 2.
The second one is the fact that the streamlines are non-
intersecting, which gives collision-free pathways. The third
one is the assumption that computation and message passing
are much faster than physical motion, which allows the nec-
essary synchronization of modules along each streamline.

It should be noted that the present algorithm, and espe-
cially its sub-step (ii) concerning the finding of themaximum
flow, is computationally and communicationally intensive.
We aim to increase the parallelism of motion at the cost of
additional computation and communication. Therefore, for
the algorithm to be advantageous in practice, computation
and communication must be fast relative to movement. We
assume this throughout the paper. In such a case, each trans-
portation phase (iii), which is an “elementary step” in the
sense that transport of modules along all streamlines is done
in parallel and takes the same amount of time—as it was jus-
tified in Sect. 2, is followed by a relatively short computation
phase; then the next transport begins.

Remark In the present work, the sub-steps (i) and (ii) are
performed sequentially, i.e., source and target boundaries are
first chosen to transform the shape in a desired way, and then
the maximum flow between them is calculated. In general,
however, the two sub-problems canbe solved simultaneously,
especially if one aims to find a reconfiguration scheme that is
optimal in some sense, e.g., minimizing the overall number
of reconfiguration steps.

Remark It is, in general, impossible to link all sources with
all sinks. Firstly, because their numbers may differ, see,
e.g., Fig. 14b. Secondly, because there might be bottlenecks
blocking the flow, see, e.g., Fig. 14c. The presented simple
algorithm for choosing sources and sinks performs poorly in
some cases and additional heuristics would be necessary if
one wanted to improve the reconfiguration efficiency.

123

Autonomous Robots (2019) 43:97–122 103

Fig. 7 Organization of information exchange and processing in a meta-
module

Remark It is assumed that a modular robot subdivides into
meta-modules (2 × 2 × 2 cells), each of which can act as
a unit, i.e., it can perform computations, store internal data,
and send/receive/enqueuemessages, see Fig. 7. The assumed
functionality of a meta-module requires synchronized work
of its constituent modules. Implementation details are not
further discussed.

5 Distributed asynchronousmaximum-flow
algorithm

5.1 Preliminaries/problem classification

Finding the maximum flow in a graph is a well-known
classical problem. As for its standard formulation, one can
distinguish two leading approaches. The first of them derives
from the earliest ideas of Ford and Fulkerson (1956), Dinic
(1970) and Edmonds and Karp (1972), to perform gradual
augmentation of the flow until it reaches the maximum. The
second approach, sometimes called push-relabel algorithm,
relies on the idea of Karzanov (1974) and Goldberg and Tar-
jan (1988) to allow the vertex inflow exceed the outflow, with
further push and relabel operations to correct the flow in order
to meet the network capacity constraints. The latter approach
to finding the maximum flow is considered to produce algo-
rithms of better time complexity, see e.g. Goldberg and Rao
(1998) and Orlin (2013).

Within the aforementioned classification, there existmany
possible variants of the maximum flow algorithms. Their

properties, implementations and applicability depend on the
type of the graph at hand but also are strongly related to a par-
ticular computer architecture that they are to be executed on.
In our case, the max-flow problem derives from the problem
of finding themaximum set of vertex-disjoint paths in a phys-
ical two- or three-dimensional distributed modular robotic
ensemble. In that case, the number of edges is proportional
to the number of vertexes (a graph with a sparse connection
network), sources and sinks are located at the boundary, the
flow is integral, and edge- and vertex capacity is 1. Regard-
ing the computing architecture, our system can be classified
as a distributed-memory Multiple Instruction Multiple Data
(MIMD) parallel computing machine (Tanenbaum 2006), in
which eachmeta-module is a separate nodewith its ownCPU
andmemory andwith capabilities to exchangemessageswith
its direct neighbors (so-called mesh network), see Fig. 7. An
algorithm utilizing the above special conditions is proposed
and analyzed in this work.

5.2 Maximum-flow algorithm

We have found it most straightforward to develop and imple-
ment a special distributed version of the Edmonds–Karp
max-flow algorithm (Edmonds and Karp 1972). In the stan-
dard (non-distributed) version, breadth-first search (BFS) is
performed on the residual network in order to find the short-
est augmenting path. The augmentation is repeated until no
further improvement can be made. For the case of the many-
sources-to-many-sinks integral flow of unit vertex capacity,
each augmentation results in finding at least one new full
streamline. This is much better than in the general case, in
which each augmentation only guarantees the saturation of
one new edge.

One of the main problems is how to maintain the general
augmentation scheme in the distributed and asynchronous
framework. Contrary to the synchronous case, in which
one can schedule parallel BFS pulses without any signifi-
cant computational or memory burden, in the asynchronous
case it is not so straightforward. Instead of the synchronized
pulses, we propose that source nodes sprout BFS-like non-
intersecting trees on the residual network independently of
each other (blue arrows in Fig. 8). Each tree is constructed
on the basis of the quickest-wins rule, in which the growth of
the branches is determined by the actual processing speed of
nodes rather than the distance from the root. This is advan-
tageous as it naturally promotes the computationally fastest
track to link a source with a sink (however, this may violate
the classical Edmonds–Karp condition that the augmenting
path must be the shortest). Once the tree reaches the sink, a
single unique path is backtracked (yellow arrows in Fig. 8)
and the unused branches of the tree are cut off (gray crossed
lines in Fig. 8), leaving the space for other trees to grow.
After the backtracking reaches the source, the confirmation

123

104 Autonomous Robots (2019) 43:97–122

iteration 1 iteration 2 iteration 3 iteration 4 iteration 5 iteration 6

iteration 7 iteration 8 iteration 9 iteration 10 iteration 11 iteration 12

iteration 13 iteration 14 iteration 15 iteration 16 iteration 17 iteration 18

iteration 19 iteration 20 iteration 21 iteration 22 iteration 23 iteration 24

iteration 25 iteration 26 iteration 27 iteration 28 iteration 29 iteration 30

iteration 31 iteration 32

Fig. 8 Reconfiguration procedure for a basic example. Max-flow search at the step 1 (Color figure online)

message is propagated along the already determined path,
and the new streamline is established (red arrows in Fig. 8).

Every newly established streamline modifies the residual
network by enabling the flow in reverse direction, which is
an analogy to the standard Edmonds–Karp algorithm. This
can also be seen as the possibility for the remaining BFS
trees to continue their growth upstream along the existing

streamlines (see the overlapping paths in Fig. 8, iteration 10
and further on). At the same time, because of the vertex-unit-
capacity constraint, the algorithmprevents paths from simply
crossing the streamlines; see e.g. iterations 9 and 10 in Fig. 8,
in which the blue path |11 → 06| only turns left to become
|11 → 06 → 05| and does not branch into |11 → 06 → 02|.

123

Autonomous Robots (2019) 43:97–122 105

Fig. 9 Three different resolutions of the same geometry for a single reconfiguration step. Sources and sinks are marked with red and green color,
respectively (Color figure online)

If the flow can not be further augmented (i.e., the number
of streamlines reaches its maximum), then the algorithm can
proceed to the transportation sub-step (iii).

Remark The proposed stepping and sub-stepping scheme,
see Sect. 4.2 and Fig. 6, requires some sort of synchro-
nization, e.g., to prevent starting the transportation sub-step
(iii) before finalizing the maximum-flow sub-step (ii). For
that purpose, in our approach each meta-module performs a
countdown and only proceeds to a next sub-step if a given
timeout is reached. And conversely, when a new streamline is
established, a tick message is broadcast to restart the count-
down.

Remark As mentioned before, BFS trees grow indepen-
dently; however, some level of interaction between them
needs to bemaintained. In particular, when a node becomes a
part of a newly-established streamline or when an edge is cut
off then such a change of the state needs to be communicated
(and acknowledged) to the neighbors by sending a respective
message. (The idea of acknowledgements is discussed in a
similar context in Goldberg and Tarjan (1988).)

Remark In the proposed scheme, sinks are virtual, i.e., they
are located on the outer (empty) side of the boundary. There-
fore, it is assumed that meta-modules located next to such
a (virtual) sink are able to emulate its operation. To be
able to do so, a local synchronization between the respec-
tive meta-modules is necessary, which may in turn require
longer-distance communication to effectively secure the syn-
chronization (see also discussion in Sect. 6.2).

5.3 Time-, memory- and CPU usage estimation for
large ensembles

Below, we briefly analyze how the proposed distributed
Edmonds–Karp algorithm performs with the increasing res-
olution of the system (decreasing module’s size). The main
simplifying assumption here is that higher-resolution recon-
figuration problems are “similar” to their low-resolution
counterparts, see e.g. Fig. 9. (In a sense, we analyze the
complexities individually for every possible generic coarse

shape.) We also assume that a single operation, done by a
meta-module, consists of the necessary computations and
sending/receiving information, performed synchronously by
all meta-modules.

We start with the lowest resolution k = 1, for which we
specify the coarse generic shape made of unit cubes (each
cube corresponds to one low-resolution meta-module), see
Fig. 9. In the analysis we increase the resolution, keeping
the shape constant. For a given resolution k one can fit k p

meta-modules into a unit cube in a p-dimensional space, p ∈
{2, 3} (k meta-modules per unit edge of the cube). We also
assume the most unfavorable case in which the streamlines
are constructed sequentially.

In the algorithm, for k = 1, the number of iterations (time)
needed to find a single streamline is proportional to the max-
imum distance Ws between sources and sinks. For a given
k it should be proportional to Ws · k. The maximum num-
ber of streamlines to be found is related to the number of
sources and sinks (located at the boundary) and the cardi-
nality of the minimum cutting set (see the max-flow min-cut
theorem, Ford and Fulkerson 1962). For the increasing k,
this will be proportional to the number of modules occupy-
ing some (p − 1)-dimensional area. Therefore, the number
of streamlines should be proportional to Ns ·k p−1, where Ns

is the maximum number of streamlines for k = 1. Putting
all together, the number of iterations for a single max-flow
distributed search should be proportional to Ns · Ws · k p.

As regards CPU usage, the number of operations per
module needed to find a single streamline is bounded from
above by a constant. Therefore, the number of operations per
module for a single max-flow distributed search should be
proportional to Ns · k p−1.

All the above assessments are made for a single recon-
figuration step. The number of reconfiguration steps NR

also increases with the increasing resolution, and in opti-
mal scenarios it is proportional to k. This is because a
higher-resolution flow can be easily generated by following
low-resolution streamlines.

The assessment of memory usage per module is a little
more involved. One could expect that it should be constant,

123

106 Autonomous Robots (2019) 43:97–122

regardless of the size of the ensemble. Here, it is not the case.
The problem is with the cut-off operation, which is difficult
to be controlled in a distributed manner without storing the
history of the BFS trees that had been cut off in the current
max-flow step. Such a history is necessary to prevent infi-
nite loops (the tip of a branch is growing while the root is
being cut off). The list length is proportional to the number
of sources and sinks, i.e., Ns ·k p−1 per module. Note that this
is a pessimistic assessment as the growing BFS trees block
one another—therefore only a limited number of trees pass
through a given module. Also, we believe that the memory
requirements can be significantly improved in future.

The obtained upper bounds are much lower than for the
case of arbitrary graphs. This is mainly due to the specific
type of graphs at hand and partially due to the applied paral-
lelism. These bounds can be also further improved if better
algorithms or additional heuristics are applied. One of such
heuristics is demonstrated further in Sect. 5.4.

5.4 Reuse of max-flow search results

We propose a simple heuristic based on reusing streamlines
from a previous max-flow search. Some streamlines can be
reused and some can not. Everything depends on whether
there is a source at the new step that is located along a stream-
line to be reused. If there is no such source present, see e.g.
the streamline |09 → 10 → 11 → 12 → 07| in Fig. 10, the
path will be cut off. Conversely, if the source is present, the
streamline is converted back into a normal branch of the BFS
tree, and then the standard algorithm proceeds, as described
in Sect. 5.2, see also Fig. 10. The advantage is that the stream-
line reuse can be mostly done simultaneously.

In order to take advantage of the presented heuristics,
the streamlines can not change too frequently and abruptly,
i.e., the sets of sources and sinks must in general follow the
streamlines. This in turn strongly depends on the particular
algorithm that is used to specify sets of sources and sinks,
as well as on the particular reconfiguration problem at hand.
Assuming that the algorithm is well adjusted/optimized, the
frequency of streamline changes should mostly depend on
how complex the initial and final shapes are. This is because,
in that case, disruptions of the flow are mainly caused by the
topology changes of the current shape and the interactions
with the boundaries of the final shape. For the increasing res-
olution k, the number of such individual disruptions along the
whole reconfiguration path scales with the number of meta-
modules at the surface area, i.e., is proportional to k p−1.
Every individual disruption is followed by a single streamline
search operation requiring Ws · k iterations, giving the total
of∼ k p iterations, or∼ k p−1 iterations per single reconfigu-
ration step. This is one order of magnitude better than when
no heuristics were used, see Sect. 5.3.

In Table 1 we summarize the assessed complexities. In
general, the application of heuristics reduces the expected
number of iterations and computations by the factor of k. This
is not the case for the maximum memory usage per module,
which theoretically can be the same even if the heuristic is
applied. But again, in practice, BFS trees block one another,
therefore themaximummemory usage should bemuch lower
than in the presented rough predictions.

Remark One of the main drawbacks of our methodology
to assess complexities is the assumption that intermediate
shapes (the shapes of the intermediate stages of reconfigura-
tion) can also be analyzed by just increasing the resolution of
the coarse meta-modules, which is an idealistic assumption
(but still possible). In general this assumption is incorrect,
as the intermediate shapes strongly rely on the sources/sinks
selection strategy and the results of the max-flow algorithm
itself. For example, it is clearly visible in Fig. 17c that the
topology of the intermediate shape becomes more complex
because of the newly created hole. For higher resolutions,
such effects can deteriorate the overall efficiency, which is
not included in our rough complexity assessments. On the
other hand, if one tried to assess the complexities purely as
a function of the number of modules, the results would be
less realistic. This is because, for higher resolutions, simple
assessments would be skewed by the ensembles with very
complex topologies and very unfavorable distribution of the
sources and sinks, and would overestimate the typical com-
plexities.

6 Extensions and improvements of the
shape transformation algorithm

The proposed reconfiguration algorithm consists of a dis-
tributed and asynchronous subroutine for finding amaximum
flow between source and target boundaries of a robot,
and a complementary subroutine for choosing the appro-
priate boundaries. In its present form, the algorithm lacks
many functionalities expected of a complete reconfiguration
method. This is because our main purpose was to concentrate
on the flow structure itself and its properties. In the present
section, we sketch several additions which are necessary to
make the algorithm complete and/or better behaved.

6.1 Connectedness preservation

Connectedness preservation is one of themost important fea-
tures of any reconfiguration algorithm. In the present case,
at each step of reconfiguration a source boundary is sup-
plied, from which meta-modules are removed as selected by
the max-flow procedure—with no regard for connectedness.
Therefore, the problem reduces to such a choice of the source

123

Autonomous Robots (2019) 43:97–122 107

iteration 1 iteration 2 iteration 3 iteration 4 iteration 5 iteration 6

iteration 7 iteration 8 iteration 9 iteration 10 iteration 11 iteration 12

iteration 13 iteration 14 iteration 15 iteration 16 iteration 17 iteration 18

iteration 19 iteration 20 iteration 21 iteration 22 iteration 23 iteration 24

iteration 25 iteration 26

Fig. 10 Reconfiguration procedure for a basic example. Max-flow search at the step 2

Table 1 Summary of the assessed complexities for the increasing res-
olution k in p dimensions

Pure
algorithm

Algorithm
with heuristics

No. of steps ∼ k ∼ k

Avg. iterations/step ∼ k p ∼ k p−1

Avg. CPU/step ∼ k2p−1 ∼ k2p−2

Avg. CPU/step/module ∼ k p−1 ∼ k p−2

Max. memory/module ∼ k p−1 ∼ k p−1

boundary that after removing any subset of its meta-modules
the robot remains connected.

The method we propose is a modification of the dis-
tance function (gradient) approach used byVassilvitskii et al.
(2002) and Støy (2004, 2006). Let M be the set of all
modules of a robot and I the set of their unique indices
(i ∈ I ⇔ Mi ∈ M), S0 ⊂ M be an initial set
of source modules supplied by an external procedure, and
S ′

0 = M − S0. In general, removing some or all of the
meta-modules of S0 may leave the robot disconnected. We
shall therefore choose S ⊆ S0 whose any portion can be
removed without disconnecting the structure.S can then be
safely used as the source boundary by the maximum flow
procedure.

When selecting S , we will use auxiliary quantities si ,
i ∈ I . Basically, si is equal to theminimumnumber ofmeta-

123

108 Autonomous Robots (2019) 43:97–122

Fig. 11 Values of si for an example ensemble of meta-modules. The
meta-modules of S0 are red and those of S ′

0 are gray, with the origin
meta-module M0 in blue (Color figure online)

modules of S0 which must be crossed when traveling from
an “origin” meta-module M0 ∈ S ′

0 to Mi , taking any route
inside the robot. In other words, si is the distance between
M0 and Mi measured in the meta-modules of S0 only. An
example configuration, with the values of si displayed on all
meta-modules, is presented in Fig. 11. One can distinguish
connected subsets of S ′

0 with equal values of si , separated
by meta-modules of S0 with ascending/descending values
of si . It can be deduced, for example, that if si = 1 ⇔
Mi ∈ S0 then removing any subset ofS0 cannot disconnect
the structure. In the opposite case, removing all Mi ∈ S0

whose si = 1 separates the remaining {Mi : si � 1} from
{Mi : si = 0} and the structure loses connectedness.

We shall now provide more details. For simplicity, we
restrict ourselves below to synchronous systems, in which
all meta-modules update their internal states in parallel, but
the results can be also extended to the asynchronous case.
Furthermore, to shorten the descriptions, we depart from the
present interpretation and write “modules” instead of “meta-
modules” when referring to the basic units.

Let M0 ∈ S ′
0 be the “origin” module elected by the

ensemble, s(P) be the number of modules which belong
to S0 in a sequence of modules P , and Mi |Mj mean that
Mi and Mj are neighbors. A path of length n between M0

and Mi is a sequence {Mi0 , Mi1 , . . . , Min } of not necessar-
ily distinct modules, where i0 = 0, in = i , and Mik−1 |Mik
for k = 1, 2, . . . , n. Let finally Pn

i be the set of all paths
of length at most n from M0 to Mi (possibly empty). We
will now consider the minimum number of modules of S0

which must be crossed when traveling from M0 to Mi in at
most n steps—a quantity denoted further by sni . More pre-
cisely, sni = min{s(P) : P ∈ Pn

i }, with the convention that
sni = ∞ whenPn

i = ∅. The values of sni allow one to com-

pute si since, as can be readily deduced, si = limn→∞ sni .
We will prove that sn+1

i can be computed by Mi from local
information using the formula

sn+1
i = min

k: Mk |Mi
snk + s({Mi }), (1)

with the boundary condition: sn0 = 0 for all n � 0, and the
initial condition: s0i = ∞ for all i �= 0.

Remark We treat ∞ as a formal symbol processed by the
modules alongside numbers when doing arithmetic opera-
tions. In particular, we assume that ∞ satisfies: 1 < 2 <

· · · < ∞, ∞ + 0 = ∞ + 1 = ∞, ∞ � ∞, which allow ∞
to be correctly handled inside Eq. (1).

Proof It can be seen that the boundary and initial conditions
for Eq. 1 are correct: (a) the shortest path from M0 to M0—
{M0}, of length 0—is disjoint with S0, hence sn0 = 0 for
all n � 0; (b) for all i �= 0 there are no paths of length
0 between M0 and Mi , P0

i = ∅, hence s0i = ∞ for all
i �= 0. As regards Eq. (1) itself, it can be observed that any
path in Pn+1

i , i �= 0, must have one of the neighbors of Mi

as its last-but-one module. This is reflected by the bijection
∗ : Pn+1

i → N n
i , where N n

i = ⋃
k: Mk |Mi

Pn
k , given

by {M0, . . . , Mk, Mi }∗ = {M0, . . . , Mk}. Using it, one can
write:

sn+1
i = min

P∈Pn+1
i

s(P) = min
P∈Pn+1

i

s
(
P∗) + s({Mi }) (2)

= min
P∈N n

i

s(P) + s({Mi }) (3)

= min
k: Mk |Mi

[

min
P∈Pn

k

s(P)

]

+ s({Mi }) (4)

= min
k: Mk |Mi

snk + s({Mi }) (5)

where Eq. (2) comes from the definition of sn+1
i and the iden-

tity s(P) = s(P∗) + s({Mi }) for P ∈ Pn+1
i , Eq. (3) from

passing from the domain to the codomain of the bijection,
Eq. (4) from replacing the minimum over the unionN n

i by a
repeated minimum over its component sets, and Eq. (5) from
the definition of snk . We have thus arrived at Eq. (1). It should
be noted that the arithmetical rules assumed for∞ guarantee
that empty sets of paths are correctly handled. ��

It can also be deduced that in a structure composed of N
modules all sni reach limit values, si , at step n = N − 1 at
the latest, i.e. ∀i∈I si = limn→∞ sni = sN−1

i .

Proof In a structure composed of N modules, every non-self-
intersecting path from M0 to Mi can be made of at most N
modules, including M0, so it must belong to PN−1

i . Since
every path P ∈ Pn

i contains a non-self-intersecting sub-
path R ∈ Pn

i ∩ PN−1
i and s(R) � s(P), therefore sni =

123

Autonomous Robots (2019) 43:97–122 109

min{s(P) : P ∈ Pn
i } = min{s(R) : R ∈ Pn

i ∩ PN−1
i }.

Taking into account that ∀n�0 Pn
i ⊆ Pn+1

i one finally
obtains: limn→∞ sni = min{s(R) : R ∈ PN−1

i } = sN−1
i .

The arguments were valid for any i ∈ I , so the proposition
is proved. ��

The above observations lead to the following example
method of selecting S ⊂ S0. A tree is formed, with the
root at M0 and spanning the entire structure, having the prop-
erty that a path from M0 to Mi crosses exactly si modules
of S0. Within the tree, Mk can be the parent of Mj only if
sk = min{si : Mi |Mj }. Each module (except M0) selects
exactly one of its neighbors with the minimum value of si as
its parent. This is done during the Eq. (1)-based iteration and
the parent is reset for Mj at each step at which s j changes.
Once the tree is formed, S is chosen as the set of those
modules of S0 which have no children—the leaves of the
tree.

One can get a useful lower bound on the number of mod-
ules in S , as obtained by the above procedure, in the case
when S ′

0 is connected. Then, Mi ∈ S ′
0 ⇔ si = 0. Let

nk = #{i : si = k}—the number of modules in M with
si = k. Of course,

∑
k nk = #M . Since every module

belongs to only one tree-path, which originates at M0 and
passes through consecutive modules with non-decreasing
values of si , one can conclude that

#S �
m∑

k=1

max{nk − nk+1, 0}, (6)

where m = max{si : i ∈ I }. Eq. (6) shows, in particular,
that S is nonempty, because nm > 0 and nm+1 = 0.

Remark A reconfiguration strategy which aims to preserve
connectedness on purely geometric grounds may not be real-
izable in practice. In the real physical setting, the robot must
resist gravity, forces of inertia resulting from reconfigura-
tion itself, and possibly an additional external loading. This
problem affects mostly large-ensemble systems, in which
the strength of individual intermodular connections is small
compared with the weight of the entire system. Any realis-
tic reconfiguration strategy must therefore take mechanical
factors into account and guarantee that intermodular connec-
tions do not become overstressed during reconfiguration, that
the robot does not lose balance about its support, and that the
projected motion lies within the capabilities of the modules’
actuators. Otherwise the robot may collapse under gravity
or fail to function as planned. Designing a mechanically-
feasible reconfiguration path might require using methods
of computational mechanics, examples of which for non-
self-reconfigurable systems can be found in White et al.
(2011) and Hiller and Lipson (2014). A possible approach
to the distributed prediction of the mechanical overloading

Fig. 12 Different streamlines leading to the same sinks. Each square
represents a metamodule

of connections due to a planned reconfiguration step has been
presented in Hołobut and Lengiewicz (2017). Nevertheless,
a full integration of mechanical constraints into reconfigu-
ration planning seems to be a complicated issue which lies
outside the scope of the present paper.

6.2 Avoiding“sink collisions”

The proposed algorithm computes streamlines between real
source modules and virtual sink modules. In other words,
sources are physically present, and sinks are not—they are
empty spaces. Since such sinks cannot participate in the com-
putation of streamlines, all respective operations must be
handled by the modules in their neighborhood. In particular,
the information about whether there is a streamline ending
in a given sink module or not must be stored in the neigh-
bors’memories. This leads to problems, illustrated in Fig. 12,
when several boundary modules simultaneously attempt to
construct the same sink module. There are several possible
solutions.

The first option is to allow the streamlines to be con-
structed, even if their ends overlap. The subsequent move-
ment of modules along such streamlines would eventually
lead to module collisions, and the excessive modules would
have to be withdrawn along the streamlines which brought
them. This solution is unwelcome for several reasons, most
notably for disturbing the simultaneity of movement which
is the key feature of the present algorithm.

The second option is to algorithmically enforce unique-
ness of streamline ends, using communication between
neighbor modules only. This can either be done during
target-boundary selection or in the runtime of the max-flow
algorithm. The first way consists in assigning to each sink
only one formal neighbor. This approach limits the number of
possible flowpatterns produced by the algorithm. The second
way is based on checking and negotiating, during streamline
construction, of the state of a sink by all of its neighbors. In
general, this approach may be computationally prohibitive,

123

110 Autonomous Robots (2019) 43:97–122

since information has to be constantly passed between pos-
sibly distant modules—like at A in Fig. 12. A reasonable
compromise between the two approaches might be to use
single-neighbor assignment in the case when the neighbors
of a given sink are far away from each other with respect
to the robot’s internal metric, and to use realtime negotia-
tion in the case when the neighbors are close—like at B in
Fig. 12.

The third option, most advantageous from the computa-
tional point of view but more demanding of the modules’
hardware, is the use of a longer range of communication
between modules—as was also assumed in Hurtado et al.
(2015). The modules might have to be able to communicate
at a distance of several module diameters, at least in the case
when there are no other modules in between. In this way they
could decide by direct communication the state of their com-
monneighbor sink. Since the present algorithmdealswith 2×
2 × 2 metamodules instead of individual modules, the com-
munication rangewould have to be threemodule diameters—
to cover a one-metamodule gap between metamodules.

6.3 Boundary selection—global planning

In the numerical examples presented in this paper, we have
used a global planner based on the gradient of the Manhattan
distance to the target shape, d(x), as described in Sect. 4.2.
This approach, like any other, has its strengths and weak-
nesses. On the one hand, it combines shape change and
locomotion into one scheme, since the gradient can point
to a target shape as well as to a distant object. Under certain
circumstances, reconfiguration can also be quite efficient.
On the other hand, modules need to know the values of the
distance function around the target shape during the whole
reconfiguration process. This requires that modules either
store distance values over a potentially large area, or compute
them, whenever needed, from the knowledge of the target
shape and its relative position in space. The first approach
is demanding memory-wise, the second—computationally.
Moreover, there exist spatial arrangements of the initial and
target shape, for which bottlenecks arise during reconfigu-
ration which greatly reduce the parallelism of movement.
Finally, when the source boundary is chosen based on the
gradient information, it must also be verified that the struc-
ture will remain connected after the removal of the source
modules, as discussed in Sect. 6.1.

There are other possible methods of choosing target and
source boundaries. One of them is based on using an “inter-
nal” distance to the target shape, di , as opposed to the
“external” distance d(x). This is basically a reformulated
and slightly modified version of the method used in Støy
(2004, 2006) for attracting misplaced modules towards their
destinations. Under the assumption that the current, C , and
target, T , configurations meet or overlap, the target bound-

ary is determined first as the empty cells of T lying at the
border of C . Next, di is computed iteratively as the distance,
measured insideC , between every module Mi ∈ C −T and
the boundary of T as di = min{d j : Mi |Mj } + 1, where
the modules at the outer boundary of T have fixed di = 0.
At the same time, a spanning tree is formed on the basis of
di in a similar fashion as in Sect. 6.1 with si . Finally, the
source boundary is obtained as those modules of C which
are leaves of the tree. This choice automatically guarantees
that if C ∩ T is nonempty and connected then the structure
will remain connected during reconfiguration. Advantages
of this method are its lower memory/computational require-
ments and that reconfiguration proceeds entirely “in place”,
i.e. the modules are always located inside the union of the
initial and target configuration. Its disadvantages are that it
does not directly address locomotion and that the parallelism
of reconfiguration is limited by the capacity of the initial tar-
get boundary (all streamlines pass through it during the entire
reconfiguration).

The final possibility which we wish to mention is recon-
figuration considered not as a two-point process, between
the initial and target shape, but reconfiguration along a “tra-
jectory”. It is reasonable to assume that in many situations
not only the endpoints of reconfiguration are important, but
also the entire movement between them. This resembles path
following in mechatronics, where desired configurations of
a mechanical system are given as a function of time and
the system is supposed to realize them through proper actu-
ation. In the present case, the path consists of subsequent
configurations of the ensemble of modules, with incremen-
tal changes of positions. In the discrete-time/discrete-space
case, as considered in the present paper, the path is a
sequence of configurations C0,C1, . . . ,Cn , with Ci ⊂ Z

3,
#Ci equal to the number of modules, and the Hausdorff dis-
tance between the sets Ci and Ci+1 being 0 or 1. In the
continuous-time/continuous-space case, which may be an
approximation for large-ensemble systems, the path is given
by a mapping C : [t0, t1] → P(R3), from a time inter-
val to the power set of R

3. C should be continuous with
respect to the Hausdorff metric in P(R3), and the sets C(t),
t ∈ [t0, t1], should be suitably regular and have equal vol-
umes. When reconfiguration is defined in an incremental
fashion as indicated above, the target and source boundaries
are given by the set differences Ci+1 − Ci or C(t + Δt) −
C(t), and Ci − Ci+1 or C(t) − C(t + Δt), respectively.
If the flow capacity of the system is sufficient, the ensem-
ble will approximately follow the prescribed reconfiguration
path.

6.4 Quality control over intermediate shapes

It often happens during the run of the current version of the
algorithm that convergence towards the target shape proceeds

123

Autonomous Robots (2019) 43:97–122 111

unevenly, in the sense that long “tails” of modules appear
behind the structure (or in front of it), c.f. Fig. 14c. There are
two possible reasons for this phenomenon. The first one is the
“nearest first” approach during the construction of stream-
lines, which favors those source modules which lie closer
to the target boundary. The second reason is related to the
applied heuristics, which favor streamlines from the previous
reconfiguration step. The resulting order of reconfiguration
may be unsatisfactory from the mechanical point of view—
thin elements may incur excessive stresses, resulting in
overloading of connections between modules. Furthermore,
uneven formation can impair the execution of other tasks
which the system may have to perform during reconfigura-
tion. Finally, as can be observed in Sect. 7.2, uneven selection
of sources may increase the overall reconfiguration time.

The problem is broader and may be generally viewed as
a problem of control of the quality of intermediate shapes
(the shapes of the intermediate stages of reconfiguration).
The resolution of this problem seems to be hard technically
and even conceptually. A quality measure would have to be
devised for the intermediate shapes. It seems reasonable to
roughly assume that, in the absence of other constraints on
reconfiguration, the shapes with smaller boundary areas are
preferable—this disadvantages long, protruding elements,
and uneven boundaries in general (probably the simplest
measure would be just to promote the most distant sources).
On the basis of this quality measure, the modules of the
source and target boundarieswould have to be ranked accord-
ing to the influence on the quality of the boundary that
their removal/formation would have. This ranking would
take the form of weights assigned to individual source/target
modules. Finally, a suitable weighted version of the max-
flow algorithm would have to be applied, capable of finding
the maximum flow among the several available possibilities
which also constructs the boundary in the most favorable
way. The development of such an algorithm is left for future
research.

6.5 Extension to arbitrary modular robots

In this work, we restricted ourselves only to modular robots
based on a cubic lattice, with two prescribed elementary
moves. However, the presentedmethodology can be straight-
forwardly extended to other, even non-lattice-based, systems.
The only assumption is that it must be possible for the robot
to create a rigid porous frame and that one can specify a
scheme for melting the source boundary and forming the
target boundary. In such a case, the pores in the structure
generate the nodes of the corresponding graph, and open
connections between the pores generate the respective edges
in the graph. Once the source- and target boundaries are
specified, the max-flow algorithm can be applied to find the
maximum set of disjoint streamlines.

7 Computer simulations

Three two-dimensional basic problems are presented to visu-
alize the operation of the proposed methodology, to analyze
the properties of the algorithm itself and to validate some
of the complexity assessments done in Sect. 5. The sim-
ulations have been performed on a virtual machine which
emulates the operation of the presented modular system.
The emulator was implemented in theWolframMathematica
environment (WolframResearch 2016). The implementation
details, including the maximum flow algorithm, are provided
in the “Appendix A”.

Remark In the examples, we only analyze two-dimensional
cases, despite the fact that the presented method is designed
to work with three-dimensional ensembles equally well.
The main reason why we limit ourselves to 2D is related
to the max-flow streamline structure which we intended to
emphasize—this is the main novelty of the algorithm and it
is most clearly visible in 2D.

7.1 Three test problems

In the figures illustrating the test problems, arrows indicate
streamlines, numbers are the values of the distance function
from the desired shape, and red and green circles denote
sources and sinks, respectively.

The first problem is a simple rectangle-to-rectangle trans-
formation, where the initial rectangle is located vis-a-vis one
of the sides of the final shape, see Fig. 13. While outside the
desired shape, cf. Fig. 13a, the sources and sinks are always
located at the opposite sides of the rectangle. This gives the
maximum flow in the direction of the desired shape. While
inside the desired shape, additional sinks appear and stream-
linesmake turns in order to fill in that shape. The total number
of reconfiguration steps is 10, and this is theminimal possible
value.

In the second problem, see Fig. 14, a bottleneck appears,
preventing the parallel flow of modules. For example, in
Fig. 14c, despite the fact that there are two sources and five
sinks, only one streamline can be found. This can be viewed
as a drawback of the proposed algorithm for specifying sour-
ces and sinks, which is done on the basis of a very simple
criterion, preventing outflowofmodules from the final shape.
Because of the lack of a full parallelism of flow, 15 steps are
necessary to attain the goal shape.

One can make another observation about Fig. 14d. The
calculated streamline is not optimal, in the sense that it makes
unnecessary turns, engaging more modules in the flow. This
drawback is related to the simplified criterion, requiring only
finding the maximum set of disjoint streamlines, without any
further preferences about the quality of the streamlines.

123

112 Autonomous Robots (2019) 43:97–122

12

11

11

11

11

11

11

12

13

14

11

10

10

10

10

10

10

11

12

13

10

9

9

9

9

9

9

10

11

12

9

8

8

8

8

8

8

9

10

11

8

7

7

7

7

7

7

8

9

10

7

6

6

6

6

6

6

7

8

9

6

5

5

5

5

5

5

6

7

8

5

4

4

4

4

4

4

5

6

7

4

3

3

3

3

3

3

4

5

6

3

2

2

2

2

2

2

3

4

5

2

1

1

1

1

1

1

2

3

4

1

0

0

0

0

0

0

1

2

3

1

0

0

0

0

0

0

1

2

3

1

0

0

0

0

0

0

1

2

3

2

1

1

1

1

1

1

2

3

4

(a)

5

5

5

5

5

5

6

7

8

5

4

4

4

4

4

4

5

6

7

4

3

3

3

3

3

3

4

5

6

3

2

2

2

2

2

2

3

4

5

2

1

1

1

1

1

1

2

3

4

1

0

0

0

0

0

0

1

2

3

1

0

0

0

0

0

0

1

2

3

1

0

0

0

0

0

0

1

2

3

2

1

1

1

1

1

1

2

3

4

(b)

3

3

3

3

3

3

4

5

6

3

2

2

2

2

2

2

3

4

5

2

1

1

1

1

1

1

2

3

4

1

0

0

0

0

0

0

1

2

3

1

0

0

0

0

0

0

1

2

3

1

0

0

0

0

0

0

1

2

3

2

1

1

1

1

1

1

2

3

4

(c)

1

1

1

1

1

1

2

3

4

1

0

0

0

0

0

0

1

2

3

1

0

0

0

0

0

0

1

2

3

1

0

0

0

0

0

0

1

2

3

2

1

1

1

1

1

1

2

3

4

(d)

Fig. 13 Problem 1. The first, two intermediate, and the last reconfiguration step. a t = 1, b t = 6, c t = 8, d t = 10

12

11

11

11

12

11

11

11

12

13

11

10

10

10

11

10

10

10

11

12

10

9

9

9

10

9

9

9

10

11

9

8

8

8

9

8

8

8

9

10

8

7

7

7

8

7

7

7

8

9

7

6

6

6

7

6

6

6

7

8

6

5

5

5

6

5

5

5

6

7

5

4

4

4

5

4

4

4

5

6

4

3

3

3

4

3

3

3

4

5

3

2

2

2

3

2

2

2

3

4

2

1

1

1

2

1

1

1

2

3

1

0

0

0

1

0

0

0

1

2

1

0

0

0

0

0

0

0

1

2

1

0

0

0

1

0

0

0

1

2

2

1

1

1

2

1

1

1

2

3

(a) (b) (c) (d)

Fig. 14 Problem 2. The first, two intermediate, and the last reconfiguration step. a t = 1, b t = 6, c t = 10, d t = 16

12

11

10

10

10

10

10

10

11

12

11

10

9

9

9

9

9

9

10

11

10

9

8

8

8

8

8

8

9

10

9

8

7

7

7

7

7

7

8

9

8

7

6

6

6

6

6

6

7

8

7

6

5

5

5

5

5

5

6

7

6

5

4

4

4

4

4

4

5

6

5

4

3

3

3

3

3

3

4

5

4

3

2

2

2

2

2

2

3

4

3

2

1

1

1

1

1

1

2

3

2

1

0

0

0

0

0

0

1

2

1

0

0

0

0

0

0

0

0

1

1

0

0

1

0

0

1

0

0

1

1

0

0

0

0

0

0

0

0

1

2

1

0

0

1

1

0

0

1

2

3

2

1

1

2

2

1

1

2

3

(a) (b) (c) (d)

Fig. 15 Problem 3. The first, two intermediate, and the last reconfiguration step. a t = 1, b t = 4, c t = 7, d t = 11

A slightly more complicated problem is shown in Fig. 15.
Both the initial and the final shape have holes. This makes
the flow more involved as the topology of the shape changes
along the way—one of the holes closes as the flow becomes
blocked, see Fig. 15c, and the final shape with two holes is
attained at the end. Despite this complexity, the algorithm
performs reasonably well.

Remark In all analyzed problems, the initial shape is located
in front of a flat wall belonging to the desired shape. There-
fore, while away from the wall, the sources and sinks are
always located at the left and right boundaries, respectively
(the gradient of the distance function is uniform there). If the
wall was not flat or the initial shape was placed lower and

approaching the final shape from the corner, then one could
expect the ensemble to tend to split into two separate bodies.
Special techniques would then be necessary to prevent that
unwanted behavior, e.g. the one discussed in Sect. 6.1, but
we leave that problem for further research.

7.2 Performance check

In order to empirically check the performance of the pre-
sented approach we will analyze how the number of steps
and computational effort changes with the increasing res-
olution k, keeping the initial and final shapes constant.
The respective theoretical predictions have been provided in

123

Autonomous Robots (2019) 43:97–122 113

Table 2 Description of symbols used in figures

Symbol Description

nB Total number of max-flow operations at a given step t

NB Total number of max-flow operations

N B Normalized NB , i.e., N B(k) = NB(k)/NB(1)

NM Number of meta-modules

NR Number of reconfiguration steps

t̄ Normalized reconfiguration step, t̄ = (t − 1)/(NR − 1)

problem 1

problem 2

problem 3

1 2 4 8

10

12

14

16

Resolution, k

N
or
m
al
iz
ed

N
.o

fr
ec

on
fig

.s
te
ps

,N
R
/k

Fig. 16 Performance analysis. Dependence of the normalized number
of reconfiguration steps on resolution

Sect. 5, Table 1. All the following results have been obtained
using the heuristics described in Sect. 5.4. (See Table 2 for
the description of symbols used in the following figures.)

The most important performance factor is the scalabil-
ity of the number of reconfiguration steps. In Fig. 16 it is
demonstrated that the desired parallelism is maintained as
the resolution increases, i.e., the number of reconfiguration

steps NR is proportional to the resolution k. It means that NR

increases only because the path is naturally subdivided into
more steps. This is the most important expected result of the
present work.

The observed proportionality is not obvious. In Fig. 17
we show selected intermediate steps of the problem 2 for
three different resolutions. Steps are adjusted in such a way
that they correspond more or less to the same reconfigura-
tion stage. One can clearly see that for higher resolutions
the reconfiguration is not following the patterns observed
at lower resolutions. This is an expected behavior because
the algorithm has freedom in choosing the preferred sets of
sources and sinks to be connected by streamlines, which can
differ for different resolutions (and even for two runs of the
algorithm at the same resolution). This is one of the potential
reasons why the predicted proportionality may not hold. In
our case the observed small inclines of the curves in Fig. 16
are caused by a non-optimal choice of sources, done by our
simplified algorithm, which results in a deficiency of sources
at certain stages of reconfiguration.

In principle, the predicted proportionality should hold as
long as the topologies of initial andfinal shapes are not chang-
ingwith k. But if new holes/bottlenecks emerge at higher res-
olutions then reconfiguration may be hindered, at least when
using the presented simplified criterion of source and sink
selection (e.g., see the discussion of Example 2 in Sect. 7.1).
However, it should be possible to greatly reduce the depen-
dence on topology changes if a better source and sink
selection strategy is applied. For example, this can be done
by neglecting the topology complexities in the initial (rough)
phase of reconfiguration and then refining the resultant shape
in the final phase. We leave this topic for future work.

The second important performance factor is the amount of
computation needed during reconfiguration. At a given step,

(a)

Number of max flow operations

2.5 5.0 7.5 10.0 12.5 15.0 17.5

(b)

Number of max flow operations

5 10 15 20 25 30

(c)

Number of max flow operations

20 40 60 80

Fig. 17 Corresponding reconfiguration stages of the problem 2 for three different resolutions k. a k = 1, step t = 10 of 16, b k = 2, step t = 20
of 34, c k = 4, step t = 40 of 66

123

114 Autonomous Robots (2019) 43:97–122

Number of max flow operations

25 50 75 100 125

(a) (b) (c)

Fig. 18 Problem 1, resolution k = 4. Max-flow operations intensity per module at three subsequent steps. a Step t = 28, t̄ � 0.69, b step
t = 29, t̄ � 0.72, c step t = 30, t̄ � 0.74

k=2

k=8

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

140

Normalized reconfiguration step, t

N
.o
fm

ax
-f
lo
w

op
er
at
io
ns

pe
rm

od
ul
e,

n B
/N

M
/k
2

k=1

k=2

k=4

k=8

0.60 0.65 0.70 0.75 0.80
0

20

40

60

80

100

120

140

Normalized reconfiguration step, t

N
.o
fm

ax
- f
lo
w

op
er
at
io
ns

pe
rm

od
ul
e,

n B
/N

M
/k
2

(a) (b)

Fig. 19 Problem 1. Average number of max-flow operations per module during reconfiguration, for four resolutions k. a Two resolutions in the
whole reconfiguration range, b all resolutions in a selected reconfiguration range

this can be analyzed in terms of the number of operations
performed by each meta-module (see Figs. 17, 18, 20, 22),
but can also be expressed as an average over meta-modules
(see Figs. 19, 21, 23). Finally, for a given resolution, one can
take an average over all reconfiguration steps and modules,
see Fig. 24.

In Figs. 18, 19, 20, 21, 22, 23 and 24 one can observe
the expected advantageous effects of the applied heuristics.
For example, in Figs. 18 and 19 it is shown that the peak
of computation occurs at the first step after the streamlines
reach the wall, and it is necessary to compute new directions.
At the remaining steps, the amount of computation is low
because only the confirmation of existing streamlines needs
to be performed, and it is computationally cheap. In the two
remaining problems, Figs. 20, 21, 22 and 23, the reduction
of computational effort is clearly visible in the initial phase,
prior to arriving at the first obstacle. After that, the situation
becomes less clear, especially for higher resolutions. This is

because the streamlines disperse, increasing the complexity
of the shape and giving rise to newholes/boundaries.And this
in turn usually creates the necessity of streamlines’ recalcu-
lation, see, e.g., a new hole that is created between steps 16
and 17 in Fig. 22.

Despite the increase of the flow complexity which can
be observed for higher resolutions, Fig. 24 suggests that the
overall computational effort tends to follow the predicted
dependence (cf. Table 1). Without using the heuristics the
plots in Fig. 24 would have a constant slope, because the
number of max-flow operations would remain at some high
level. When the heuristics are used, we only see spikes of
computation intensity at “difficult” steps and low values oth-
erwise. Ideally, the plots in Fig. 24 should be bounded by a
constant, which would correspond to the predicted propor-
tionality ∼ k p−2.

Remark Note that the number of operations at the first step
of Problem 1 is very low with respect to the peak value

123

Autonomous Robots (2019) 43:97–122 115

Number of max flow operations

20 40 60 80

(a) (b) (c)

Fig. 20 Problem 2, resolution k = 4. Max-flow operations intensity per module at three subsequent steps. a Step t = 24, t̄ � 0.35, b step
t = 25, t̄ � 0.37, c step t = 26, t̄ � 0.38

k=2

k=8

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

Normalized reconfiguration step, t

N
.o
fm

ax
-f
lo
w

op
er
at
io
ns

pe
rm

od
ul
e,

n B
/N

M
/k
2

k=1

k=2

k=4

k=8

0.30 0.35 0.40 0.45

0

10

20

30

40

Normalized reconfiguration step, t

N
.o
fm

ax
-f
lo
w

op
er
at
io
ns

pe
rm

od
ul
e,

n B
/ N

M
/k
2

(a) (b)

Fig. 21 Problem 2. Average number of max-flow operations per module during reconfiguration, for four resolutions k. a Two resolutions in the
whole reconfiguration range, b all resolutions in a selected reconfiguration range

Number of max flow operations

25 50 75 100 125 150

(a) (b) (c)

Fig. 22 Problem 3, resolution k = 4. Max-flow operations intensity per module at three subsequent steps. a Step t = 16, t̄ � 0.35, b step
t = 17, t̄ � 0.37, c step t = 18, t̄ � 0.40

(cf. Fig. 19). The reason is that we start the first step simulta-
neously for all modules. Therefore, in such an idealized case,
all streamlines are constructed in parallel (none of the BFS
trees is able to block the others).

7.3 Comparison with other approaches

We will finally attempt to make a comparison between the
characteristics and performance of the present algorithm and

123

116 Autonomous Robots (2019) 43:97–122

k=2

k=8

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

Normalized reconfiguration step, t

N
.o
fm

ax
-f
lo
w

op
er
at
io
ns

pe
rm

od
ul
e,

n B
/N

M
/k
2

k=1

k=2

k=4

k=8

0.20 0.25 0.30 0.35 0.40 0.45
0

20

40

60

80

100

Normalized reconfiguration step, t

N
.o
fm

ax
-f
lo
w

op
er
at
io
ns

pe
rm

od
ul
e,

n B
/N

M
/ k
2

(a) (b)

Fig. 23 Problem 3. Average number of max-flow operations per module during reconfiguration, for four resolutions k. a Two resolutions in the
whole reconfiguration range, b all resolutions in a selected reconfiguration range

problem 1

problem 2

problem 3

1 2 4 8

1.0

1.5

2.0

2.5

3.0

3.5

Resolution, k

N
or
m
al
iz
ed

N
.o

fm
ax

-f
lo
w

op
er
at
io
ns

,N
B
/k
3

Fig. 24 Performance analysis. Normalized number of max-flow oper-
ations per step per module for the increasing resolution k

the ones of the two most closely related approaches—the
algorithm of Støy (2004, 2006) and that of Butler and Rus
(2003). All these algorithms are distributed, purely geomet-
ric with connectedness preservation (do not take mechanical
constraints into account), formulated for cubic-lattice-based
robots, and perform parallel volumetric reconfiguration.
Since we do not possess directly comparable test data, we
will resort to extrapolations and heuristic arguments.

The algorithm of Støy (2004, 2006) is designed for the
same class of problems as the ones described in the present
paper—the modules are not specified other that they are sup-
posed to be able to slide and rotate with respect to their
neighbors. Roughly speaking, the reconfiguration strategy
is based on the modules at the boundary between the current
and target shapes emitting limited-range attraction gradients,
and misplaced modules following these gradients. A porous
structure ismaintained during the process to prevent blocking
of the entire flow of modules.

The main difference between Støy’s algorithm and our
algorithm is that the first one is entirely asynchronous, with
intermixed computation andmovement,while the secondone
proceeds in clearly defined stages, with a major computation
phase separated from a movement phase. Both approaches
result in volumetric transport of modules, but the present
algorithm is in general more efficient in this respect. In
Støy’s approach, many misplaced modules move simultane-
ously throughout the volume of the robot, which contributes
to high parallelism of motion. However, the overall move-
ment/flow is not optimized for maximum capacity, and the
moving modules may also block one another during the
motion. The present algorithm resolves these problems, at
the cost of increased computation/communication load and
complexity. Once the streamlines are determined, all active
modules along all streamlines move simultaneously, which
engages a volume of modules in motion. This is illustrated
for one streamline in Fig. 4b, where the movements symbol-
ized by black arrows are executed simultaneously; see also
the description of step (iii) in Sect. 4.2. This fact combined
with the max-flow property of the set of streamlines guar-
antees, as far as instantaneous transport between a chosen
source and target boundary is concerned, that the parallelism
of the proposed approach is never lower than that of Støy’s
algorithm and should be higher in most cases.

In Støy (2006) two types of reconfiguration tests aremade:
reconfiguration from a plane of modules into a disc per-
pendicular to that plane, and reconfiguration from a plane
into a sphere. As expected for a volumetric reconfiguration
scheme, the number of time steps needed for reconfigura-
tion to complete (most of which involve parallel movement
of modules and are therefore reconfiguration steps) grows
slightly sublinearly as a function of the number of modules
N . By comparison, our algorithm would be expected to per-
form similar reconfiguration tasks in ∼ √

N reconfiguration

123

Autonomous Robots (2019) 43:97–122 117

steps (provided that the N modules are arranged into meta-
modules). Generally, it should require less reconfiguration
steps, but much more steps of communication and message
processing.

ThePacMan algorithm proposed in Butler and Rus (2003)
is designed for unit-compressible modules, in which actua-
tion is achieved through expansion and contraction. Suitable
hardware platforms have been built and include crystalline
atoms (Rus and Vona 2001; Butler and Rus 2003) and tele-
cubes (Vassilvitskii et al. 2002). The algorithm is organized
into stages, much like our algorithm: first, source and tar-
get boundaries are identified; then, reconfiguration paths are
planned between the boundaries; finally, parallel movement
of modules along the paths is performed.

There are threemain differences between PacMan and our
algorithm. Firstly, PacMandoes not operate onmetamodules,
but on individual modules. Therefore, there arise numerous
problems connected with module over-crowding—among
them, reconfiguration along turning paths may be slowed
down by the turns. Secondly, the paths are planned by a
depth-first search from sinks to sources and established on
a first-served basis. Thirdly, paths may intersect. The result-
ing paths do not form a max-flow structure, and when they
intersect, the parallel movement of modules in the volume
is disturbed. There are no simulation results which could be
used for a direct comparison. Nevertheless it can be expected
that, overall, the number of necessary reconfiguration steps
for the PacMan algorithm will scale worse with N than for
the present algorithm—even if PacMan is reformulated for
another hardware platform.

8 Conclusions

The most pronounced conclusion of this work is that one can
perform shape change of modular robots efficiently. This can
be done by parallelizing the process of physical reconfigu-
ration, which reduces the number of reconfiguration steps
(reconfiguration time). It was demonstrated that, in the pro-
posed framework, one can expect the number of necessary
reconfiguration steps to be proportional to the resolution of
the robot. The increase of the number of steps results solely
from the refinement of the reconfiguration path itself. There-
fore, this is actually the best that can be achieved if no other
reconfiguration mechanisms are considered (such as mono-
lithic motion of larger substructures of a robot).

We have given an interpretation of the reconfiguration as a
problem of special flow through a porousmeta-structure. The
flow takes place between the source and the target surfaces
of the modular ensemble, which can also be represented as
sets of source and sink vertices of the corresponding graph.
We have shown that the sources and sinks, as well as the
desired maximal flow in the graph, can be determined by the

modular robot itself in a distributed fashion. The presented
approach allows one to split the problem of shape evolution
into two, partially uncoupled, problems:

– the problem of planning the trajectory between current
and desired shapes, only specified at the surface;

– the problem of finding an optimal flow of modules
between source and target surfaces, specified in thewhole
volume;

Therefore, one can partially abstract from keeping con-
trol over modules’ flow (whose efficiency is to some
extent assured), and focus more on higher-level shape-
transformation planning. This technique seems promising as
it may give rise to efficient reconfiguration scenarios.

A basic, simplified source and sink selection scenario has
been shown in the present work. However, more advanced
schemes need to be considered in future in order to increase
the efficiency and alleviate some of the problems, as dis-
cussed earlier in this work. Undoubtedly, some interaction
between high-level reconfiguration planning and low-level
optimal flow search needs to be considered if a really robust
reconfiguration scheme is to be developed.

We have proposed a suitable max-flow algorithm and
analyzed it in terms of time-, memory- and computational
complexity. The achieved time- and CPU complexities are
significantly lower than those for the general case of arbi-
trary flow networks. Nevertheless, direct use of the max-flow
search will probably be prohibitively expensive in very
numerous ensembles. Therefore other (perhaps approximate)
techniques need to be developed in future.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix A: implementation details

A.1 Emulator of the distributed system

A simplified emulator of a distributed robotic system has
been implemented in theWolframMathematica environment
(Wolfram Research 2016), which enabled us to imple-
ment the distributed reconfiguration algorithms provided in
Sect. A.2, and to run the analyses presented in Sect. 7.

In the emulator, each meta-module is represented as a
separate data structure, consisting of the necessary internal
variables and the message queue, cf. Fig. 7, see also Table 3.
At each iteration, NextIteration() procedure (Proc. 2) is exe-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

118 Autonomous Robots (2019) 43:97–122

Table 3 Description of
variables, functions and
constants used in the algorithm.
All except modules are internal
variables of meta-modules

Symbol name Description

modules List of meta-modules

myID ID of the processed meta-module

msg Currently processed message, msg={msg.type, msg.data}

msg.type Type of a message: {”BFS”, ”ConfirmEdge”, ”ConfirmPath”,
”ConfirmStreamline”, ”CutOff”, ”Available”}

msg.from Message sender ID

mainPathState State of the main path: {NONE, BFS, ConfPath, Streamline}.
Initially set to NONE

mainPathIn ID of parent meta-module on the main tree

mainPathOut ID’s of child meta-modules on the main tree

aug1PathState State of the augmenting path 1: {NONE, BFS, ConfPath}

aug1PathIn ID of parent meta-module on the augmenting tree (type 1)

aug1PathOut ID’s of child meta-modules on the augmenting tree (type 1)

aug2PathState State of the augmenting path 2: {NONE, BFS, ConfPath}

aug2PathIn ID of parent meta-module on the augmenting tree (type 2)

aug2PathOut ID’s of child meta-modules on the augmenting tree (type 2)

isSource/isSink Is meta-module a source/sink? Specified in sub-step 1

pathsOld List of path ID’s that has been processed in current step

SendTo(recip, msg) Sends a message msg to the list of recipients recip

SendAround(except, msg) Sends a message msg to all neighbors except except list

”∪”, ”\”, ”∈”, ”/∈”, ”∅” Standard set operations and symbols

cuted independently by eachmeta-module.At the end of each
iteration, respective exchange of messages is done between
neighboring modules.

In our implementation, all activity of the system, i.e.,
source/sink detection, maximum flow search and module
transportation sub-steps are controlled in a distributed man-
ner. Also a kind of distributed synchronization has been
implemented, which assures that meta-modules switch to the
next sub-step not earlier than when all messages from the
current sub-step have been processed. However, for the sake
of brevity and clarity, here we only present the max-flow-
search part of the algorithm, in a version without heuristics
and synchronization.

Procedure 1 The loop with a parallel run of the algorithm’s
main procedure over all meta-modules.
1: Procedure ShapeTransformation():

2: repeat
3: for all m in modules do
4: m.NextIteration()
5: end for
6: MessageExchange()
7: until <any streamline has been found in last step>

A.2 Distributedmaximum flow algorithm

The distributed max-flow search routine is executed in the
sub-step 2 of NextIteration() function (see the line 5 in

Proc. 2). It implements the algorithm discussed in Sect. 5.2
and it consists of two parts (see MaxFlowSearch() procedure
in Proc. 3). In the first part, lines 2–8, if the meta-module is
an available source then it initiates a new BFS tree by send-
ing a ”BFS” message to all neighbors. In the second part, the
next message from the inbox (FIFO queue) is analyzed, and
the respective procedure depending on the message type is
executed (lines 9–22).

Procedure 2 NextIteration procedure, run by each meta-
module.
1: Procedure NextIteration():

2: if subStep=1 then
3: SourcesAndSinksDetection()
4: else if subStep=2 then
5: MaxFlowSearch()
6: else if subStep=3 then
7: TransportModules()
8: end if

Remark Lines 2–8 in Proc. 3 can also be seen as an initial-
ization phase. It has been simplified here, and in its original
implementation it also contains a part responsible for the
heuristics (see Sect. 5.4). Implementation of the heuristics,
performed in the first iteration of the sub-step 2, consists in
analyzing the state of a meta-module and deciding whether
to preserve the streamline by converting it into a BFS branch

123

Autonomous Robots (2019) 43:97–122 119

Procedure 3 Max-flow-search algorithm.
1: Procedure MaxFlowSearch():

2: if isSource and mainPathState=NONE then
3: mainPathState:=BFS
4: mainPathIn:=myID
5: mainPathOut:=∅

6: mainPathsOld:={myID}
7: SendAround(∅, {”BFS”, myID})
8: end if
9: msg:=msgQueue.Dequeue()
10: if msg.type=”BFS” then
11: ProcBFS(msg)
12: else if msg.type=”ConfirmEdge” then
13: ProcConfirmEdge(msg)
14: else if msg.type=”ConfirmPath” then
15: ProcConfirmPath(msg)
16: else if msg.type=”ConfirmStreamline” then
17: ProcConfirmStreamline(msg)
18: else if msg.type=”Available” then
19: ProcAvailable(msg)
20: else if msg.type=”CutOff” then
21: ProcCutOff(msg)
22: end if

or whether to cut it off. It is not provided here for the sake of
brevity and clarity.

Messages of type ”BFS” (Proc. 4) are responsible for
spanning BFS trees (blue arrows in Fig. 8). As discussed
in Sect. 5.2, there might be up to three paths that are flowing
through a meta-module:

– main path (mainPath, lines 3–16);
– augmenting path that flows in from the outside of the
existing streamline (aug1Path, lines 17–23, see blue
arrow in meta-module 6 at iteration 9 in Fig. 8);

– augmenting path that flows in upstream the existing
streamline (aug2Path, lines 24–30, see blue arrow in
meta-module 5 at iteration 10 in Fig. 8).

Once a BFS path arrives at a sink it sends back a confirmation
message (”ConfirmPath”, see lines 6–10).

Note here that a special edge confirmation protocol is nec-
essary in order to properly establish a BFS edge. It is done by
sending back a ”ConfirmEdge” message, and the respective
output branch is made active only if edge confirmation has
been received (see Proc. 5).

”ConfirmPath” messages (Proc. 6), combined with ”Cut-
Off” messages (Proc. 7), are responsible for selecting (back-
tracking) a single path from the BFS tree, connecting the
source located at the root with one of the sinks. It supports
three path types, i.e., main path and two augmenting paths
(lines 2–11, 12–15 and 16–20, respectively). While travel-
ing the tree from leaf to root, it cuts off other branches, only
leaving the current path. Once arriving at the root, it initiates

Procedure 4 Processing the ”BFS” message type.
1: Procedure ProcBFS(msg):

2: pathsOld:=mainPathsOld∪ aug1PathsOld∪ aug2PathsOld
3: if mainPathState=NONE and msg.data/∈pathsOld then
4: AppendTo(mainPathsOld, msg.data)
5: SendTo(msg.from, {”ConfirmEdge”, ∅})
6: if isSink then
7: mainPathState:=ConfPath
8: mainPathIn:=msg.from
9: mainPathOut:={myID}
10: SendTo(msg.from, {”ConfirmPath”, ∅})
11: else
12: mainPathState:=BFS
13: mainPathIn:=msg.from
14: mainPathOut:=∅

15: SendAround(∅, {”BFS”, msg.data})
16: end if
17: else if mainPathState=Streamline and aug1PathState=NONE

and msg.from �=mainPathIn and msg.from �=mainPathOut and
msg.data/∈pathsOld then

18: AppendTo(aug1PathsOld, msg.data)
19: SendTo(msg.from, {”ConfirmEdge”, ∅})
20: aug1PathState:=BFS;
21: aug1PathIn:=msg.from
22: aug1PathOut:=∅

23: SendTo(mainPathIn, {”BFS”, msg.data})
24: else if mainPathState=Streamline and aug2PathState=NONE and

msg.from=mainPathOut then
25: AppendTo(aug2PathsOld, msg.data)
26: SendTo(msg.from, {”ConfirmEdge”, ∅})
27: aug2PathState:=BFS
28: aug2PathIn:=msg.from
29: aug2PathOut:=∅

30: SendAround({msg.from}, {”BFS”, msg.data})
31: end if

Procedure 5 Processing the ”ConfirmEdge” message type.
1: Procedure ProcConfirmEdge(msg):

2: if mainPathState=ConfPath then
3: AppendTo(mainPathOut, msg.from)
4: else if aug1PathState=ConfPath then
5: AppendTo(aug1PathOut, msg.from)
6: else if aug2PathState=ConfPath then
7: AppendTo(aug2PathOut, msg.from)
8: else
9: SendTo(msg.from, {”CutOff”,∅})
10: end if

the final streamline confirmation by sending back a ”Con-
firmStreamline” message.

Note here that in order to use ”CutOff” mechanism safely,
special precautions must be taken while growing the tree. As
discussed in Sect. 5.3, a list of path ID’s which had passed
the meta-module in a given step is stored (pathsOld), and this
prevents processing a branch of the same tree twice in the
step. Respective conditions are checked in Proc. 4 in lines 3,
17 and 24. Also, after cutting itself off, meta-module sends
”Available” message to the neighbors (line 16 in Proc. 7),
which is the already discussed acknowledgment mechanism,
see the remark in Sect. 5.2.

123

120 Autonomous Robots (2019) 43:97–122

Procedure 6 Processing the ”ConfirmPath” message type.
1: Procedure ProcConfirmPath(msg):

2: if mainPathState=ConfPath and msg.from∈mainPathOut then
3: SendTo(mainPathOut\msg.from, {”CutOff”, ∅})
4: mainPathOut:={msg.from}
5: if isSource then
6: mainPathState:=Streamline
7: SendTo(msg.from, {”ConfirmStreamline”, ∅})
8: else
9: mainPathState:=ConfStreamline
10: SendTo(mainPathIn, {”ConfirmPath”, ∅})
11: end if
12: else if aug1PathState=ConfPath and msg.from=mainPathIn then
13: aug1PathOut:={msg.from}
14: aug1PathState:=ConfStreamline
15: SendTo(aug1PathIn, {”ConfirmPath”, ∅})
16: else if aug2PathState=ConfPath and

(aug1PathState�=ConfStreamline or msg.from �=mainPathIn)
then

17: SendTo(aug2PathOut\msg.from, {”CutOff”, ∅})
18: aug2PathOut:={msg.from}
19: aug2PathState:=ConfStreamline
20: SendTo(aug2PathIn, {”ConfirmPath”, ∅})
21: end if

Procedure 7 Processing the ”CutOff” message type.
1: Procedure ProcCutOff(msg):

2: isMainPathRemoved:=False
3: if mainPathState �=NONE and msg.from=mainPathIn then
4: SendTo(mainPathOut, {”CutOff”, ∅})
5: mainPathState:=NONE; mainPathIn:=∅; mainPathOut:=∅

6: isMainPathRemoved:=True
7: end if
8: if aug1PathState �=NONE and

(msg.from=aug1PathIn or isMainPathRemoved) then
9: SendTo(aug1PathOut, {”CutOff”, ∅})
10: aug1PathState:=NONE; aug1PathIn:=∅; aug1PathOut:=∅

11: end if
12: if aug2PathState �=NONE and

(msg.from=aug2PathIn or isMainPathRemoved) then
13: SendTo(aug2PathOut, {”CutOff”, ∅})
14: aug2PathState:=NONE; aug2PathIn:=∅; aug2PathOut:=∅

15: end if
16: SendAround(∅, {”Available”, ∅})

Streamline confirmation (Proc. 8), in the case of main
paths, is necessary to allow other BFS trees to grow upstream
a streamline. The use of a streamline can not be allowed
earlier, i.e., just after path confirmation, because several con-
current branches of the tree may be building the path. We do
not know in advancewhich pathwill become a streamline and
which will be cut off. Again, acknowledgments are spread
around after establishing the streamline—to make neighbor-
ing BFS trees know that there is new space for expansion.

In the case of augmenting paths, streamline confirma-
tion has additional functionality. It crossbreeds the existing
streamlines with the new augmenting path, see iterations 28
and further in Fig. 8. The operation can be viewed as a kind
of symmetric difference on respective sets of edges—the set

of main streamlines’ edges and the set of augmenting path
edges. It removes the overlapping edges and reorganizes the
flow accordingly.

Appendix B: supplementary material

In the electronic supplementarymaterialwe provide the com-
plete results for the three problems discussed in Sect. 7.

Procedure 8 Processing the ”ConfirmStreamline” message
type.
1: Procedure ProcConfirmStreamline(msg):

2: if mainPathState=ConfStreamline andmsg.from=mainPathIn then
3: mainPathState:=Streamline
4: if not isSink then
5: SendTo(mainPathOut, {”ConfirmStreamline”, ∅})
6: end if
7: SendAround(mainPathOut∪mainPathIn, {”Available”, ∅})
8: else if aug1PathState=ConfStreamline and msg.from=aug1PathIn

then
9: mainPathIn=aug1PathIn
10: SendTo(aug1PathOut, {”ConfirmStreamline”, ∅})
11: SendAround(aug1PathOut∪ aug1PathIn, {”Available”, ∅})
12: aug1PathState:=NONE; aug1PathIn:=∅; aug1PathOut:=∅

13: else if aug2PathState=ConfStreamline and msg.from=aug2PathIn
then

14: SendTo(aug2PathOut, {”ConfirmStreamline”, ∅})
15: SendAround(aug2PathOut∪ aug2PathIn, {”Available”, ∅})
16: if aug2PathOut=mainPathIn then
17: mainPathState:=NONE; mainPathIn:=∅; mainPathOut:=∅

18: aug1PathState:=NONE; aug1PathIn:=∅; aug1PathOut:=∅

19: else
20: mainPathOut:=aug2PathOut
21: end if
22: aug2PathState:=NONE; aug2PathIn:=∅; aug2PathOut:=∅

23: end if

Procedure 9 Processing the ”Available” message type.
1: Procedure ProcAvailable(msg):

2: if mainPathState=ConfPath then
3: SendTo(msg.from, {”BFS”, Last(mainPathsOld)})
4: else if aug1PathState=ConfPath and msg.from=mainPathIn then
5: SendTo(msg.from, {”BFS”, Last(aug1PathsOld)})
6: else if aug2PathState=ConfPath andmsg.from=mainPathOut then
7: SendTo(msg.from, {”BFS”, Last(aug2PathsOld)})
8: end if

References

Aloupis, G., Collette, S., Damian, M., Demaine, E. D., Flatland, R.,
Langerman, S., et al. (2009). Linear reconfiguration of cube-style
modular robots. Computational Geometry, 42(6), 652–663.

An, B. K. (2008). Em-cube: Cube-shaped, self-reconfigurable robots
sliding on structure surfaces. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (pp. 3149–3155).

123

Autonomous Robots (2019) 43:97–122 121

Butler, Z., Kotay, K., Rus, D., & Tomita, K. (2004). Generic decentral-
ized control for lattice-based self-reconfigurable robots. Interna-
tional Journal of Robotics Research, 23(9), 919–937.

Butler, Z., & Rus, D. (2003). Distributed planning and control for mod-
ular robots with unit-compressible modules. International Journal
of Robotics Research, 22(9), 699–715.

Campbell, J., & Pillai, P. (2008). Collective actuation. International
Journal of Robotics Research, 27(3–4), 299–314.

Christensen, D. J., Campbell, J., & Støy, K. (2010). Anatomy-based
organization of morphology and control in self-reconfigurable
modular robots. Neural Computing and Applications, 19(6), 787–
805.

De Rosa, M., Goldstein, S. C., Lee, P., Campbell, J., & Pillai, P. (2006).
Scalable shape sculpting via hole motion: motion planning in
lattice-constrained modular robots. In Proceedings of the IEEE
International Conference on Robotics and Automation (pp. 1462–
1468).

Dewey, D. J., Ashley-Rollman, M. P., De Rosa, M., Goldstein, S. C.,
Mowry, T. C., Srinivasa, S. S., Pillai, P., & Campbell, J. (2008).
Generalizingmetamodules to simplify planning inmodular robotic
systems. InProceedings of the IEEE/RSJ InternationalConference
on Intelligent Robots and Systems (pp. 1338–1345).

Dinic, E. (1970). Algorithm for solution of a problem of maximum flow
in a network with power estimation. Soviet Mathematics Doklady,
11, 1277–1280.

Edmonds, J., & Karp, R. M. (1972). Theoretical improvements in algo-
rithmic efficiency for network flow problems. Journal of the ACM,
19(2), 248–264.

Fitch, R., & Butler, Z. (2008). Million module march: Scalable loco-
motion for large self-reconfiguring robots. International Journal
of Robotics Research, 27(3–4), 331–343.

Ford,L.R.,&Fulkerson,D.R. (1956).Maximalflow through anetwork.
Canadian Journal of Mathematics, 8, 399–404.

Ford, L. R., & Fulkerson, D. R. (1962). Flows in networks. Princeton:
Princeton University Press.

Goldberg, A. V., & Rao, S. (1998). Beyond the flow decomposition
barrier. Journal of the ACM, 45, 783–797.

Goldberg, A. V., & Tarjan, R. E. (1988). A new approach to the maxi-
mum flow problem. Journal of the ACM, 35(4), 921–940.

Hiller, J., & Lipson, H. (2014). Dynamic simulation of soft multimate-
rial 3d-printed objects. Soft Robotics, 1(1), 88–101.

Hołobut, P., Chodkiewicz, P., Macios, A., & Lengiewicz, J. (2016).
Internal localization algorithm based on relative positions for
cubic-lattice modular-robotic ensembles. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (pp. 3056–3062).

Hołobut, P., Kursa, M., & Lengiewicz, J. (2014). A class of microstruc-
tures for scalable collective actuation of Programmable Matter. In
Proceedings of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (pp. 3919–3925).

Hołobut, P., Kursa, M., & Lengiewicz, J. (2015). Efficient modular-
robotic structures to increase the force-to-weight ratio of scalable
collective actuators. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (pp. 3302–3307).

Hołobut, P., & Lengiewicz, J. (2017). Distributed computation of forces
in modular-robotic ensembles as part of reconfiguration planning.
In Proceedings of the IEEE International Conference on Robotics
and Automation (pp. 2103–2109).

Hurtado, F., Molina, E., Ramaswami, S., & Sacristán, V. (2015).
Distributed reconfiguration of 2D lattice-based modular robotic
systems. Autonomous Robots, 38(4), 383–413.

Karzanov, A. V. (1974). Determining the maximal flow in a network
by the method of preflows. Soviet Mathematics Doklady, 15, 434–
437.

Lengiewicz, J., Kursa,M., &Hołobut, P. (2017).Modular-robotic struc-
tures for scalable collective actuation. Robotica, 35, 787–808.

Nguyen,A.,Guibas, L. J.,&Yim,M. (2000). Controlledmodule density
helps reconfiguration planning. In Proceedings of the 4th Inter-
national Workshop on Algorithmic Foundations of Robotics (pp.
23–36).

Orlin, J. B. (2013). Max flows in o(nm) time, or better. In Proceedings
of the Forty-fifth Annual ACMSymposium on Theory of Computing
(pp. 765–774). ACM.

Piranda, B., & Bourgeois, J. (2016). A distributed algorithm for recon-
figuration of lattice-based modular self-reconfigurable robots. In
Proceedings of the 24th Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing (PDP) (pp.
1–9). IEEE.

Piranda, B., Laurent, G. J., Bourgeois, J., Clévy, C., Möbes, S., & Le
Fort-Piat, N. (2013). A new concept of planar self-reconfigurable
modular robot for conveying microparts. Mechatronics, 23(7),
906–915.

Reid, J. R., Vasilyev, V., & Webster, R. T. (2008). Building micro-
robots: A path to sub-mm3 autonomous systems. NSTI-Nanotech,
3, 174–177.

Romanishin, J.W.,Gilpin,K.,&Rus,D. (2013).M-blocks:Momentum-
driven, magnetic modular robots. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (pp.
4288–4295).

Rubenstein, M., Cornejo, A., & Nagpal, R. (2014). Programmable self-
assembly in a thousand-robot swarm. Science, 345(6198), 795–
799.

Rus, D., & Vona, M. (2001). Crystalline robots: Self-reconfiguration
with compressible unit modules. Autonomous Robots, 10(1), 107–
124.

Støy, K. (2004). Emergent control of self-reconfigurable robots. PhD
thesis, The Maersk Mc-Kinney Moller Institute for Production
Technology, University of Southern Denmark, Odense, Denmark.

Støy, K. (2006). Using cellular automata and gradients to control self-
reconfiguration. Robotics and Autonomous Systems, 54(2), 135–
141.

Tanenbaum, A. (2006). Structured computer organization (5th ed.).
Upper Saddle River: Pearson Prentice Hall.

Vassilvitskii, S., Yim, M., & Suh, J. (2002). A complete, local and
parallel reconfiguration algorithm for cube style modular robots.
In Proceedings of the IEEE International Conference on Robotics
and Automation (Vol. 1, pp. 117–122).

White, P. J., Revzen, S., Thorne, C. E., & Yim, M. (2011). A gen-
eral stiffness model for programmable matter and modular robotic
structures. Robotica, 29, 103–121.

Wolfram Research, I. (2016). Mathematica, version 11.0 edn. Cham-
paign: Wolfram Research, Inc.

Jakub Lengiewicz graduated in
informatics from the University
of Warsaw, Poland. He received
the Ph.D. degree in mechanics
(computational methods in con-
tact mechanics) from the Insti-
tute of Fundamental Technolog-
ical Research of the Polish
Academy of Sciences, Warsaw,
Poland, in 2009, where he is cur-
rently an Assistant Professor. He
is the Principal Investigator of the
National Science Centre (Poland)
research grant “Micromechanics
of Programmable Matter”. His

current research efforts are focused on a systematic approach towards
practical realization of the concept of programmable materials, with
the emphasis on modular-robotics.

123

122 Autonomous Robots (2019) 43:97–122

Paweł Hołobut received his M.Sc.
degree in structural engineering
from the Silesian University of
Technology, Gliwice, Poland. He
obtained his Ph.D. degree in
robotics from the Institute of Fun-
damental Technological Research
of the Polish Academy of Sci-
ences, Warsaw, Poland, in 2005,
where he is currently a Research
Associate. His current research
interests include complexity of
modular-robotic structures, infor-
mation theory and stochastic
materials.

123

	Efficient collective shape shifting and locomotion of massively-modular robotic structures
	Abstract
	1 Introduction
	2 The paradigm of discrete flow in a porous structure
	3 Prospects for hardware implementation
	4 Shape transformation algorithm
	4.1 Problem definition
	4.2 Outline of the shape-transformation algorithm

	5 Distributed asynchronous maximum-flow algorithm
	5.1 Preliminaries/problem classification
	5.2 Maximum-flow algorithm
	5.3 Time-, memory- and CPU usage estimation for large ensembles
	5.4 Reuse of max-flow search results

	6 Extensions and improvements of the shape transformation algorithm
	6.1 Connectedness preservation
	6.2 Avoiding ``sink collisions''
	6.3 Boundary selection—global planning
	6.4 Quality control over intermediate shapes
	6.5 Extension to arbitrary modular robots

	7 Computer simulations
	7.1 Three test problems
	7.2 Performance check
	7.3 Comparison with other approaches

	8 Conclusions
	Appendix A: implementation details
	A.1 Emulator of the distributed system
	A.2 Distributed maximum flow algorithm

	Appendix B: supplementary material
	References

