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Abstract
We propose a robust and direct 2D–3D registration method for camera synchronization. Once the cameras are synchronized—
or for synchronous setups—we also propose a visual odometry framework that benefits from both 2D and 3D acquisitions.
Our method does not require a precise set of 2D-to-3D correspondences, handles occlusions and works when the scene is
only partially known. It is carried out through a 2D–3D based initial motion estimation followed by a constrained nonlinear
optimization for motion refinement. The problems of occlusion and that of missing scene parts are handled by comparing
the image-based reconstruction and 3D sensor measurements. The results of our experiments demonstrate that the proposed
framework allows to obtain a good initial motion estimate and a significant improvement through refinement.

Keywords Asynchronous cameras · 2D–3D registration · Structure-from-Motion · Visual Odometry

1 Introduction

The problem of accurately localizing cameras is of prime
importance in many application involving visual Simul-
taneously Localization and Mapping (vSLAM). An accu-
rate environment map is generally required for an accu-
rate localization. In turn, building an accurate environ-
ment map is not possible without an accurate localization,
hence, making it a paradoxical “chicken and egg" prob-
lem.

With the ongoing surge in affordable high quality 3D
and 2D capture technologies, many mobile robots are, or
can easily be, equipped with either or both vision modali-
ties (Holz et al. 2008; Weingarten et al. 2004; Taguchi et al.
2013; Trevor et al. 2012; Bok et al. 2011). We refer to 3D
cameras/sensors for any camera that can provide 3D data
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of the scene directly. For our experiments, we used depth
camera, sparse wide angle Lidar sensor, dense narrow angle
laser scanner, sparse line scanner laser sensor, and camera-
projector scanning setup. As far as 3D sensors are concerned,
the Iterative Closest Point (ICP) algorithm (or one of its vari-
ants), applied on neighboring 3D point cloud measurements,
is overwhelmingly used for robot localization. However, in
the case of abrupt or long run displacements, localization
based on 3D information alone is difficult mainly because of
computational cost and handling degraded (extruded, flat)
environments (typical to ICP), and unreliable 3D feature
descriptors.

When a robot is equipped with both 3D and 2D sen-
sors, generally 2D images are used to estimate the motion
of the cameras (visual odometry) whereas the mapping is
obtained directly from the 3D sensor (Buczko and Willert
2016; Pire et al. 2015; Tardif et al. 2010; Jia et al. 2016).
Indeed, the emergence of reliable 2D image feature descrip-
tors (such as the Scale-Invariant Feature Transform (SIFT)),
2D-to-2Dmatching, generally supported byRandomSample
Consensus (RANSAC), has becomemore reliable. However,
the accuracy of the camera motion estimation from images,
on which the robot localization relies, is undermined by the
error amplitude of the extracted 2D features. When localiza-
tion is based on2D-to-3Dcorrespondences and 2D–2Dbased
refinement, itmay suffer from significant error accumulation.
The importance of 2D–3D camera fusion for visual odome-
try in contrast of 2D–2D based motion refinement (Bok et al.
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Fig. 1 An example of error accumulation around a loop: Map built
by a Laser-Camera system around a large structure (top-left). Image
taken at a loop closing point with only one tree at the corner (top-right).
Map built before (red) and after (white) the visit around the loop using
2D–2D based refinement (Bok et al. 2011) (bottom-left). Refined map
obtained using our method (bottom-right): the scan of the same tree
come significantly closer after refinement (Color figure online)

2011), leading to a large error accumulation around a loop,
is shown in Fig. 1.

This error is usually minimized by a loop closing tech-
nique as described in Williams et al. (2009). However, in
particular when robots travel long distances, loop closing is
not always possible and may not adequately compensate for
error accumulation thus leaving visible artifacts in the map.
Performing small and frequent loops are recommended as to
keep the accumulated error under control. In practice,making
such small loops while building large maps is undoubtedly
a burden for the task at hand and often impossible. Though
incorporating information from extra sensors such as GPS
has been proposed (Bok et al. 2011; Lhuillier 2012), it is
often argued that such information is neither accurate nor
reliable enough.

Nowadays 3D sensors are providing increasingly high
quality and accurate 3Dmeasurements. Therefore, it has now
become quite appealing and desirable to jointly benefit from
the data acquired from both 2D and 3Dmodalities to achieve
a better localization and/or motion estimation of the cameras
at hand. Doing so accurately comes with its fair share of dif-
ficulties and challenges. Indeed, 2D and 3D camera setups
generally require a full calibration of the system includ-
ing 2D camera pose with respect to 3D measurements, i.e.
extrinsic calibration, and synchronous acquisitions. Main-
taining such a calibrated setup is both tedious and difficult
due to possible changes in the camera pose parameters and
the dedicated hardware required for synchronization. Note
that changes in camera pose and/or the presence of syn-
chronization delays, in particular in the case of fast moving
systems, may result in large accumulated errors in the long

run. Under such circumstances, or when the 3D and 2D cap-
tures are asynchronous, the 2D and 3D acquisitions need to
be registered before they can be fused. Therefore, we cast the
problem of asynchronous cameras as the problem of inaccu-
rate extrinsic between 2D and 3D cameras. For a calibrated
2D and 3D camera-setups under motion, if their acquisitions
are synchronized, the extrinsic between them is still valid.
However, for asynchronous acquisitions, the extrinsic are not
valid anymore due to the motion of the platform/vehicle dur-
ing the acquisition time gap. Therefore, when dealing with
asynchronous cameras, extrinsic parameters need to be re-
calibrated/refined jointly with ego-motion estimation.

While in the asynchronous case 2D–3D correspondences
are unknown and need to be established, in the calibrated
synchronous case, obtaining accurate 2D-to-3D matches is
dependent upon the density of the 3D point cloud. Indeed,
on the one hand, not every 3D point has known 2D corre-
sponding points and, on the other hand, corresponding image
points may not have the exact corresponding 3D point mea-
surement present in the point cloud. Furthermore, whether
the system is synchronous or not, some measurements cap-
tured by eachmodalitymay not be captured by the other. This
mainly occurs because parts of the scene may be occluded
by others. In the case of 3D captures, this results in (possibly
large) missing parts from the scene. This renders the problem
of registering data from both modalities rather challenging
and difficult to solve.

In this paper, we propose a method for direct 2D–3D reg-
istration when 3D and 2D cameras are asynchronous. Once
the asynchronous images are registered with the scene, they
can be treated as synchronous acquisitions for which we
propose a complete visual odometry framework that com-
bines both 2D and 3D data. The proposed asynchronous
2D–3D registration method demands only a rough knowl-
edge of the pose of only one of the cameras and, apart
from 3D scene point coordinates, requires no other knowl-
edge regarding the geometry of the input scene. We assume
that point correspondences across images are available but
2D-to-3D correspondences are unknown. To our knowledge,
there is no method that makes use of both 2D and 3D
information without 2D-to-3D correspondences. Note that
methods employing Bundle Adjustment (BA) with known
scene (Triggs et al. 2000) and PnP (Hesch and Roume-
liotis 2011) require such 2D-to-3D correspondences to be
established. In practice, good 2D correspondences between
instantaneously captured images can be obtained by using
state-of-the-art feature descriptors such as SIFT. The pro-
posed method does not require a precise set of 2D-to-3D
correspondences, handles occlusions, and works for partially
known scenes. This framework computes the pose by local-
izing a set of cameras at once with respect to the 3D scene
acquired in the previous frame using a minimum of three
corresponding points among all the views. Furthermore, a
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constrained nonlinear optimization framework is also pro-
posed for pose refinement. The first step of visual odometry
uses only the known part of the scene whereas our refinement
process uses the constraints that arise from the unknown
part as well. The refinement step minimizes the projection
errors of 3D points while enforcing the existing relationships
between images. Both steps handle the problem of occlusion
and that of missing scene parts by confronting the image-
based reconstruction and the 3D sensor measurements. They
also minimize the effect of data inaccuracies by using an M-
estimator based technique. Unlike (Tamaazousti et al. 2011),
our method makes no prior assumption regarding the geom-
etry of the scanned scene. The presented method differs from
its preliminary works (Paudel et al. 2014a, b) as it introduces
both synchronous and asynchronous systems under a com-
mon framework. Furthermore, we also provide the results for
cascaded asynchronous to synchronous model.

Our paper is organized as follows. Related work is pre-
sented in Sect. 2. The notations used in the present paper
and the necessary background are introduced in Sect. 3. We
formulate the optimization problem to obtain the optimal
odometry parameters in Sect. 4. The solution to this problem
is presented in the form of an algorithm in the same section.
In Sect. 5, experiments with synthetic and four real datasets
are presented and discussed. Section 6 concludes our work.

2 Related work

The 2D–3D registration problem is tackled in the literature
through direct and indirect approaches. The direct registra-
tion methods rely on establishing feature correspondences
(such as points, lines, planes, skylines and building bounding
boxes) between the images and the 3D scene. The point-
based matching methods proposed in Sattler et al. (2011),
Knopp et al. (2010) require the 3D scene along with a scale
invariant feature descriptor (SIFT) for each point. Correspon-
dences are obtained by matching these feature descriptors
to that of image feature points. Establishing reliable cor-
respondences may be undermined by the absence of such
descriptors in the provided scene points as well as by the
variability of the illumination conditions during the 2D and
3D acquisitions. Methods relying on higher level features,
such as lines (Christy andHoraud1999), planes (Tamaazousti
et al. 2011) and building bounding boxes (Liu and Stamos
2005), are generally suitable for ManhattanWorld scenes (or
the like) and hence applicable only in such environments.
Skylines-based methods (Ramalingam et al. 2009) as well as
methods relying on a predefined 3D model (Clarkson et al.
2001) are, likewise, of limited applicability.

Indirect methods are performed either by 3D–3D registra-
tion or by finding some appropriate registration parameters.
Methods based on 3D–3D registration are performed using

the (rigid or non-rigid) Iterative Closest Point (ICP) algo-
rithm between the Structure-from-Motion (SfM) induced
reconstruction and the known scene. Some alternative meth-
ods use probabilistic approaches for 3D–3D registration. For
instance, Horaud et al. (2011) uses expectation conditional
maximization, Stoyanov et al. (2012) uses normal distribu-
tions transforms, and Evangelidis et al. (2014), Eckart et al.
(2015) use Gaussian mixture models. Although there exists
several other techniques for scaled point clouds registra-
tion (Pomerleau et al. 2015), there extension for registering
point clouds with unknown reconstruction scale is not
straightforward. For instance, this scale ambiguity is han-
dled by an extension of the 4-point congruent sets algorithm
in Corsini et al. (2013). On the other hand, registration based
on complex parameters, such as mutual information (Viola
et al. 1997) and region segmentation (Taneja et al. 2012), are
based on single images. Therefore, each camera requires its
own initialization and is individually localized independently
from the rest of the cameras. Cameras that are localized in
this fashion may fail to satisfy the multiview geometric con-
straints (such as the epipolar constraint in two images). In this
context, the proposed registration method belongs to direct
registration categorty. Starting from a rough knowledge of
camera position, our method performs direct registration
between 2D and 3D point sets without requiring the point-
to-point correspondences.

Visual odometry is generally carried out by relying on 2D–
2D, 3D–3D, or 2D–3D information. 2D–2D based methods
typically track features in monocular or stereo images and
estimate themotion between them (Chiuso et al. 2000; Nister
et al. 2004). Some of these methods improve the localiza-
tion accuracy by simultaneously processing multiple frames,
while using BA for refinement. Some other methods obtain
the motion parameters by registering images such that the
photometric error between them is minimized (Koch 1993;
Comport et al. 2007). For the same purpose, most 3D–3D
basedmethods use ICP or its variants (Besl andMcKay 1992;
Fitzgibbon 2003; Rusinkiewicz and Levoy 2001) between
consecutively acquired point clouds obtained from the 3D
camera (Nüchter et al. 2007; Newcombe et al. 2011). How-
ever, ICP-based methods are computationally expensive due
to the calculation of the nearest neighbors for every point
at each iteration. Both of these methods use the information
from either camera only and, hence, do not fully exploit all
the available information.

Recent works (Tamaazousti et al. 2011; Kerl et al. 2013)
propose the use of information provided from both cameras
during the process of localization. The work in Tamaa-
zousti et al. (2011) refines the camera pose obtained from
Structure-from-Motion (SfM) using an extra constraint of a
plane-induced homography via scene planes. This method
provides a very good insight for a possibility to improve
the camera pose when the partial 3D is known. However, it
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uses only the information from planes that are in the scene.
The methods presented in Newcombe et al. (2011), Kerl
et al. (2013) and Henry et al. (2012) have been tested in
indoor environments mainly with a Kinect sensor. Exten-
sion of these methods to outdoor environments with possibly
different kinds of 3D cameras is not trivial due to various
unhandled situations that may arise. Typical issues arising
in outdoor scenes and/or different camera setups occur, for
example, when 2D and 3D cameras do not share the exact
same field of view, when the 3D points are sparse (as opposed
to pixel-to-pixelmapping ofRGB-Dcameras), in the absence
of required scene structures, and in the event of low frame
rates and/or large displacements of the cameras.

Another work by Zhang et al. (2014) uses both 2D and
3D cameras for outdoor visual odometry using synchronous
camera setup. This method takes advantage of multi-frame
motion estimation as well feedback model. The final odom-
etry parameters are then refined by BA from iSAM2 (Kaess
et al. 2011). Although this method performs well for syn-
chronous setups, it does not address the problem of camera
fusion for asynchronous setup. Note that other existing 2D–
3D based refinement methods, such as BA and loop closing,
are not applicable under these circumstances because they
require precise 2D-to-3D correspondences across frames. In
this work, the pose refinement is carried our using both 2D
and 3D information. Our refinement method successfully
uses both 2D and 3D even when precise 2D-to-3D corre-
spondences are not known. In particular to asynchronous
cameras, Rawia et al. (2014) uses asynchronous 2D camera
rigs for intelligent vehicle application. Ego-motion estima-
tion in Rawia et al. (2014) is carried out for 2D camera rigs,
unlike 2D–3Dcamera setup in thiswork. Furthermore,Rawia
et al. (2014) makes a very strong assumption that the ego-
motion is piecewise linear. Such assumption might be valid
for intelligent vehicle setups (as originally developed). How-
ever, it is not practical in general case (for example, hand-held
cameras).

3 Notation and background

The setup consists of a 3D scanner and multiple calibrated
cameras as shown in Fig. 2. We refer the 3-space Euclidean

transform by a 4 × 4 matrix T =
(
R t
0 1

)
, where R and t

are rotation matrix and translation vector respectively. At
any given instant, the 3D scanner scans the scene points
Xk, k = 1 . . . p in its coordinate frameO1.A set of calibrated
cameras at Ti , i = 1 . . .m, not necessarily overlapping, cap-
ture m images, from which a set of 2D feature points are
extracted. Let x1i j , j = 1 . . . n represent those feature points
in the i th image. P(T , X) is the projection function that
maps a point X to its 2D counterpart in the image captured

Fig. 2 Ray diagram of the experimental setup

from T . When the system moves by T ′ to next position, cor-
responding variables are represented by the same notations
with change in superscript. The poses of the second set of
cameras with respect to O1 are expressed as T̄i . The Essen-
tial matrix between two views of the same camera in different
frames is expressed by Ei (T ′), with an abuse of notation for
simplicity. Although Ei (T ′) is expressed as the function of
T ′, it is actually the function of T ′

i , which are again dependent
upon both T ′ and Ti . For synchronous setups, the transfor-
mation matrices are related follows

T ′
i = Ti T

′T−1
i . (1)

If x1i j and x
2
i j , j = 1 . . . n are corresponding feature points

in two consecutive images taken by the i th camera, their
2D-to-3D correspondences are specified by a function φ.
Let φi ( j) be a function that maps each pair of 2D points
x1i j ↔ x2i j to the corresponding 3D point Xk . Every rotation
matrix is represented by a 4×1 vector of quaternions, unless
mentioned otherwise. Whenever the estimation of rotation
is involved, the unit norm of quaternions is assumed to be
enforced.Both 3Dand2Dpoints are represented by 3×1 vec-
tors, the latter being the homogeneous representation in the
camera coordinate system. The distance between two rota-
tion matrices is measured by computing the spectral norm of
their difference. For a matrix A, its spectral norm is denoted
as |||A|||. Two given up-to-scale translation vectors are com-
pared by measuring the angle between them.

4 2D–3D visual odometry

In this section, we establish the relationships between a set of
image pairs and scene points. Using these relationships, we
propose an optimization framework whose optimal solution
is the required odometry parameters. A complete algorithm
for solving this optimization problem is also discussed. The
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proposed method deals with both the asynchronous and syn-
chronous cases separately. In the asynchronous case, the
camera’s extrinsic parameters T ′

i are assumed to be unknown.
In the synchronous case these parameters are known and
fully exploited during themotion estimation process.We also
assume that the 2D-to-2D correspondences between image
pairs acquired by the same camera are known.

4.1 Problem formulation

The relationship between 2D and 3D points is depicted in the
ray diagram given in Fig. 2. The projection error of points on
the first set of cameras is given by

e1(Ti , φi ( j)) = ||x1i j − P(Ti , Xφi ( j))||2. (2)

Similarly, for the second set of cameras, the projection error
is given by

e2(Ti , T
′, φi ( j)) = ||x2i j − P(Ti T

′, Xφi ( j))||2. (3)

Furthermore, the epipolar constraint that relates the points in
two views of different frames can be written as

(
x2i j

)T
Ei (T

′)x1i j = 0. (4)

While (2) locates the first camera, (3) locates the second
camera with respect to the world reference frame while pre-
serving its relationship to the first one. Similarly, (4) localizes
the second camera with respect to the first one. Equations (2),
(3) and (4) are obviously redundant.However, in the presence
of noise in the data and unknown correspondences all con-
straints must be enforced: satisfying only the non-redundant
conditions does not necessarily satisfy all of them. In addi-
tion, (4) makes use of the unknown part of the scene as well.
Therefore, all three equationswill be incorporated in our opti-
mization framework inwhich (3) is chosen to be the objective
(as it includes the pose of both the cameras) while the rest
are used as constraints.

Our problem is to localize a set of 2D cameras with
known 2D-to-2D (x1i j ↔ x2i j ) and unknown 2D–2D-to-3D

(x1i j ↔ x2i j ↔ Xφi ( j)) correspondences in the presence of
noise. Hence, finding the optimal φi itself is part of the opti-
mization process. Therefore, the optimization framework can
be written as

min
Ti ,T ′,φ

m∑
i=1

n∑
j=1

||x2i j − P(Ti T
′, Xφi ( j))||2,

s.t. ||x1i j − P(Ti , Xφi ( j))||2 = 0,

(x2i j )
T Ei (T

′)x1i j = 0. (5)

The optimization problem (5) considers that every image
point has its corresponding 3D point in the scene. In prac-
tice, there could be extra 2D ormissing 3D points resulting in
invalid 2D-to-3D correspondences. We address these prob-
lems by assigning theweights derived from a scale histogram
to each correspondence. Furthermore, we also relax the strict
equality of constraints to avoid the infeasibility that would
arise due to the noisy data (or the discretization during the
image formation process).

If X̃i j is the SfM reconstruction in O1, the relative scale of
reconstruction for known 3D-to-3D correspondences X̃i j ↔
Xφi ( j) is given by si ( j) = ||X̃i j ||/||Xφi ( j)||, j = 1 . . .m.
Since the reconstructed points from each pair share a com-
mon scale, in the ideal case,wehave si ( j) = ci . ∀ j ∈ 1 . . . n,
for some constant ci ’s. In practice, when the histograms
Hi (u), u = 1 . . . b of these scales are built, they hold the
highest number of samples in the bin corresponding to the
true scale. If those bins areUi , then theweights are distributed
as follows:

wi ( j) =
{
1 si ( j) ∈ H(Ui )

0 otherwise.
(6)

Furthermore, the effect of data inaccuracies is reduced by
introducing a robust estimation technique. Hence, the opti-
mization problem (5) with robust estimation and histogram-
based weighting can be re-written as

min
Ti ,T ′,φ

m∑
i=1

n∑
j=1

wi ( j)ρ
(||x2i j − P(Ti T

′, Xφi ( j))||
)
,

s.t. wi ( j)ρ
(||x1i j − P(Ti , Xφi ( j))||

) = 0,

ρ
(
(x2i j )

T Ei (T
′)x1i j

) = 0. (7)

where ρ(x) is Tukey bi-weighted potential function. For a
threshold ξ , it is defined as

ρ(y) =
{

y6

6 − ξ2 y4

2 + ξ4y2

2 f or |y| < ξ

ξ6

6 otherwise
(8)

whose influence function isψ(y) = y
(
ξ2 − y2

)2
for |y| < ξ

and 0 otherwise.
Note that any 2D-to-3D correspondence that does not vote

for the valid scale is considered to be an outlier. Here, the
derived cost depends only upon the known part of the scene
whereas the constraint includes the unknown part as well.
The optimal odometry parameters are obtained by iteratively
solving this optimization problem. Each iteration breaks the
problem down into two subproblems: (a) 2D-to-3D registra-
tion and (b) Camera pose refinement.
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Table 1 Known and estimated parameters

Input Estimation

Asynchronous 2D–2D corresp. Ti and T̄i

Synchronous 2D–2D corresp., Ti T ′

4.2 2D-to-3D registration

The registration step coarsely localizes the cameras with
respect to the scene. Here, we discuss the registration meth-
ods for asynchronous and synchronous cases as two separate
subproblems. In the asynchronous case, finding the 2D-to-3D
correspondences required for registration is not trivial. This
is done by iterating between camera poses and the corre-
spondence estimation. On the other hand, finding the precise
cross-frame correspondences for the synchronous case is not
easy either. Cross-frame image-to-scene registration in syn-
chronous acquisition is carried out by using minimal point
RANSAC-based pose estimation. The choice of registration
methods depends upon the experimental setup. The known
input and estimated parameters for two different cases are
summarized in the Table 1.

4.2.1 Asynchronous case

The main problem in the asynchronous acquisition is that
the poses of the camera with respect the scene are unknown.
This makes solving 2D-to-3D correspondence problem very
challenging. Since these correspondences are unknown, the
reconstruction that can be obtained from images is related
to the scene by an unknown scale factor. To avoid the role
of this unknown scale, we minimize a cost function which
is independent of it, while imposing the epipolar constraint
between images. The proposed optimization problem for
asynchronous cameras registration is as follows:

min
Ti ,φ

m∑
i=1

n∑
j=1

wi ( j)ρ
(||(x2i j )T Ei (T

′)P(Ti , Xφi ( j))||
)
,

s.t. wi ( j)ρ
(||x1i j − P(Ti , Xφi ( j))||

) = 0. (9)

The initial estimate of T ′
i is obtained using the SfM-based

relative pose estimation method (Nister 2004). Note that T ′
is the motion between the 3D cameras, whereas T ′

i are the
same for 2D cameras. In this case, we choose φ such that it
maps every pair of image points to a 3Dpoint that respects the
constraintwhileminimizing the cost. The constraint violation
is penalized by a simple but effective static penalty function
as discussed in Smith and Coit (1995). Therefore,

φi ( j) = argmin
k∈{1,...,p}

||x1i j − P(Ri , ti , Xk)||

+ ||
(
x2i j

)T
Ei (T

′)P(Ti , Xk)||. (10)

Hence, the optimal poses of the first set of cameras are
obtained, for each camera i separately, by solving

argmin
Ti

n∑
j=1

wi ( j)ρ
(||(x2i j )T Ei (T

′)P(Ti , X
1
φi ( j))||

)
,

s.t. wi ( j)ρ
(||x1i j − P(Ti , Xφi ( j))||

) = 0. (11)

This is a constrained nonlinear optimization problem
on the quaternion parameters whose local optimal solution
can be obtained by the iteratively re-weighted least-squares
(ILRS) technique. In fact, dependinguponone’s choice, it can
also be solved linearly on R and t using singular value decom-
position. However, the linear solution does not constrain R to
be a rotationmatrix. Therefore, the obtained solution needs to
be enforced as a rotation matrix before extracting the quater-
nion parameters.

For each pair of images, the scale of the reconstruction is
finally estimated by averaging the scales of inliers as follows

μi =
∑n

j=1 wi ( j)si ( j)∑n
j=1 wi ( j)

, i = 1 . . . n. (12)

Finally, the absolute poses of the second set of cameras in
O1 can be obtained through

T̄i =
(
R′
i μi t ′i
0 1

)
Ti . (13)

Recall that R′
i and t ′i are the rotation and translation com-

ponents of T ′
i . Once the cameras are fully registered, they

can be thought as synchronized ones. This is because the
second set of cameras can be localized in the first coordinate
frame. Henceforth, we consider two cases: (1) Asynchronous
model assumes that the cameras are not yet synchronized;
(2) Cascaded asynchronous-to-synchronous assumes that the
asynchronous cameras are synchronized via 2D–3D registra-
tion.

Under the assumption that Ti is known with scale, 3D
points from reconstruction can be directly associated to
points from the 3D sensor. In fact, once these points are
aligned by Ti , they differ only by a scale factor si ( j). First, we
obtain si ( j) by taking the ratio of their norms. Then, absolute
scale for each camera is obtained by (12). On the other hand,
one can obtain Ti with scale, due to the constraint imposed
in (9). This constraint can also be thought as solving the per-
spective n-point problem. For a correct set of φi ( j), Ti can
be estimated with the correct scale. Therefore, ego-motion of
each image can be estimated by using (13). If the ego-motion
of the 3D sensor is required, it can be obtained by using (1).
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4.2.2 Synchronous case

It is trivial to find the 2D-to-3D correspondences Xk ↔
P(Tm, Xk) in one frame. However, cross-frame correspon-
dences are required in order to estimate T ′. Such correspon-
dences can be obtained by matching the 2D feature points
between images. Note that most P(Tm, Xk), when consid-
ered as feature points, are unlikely to result in reliable feature
descriptors for matching. Therefore, we extract a separate
set of 2D feature points to obtain better 2D–2D correspon-
dences x1i j ↔ x2i j . Methods based on relative pose require at
least 5 such correspondences to compute the motion with an
unknown scale. On the other hand, if 2D-to-3D correspon-
dences x2i j ↔ Xk can be found, it would require only 3 points
to estimate the motion including the scale. In order to benefit
from this, the required 2D-to-3D correspondences are com-
puted for each image which is established by the mapping
function φi ( j) computed as

φi ( j) = argmin
k∈{1,...,p}

||x1i j − P(Ti , Xk)||, j = 1 . . . n. (14)

It is important to notice that the correspondences obtained in
this manner are not perfect. We make a strong consideration
of this restriction while refining the estimated motion. The
search required to minimize (14) can be performed using a
KD-tree like structure where the projections of all 3D points
build one tree in each image. The detected feature points
traverse these trees in search for the best possible match.
Once the required correspondences are obtained, the set of
cameras in the second frame can be localized with respect
to previously acquired 3D scene using the method presented
in Nister (2004). The advantage of using this method is that
it requires a minimum of 3 correspondences among all the
views and does not require a complex scene as demanded by
ICP or SfM. For example, even a planar scene with sufficient
texture can be processed. For low frame rates and/or large
displacements, feature matching methods still work better
than tracking them. Since only 3 correspondences are needed,
finding them from already matched 2D–2D to sparse 3D is
very much achievable in practice.

4.3 Camera pose refinement

Recall that in both asynchronous and synchronous cases the
final result is the registration of next frame images to the
previous scene. In fact, the obtained registration parameters
are the absolute poses of the cameras. However, in practice,
the motion obtained in this manner is not very accurate. In
this step, we refine these coarse motion/registration parame-
ters while making use of scene information. The refinement
process optimizes the motion parameters such that the SfM
reconstruction is closest to the known scene. During this

process, the asynchronous setups are refined by directly
solving (7) for the known correspondence function φ. The
correspondences required in this step are obtained directly
from the registration process. However, the synchronous
setups are refinedby solving the followingoptimization prob-
lem:

min
T ′

m∑
i=1

n∑
j=1

wi ( j)ρ
(||x2i j − P(Ti T

′, Xφi ( j))||
)
,

s.t. ρ
(
(x2i j )

T Ei (T
′)x1i j

) = 0. (15)

Note that the refinement process uses all the cameras
simultaneously to refine T ′, unlike in (11) of the asyn-
chronous case. This is again a constrained nonlinear opti-
mization problem that can be solved by ILRS technique. Each
iteration of IRLS uses the interior-point method to solve the
constrained nonlinear least-squares problem.

4.4 The algorithm

Starting from known 2D-to-2D correspondences, the algo-
rithm iteratively estimates the odometry parameters men-
tioned inTable 1. Every iteration reduces the cost function (7)
in two steps while satisfying its constraints. Here, we present
two different algorithms for asynchronous and synchronous
cases separately.

Algorithm 1 Asynchronous case
For known initial guess on Ti and T ′

i obtained from relative pose esti-
mation, refine them through the following two steps:

1. Camera alignment: iteratively align the cameras to scene until
convergence,

(a) estimate the relative pose using 2D-to-2D correspondences;
(b) compute 2D-to-3D correspondences using (10);
(c) build multiple scale histogram Hi (u) and compute weights

wi ( j), j = 1 . . . n;
(d) update the pose of the first set of cameras using (11).

2. Simultaneous pose refinement: starting from the results obtained
in the “Camera alignment" step, refine poses of both sets of cameras
by solving (7) for known φ.

Obtain real scale μi and compute the absolute pose using (13).

Note that the cascaded asynchronous-to-synchronous
model uses (15) instead of (7) in the refinement step of Asyn-
chronous algorithm.

4.5 Normalization and pose recovery

For the sake of numerical stability, the 3D scene points are
normalized such that the distance between the scene’s cen-
troid to the first camera is approximately equal to 1. If the
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Algorithm 2 Synchronous case
1. 2D–3D registration: for known extrinsics Ti , i = 1 . . .m, iterate

over the following steps until convergence:
For each Camera i = 1 . . .m

(a) compute P(Ti , Xk), k = 1 . . . p and build a KD-tree;
(b) find 2D-to-3D correspondences maps φi ( j), j = 1 . . . n

using (14).

Using all Cameras: perform 2D–3D-basedRANSAC and estimate
T ′
i,0 using Nister (2004).

2. 2D–2D-to-3D based refinement: starting from T ′
i,0, iterate until

convergence,

(a) Reconstruct the scene X̃i j , j = 1 . . . n and compute scales
si ( j) for each point;

(b) Build a combined scale histogram H(u), u = 1 . . . b for all
cameras;

(c) Compute weights wi ( j), j = 1 . . . n using H(u);
(d) Update the pose by optimizing (15) for known φi ( j) obtained

from 2D–3D registration.

initial estimate of Ti ’s are {Ri,0, ti,0}, such normalization cor-
responds to X̂ i = (Ri,0X + ti,0)/||t0,i ||, i = 1 . . .m. After
this transformation, Ri,0 and ti,0 simplify to I3×3 and 03×1

respectively. We also normalize the data during the robust
estimation i.e. y in (8) is scaled with twice of its median
value and ξ is set to 1 whenever it is used. The iterations
are terminated when the improvement of the pose between
two consecutive iterations k − 1 and k of both cameras
becomes insignificant. The improvements on the rotational
R and translational t components are computed using

eR = |||Rk −Rk−1||| and et = cos−1

(
t Tk tk−1

||tk ||||tk−1||

)
. (16)

Improvements on R′ and t ′ are also computed similarly. The
algorithm terminates when eR < ζ1, eR′ < ζ1, et < ζ2, and
et ′ < ζ2 for some given thresholds ζ1 and ζ2.

4.6 Discussion

The problem addressed here is similar to that of the scaled
variant ICP as in Zhao et al. (2005). The solution to (9) pro-
vides the scaled-ICP-like registration of image-sets in a direct
manner. However unlike (Zhao et al. 2005), where the 3D-to-
3D correspondences are searched, we established 2D-to-3D
direct correspondences using (10).Once the correspondences
are found, the Eq. (11) refines the registration parameters, in
a very usual ICP-based methods. Algorithm 1 describes the
steps for Asynchronous case. Here, step 1 (Camera align-
ment) only aligns the image-sets with respect the 3D scene,
whereas step 2 (Simultaneous pose refinement) refines the
pose using coarse alignment obtained from step 1.

Regarding the choice of Ti , once the essential matrix is
fixed, for a dense 3D scene, one can always find a 3D point

that lies on the ray back-projected from the image point.
However, for any Ti , the 3D point lying on the ray does
not share a common scale with rest of the others. Thanks
to the scale histogram, a 3D point belonging to common
scale with rather some error (due to inaccurate current Ti
estimates) is selected. Now, since the 3D point is not error
free, its projection on the image does not necessarily satisfy
either the cost or the constraint. Furthermore, due to such
trade-off between scale and the point on back-projection ray,
satisfying the constraint does not necessarily satisfy the cost,
or vice versa.

5 Experiments

We tested our methods using both synthetic and real datasets.
Our results with synthetic data were compared against those
of ICP with SfM. For real data, experiments with four differ-
ent datasets captured under different setups were performed.
In all the cases, the constrained nonlinear least-squares opti-
mization problem was solved by using MATLAB-R2012a
Optimization Toolbox with interior-point method. The com-
putational time for the experiments varies upon various
factors, mainly on the number of 2D points.With the increase
of 2D points, the number of constraints increases, and hence
the computational time. A typical real data experiment of
314 2D points takes 1.76 s for synchronous case and 4.05 s
for asynchronous case. Note that the code was implemented
in MATLAB and not optimized. All experiments were car-
ried out on a 8GB RAM Pentium i7/3.40GHz. 1

5.1 Simulations

We generated a set of 800 random 3D points scattered on the
surface of four faces of a [− 10 10]3 cube. The cameras were
placed about 20 ± 2 units away from the origin with ran-
domly generated rotations while roughly looking towards the
centroid of the scene. All scene points were projected onto
256 × 256 images with zero-skew, 100 pix. focal length
and an image-centered principal point. The 2D data were
obtained by adding various levels of zero-mean Gaussian
noise to the pixel coordinates. 400 out of 800 projected points
were randomly selected and used to localize the second cam-
era with respect to the first one using classical SfM (Nister
2004). During this process, half of the points are rejected
to minimize the effect of outliers thus leading to the recon-
struction of only 200 points. The same data were used in our
method to perform the registration and the refinement. We
ran 100 tests for each noise level of standard deviation from

1 Compilation of few results as a supplementary video can
be found at: https://www.youtube.com/watch?v=iPYOgBAMUZc&
feature=youtu.be
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Fig. 3 SfM+ICP vs. Our method with noise; �R (left-top), �t (right-
top), �R′ (left-bottom), and �t ′ (right-bottom)

0 to 2.0 with a 0.25 step. The simulation results are presented
for the two-view case only.

The roughly known R was generated by introducing an
error of [0.05 0.075]c in roll, pitch and yaw each. We intro-
duced these relatively small errors in R to observe the
improvement when the iterative scheme converges. Simi-
larly, a small error of± 5%was introduced in each translation
axis. Nevertheless, these errors are very significant since the
scene is relatively far from the cameras. The histogram was
built with auto adjustable 10 bins after discarding the scales
of less than 0.1 and greater than twice its median. First, we
obtained the best possible R, t , R′, and t ′ using classical
SfM (Nister 2004) and ICP (Martin and Jakob 2012). As
ICP cannot be performed without the knowledge of relative
scale, the extra information of scale is recovered with the
assumption of the image-based reconstruction being spread
all over the provided 3D scene. Note that, our method does
not require this extra information of scale. To analyze the
improvement on camera pose, we computed the deviation of
these results from their ground truth values. The errors �R,
�t ,�R′, and�t ′ correspond to the residuals computed as in
(16). Figure 3 shows the Root-Mean Square (RMS) plots of
the computed errors for various levels of noise. It can be seen
that our method performs significantly better than SfM with
ICP even when the ICP is favored with extra information of
scale.

5.2 Real data

Four benchmark and one in-house real datasets were used
to test the proposed algorithms. Three out of these five
datasets were acquired asynchronously and the other two
synchronously. Each of these datasets were acquired by very
different setups as discussedbelow.The results obtainedwere
compared against the ground truth (whenever available) or

Fig. 4 Left: Kinect 3D scene; Right: image pair

Fig. 5 Left: Correspondences; Right: feature points

the known desired output. Required 2D-to-2D correspon-
dences for all the experiments were obtained by the SURF
descriptor based matching.

5.2.1 Asynchronous case

Scene and images were captured by two different devices.
The first dataset was captured by a Kinect sensor and a
separate 2D camera. The second dataset consists of two dif-
ferent scenes scanned by a laser-scanner andmultiple images
captured by a camera. The inputs to our method were the 2D-
to-2D correspondences across images, rough absolute pose
of the first camera T1, and the relative pose between images.
Our method outputs the corrected relative and absolute poses
of all the cameras. Results for the second dataset were com-
pared against the provided ground-truth values. However, the
results of the first dataset were compared against the desired
reconstruction.

Kinect Dataset For the first experiment with real data,
we built the prior 3D scene by registering multiple frames
acquired from a 3D sensor (Kinect). This scene was then
down-sampled to about 50,000 points as shown in Fig. 4
(left). After the 3D scene is acquired, a standard-sized foot-
ball was placed in the same scene and two 1080 × 1920
images were captured by a moving camera. These images
and their 1198 correspondences are shown in Figs. 4 and 5.
14manually selected points from the corners of theTruncated
Icosahedron (TI) (Fig. 5 (right)) were retained for assessing
the quality of the reconstruction. To overcome the problem of
initialization, the first views of both 2D and 3D cameras are
captured approximately from the same location while facing
towards the same part of the scene.
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Fig. 6 Two views of the 3D scene with TI

Table 2 Geometric parameters

LS AP (cm) AH A-HP A-HH CS (cm)

SfM 0.201 4.267 2.008 6.195 140.19 76.25

Our method 0.117 2.943 0.863 3.342 139.20 73.10

The final metric reconstruction of the scene is upgraded
to Euclidean for the measured length of polygon sides equal
to 4.5 cm. Although our method outputs the scale factor for
the upgrade, we used the same scale factor for both SfM and
our method to provide the comparison on a common ground.
Reconstructed TI from two views is placed in the given 3D
scene and shown in Fig. 6. We have approximated the cir-
cumference of the football by fitting a sphere passing through
the vertices of the reconstructed TI. For a quantitative analy-
sis, the following geometric parameters of reconstructed TI
are computed: (i) LS: RMS error of the length of sides. (ii)
AH: RMS error of the internal angles of hexagons. (iii) AP:
RMS error of the internal angles of pentagons. (iv) A-HP:
RMS error of Dihedral angles between hexagons and the
pentagons. (v) A-HH: Dihedral angle between two hexagons
(expected: 138.19). (vi) CS: Circumference of the sphere
(expected: 68–70cm). Table 2 compares these parameters
against FIFA’s standard. This is an example of 2D-to-3D data
fusion where the reconstruction from two views is added to
the 3D scene. This example also demonstrates the handling
of occlusion problem because of the football placed in the
scene after the 3D acquisition. Furthermore, even when the
3D data is not very accurate, as in this case, it shows that our
method still benefits from the scene information.

EPFL dataset We also tested our method with the pub-
lic datasets Fountain-P11 and Herz-Jesu-K7 (Fig. 7 from
http://cvlabwww.epfl.ch/~strecha). These datasets consist,
respectively, of 11 and 7 images of size 3072 × 2048 along
with ground truth partial 3D point clouds of the scenes. To
validate the ground truth, the texture was mapped on the
scene by back-projecting images using their ground truth
projection matrices. Although the images were taken from
different viewpoints, they share a common field of view in
the 3D space. If all the images are not aligned correctly
with respect to the 3D model, the mapped texture in 3D
leaves many artifacts. Therefore, a high quality 3D texture
mapping demonstrates the correct registration of asynchro-
nized images and reconstructed 3D scene. Note that our setup

Fig. 7 Left: Fountain-P11; Right: Herz-Jesu-K7

Fig. 8 Texture mapping of Herz-Jesu-K7

Table 3 SfM versus our method (two views)

Method Fountain Herz-Jesu

�R′(RMS) SfM 0.0044 0.0072

Our method 8.49e−4 0.0013

�t ′(RMS) SfM 0.0404 0.0757

Our method 0.0031 0.0052

3D error SfM 0.0011 0.0025

Our method 5.95e−4 0.0018

assumes that images are asynchronized w.r.t. the 3D sensor.
In fact, it is equivalent to inaccurate extrinsic of images w.r.t
the sensor.

Figure 8 shows that the provided camera poses are very
satisfactory. First, the 3D reconstructions for every consec-
utive pair of images are obtained using classical SfM. All
these results are then refined separately using our method.
Results before and after the refinement are compared against
the ground truth in Table 3. The 3D errors shown here are
the mean 3D RMS error of all the pairs. During the imple-
mentation, we have decimated the 3D scenes to about 50,000
points by uniform down-sampling for a faster computation.
About 2000–3000 feature points were selected in each pair
of views for the reconstruction.

For the multiview case, reconstructions from each con-
secutive pair of views are registered. Such registration
undergoes error accumulation and scale factor drift. We sep-
arately refined these results using our method and sparse
BA (Lourakis and Argyros 2009). The results using our
method were found to be significantly better than those
of BA. We also considered refining our results using BA.
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Table 4 BA versus Our method and unsuccessful refinement of our
results using Bundle Adjustment—BA (multiview)

Method Fountain Herz-Jesu

�R′(RMS) BA 0.0436 0.0123

Our method 0.0020 0.0067

Refined 0.0251 0.0080

�t ′(RMS) BA 0.0311 0.0402

Our method 0.0019 0.0224

Refined 0.0172 0.0241

3D error BA 0.0020 0.0069

Our method 0.0015 0.0068

Refined 0.0020 0.0069

Fig. 9 Texture mapping: Bundle Adjustment (left), our method (right)

Results obtained from BA, our method, and BA performed
to refine our results are shown in Table 4. It is observed
that BA performed on our results diverges from the ground
truth instead of further refinement. Since BA takes only the
image information into account and cannot incorporate the
3D knowledge, noise present in the image might be the rea-
son for BA to diverge. As the efficiency of BA depends upon
the number of observations (images in this case), the dif-
ference between BA and our method becomes wider with
the decrease in number of observations. This effect can be
seen by comparing multiview and two views cases, between
Tables 4 and 3.

For qualitative analysis, results obtained from BA as well
as our method were used to map the texture (Fig. 9). Texture
mapping usingBAcontainsmany artifacts themost visible of
which has been circled in this figure. Note that, as the scene
being relatively far from the cameras, even a small error in
pose can significantly affect the texture mapping. It clearly
shows the pose refinement using our method is very accurate
and visually no different from the ground truth.

5.2.2 Synchronous case

We have also tested our method using two different real and
synchronous datasets. Both datasets were acquired by amov-
ing vehicle equipped with a laser-camera system. However,
these two setups greatly differ from one another.

Fig. 10 Largemap reconstructedusingLaser-Camera system in a single
trip shownwith starting and end points (left). Closed loops made during
the travel. Boxes shown are the loop closing locations of seven different
loops (right)

KAIST datasetWeconducted our first Synchronous exper-
iment using data obtained from a Laser-Camera system
dedicated to reconstructing very large outdoor structures.
This system uses two 2D laser scanners and four 2D cam-
eras which are synchronized and calibrated for both intrinsic
and extrinsic parameters. Laser scanners used here provide a
wide angle of view of the scanning plane so that the system
can observe tall objects as well as the ground making it suit-
able to scan the environment from a close distance. The 3D
map (reconstruction) of the environment is made by collect-
ing these 2D scans at their proper location. Therefore, this
system requires a very precise localization for a good recon-
struction. Extrinsic parameters of 2Dcameraswere estimated
by laser points and a pattern-based calibration method. How-
ever, it still possesses a mean projection error of about 0.5
pixels. The interested reader may refer to Bok et al. (2011)
for details regarding the experimental setup. The dataset we
have tested is a continuous trip of the Laser-Camera scan-
ning system within the compound of KAIST (Korea) for
a distance of about 3 KM. The system made seven differ-
ent loops during its travel. The original reconstruction and
the loops are shown in Fig. 10. The lengths of the loops, as
shown in Table 5, range from about 200m to 1.5KM. Each
camera captured 480 × 640 pix. images with a rate of about
20 frames/s. The 2D-to-2D correspondences are computed
between images escaping each 10 frames. The original recon-
struction obtained by the Laser-Camera system was used as
the required 3D information for our method. Note that this
reconstruction was not very accurate. Nevertheless, we were
still able to refine the motion using such inaccurate data.

The qualitative and quantitative results are presented in
Fig. 11 and Table 5 respectively. The results are compared
against (Bok et al. 2011) that uses 2D–2D-based refine-
ment method. The errors were computed by performing the
ICP between two point clouds captured at the loop closing
point before and after the loop travel. Note that loop closing
methods are not applied to the presented results. Our goal
is to obtain a better localization so that it would be suit-
able for the loop closing methods. We strongly believe that
the localization with such accuracy can be a very suitable
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Table 5 Loop size and loop closing errors in meters for Bok et al.
(2011) and our method

Loop Size (m) Bok et al. (m) Our method (m)

1 351.76 4.063 1.548

2 386.38 4.538 1.469

3 224.37 4.765 4.398

4 242.87 1.696 1.077

5 931.14 3.884 2.858

6 1496.4 7.182 6.381

7 546.05 5.502 2.115

Fig. 11 Results similar to Fig. 1 for seventh Loop. Reconstruction with
a red box at the loop closing location (top), obtained using Bok et
al. (bottom-left) and our method after refinement (bottom-right). The
double sided arrows show the gap between two different reconstructions
of the same scene

input for loop closing. The experiments clearly show signif-
icant improvements in loop closing errors by our method
for all the loops tested. Since, most of the loop closing
methods used in practice provide only the local optimal
solution; these improvements can contribute to their con-
vergence to the desired one. It can also be seen that the error
reduction does not correlate well with the loop length. In
fact, the improvement is dependent upon the quality of fea-
ture points. The remaining residual error is the combined
effect of the errors in calibration, matching, and measure-
ments.

To analyze reconstruction accuracy, we fitted the surface
on the reconstructed points cloud using an algorithm that
we have developed in-house. This algorithm takes advantage
of the camera motion and the order of scanned points. The
reconstructed surfacewasmappedwith texture from the same
images that were used for localization. The textured scene
with its various stages is shown in Fig. 12 for only one side
of the reconstruction around the first loop (about 350m).
This part of the reconstruction consists of about 1.3 × 106

3D points and 2.5 × 106 triangles.

KITTI dataset The proposed method was also tested
on the benchmark dataset available at (http://www.cvlibs.
net/datasets/kitti/). The details of the experimental setup is
described in Geiger et al. (2013). We have used the stereo
pair of gray images and the 3D data scanned from a Velo-
dyne laser scanner. The results obtained before and after
refinement for 5 different sequences were compared against
the provided ground truth. Errors in rotation and translation
were computed by using the evaluation code provided along
with the dataset which uses the ground truth obtained using
GPS and other odometry sensors. Although this ground truth
might not be very accurate for local poses comparison, it
is relevant over a long sequence due to no error accumu-
lation process. Therefore, the errors were measured at the
sequence steps of (100, 200, …, 800) and are presented
in Table 6. Figure 13 shows the map obtained for the fifth
sequence. A close observation shows that the localization
before the refinement is already quite satisfactory. Its further
refinement makes the result very close to the ground truth
itself. Here again, the results are presented without the loop
closing.

5.2.3 Cascaded asynchronous-to-synchronous model

We also processed the results obtained from the “Camera
alignment” step of asynchronous method using the syn-
chronous data processing algorithm. First, we obtained the
poses of first set of asynchronous cameras using (13). Start-
ing from the obtained poses, we used Algorithm 2 to refine
the relative poses T ′

i . In addition to the EPFL dataset, two
sequences from DTU dataset were used for the experiments.

DTU dataset: An industrial robot mounted with two
cameras and a projector acquires the scene points using a
structured light system. This dataset consists of these scene
points and several images along with their precise ground
truth poses. Although the detailed information about DTU
dataset can be found in Jensen et al. (2014), sample images
of the tested sequences are shown in Fig. 14.

Results obtained in each step for EPFL and DTU datasets
are shown in Table 7. Figure 15 shows all cameras in the
scene for one of the sequences from EPFL dataset. It can
be observed that the camera poses obtained from cascaded
asynchronous-to-synchronous model are satisfactory. How-
ever, they are not always as good as the ones obtained from
asynchronous algorithm. This happens mainly because the
synchronous algorithm is relatively more sensitive to the
pose gaps. In few cases, when the asynchronous algorithm
does not produce results very close to ground truth, the syn-
chronous algorithm rather deteriorates the results instead
of further improvement. Nevertheless, the absolute poses
obtained from the asynchronous algorithm remains unaf-
fected.

123

http://www.cvlibs.net/datasets/kitti/
http://www.cvlibs.net/datasets/kitti/


Autonomous Robots (2019) 43:21–35 33

Fig. 12 Surface reconstruction and texture mapping showing the accuracy of localization. Reconstructed 3D, fitted surface, and texture mapping
in a close view (top row, left to right). Texture mapping of the structure scanned around loop 1 (bottom)

Table 6 Translation (�t) and Rotation (�R) errors in Initial and
Refined results for five different sequences

Sq.N N.Frames Initial estimate Refined

�t (%) �R(◦/m) δt (%) �R(◦/m)

3 801 1.6774 0.000432 1.6398 0.000216

5 2761 1.9147 0.000245 1.8679 0.000162

7 1101 2.3410 0.000231 1.5689 0.000192

8 4071 2.3122 0.000447 1.9799 0.000196

9 1591 1.7562 0.000270 1.5604 0.000197

Fig. 13 Map built by our method (Initial Estimate and RefinedMotion)
vs. Ground Truth for the fifth sequence

Fig. 14 Sample images from DTU dataset. Left: scan27; right scan73

Table 7 Error measured for cascaded asynchronous-to-synchronous
model

Asynchronous Synchronous

�R (mean) �t (mean) �R (mean) �t (mean)

Fountain-P11 0.0214 0.0074 0.0230 0.0111

Herz-Jesu 0.0222 0.0182 0.0196 0.0191

Scene27 0.0747 0.0373 0.1723 0.0850

Scan73 0.0496 0.0249 0.0479 0.0214

6 Conclusion

A framework to fuse the information from synchronous or
asynchronous 2D and 3D cameras for visual odometry has
been proposed. Our demonstration with several experiments
show the possibility of estimating accurate motion of 2D–
3D camera system, even when 2D and 3D cameras are not
synchronized and the 3D scene includes some inaccuracies.
Usage of 3D scene points to refine the 2D camera poses
is the key to achieve such accuracy. To make it possible
for asynchronous cameras, a direct 2D-to-3D registration
method has also been integrated in the optimization pro-
cess. The adaptation of proposed framework for synchronous
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Fig. 15 Ground truth, Asynchronous-to-Synchronous Cameras poses
in the scene

cameras, although being straightforward, was found to be
very effective for pose refinement. In general, the treatment
of asynchronous cameras as asynchronous throughout the
process is a better choice over the cascaded asynchronous-
to-synchronous model assumption.
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