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Abstract

Modern humanoid robots include not only active compliance but also passive compliance. Apart from improved safety and
dependability, availability of passive elements, such as springs, opens up new possibilities for improving the energy efficiency.
With this in mind, this paper addresses the challenging open problem of exploiting the passive compliance for the purpose
of energy efficient humanoid walking. To this end, we develop a method comprising two parts: an optimization part that
finds an optimal vertical center-of-mass trajectory, and a walking pattern generator part that uses this trajectory to produce
a dynamically-balanced gait. For the optimization part, we propose a reinforcement learning approach that dynamically
evolves the policy parametrization during the learning process. By gradually increasing the representational power of the
policy parametrization, it manages to find better policies in a faster and computationally efficient way. For the walking
generator part, we develop a variable-center-of-mass-height ZMP-based bipedal walking pattern generator. The method is
tested in real-world experiments with the bipedal robot COMAN and achieves a significant 18% reduction in the electric

energy consumption by learning to efficiently use the passive compliance of the robot.

Keywords Bipedal walking - Energy efficiency - Reinforcement learning - Passive compliance

1 Introduction

The current state-of-the-art humanoid robots are equipped
with passively compliant elements. In addition to inherent
safety and enhanced interaction capabilities, availability of
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passive elements, e.g., springs, opens up new possibilities for
improving the energy efficiency (Xiaoxiang and Iida 2014).
For instance, the springs can be used for temporary energy
storage by compressing them, and for energy reuse by releas-
ing the stored energy (Ugurlu et al. 2014; Geyer et al. 2006).
The remaining difficult open problem is how to address the
best use of the described mechanism. This paper tackles the
problem of finding the optimal way to exploit the passive
compliance in a walking robot for the purpose of energy effi-
ciency.

The conventional state-action-based reinforcement learn-
ing approaches suffer severely from the curse of dimension-
ality. To overcome this problem, policy-based reinforcement
learning approaches were developed. Instead of working in
huge state/action spaces, they use a smaller policy space,
which contains all possible policies representable with a
certain choice of policy parametrization. Thus, the dimen-
sionality is drastically reduced, and the convergence speed is
increased.

In order to find a good solution, i.e., a policy that pro-
duces a reward very close to the optimal/desired one, the
policy parametrization has to be powerful enough to repre-
sent a sufficiently large policy space so that a good candidate
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solution is present in it. If the policy parametrization is very
simple, with only a few parameters, then the convergence
is quick, but often a sub-optimal solution is reached. If the
policy parametrization is overly complex, the convergence is
slow, and there is a higher possibility that the learning algo-
rithm will converge to some local optimum, possibly much
worse than the global optimum. The level of sophistication
of the policy parametrization should be just the right amount,
in order to provide both fast convergence and a sufficiently
optimal solution.

Deciding what policy parametrization to use, and how
simple/complex it should be, is a very difficult task, often
manually performed via trial-and-error sessions by the
researchers. This additional overhead is usually not even
mentioned in related literature and falls into the category
of "empirically tuned" parameters, together with the reward
function, decay factor, exploration noise, weights, and so on.
Since changing the policy parametrization requires to restart
the learning process from the scratch, this approach is slow
and inefficient as all the accumulated data needs to be dis-
carded. As a consequence, the search for new solutions often
cannot be done directly on real-world robot systems; rather,
simulation studies are performed for proof of concept. To
remedy these issues, we propose an approach that allows
changing the complexity, i.e., the resolution, of the policy
representation dynamically while the reinforcement learning
is running.

The rest of the paper is organized as follows: Sect. 2 pro-
vides an overview of the state of the art in multiple research
areas which are relevant to the interdisciplinary nature of
this paper. In Sect. 3, the evolving policy parametrization
approach is introduced, and a prototype implementation
using cubic splines is proposed. Moreover, the proposed
approach is evaluated via simulation studies. Section 4
explains details concerning the bipedal walking generation
scheme, our bipedal robot, and its passively compliant joints.
In Sect. 5, the real-world experiments conducted on our pas-
sively compliant bipedal robot are thoroughly described and
analyzed. In Sect. 6, obtained results are discussed and some
inevitable limitations are disclosed. Finally, the paper is con-
cluded in Sect. 7 by stating the end results and addressing
the future directions.

2 Background

2.1 Related work to policy-based RL algorithms

A tremendous effort has been done by researchers in machine
learning and robotics to move RL (Reinforcement Learn-
ing) algorithms from discrete to continuous domains, thus

extending the possibilities for robotic applications (Peters
and Schaal 2006; Theodorou et al. 2010a; Coates et al.
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2009; Guenter et al. 2007). Until recently, policy gradi-
ent algorithms such as Episodic REINFORCE (Williams
1992) and Episodic Natural Actor-Critic eNAC (Peters and
Schaal 2008a) have been well-established approaches to
cope with the high dimensionality. Unfortunately, they also
have shortcomings; such as, high sensitivity to the learning
rate and the exploratory variance. Trying to overcome this
drawback, the following two recent approaches were pro-
posed.

Theodorou et al. (2010b, a) proposed an RL approach for
learning parametrized control policies based on the frame-
work of stochastic optimal control with path integrals. They
derived update equations for learning so as to avoid numer-
ical instabilities. This is due to the fact that neither matrix
inversions nor gradient learning rates are required. The
approach demonstrates significant performance improve-
ments over gradient-based policy learning and scalability
to high-dimensional control problems, such as control of a
quadruped robot.

Abdolmaleki et al. (2016) introduced the contextual rel-
ative entropy policy search concept that adapts the robot
walking controller for different contexts through the use of
radial basis functions. The method enabled the controller to
learn a policy which adjusts control parameters for a simu-
lated NAO humanoid as it walked forward with a continuous
set of walking speeds.

Kober and Peters (2009) developed an episodic RL algo-
rithm called Policy learning by Weighting Exploration with
the Returns (POWER), which is based on Expectation Max-
imization algorithm. One of its major advantages over
policy-gradient-based approaches is that it does not require
a learning rate parameter. This is desirable because tuning
a learning rate is usually difficult for control problems, but
critical for achieving good performance of policy-gradient
algorithms. POWER also demonstrates high performance
for the tasks that are learned directly on real robots,
such as underactuated pendulum swing-up, ball-in-a-cup
task, and dynamic pancake flipping task (Kormushev et al.
2010).

2.2 Related work to adaptive-resolution RL

Adaptive resolution in state space has been studied in vari-
ous RL algorithms (Bernstein and Shimkin 2010). Moore and
Atkeson employed a decision-tree partitioning of state-space
and apply techniques from game-theory and computational
geometry to efficiently and adaptively concentrate high res-
olution on critical areas (Moore and Atkeson 1995). They
address the pitfalls of discretization during reinforcement
learning, concluding that in high dimensionality it is essen-
tial for the learning not to plan uniformly over the state space.
However, in the context of RL, adaptive resolution in the pol-
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icy parametrization remains largely unexplored so far. This
paper is making a step exactly in this direction.

2.3 Related work to robot trajectory representations

In order to plan and optimize a trajectory, it first needs to be
encoded in a certain way. For instance, cubic splines could
be utilized to achieve this task. Similar approaches have been
investigated in robotics literature and often called as trajec-
tory generation with via-points.

As an example, Miyamoto et al. (2004) used an actor-critic
reinforcement learning scheme with via-point trajectory rep-
resentation for a simulated cart-pole swing up task. The actor
incrementally generates via-points at a coarse time scale,
while a trajectory generator transforms via-points to prim-
itive action at the lower level.

Morimoto and Atkeson (2007) proposed a walking gait
learning approach in which via-points are detected from
the observed walking trajectories, and RL modulates the
via-points to optimize the walking pattern. The system
is applied to a planar biped robot fixed to a boom that
constrains the robot motion within the sagittal plane. Explo-
ration tries to minimize the torques while keeping the
robot above the desired height to prevent it from tipping
over.

Wada and Sumita (2004) developed a via-points acquisi-
tion algorithm based on actor-critic reinforcement learning,
where handwriting patterns are reproduced by an iterative
and sequential generation of short movements. The approach
finds a set of via-points to mimic a reference trajectory by
iterative learning, with the help of evaluation values of the
generated movement pattern.

Liu et al. (2015) proposed a behavior-based locomotion
controller. The approach includes feed-forward and feed-
back mechanisms which correspond to motor patterns and
reflexes. An optimization module supports the controller to
minimize energy consumption while ensuring stability for a
simulated humanoid robot.

Rosado et al. (2015) used the kinematic data that is col-
lected from human walking via VICON system so as to train
a set of dynamic movement primitives. These trained motion
primitives then used to control a simulated humanoid robot
in task space.

Shafii et al. (2015) utilized central pattern generators to
modulate generated bipedal walking trajectories with varying
hip height. Covariance matrix adaptation evolution strategy
enabled the robot controller to search for feasible hip height
patterns and walking parameters in a way to optimize forward
velocity.

Koch et al. (2015) presented a bipedal gait generation
method through the use of movement primitives that are
learned from dynamically consistent and optimal trajectories.
Morphable movement primitives were learned using Gaus-

sian processes and component analysis. The method allowed
the fast real-time movement generation for a simulated HRP-
2 robot.

2.4 Related work to energy-efficient motion
generation

Passive dynamic walkers are known to be energy-efficient
mechanisms since they are able to make use of the swinging
limb’s momentum while walking forward (McGeer 1990).
The downside is that this type of bipedal walking is not
able to handle human interaction or disturbance rejection
even if the robot is actuated (Wisse et al. 2005). More-
over, there are application differences between these types
of walkers and 3D fully actuated bipedal robots. In con-
trast, this paper does not focus on energy optimization
from the viewpoint of exploiting the passive walking princi-
ple.

A few approaches exist for reducing the energy consump-
tion on fully actuated 3D bipedal walkers (Amran et al. 2010;
Minekata et al. 2008), but not in the context of learning
a varying-CoM-height walking, as presented in this paper.
Previously, machine learning approaches have been suc-
cessfully used for learning tasks on bipedal robots, such
as dynamic balancing, quadruped gait optimization (Kohl
and Stone 2004), and whole-body control during kinesthetic
teaching (Kormushev et al. 2011a). One especially promis-
ing approach for autonomous robot learning is reinforcement
learning, as demonstrated in Pastor et al. (2011), Stulp et al.
(2010), Kormushev et al. (2010), Guenter et al. (2007),
Rosenstein et al. (2006).

Stulp et al. (2010) presented a Policy Improvement with
Path Integrals (PI?) RL approach for variable impedance con-
trol, where both planned trajectories and gain schedules for
each joint are optimized simultaneously. The approach is
used to enable the robot to learn how to push and open a
door by minimizing the average stiffness gains controlling
the individual joints, with the aim to reduce energy consump-
tion and to increase safety.

Kormushev et al. (2010) presented the use of Expectation-
Maximization-based RL for a pancake flipping task to
refine the trajectory of the frying pan and the coordination
gain parameters in Cartesian space by using a mixture of
proportional-derivative systems with full stiffness matrices.
Rosenstein et al. (2006) presented a simple random search
approach to increase the payload capacity of a weightlifting
robot by exploiting the robot’s intrinsic dynamics at a syn-
ergy level. Via-points are learned by exploration in the first
phase of learning. RL and simple random search are then used
to refine the joint coordination matrices initially defined as
identity gains.

RL has been applied previously in the context of bipedal
walking optimization, as in Calandra et al. (2014), Deisenroth
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et al. (2012). However, the goal for optimization is usu-
ally achieving the fastest possible gait without any regard
to the energy consumption. In contrast, this paper focuses
on the energy efficiency as the main optimization goal while
at the same time maintaining the walking pace and speed
unchanged.

Certain studies in biomechanics field indicate different
aspects of energy-efficient locomotion. Biological systems,
for instance, humans, store and release elastic potential
energy into/from muscles and tendons during daily activi-
ties such as walking (Ishikawa et al. 2005). The management
of the elastic potential energy that is stored in these biological
structures is essential for reducing the energy consumption
and for achieving mechanical power peaks. In this connec-
tion, vertical CoM movement appears to be a crucial factor
in reducing the metabolic cost (Ortega and Farley 2005).

Recent advances in robotics and mechatronics have
allowed for the creation of a new generation of passively-
compliant bipedal robots, such as COMAN (Ugurlu et al.
2014). Similar to biological systems, elastic structures in this
robot can store and release energy, which can be extremely
helpful if properly used. However, it is difficult to pre-
engineer an analytical way to utilize the passive compliance
for dynamic walking tasks. One possible application could be
the utilization of the passive compliance via machine learning
for the energy-efficient bipedal walking generation task. In
this paper, we present an approach that minimizes the walk-
ing energy by learning a varying-CoM-height walking which
efficiently uses the passive compliance of the robot. In doing
$0, an incisive combination of machine learning and biome-
chanics could be exploited in a way to enhance an existing
technology in bipedal locomotion control.

2.5 Novelty

In this paper, we develop a learning-based method integrated
for learning to minimize the walking energy required for a
passively-compliant bipedal robot. The energy minimization
problem s challenging due to the difficulties in accurate mod-
eling considering the properties of the springs, the dynamics
of the whole robot and various nonlinearities.

The contributions in this paper can be categorized in two
fractions: (i) Evolving policy parametrization. (ii) The first
experimentally demonstrated walking energy minimization
for fully actuated 3D bipeds, through the utilization of passive
compliance.

First, we introduce a novel reinforcement learning tech-
nique which allows the use of adjustable-over-time policy
parametrization. The proposed learning mechanism can
incrementally evolve the policy parametrization as necessary,
starting from a very simple parametrization and gradually
increasing its complexity (i.e., resolution), and therefore,
its representational power. We call this mechanism evolv-
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ing policy parametrization and introduce a practical method
to implement it using splines.

Second, we exploit the passive compliance built into our
bipedal robot, in order to minimize the energy needed for
walking. Using the proposed reinforcement learning algo-
rithm, it is possible to find the optimal vertical CoM trajectory
which minimizes the consumed energy. To this end, the
authors would like to highlight the fact that this paper
reports the first experimental results in which the physical
compliance is successfully utilized in walking energy mini-
mization task on a fully actuated and compliant 3D bipedal
robot.

An early version of this paper containing preliminary
experimental results was presented (Kormushev et al. 201 1b).
The current paper is significantly expanded and improved
to provide an archival report, which reports evolving policy
parametrization technique and elaborates numerous details
about the approach, its implementation and application,
newly-added experiment results with thorough analyses and
exhaustive discussion on the results.

3 Evolving policy parametrization

We present an RL approach that allows to dynamically
change the complexity, i.e., resolution, of the policy repre-
sentation while the reinforcement learning process is running
without losing any portion of the collected data, and with-
out having to restart the learning process. We propose
a mechanism which can incrementally evolve the policy
parametrization as necessary, starting from a very simple
parametrization and gradually increasing its complexity, and
thus, its representational power. The goal is to create an
adaptive policy parametrization, which can automatically
grow to accommodate increasingly more complex poli-
cies and get closer to the global optimum. Due to a very
desirable effect of this mechanism is that the tendency of
converging to a sub-optimal solution is reduced, because
in the lower-dimensional representations this effect is less
exhibited, and gradually increasing the complexity of the
parametrization helps to avoid getting caught in a poor local
optimum.

To achieve this goal, the most important property which
a policy encoding should provide is backward compatibility.
This means that it should be able to represent subsequent poli-
cies such that it is backward-compatible with the previously
collected data, such as past rollouts, their corresponding poli-
cies, and rewards. In general, it is possible to consider cases in
which simplifying the policy parametrization might be use-
ful, but in this work we assume that we only want to increase
the complexity of the policy over time, and never to reduce
1t.
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3.1 Spline policy representation

One of the simplest representations which have the prop-
erty of backward compatibility is the geometric splines. For
example, if we have a cubic spline with K knots (or via-
points), and then we increase the number of knots, we can still
preserve the exact shape of the generated curve (trajectory) by
the spline. In fact, placing an additional knot between every
two consecutive knots of the original spline would result with
2K — 1 knots and a spline which coincides with the original
spline.

Based on this fact, we propose to use of the spline knots
as a policy parametrization and exploit the spline backward
compatibility property for evolving the policy parametriza-
tion without losing the previously collected data. In order to
achieve this goal, we need to define an algorithm to adjust
the parametrization from K to L knots (L > K), which
is formulated in Algorithm 1. Without loss of generality, the
values of the policy parameters are normalized in the range [0,
1], and appropriately scaled/shifted as necessary later upon
use. Figure 1 illustrates the process of using spline repre-
sentation for the evolving policy parametrization. Figure 2
shows an example for a reinforcement learning process using
evolving policy parametrization to approximate an unknown
function.

Algorithm 1 EvolvePolicy-Spline (P, yens: current policy,
desired new number of parameters)

L:
1: K < Peyprens -number Of Parameters

2 Xewrrent < [0, g1, g5 -+ 11

3: Yeurrent < Peurrent-parameterValues

4: Scurrent <~ COHStrUCtSpline(Xcurrents Ycurrent)
5 Xnew < [0, 755, 727 - 11

6: Yew < EvaluateSpline AtKnots(Sc,rrents Xnew)
7: Spew <— ConstructSpline(X ey, Yiew)

8: Pyew.number Of Parameters <— L

9: Pyew.parameterValues < Syew-Ynew

10: return Pyeqy

3.2 Integrating the evolving policy parametrization
into RL

The proposed technique for evolving the policy parametriza-
tion can be used with any policy-based RL algorithm. In this
paper, we use the state-of-the-art Expectation Maximization-
based RL algorithm PoWER (Kober and Peters 2011), due to
its fast convergence and a low number of parameters that need
tuning. This makes the algorithm appropriate for application
directly on the real robot, where it is important to minimize
the number of trials, and therefore, the danger of damaging
the robot. To further speed up the learning process, we apply
the proposed evolving policy parametrization which adap-

Number of knots = 4

Number of knots = 8

Number of knots = 16

Number of knots = 32

Fig. 1 An example of an evolving policy parametrization based on
spline representation of the policy. The set of spline knots is the policy
parametrization. The spline values at the knots are the actual policy
parameter values. The parametrization starts from 4 knots and evolves
up to 32 knots, thus gradually increasing the resolution of the policy

"0 0.2 0.4 0.6 0.8 1

Fig. 2 Reinforcement learning process using evolving policy para-
metrization. The black trajectory is the unknown global optimum which
the reinforcement learning algorithm is trying to approximate. The pol-
icy is represented as a trajectory (in green) and is encoded using a spline.
The policy evolution is shown by changing the color from dark green for
the older policies to bright green for the newer ones. The idea is to grad-
ually evolve the policy, by increasing the number of knots of the spline
representation and thus gradually increase the representational power
of the policy parametrization. The process is done dynamically while
the reinforcement learning algorithm is running (Color figure online)

tively changes the resolution of the policy on the fly during
the learning process.
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In order to minimize the computational time, we evolve
the policy parametrization only on those past rollouts
which get selected by the importance sampling technique
used by the POWER algorithm. This way, it is not nec-
essary to convert all previous rollouts to the latest policy
parametrization. This effectively reduces the computational
complexity from O(N?) to only O(oN), where N is the
number of rollouts, and o is the number of importance
sampled rollouts at each RL iteration (¢ < N). Usually,
o is a constant number with a value less than 10, which
makes the complexity equivalent to O(N), and allows fast
execution of the proposed approach for real-time applica-
tions.

3.3 Simulation experiment 1: function
approximation with evolving spline
representation

In order to evaluate the proposed reinforcement learning with
evolving policy parametrization, we primarily conduct a sim-
ulation experiment.! The goal is to compare the proposed
method with a conventional fixed policy parametrization
method that uses the same reinforcement learning algorithm
as a baseline. The following synthetic function T which is
unknown to the learning algorithm is used as the goal for the
optimization process.

£(t) = 0.5 + 0.2 sin(10¢) + 0.07 sin(20¢)+
+ 0.045in(301) + 0.04 sin(507), (1)

In (1) T is with domain ¢ € [0, 1], and range T(¢) €
[0, 1]. The learning algorithm is trying to approximate 7 by
minimizing the difference between the policy-generated tra-
jectory and the real trajectory.

The reward function used for the simulated experiment is
defined as follows:

1 -
R(7) = e o lf(f)*f(t)]zdz’ @

where R(7) is the return of a rollout (trajectory) 7.

Figure 3 shows a comparison of the generated policy out-
put produced by the proposed evolving policy parametriza-
tion method, compared with the output from the conventional
fixed policy parametrization method. Due to the lower policy-
space dimensionality at the beginning, the evolving policy
parametrization approaches much faster the shape of the
globally-optimal trajectory. The fixed policy parametriza-
tion suffers from inefficient exploration due to the high
dimensionality, as well as from overfitting problems, as seen

1 https://github.com/petar-kormushev/evolving-policy-
parametrization.
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0 0.2 0.4 0.6 0.8 1
Time (Bounded)

Fig. 3 Simulation Experiment 1: Comparison of the policy outputs
from the RL algorithm. a With fixed policy parametrization (30-knot
spline), b with evolving policy parametrization (from 4-knot to 30-knot
spline). In black, the unknown to the algorithm global optimum which it
is trying to approximate. In green, all the rollouts performed during the
learning process. In red, the current locally-optimal discovered policy
by each RL algorithm (Color figure online)

1

—— Evolving parameterization
0.9H — Fixed parameterization

0.8F b

oo %} |

0.5F TIHHI |

0.4

Average return

0.3

0.2

0.1

100 150 200
Number of rollouts

Fig. 4 Simulation Experiment 1: Comparison of the convergence of
the RL algorithm with fixed policy parametrization (30-knot spline)
versus evolving policy parametrization (from 4-knot to 30-knot spline).
The results are averaged over 20 runs of each of the two algorithms
in simulation. The standard deviation is indicated with error bars. In
addition to faster convergence and higher achieved rewards, the evolving
policy parametrization also achieves lower variance compared to the
fixed policy parametrization

by the high-frequency oscillations of the discovered poli-
cies.

Figure 4 shows that the convergence properties of the pro-
posed method are significantly better than the conventional
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Fig. 5 Simulation Experiment 2: Comparison of the policy outputs
from the RL algorithm. a With fixed policy parametrization (20-knot
spline), b with evolving policy parametrization (from 4-knot to 20-knot
spline). Blue bars indicate the obstacles. Green lines represent all the
rollouts performed during the learning process. Red lines represent the
current locally-optimal discovered policy by each RL algorithm (Color
figure online)

approach, in terms of faster convergence, higher achieved
rewards and lower variance.

3.4 Simulation experiment 2: trajectory planning for
obstacle avoidance

To further evaluate the proposed RL algorithm with evolving
policy parametrization, we have conducted a second, more
challenging simulation experiment. In this case, the goal is
to perform trajectory planning for obstacle avoidance in 2D
space. The simulated environment can be examined in Fig.
5. The starting position is in the bottom-left corner with
coordinates (0,0), and the goal position is in the top-right
corner with coordinates (1,1). There are 6 obstacles (marked
in blue) arranged in a way that creates three narrow openings
with progressively smaller sizes in order to produce a chal-
lenging motion planning problem. Similarly, the same two
methods are being tested and compared: (i) evolving policy
parametrization method, and (ii) conventional fixed policy
parametrization method. However, this time the reward func-
tion does not have the same smoothness properties as in the
previous simulation experiments presented in Sect. 3.3. This
is due to the fact that whenever a trajectory collides with an
obstacle, it is terminated at that instant. Therefore, this intro-
duces discontinuities in the reward landscape and is more
challenging for the learning algorithm in both cases. Further-
more, the reward function is defined based on the distance
from the last reached position before arriving at the goal posi-

Number of rollouts

Fig. 6 Simulation Experiment 2: Comparison of the convergence of
the RL algorithm with fixed policy parametrization (20-knot spline)
versus evolving policy parametrization (from 4-knot to 20-knot spline).
The results are averaged over 20 runs of each of the two algorithms
in simulation. The standard deviation is indicated with error bars. In
addition to faster convergence and higher achieved rewards, the evolving
policy parametrization also achieves lower variance compared to the
fixed policy parametrization

tion. This, again, is more challenging as it introduces multiple
local optima in the reward landscape which tends to trap the
learning algorithms and makes it harder to reach the global
optimum.

Despite these challenges, we show that the proposed
evolving policy parametrization method consistently outper-
forms the conventional fixed policy parametrization method.
Figure 5 displays a comparison of the generated policy output
produced by the proposed evolving policy parametrization
method, compared with the output from the conventional
fixed policy parametrization method. Due to the lower
policy-space dimensionality at the beginning, the evolv-
ing policy parametrization is able to more quickly explore
the 2D space and is able to navigate around the 6 obsta-
cles in a much smoother way. For comparison, the fixed
policy parametrization struggles to go through the sec-
ond and third opening because of the difficulty to explore
the high dimensional policy space. Moreover, it suffers
from overfitting problems which produce undesired jitter
in the produced trajectories. Finally, the convergence prop-
erties of the two methods are compared in Fig. 6 which
again confirms that the proposed method performs sig-
nificantly better than the conventional approach, in terms
of faster convergence, higher achieved rewards, and better
quality solutions. This makes the proposed method partic-
ularly useful for real-world trajectory-planning scenarios,
as shown in the following sections on a bipedal walking
robot.
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Fig.7 Outline of the proposed approach for bipedal walking energy consumption minimization, showing details about each of the three components:
reinforcement learning, walking generation, and real-world rollout execution. Note that all the components are run in real-time

4 Bipedal walking energy reduction

For a real-world evaluation of the proposed approach, we
tackle the problem of bipedal walking energy minimiza-
tion. The proposed RL method is used to learn a vertical
trajectory for the CoM of the robot such that the poten-
tial elastic energy exchange is fully utilized during walking,
in order to minimize the energy consumption. A high-
level outline of the real-world experiment is shown in
Fig. 7.

For the reinforcement learning component, an important
difference from the simulated experiments is that here the
RL policy (i.e., the vertical CoM trajectory) needs to be
cyclic in time. This is necessary because walking motion
must be executed periodically over many cycles. A sin-
gle walking cycle includes a single support phase in which
either the left foot or right foot is in swing mode. This
phase is followed by a double support phase where both
feet are in the stance mode. Subsequently, single support
phases are swapped between left and right feet to gener-
ate continuous walking motion. In particular, continuous
walking was important in our case for the purpose of assess-
ing energy consumption. Duration values for the walking
phases, as well as initialization periods, are provided in
Table 1.

Figure 8 illustrates the process of creating a time-cyclic
policy out of a single spline in which a single cycle time was
contained in the interval [0, 1]. The red line represents the
input policy in the form of a spline for a one cycle inter-
val; the values at spline knots were obtained from the policy
parametrization values. The green line represents the time-
cyclic policy whose spline knots were copied from the policy
values at one cycle interval. Since the time-cyclic policy
represents the vertical CoM trajectory in bipedal walking,
it guarantees that both position and velocity are continuous
and in differentiable form.
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Table 1 Sequence of walking phases

No. Phase description Start time (s) Duration (s)
1 Wait 1 0.00 1.00
2 Initialization 1.00 1.00
3 Wait 2 2.00 5.00
4 Transfer (double) 7.00 0.60
5 Right single 7.60 0.50
6 Double 8.10 0.15
7 Left single 8.25 0.50
8 Double 8.75 0.15
9 Right single 8.90 0.50
10 Double 9.40 0.15
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Fig. 8 Illustration of the process for creating a time-cyclic policy out
of a single spline. One time cycle is contained in the interval [0, 1]. In
red, the input policy in the form of a spline (red line), where the values
at the spline knots (red circles) come from the policy parametrization
values. In green, the produced time-cyclic policy, where the green knots
have values copied from the policy values at one cycle interval. The
green spline is the output time-cyclic policy, which guarantees that
both position and velocity of the CoM is a continuous and differentiable
function (Color figure online)

4.1 Compliant bipedal robot COMAN

In order to explore compliant humanoid characteristics, we
developed a bipedal robot at the Italian Institute of Tech-
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Table 2 Basic specifications of the robot

Size Upper leg length 226.63 (mm)
Lower leg length 203.3 (mm)
Ankle-sole length 60.3 (mm)

Weight Each leg 6.816 (kg)
Waist 441 (kg)
Total 17.772 (kg)

{1}
{2}

{7} Pitch
{8} Roll
3} {9} Yaw

{4} {10} Pitch

{5}
{6}

{11} Pitch
{12} Roll

Right foot Left foot

Fig. 9 The mechanical assembly of COMAN and its joint configura-
tion. Joints with yellow color indicate SEA units (Color figure online)

nology, as a part of the European AMARSI project. Table
2 summarizes its mechanical specifications. The robot has
a total of 15 active DoFs (Degree of Freedom); 6 DoFs in
each leg and 3 DoFs at the waist to be able to obtain greater
motion flexibility. Each active joint incorporates three posi-
tion sensors (two absolute and one relative encoders) and
one torque sensor. The robot is also equipped with two 6-
axis Force/Torque sensors at the ankles and five single-axis
load cells on the foot sole. In addition, it has a triaxial rate
gyro sensor and an accelerometer, located at the pelvis. In its
electronic hardware structure, the main controller is an Intel
Core 2 Duo 1.5 GHz dual processor with 3.0 GB RAM, run-
ning on a 32-bit GNU/Linux operating system that includes
a real-time Xenomai extension. Data communication is per-
formed via a real-time Ethernet protocol called RTnet. Figure
9 displays the actual robot and its joint configuration.

In the first prototype, only pitch axis ankle and knee joints
are equipped with passive compliant elements, i.e., springs
(see Fig. 9, frames with yellow color). For the compliant
actuation system in our bipedal robot, the main objectives
are to satisfy dimensional and weight requirements while
achieving high rotary stiffness within a compact structure.
Regarding these requirements as well as the previously dis-
cussed issues, a series elastic actuator (SEA) module appears
to be a very suitable candidate and it is presently implemented
in our robot (Ugurlu et al. 2011). The rotary stiffness of these

modules was set to an approximate value of 156 [Nm/rad] to
maximize the walking efficiency while providing sufficient
bandwidth for joint position tracking.

4.2 Evaluation of walking energy consumption

There are many ways in which energy can be measured. One
possible approach is to estimate the mechanical energy from
motor torque measurements and angular velocities. However,
the problem with this approach is that it incorrectly includes
the work done by gravity, and can only infer indirectly the
actual electric power used for walking. Furthermore, elec-
trical energy is definitely used by the motors even when the
mechanical energy is zero, e.g., when the robot is only stand-
ing.

We propose, what we think is the best approach, to directly
measure the electrical energy used by all the motors of the
robot, which allows us to explicitly measure the value that
we are trying to minimize. We use the formula P = IU,
linking the electric power P to the electric current / and
the voltage U, and we integrate over time to calculate the
consumed electric energy in Joules. The COMAN robot is
equipped with both current and voltage sensing units at each
motor so that we can accurately measure these values. Figure
10 shows the accumulated consumed electric energy values
for the motor of each individual joint of COMAN, calculated
as:

n
Ej(tl,tz)Z/ 1;)U;(t)dt, 3)
5]

where j is a selected joint for which the energy consumption
is calculated, and [#;, 2] is the time interval.

To evaluate the whole walking rollout, we define the
energy consumption metric of a given rollout 7 to be the
average electric energy consumed per walking cycle, and
estimate it using the formula.

1
E(r)==) Ej(t,n), “)

jeJ

where J is the set of joints in the sagittal plane (hip, knee, and
ankle pitch of both legs, 6 in total) whose energy consumption
we try to minimize.

In order to reduce the noise effects on the measurement,
we make the robot walk for 16 s and collect the electric
current and voltage measurements of the ¢ = 4 consecutive
walk cycles (4 repetitions of phases 7 to 10 in Table 1), which
contain a total of 8 steps. Therefore, the value of #1 is the start
of phase 7, and the time #; is the end of phase 10 in the fourth
cycle. Afterward, we average the energy consumption and
employ this value as the estimate of the electric energy used
for this walking rollout.

@ Springer
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Fig.10 Electric energy consumption of each leg of COMAN during a 4-
cycle walk. Alternating between left and right foot support redistributes
the weight on different joint motors and causes differences in the left-
right energy consumption. Hip roll joints consume the highest energy
due to the fact that they solely support the whole leg weight in the lateral
plane while it is in swinging mode. a Left leg, b right leg

In this work, the main focus is the exploitation of pas-
sive compliance for energy efficiency which may be achieved
with the help of springs. Therefore, we use the sum of all elec-
tric energy consumed by the motors controlling the motion
in the sagittal plane, i.e., the hip, knee, and ankle pitch joints
on both legs, in our evaluation metric. Even though hip pitch
joints do not include series elasticity, they sufficiently con-
tribute to the vertical CoM trajectory as they are dominant in
the sagittal plane together with ankle pitch and knee joints;
therefore, they were included in the metric.

Finally, we define the return of a rollout 7 as:

R(r) = ¢ @, )

@ Springer

Fig. 11 The experimental setup, showing a snapshot of the bipedal
robot COMAN during one walking rollout execution

where k is a scaling constant. The lower the energy con-
sumed, the higher the reward is.

5 Real-world experiments

Based on the results of the simulation experiment, the pro-
posed evolving policy parametrization method is chosen for
the real-world walking experiment, due to its favorable char-
acteristics for real-time applications. The experimental setup
is shown in Fig. 11. The total distance traveled by the robot
during our experiments is around 0.5 km. For the evaluation
of the energy consumption, we did not include the traveled
distance, as the speed of walking was the same for all rollouts
because the stride length was fixed.

Figure 12 shows the convergence results from the walk-
ing experiments. The figure shows the convergence of the
consumed energy over time during the reinforcement learn-
ing. Energy measurements are normalized with the maximum
possible energy consumption in mind. Each rollout corre-
sponds to a walking experiment that was executed. For each
rollout, the average energy consumed per cycle (averaged
over 8 walking steps, i.e., 4 full walk cycles) is shown.
At rollout number 126 the lowest energy consumption was
achieved, which is 18% lower than the initial energy con-
sumption.

Figure 13 visualizes the discovered optimal policy by the
RL algorithm, as well as all the intermediate 180 rollouts
that were performed. Although the single and double support
phase periods were determined in advance, the RL algorithm
discovered the instant at which the heel strikes the ground
(shown with dotted vertical line), and adjusted the trajectory
so that the CoM height is bounced off upward in that exact
same moment. Note that the CoM height trajectory is normal-
ized by considering the maximum and minimum allowable
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Fig. 12 Results from the real-world minimization of the consumed
energy for walking

0.95

Normalized CoM height
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Time (cyclic)

Fig. 13 The discovered optimal policy (in red) by the reinforcement
learning. Among all tried 180 CoM trajectories (in green), which were
executed on the real robot (Color figure online)

values which are imposed by the kinematic structure of the
robot. All trajectories have been made cyclic in time so that
walking can be executed continuously over many cycles; see
(Fig. 14).

ZMP response measurements with respect to the inertial
frame are displayed in Fig. 15, for 7 consecutive steps. During
single support phases, the support polygon is the supporting
foot area which is illustrated with rectangles. When the robot
is in a double support phase, the area swept between two
feet becomes the support polygon. We illustrated this sup-
port polygon only once with a dashed cyan area, in which the
robot switches from the first step to the second step. What
is more, green areas stand for transition phases in which the
robot motion is initiated from a stationary position or vice
versa. Steps with odd numbers indicate the right leg’s sin-

gle support phases whereas even numbers stand for the left
leg’s single support phases. Based on this result, it is possi-
ble to examine that the ZMP response is always within the
support polygon boundaries. As aresult, we obtained dynam-
ically equilibrated and feasible walking cycles throughout the
experimentation period. That being the case, we were able
to focus solely on the energy minimization problem, without
worrying about auxiliary issues, such as the dynamic bal-
ance.

As previously stated, each compliant joint includes sepa-
rate encoders to measure both link side (after the spring) and
motor side angles. This feature enables us to record spring
deflection variations, in a reliable way. To this end, right leg’s
knee and ankle joint deflections are respectively illustrated
in Figs. 16 and 17. In these figures, solid purple lines show
the deflection variations while the CoM height is varied by
the proposed algorithm. Solid green lines indicate deflec-
tion values when CoM height is fixed. Analogous trends are
observed for the left leg as well and therefore not plotted.

6 Discussion of results
6.1 Discussions on evolving policy parametrization

A major advantage demonstrated by the proposed approach
is the low variance of the generated policies. The lower
exploratory variance combined with the faster convergence
is the key factor for achieving higher rewards than the fixed
parametrization.

With respect to the learning, the focus of the paper is
not on the encoding scheme (splines), but on the evolv-
ing policy parametrization. Spline-based techniques have
well-known limitations such as providing a non-autonomous
(time-based) control policy, discarding variability and syn-
ergy information in the representation, and having difficulty
to cope with unforeseen perturbations (Schaal et al. 2003;
Peters and Schaal 2008b). Being aware of their limitations,
splines provided us a simple encoding scheme to be used
as a first step to study the possibility of dynamic evolu-
tion of the policy parametrization during the learning. In
addition, splines provided us a straightforward way to imple-
ment a cyclic policy which spans continuously over many
time cycles and is convenient for robot walking applica-
tions.

In this study, the knots were increased along the way in a
heuristic manner for the sake of simplicity. By observing the
convergencerates, it is possible to devise a systematic method
for the addition of knots along the iteration. This additional
feature deserves further investigation and is addressed as a
future work.
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Fig. 14 A sequence of video snapshots from the real-world experiment with the lower body of the COMAN robot
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Fig. 15 Actual ZMP measurements with respect to the inertial frame.
In this experiment, the robot walked 7 steps ahead. Foot positions are
also indicated with rectangles

6.2 Discussions on bipedal walking and energy
minimization

The passive compliance of our robot was previously exploited
to generate periodic jumping patterns (Ugurlu et al. 2014). In
this study, the base resonance frequency of the overall sys-
tem was identified to be within 0.925 ~ 1.04 (Hz) frequency
band. When the robot is vertically excited within a close
proximity to the base resonance frequency, joint deflections
are expected to be maximized. This enables us to maximize
elastic potential energy stored in the springs. That being the
case, it is possible to obtain walking cycles with lower energy
demands.
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online)
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Throughout the learning process, the RL algorithm pro-
duced vertical motions with relatively higher frequencies as
seen in Fig. 13, resulting in bad score in energy minimization
goal. Finally, the vertical CoM movement which was even-
tually learned by the RL algorithm produced cyclic motions
with a frequency within the 0.925 ~ 1.04 (Hz) band; approx-
imately 1.0 (Hz). This can be justified in Figs. 16 and 17.
Spring deflections are measured to be about —11°, which is
97% of the maximum allowable? values. Therefore, the algo-
rithm achieved bipedal walking energy minimization goal, as
it successfully found the optimal vertical CoM trajectory.

The end result of the energy minimization is computed to
be 18%, which may be regarded as a crucial value when con-
sidering real-time operation duration of bipedal robots. The
authors would like to highlight the fact that this paper reports
the first experimental results of a bipedal walking energy min-
imization task, achieved on a fully actuated 3D robot with
spring-supported passively compliant joints. Furthermore, it
allows us to operate COMAN in real-time for approximately
4.3 more hours while using Li-Ion on-board batteries. Due
to this fact, the robot demands less for battery recharge and
become more environment-friendly by effectively using the
limited power source.

We would like to highlight the fact that the dynamic bal-
ance is guaranteed by the ZMP-based motion generator as it
outputs walking trajectories for a given set of feasibly desig-
nated ZMP inputs, regardless of the CoM height variance. In
other words, the vertical CoM trajectory is given by the RL
algorithm beforehand and utilized in the ZMP-based walking
generator to induce dynamically balanced horizontal CoM
trajectories. Therefore, we may focus on the bipedal walking
energy minimization task without having any concern related
to the dynamic balance issue.

In the current configuration, spring deflections were
already maximized as illustrated in Figs. 16 and 17, thanks
to the RL algorithm. Therefore, 18% energy minimization
appears to be the direct consequence of maximizing spring
deflections. The amount of energy minimization may be fur-
ther improved if springs in the joint are replaced with their
softer counterparts. In doing so, elastic energy storage can
be increased, however, the robot may suffer undesired ver-
tical oscillations. Therefore, there is a trade-off between the
energy minimization and dynamic balance, when determin-
ing the spring stiffness profile. We handled this problem
throughout the design process by empirically trying various
springs with different stiffness coefficients.

Variable stiffness actuators may remedy the stiffness
adjustment problem of SEAs through the active regulation
of the passive compliance in real-time (Jafari et al. 2013).
Variable stiffness regulation plays an important role in human

2 Spring deflections are mechanically limited within 11.25 degrees in
COMAN.

walking; humans actively change the joint stiffness to explore
optimal walking patterns (Geyer et al. 2006; Hu et al. 2014).
That being said, these actuators are still large-sized and may
not be applicable to power humanoids in their current form.
Therefore, learning variable stiffness for the legged robot
control will be investigated once the necessary hardware
improvements are introduced.

Due to hardware limitations, the current version of
COMAN had passive compliance only in pitch axis knee
and ankle joints. Therefore, the overall energy minimization
is provided solely by 4 joints, whereas the rest of the 8 joints
(roll axis joints, yaw axis joints, pitch axis hip joints) could
not contribute to this task due to the lack of passive compli-
ance. Currently, our design engineering team is working on
the next generation COMAN bipedal robot which will have
passive compliance utilized in all the joints. In principle, the
proposed method may perform even better when conducting
walking motion on a robot with passive compliance in all
joints.

In this work, the idea of generating efficient walking pat-
tern through the use of potential energy management has its
roots from studies in biomechanics (Ishikawa et al. 2005;
Geyer et al. 2006). Therefore, we used an abstracted model
for the humanoids so as to fully focus our attention to exploit
passive compliance for energy efficiency. While useful in
their own right, abstracted models may have limitations in
describing the complete robot behavior. With the advent of
centroidal dynamics (Orin et al. 2013), efficient locomotion
controllers were proposed (Carpentier et al. 2016; Herzog
et al. 2016). An extension of centroidal dynamics for robots
with passive compliance may be investigated as a future work
to further improve the performance.

Energy minimization may also be achieved by altering
bipedal walking generator parameters. Since the main focus
of this paper was the exploitation of passive compliance, the
additional investigation of energy-minimization via learning
the optimized bipedal walking parameters will be a future
work. That being said, our research group previously imple-
mented the proposed learning algorithm for the efficient
quadruped gaits. For details refer to Shen et al. (2012).

7 Concluding remarks

We proposed a reinforcement learning approach that can
evolve the policy parametrization dynamically during the
learning process. We showed that the gradually increasing
representational power of the policy parametrization helps
to find better policies faster than a fixed parametrization. We
successfully applied it to a bipedal walking energy mini-
mization task by utilizing a variable-CoM-height ZMP-based
bipedal walking generator. The method achieved 18% reduc-
tion in energy consumption by learning to use efficiently the
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passive compliance of the robot, which is the first reported
experimental walking energy minimization results in the
state-of-the-art humanoid robotics.

As a future work, we plan to extend this work for more
powerful movement representations, based on a superposi-
tion of basis motion fields (Kormushev et al. 2010). Another
interesting direction for extension is towards learning of vari-
able stiffness control, which is of particular interest in the
context of energy minimization.

Acknowledgements This work was partially supported by the EU
project AMARSI, under the contract FP7-ICT-248311.

Appendix: bipedal walking gait generator

Given the z-axis CoM trajectory, we utilized the ZMP con-
cept for x-axis and y-axis CoM trajectories, in order to obtain
walking patterns with dynamic balance. To generate real-
time bipedal walking patterns which use the vertical CoM
trajectory generated by the RL component, we adopted the
resolution method explained in Kagami et al. (2002), using
Thomas Algorithm (Ugurlu et al. 2009). Considering the one
mass model, CoM position and ZMP position are described
as P = (px, py, pz) and Q = (qyx, gy, 0), respectively. As
described in Kajita et al. (2003), Choi et al. (2007), Harada
et al. (2004), Sugihara and Nakamura (2009), the abstracted
x-axis ZMP equation takes the following form,

Pz (6)

where g is the gravitational acceleration. The vertical CoM
position ( p,) and acceleration (p,) are provided by the learn-
ing algorithm for all times as previously stated. As next step,
(6) is discretized for p, as follows:

px( + 1) = 2px (i) + px (i — 1)
At? ’

px(t) = (7
where At is the sampling period, i is the discrete event. i
starts from O to n which is the total number of discrete events.
Inserting (7) into (6), we obtain the following:

b "
peti+ D) = 2D @) = peti = D+ L&D, ®)
c(i) c(i)

bi) = 1—2¢(); i) = ——P2© ©)

(P(0) + ) Ar*

In order to solve this tridiagonal equation efficiently, we
employ Thomas Algorithm (Ugurlu et al. 2009). To do so,
initial and final position of x-axis CoM (p,(0) and py(n))
must be given in advance. Therefore, for a given set of refer-
ence ZMP trajectory, initial conditions, and final conditions,
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we are able to calculate CoM trajectory. For that purpose, the
tridiagonal equation is re-arranged as below.

px(@) =el+Dp+ D+ fG+ 1. (10)

In (10), e(i 4+ 1) and f(i + 1) can be defined as follows:

iy =—— D (a1
T cl)ed) + b))’
g =)
T = e +p .
Combining (10), (11) and (12), (13) is yielded.
N c(i) . qx (i) —c(@) f(Q)
PO == e+ 60 TV T e +b0)
(13)

Recall that p,(0) = xg and p,(n) = x,, e(1) and f(1)
are determined as 0 and xg, respectively. Utilizing Thomas
Algorithm for the solution of this tridiagonal equation, we can
obtain the CoM trajectory’s x-axis component. If an identical
approach is also executed for y-axis CoM position, we could
derive all the components of the CoM trajectory in real-time
since vertical CoM position is previously determined by the
RL algorithm.
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