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Abstract
Inspired by the swarming behavior of male mosquitoes that aggregate to attract and subsequently pursue a female mosquito,
we study how random swarmingmotion in autonomous vehicles affects the success of target capture.We consider the scenario
in which multiple guardians with limited perceptual range and bounded acceleration are deployed to protect an area from an
intruder. The main challenge for the guardian (male mosquito) is to quickly respond to a fast intruder (female) by matching its
velocity.We focus on themotion strategy for the guardians before they perceive the intruder, whichwe call the swarming phase.
In the parameter space consisting of the intruder’s speed and guardians’ ability (i.e., maximum acceleration and perceptual
range) we identify necessary and sufficient conditions for target capture. We propose a swarming algorithm inspired by the
behavior of male mosquitoes to improve the target-capture capability. The theoretical results are illustrated by experiments
with an indoor quadrotor swarm.

Keywords Pursuit evasion · Multi-agent system · Lyapunov analysis · Quadrotor · Swarming

1 Introduction

The problem of pursuit has been studied in various contexts
including missile guidance, surveillance, robot control, and
animal behavior. Taxonomy and surveys of the research in
the field have been presented, for example, in Robin and
Lacroix (2016) and Chung and Hollinger (2011). Two ways
we consider here to categorize the existing work are by the
definition of target capture (intercept and tracking) and by
the pursuer’s capability (dynamics and sensing).

For the missile-guidance application, the goal of the pur-
suit is target intercept, where the pursuer aims to collide
with the target (Zarchan 2002; Moon et al. 2001; Shtessel
2009). Target intercept is also considered in pursuit–evasion
games, where pursuit and evasion strategies have been stud-
ied with game-theoretic approaches (Antoniades et al. 2003;
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Selvakumar and Bakolas 2016). Animals also exhibit this
type of pursuit behavior, exemplified by the prey capture of
bats (Ghose et al. 2006) and dragonflies (Olberg et al. 2000);
bio-inspired algorithms for pursuit and evasion have been
studied (Wei et al. 2009; Scott and Leonard 2013).

A less aggressive pursuit scenario considered for the appli-
cation to autonomous robots is target tracking, where a
pursuer seeks to approach and stay close to the target with-
out colliding with it. A path-planning algorithm to track a
ground vehicle with a UAV is proposed in Lee et al. (2003).
Strategies to encircle a target with a team of pursuers are pro-
posed in Kim and Sugie (2007) and Bopardikar et al. (2009).
Both target intercept and target tracking fall into the class of
problems denoted as following by Robin and Lacroix (2016).

Another important aspect of pursuit problems is the capa-
bility of the pursuers. First, consider how the pursuer’s sensor
is modeled. One category in the pursuit–evasion game is the
so-called search problem, where pursuers have limited per-
ceptual range (Antoniades et al. 2003; Durham et al. 2012).
The objective of the pursuer is to intelligently search for the
target without the knowledge of its location (pursuit before
detection). On the other hand, in the missile-guidance liter-
ature and in target-tracking problems, it is assumed that the
pursuer at least knows the position of the target (pursuit after
detection). Second, consider how the dynamics of the pursuer
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are modeled. In the robotics community, there are studies on
pursuit problems for the application to agents with specific
constraints (Ruiz et al. 2011; Tian and Sarkar 2017). How-
ever, more generally, when the agents are treated as point
particles, the majority of pursuit–evasion games assume that
the pursuer has a constant speed (Antoniades et al. 2003; Lee
et al. 2003; Kim and Sugie 2007; Bopardikar et al. 2009),
whereas some other works consider variable speed (Moon
et al. 2001; Shishika et al. 2016; Li 2017).

Wild swarms of malarial mosquitoes (Manoukis and
Diabate 2009; Butail et al. 2013) show an interesting combi-
nation of these categories, which motivates the formulation
of a new type of pursuit problem. Male mosquitoes aggre-
gate and form mating swarms to attract female mosquitoes
that fly faster than the males. In this stage, which we call the
swarming phase, male mosquitoes do not know where the
female is. They cooperate with one another to increase the
chance of encounter with a female. When the female enters
the swarm,male’s pursuit behavior is triggered onlywhen the
distance to the female becomes small, which we call a close
encounter. This switching in the male’s behavior indicates
that they have limited perceptual range to detect the female.

After the pursuit phase, the male and female exhibit
coupling flight during which they fly in approximately the
same direction while their separation distance oscillates—as
though they are connected by a damped spring with zero rest
length (Shishika and Paley 2015). For a male to achieve this
flight, simply intercepting a female is insufficient; he also
has to align his velocity with the female. For this reason,
the objective of the mosquito pursuit is a combination of tar-
get tracking and intercept. In addition, since the female flies
faster than a swarming male, a male has to accelerate after
the close-encounter in order to successfully track the female.
Therefore, the mosquito pursuit has to be modeled by agents
with variable speed.

The combination of limited perceptual range and the
dynamical model of the agent raises the importance of quick
response, i.e., when a male detects a female, it has to speed
up and match the velocity of a fast female in time so that the
female does not escape from its perceptual range. The veloc-
ity matching may also require favorable initial conditions for
the male, i.e., its initial velocity should be relatively aligned
with female. This observation motivates our investigation
below of continuously moving rather than static guardians.

Although the pursuit law that governs the motion of
mosquitoes in the pursuit phase is an interesting topic, we
focus on the swarming phase in this work [see Shishika et al.
(2016) for our previous work on pursuit after detection]. A
key characteristic of insect swarms is their unpolarized oscil-
latory motion (Butail et al. 2013), in contrast to fish schools
(Becco et al. 2006), bird flocks (Cavagna et al. 2010), and
formation controls inspired by those animals (Olfati-Saber
and Murray 2003; Levant 2006). The oscillatory motion and

the interactions between males have been previously studied
(Shishika et al. 2014), and it has been suggested that this
motion may increase the sensitivity to external stimuli, for
example, to respond quickly to a female that enters the swarm
(Attanasi et al. 2014; Shishika and Paley 2015).

Inspired by mosquito behavior, we study how swarming
(unpolarized oscillatory) motion may be useful in a scenario
where multiple pursuers with limited perceptual range wait
for a fast target that comes from an unknown direction at an
unknown time. The goal of the pursuers is to track the tar-
get, so simply blocking the target by constructing a wall-like
formation will not achieve the goal. Instead, the successful
pursuer also has to match its velocity with the target.

The difficulty of achieving target capture depends on the
capability of the pursuer (perceptual range and maximum
acceleration) relative to the target’s speed. We explore this
parameter space to identify when swarming motion is nec-
essary for the pursuer’s success. We further study what kind
of swarming motion will increase the probability of success-
ful pursuit. In addition, experiments using a small quadrotor
testbed are conducted to illustrate the theoretical results. The
experiments also highlight some of the challenges of real-
life implementation, which in turn improve our swarming
algorithm.

The contributions of this work are (1) identification of
necessary and sufficient conditions related to guaranteed tar-
get capture; (2) analysis of how swarming behavior helps
the pursuer’s response to the target; (3) a control law that
achieves swarming motion while also avoiding collisions;
and (4) experimental demonstration of the control-theoretic
results. The problem studied in this work can be applied to a
situation where multiple vehicles are deployed to enforce a
no-fly zone, for the application to drone countermeasures, or
for convoy protection. The results of this work may provide
a guideline in selecting the capabilities of the vehicles for
such applications, and also provide a methodology to fully
utilize those capabilities [this formulation of the pursuit prob-
lem was previously introduced in Shishika and Paley (2017);
a new swarming algorithm, its analysis based on numerical
simulation, and new experimental results are included here
for the first time].

The paper is organized as follows. Section 2 formulates the
problem. Section 3 presents the results from control-theoretic
analyses. Section 4 presents the swarming algorithmand sim-
ulation results. Section 5 introduces the quadrotor testbed and
describes the experimental results. Section 6 summarizes the
paper and ongoing and future work.

2 Problem formulation

Consider a planar system of point particles with unit
mass representing NP guardians and NT intruders (we use
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Fig. 1 Illustration of the swarming and pursuit scenario. In the swarm-
ing phase, an intruder (red) is approaching the protected region (green).
The guardians (with static formation here for clarity) are deployed to

wait for the intruder. Once the intruder enters the perceptual range, the
guardian turns into a pursuer and the intruder becomes the target (Color
figure online)

the subscripts T and P to denote the intruder/target and
guardian/pursuer, respectively). The intruders seek to pass
through aprotected region that is known to the guardians. Fig-
ure 1 illustrates the casewhere only one intruder is seen in the
picture. The timing and the direction of the intruder trajecto-
ries are unknown to the guardians. Once the intruder enters
the perceptual range of a guardian, the roles of the agents
change—the intruder becomes a target and the guardian
becomes a pursuer. The goal of the pursuer is to capture the
target (i.e., approach the target and stay close to it). Although
the difference between target capture that occurs before and
after the intrusion is important to some applications [see
Shishika et al. (2017) for some preliminary analyses], we
do not distinguish between those two cases in this paper.

Consider the casewhere the protected region is sufficiently
small to be approximated as a point O . Let O to be the ori-
gin of the inertial frame; ri , vi , and ai denote the position,
velocity, and acceleration of agent i in the inertial frame.
The agents have second-order dynamics, i.e., ṙi = vi and
v̇i = ai , where ai is the control input. We assume the fol-
lowing capabilities of the guardians:

(A1) The magnitude of the guardian’s acceleration is
bounded according to ‖aP‖ ≤ umax; and

(A2) Each guardian perceives the position and velocity of
all other agents within the range ρa .

We also introduce another perceptual range that determines
when the pursuit behavior is triggered:

(A3) Each guardian becomes a pursuer once the distance to
an intruder becomes less than ρp.

The threshold ρp is inspired by the observation that the
pursuit behavior of a male mosquito is triggered by the close
encounter with a female. We also note that the parameter
ρp allows two interpretations. First, it can be interpreted
as the limitation of the guardians to distinguish between a

Fig. 2 State transition between swarming phase and pursuit phase

friendly guardian vehicle and the intruder, i.e., guardian i
does not know whether an agent j (in its perceptual range) is
an intruder or not if ρp < ‖r j/i‖ < ρa , where r j/i = r j −ri .
Second, ρp may be a control parameter that the guardian can
choose; i.e., the guardian will ignore the intruder unless it is
closer than the distance ρp. In either case, the value of ρp

does not exceed ρa .
In contrast to target intercept, where pursuers aim to col-

lide into the target, we consider target tracking, defined as
follows.

Definition 1 Let rT /P = rT −rP denote the relative position
of the target with respect to the pursuer. Let rcap > 0 denote
the capture threshold. Target capture is successful if there
exists tcap such that ‖rT /P‖ < rcap, for all t > tcap.

From assumption (A2), the pursuit can last as long as the
target is in the range ρa . Therefore, we choose the threshold
in Definition 1 to be rcap = ρa .

Now we define the two phases of the capture problem.
When a guardian has not perceived the intruder yet, it is in
the swarming phase. When the intruder enters the circle with
radius ρp around a guardian, the pursuit phase starts. This
reduction in the distance, i.e., ‖rT /P‖ ≤ ρp, is defined as a
close encounter. The pursuit phase continues as long as the
distance remains less than ρa . When the pursuit fails, i.e.,
‖rT /P‖ > ρa, the guardian returns to the swarming phase.

Note that the phase is defined for each guardian. The tran-
sition between these two phases are summarized in Fig. 2.
Although we discuss the control law for the pursuit phase
in Sect. 3.2, the main focus of the work is on the swarming
phase. The success of target capture depends on how quickly

123



1784 Autonomous Robots (2019) 43:1781–1799

Table 1 List of system parameters and their nominal values

Symbol Description Nominal value

NP Number of guardians 10

umax Maximum acceleration 2.7

ρa Perceptual range 1

ρp Threshold for close encounter 0.5

NT Number of intruders 1

vT Intruder speed 3

a guardian can respond (i.e., close the distance and match the
velocity) to the intruder once it is in perceptual range ρp. If
the response is too slow, then the target will escape from the
range ρa . We seek to find a strategy for how the guardians
should prepare for the intruder to maximize the probability
of target capture.

To focus on the guardians’ strategy, assume that the
intruder moves with a constant velocity ‖vT ‖ = vT on a
straight path that passes through O . (The case with a maneu-
vering target is discussed in Sect. 3.3) Note that even with
this simplification, the intruders can choose from a variety
of different strategies in terms of the directions from which
they approach O and the timing of their arrival. Let t intj and

ψ int
j denote the time and azimuthal direction that the j th

intruder arrives at O (assuming it is not captured), and let
T int
j = t intj+1 − t intj denote the time interval between two suc-

cessive intruders. The sets {ψ j } and {T int
j } significantly affect

the success rate of pursuit. In this paper, we study the case
where T int

j is sufficiently large that each intruder may be con-
sidered separately. This scenario can be approximated as a
single-intruder case, i.e., NT = 1 [the effects of {ψ j }, {T int

j },
and NT are subjects of ongoing work, e.g., see Shishika et al.
(2017)]. Table 1 lists the parameters that are introduced in
this section.

3 Control theoretic analysis

This section describes a condition for when the target cap-
ture fails by a static guardian and introduces nondimensional
parameters that describe the difficulty of target capture. We
then derive sufficient conditions for target capture, which
motivate the swarming algorithms in the sequel.

3.1 Limitation of static guardian

Anaive strategy is to uniformlydistribute stationaryguardians
around the protected area as in Fig. 1 andwait for the intruder.
However, if the intruder is too fast, the guardian may not
react (i.e., speed up and align its velocity) in time to keep the

Table 2 List of nondimensionalized system parameters that describe
the difficulty of target capture and their nominal values

Symbol Description Nominal value

NP Number of guardians 10

Γ Guardian acceleration 0.9

α Pursuit activation distance 0.5

intruder in the perceptual range. We first find the necessary
condition for a static guardian to achieve target capture.

Proposition 1 A guardian who is stationary at the beginning
of the pursuit phase never achieves target capture if

umax <
v2T

2(ρp + ρa)
. (1)

Proof Consider the easiest case for the pursuer: the target
trajectory passes through the pursuer’s position. Let t f =
vT /umax denote the time required for the pursuer to reach
the speed vT . The target escapes if it can travel a distance
longer than ρp+ρa+ 1

2umaxt2f within time t f . The inequality

vT t f > ρp + ρa + 1
2umaxt2f reduces to (1). ��

The above condition is given in terms of the intruder’s
speed vT and the guardian’s capability umax, ρa , and ρp.
To explore this parameter space efficiently in the follow-
ing sections, we introduce the following two nondimensional
parameters:

α = ρp

ρa
and Γ = 2umax(ρa + ρp)

v2T
. (2)

The first parameter α ∈ (0, 1] is the pursuit activation dis-
tance, which describes the ratio between the two perceptual
ranges defined in assumptions (A2) and (A3). The second
parameter Γ is the nondimensionalized guardian accel-
eration, which describes the ratio between the guardian’s
capability and the intruder’s speed. Noting that Γ is obtained
from the limiting case in (1), a static guardian will fail to cap-
ture a target if Γ < 1. (We introduce an augmented version
of Γ considering the effect of time delay in Sect. 5.3.)

For the case with infrequent intruders (or, equivalently,
NT = 1), the difficulty of target capture can be completely
described by the two nondimensional parameters α and Γ

and the number of guardians NP , which we summarize in
Table 2 with nominal values derived from the dimensional
parameters in Table 1. For the frequent-intruders case, the
number of intruders NT aswell as their strategies (e.g., {ψ int

j }
and {T int

j }, see Sect. 2) determine the difficulty of target cap-
ture.
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3.2 Sufficient conditions for target capture

Next,wederive a sufficient condition for target capture. Since
the conditionwill be given for the relative velocity vT /P at the
time of close encounter (i.e., the initial condition of the pur-
suit phase), it applies to anyguardian strategy in the swarming
phase. Based on this general condition (Proposition 2), we
consider two cases: a static swarm (Corollary 1) and a swarm
with a circling motion (Corollary 2).

As a pursuit law, aP = F(pursuit)
P , following our previous

workonmosquito-inspired swarmmodel (Shishika andPaley
2015), consider a force resembling a damped-spring attached
to the target, i.e.,

FP = crT /P + bvT /P ,

where c and b are positive constants. With the constraint

0 < c < umax/ρa, (3)

the spring term alone never exceeds the acceleration limit
umax. In this case, there always exists a scaling factor β ∈
(0, 1] such that

‖crT /P + βbvT /P‖ ≤ umax. (4)

In this way, the actual pursuit force is saturated as follows:

F(pursuit)
P = crT /P + βbvT /P ,

β =
{
1 if ‖crT /P + bvT /P‖ < umax,

β∗ otherwise,
(5)

where β∗ > 0 is the maximum value of β that satis-
fies the equality in (4). The value of β∗ as a function of
rT /P , vT /P , c and b can be obtained using Stewart’s theo-
rem in geometry (see Appendix A). Although mosquitoes
exhibit underdamped oscillation (Shishika and Paley 2015),
for the application to guardians, a large number for b (i.e., an
over-damped spring) gives good performance since velocity
alignment is necessary for target capture. (Instability caused
by the time delay also has to be taken into account for the
gain tuning, in practice.) However, the following proposi-
tion gives a sufficient condition for target capture, which is
independent of the choice of c and b as long as (3) is satisfied.

Proposition 2 Consider a pursuer under (5) with the gain c
satisfying (3). Let t0 denote the time when ‖rT /P‖ = ρp (i.e.,
the time when the pursuit phase starts). The target capture is
guaranteed if

‖vT /P (t0)‖ ≤ v0 = vTχ, where χ =
√

Γ (1 − α)

2
. (6)

Fig. 3 Sufficient condition on the initial velocity for target capture
depicted in the velocity space. Target capture is guaranteed if the pur-
suer’s velocity (blue arrow) lies in the red circle at the beginning of the
pursuit phase (Color figure online)

Proof Consider the energy function

V = 1

2
‖rT /P‖2 + 1

2c
‖vT /P‖2.

Since the target is not accelerating, the time derivative of V
is

cV̇ = crT /P · vT /P + vT /P · (aT − aP )

= crT /P · vT /P − vT /P · (crT /P + βbvT /P )

= −βb‖vT /P‖2.

Thus, V is nonincreasing for all t > t0. It follows that

1

2
‖rT /P (t)‖2 ≤ V (t) ≤ V (t0) = 1

2
ρ2
p + 1

2c
‖vT /P (t0)‖2.

We obtain ‖rT /P (t)‖ ≤ ρa for all t > t0 if the right hand
side of the above inequality is bounded by 1

2ρ
2
a , i.e.,

1

2
ρ2
p + 1

2c
‖vT /P (t0)‖2 ≤ 1

2
ρ2
a

‖vT /P (t0)‖ ≤
√
c(ρ2

a − ρ2
p)

Noting (from definitions of Γ and α) that

umax

ρa
(ρ2

a − ρ2
p) = v2T

Γ (1 − α)

2
,

the above inequality is equivalent to (6) with the constraint
(3). ��

If the pursuer’s velocity vP (t0) at the time of close
encounter lies in the circle

Bv0(vT (t0)) ≡ {v | ‖v − vT (t0)‖ ≤ v0},

which is centered at vT (t0) with radius v0 (see Fig. 3), the
target capture is guaranteed. If Γ is sufficiently large that
the origin of the velocity space (Ov in Fig. 3) is included
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in Bv0(vT (t0)), even a static pursuer can guarantee target
capture. This case is stated in the following result.

Corollary 1 Target capture is guaranteed by a pursuer that
is stationary at the beginning of the pursuit phase if the fol-
lowing condition is satisfied:

Γ >
2

1 − α
. (7)

Proof From Proposition 2 and the discussion above, the suf-
ficient condition is v0 > vT , which reduces to (7). ��

One strategy to achieve the velocity alignment derived in
Proposition 2 is to use a circling motion. The target capture
is guaranteed if the circling motion has (i) a radius less than
ρp so that O is always in the perceptual range; (ii) sufficient
speed such that ‖vP‖ ∈ (vT − v0, vT + v0); and (iii) there
are sufficientlymany guardians so that there exists onewhose
direction of motion is approximately aligned with vT when
the intruder passes through O . Assuming (iii) is true, the
conditions (i) and (ii) give the following result.

Corollary 2 Assuming that there are sufficiently many
guardians so that there always exists one whose direction of
motion is approximately aligned with vT (see Appendix B for
the required number of guardians), a circular motion around
O guarantees target capture if

√
Γ

2

(√
α

1 + α
+ √

1 − α

)
> 1. (8)

Proof Given the smallest required speed vT − v0 and the
acceleration bound umax, the radius of the circular orbit has
to be greater than (vT − v0)

2/umax to be able to counteract
the centrifugal acceleration. From condition (i), the radius
also has to be smaller than ρp. Therefore, the condition is
ρp > (vT − v0)

2/umax, which is equivalent to (8). ��

The analysis on the required number of guardians for condi-
tion (iii) to hold is presented in the Appendix.

The necessary and sufficient conditions (1), (7) and (8) are
summarized in Fig. 4. RegionR1 iswhere a static swarm fails
to achieve target capture. RegionR3 is where a static swarm
is guaranteed to achieve target capture, assuming that the
intruder encounters at least one guardian. The regionR2∪R3

is where a circling swarm is guaranteed to achieve target
capture. The circling motion guarantees target capture with
lower Γ as compared to a static swarm. If Γ is below the red
curve in Fig. 4, guardians cannot achieve the desired circular
motion, i.e., either the radius is too large or the speed is too
low. Section 4 proposes strategies for the guardians so that
they can achieve target capture even inside of region R1.

Fig. 4 Conditions for target capture in the nondimensional parameter
space:R1 iswhere the static formation never achieves target capture;R2
is where target capture is guaranteed by circling formation;R3 is where
the static formation guarantees target capture (Color figure online)

Fig. 5 Deflection in target’s direction of motion by angle φ

3.3 Maneuvering target

This section discusses the case where the target can change
its direction of motion in an effort to evade the guardian. Our
previous work (Shishika et al. 2016) proposes a robust pur-
suit law guaranteeing target capture in the presence of target
acceleration that is bounded but unknown and time-varying.
While our previous work focused on the design of pursuit
algorithm, the main focus of this work is the behavior in
the swarming phase. Therefore, we retain the simple pursuit
law (5) and study how the condition in Proposition 2 can be
modified to accommodate target maneuver.

Consider the case where the target can change its direc-
tion of motion (see Fig. 5). We still assume that the target has
a constant speed vT , i.e., maneuver is achieved through the
application of a thrust that is normal to the velocity vector.
We also restrict this turning to occur in one direction, but
the timing can be arbitrary—either before or after the target
reaches O . We characterize the target maneuver by the net
deflection angle φ shown in Fig. 5. Let vT (t1) and vT (t2) be
the velocity vectors before and after the maneuver. Restrict-
ing the deflection angle to be φ ∈ [0, π), it is defined as

φ = acos(vT (t1) · vT (t2)) (9)

The following result gives a sufficient condition for target
capture under this target maneuver.

Proposition 3 Consider a pursuer under (5) with the gain c
satisfying (3). Let t0 denote the time when ‖rT /P‖ = ρp, and
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χ be defined in (6). When the target can turn in one direction
by a net angle φ, the target capture is guaranteed if

‖vT /P (t0)‖ ≤ v′
0 = vT

√
χ2 − 2a(1 + χ), and (10)

χ > a +
√
a2 + 2a, where (11)

a = sin

(
φ

2

)
.

Proof Provided in Appendix C. ��
Notice that when there is no deflection (i.e., φ = 0), we

have a = 0, and condition (10) reduces to (6) in Proposi-
tion 2. As the angle φ increases, the constraint on the initial
condition becomes more stringent (i.e., the right-hand side
of (10) becomes smaller). However, the constraint remains
feasible (i.e., v′

0 > 0) as long as condition (11) is satisfied.
For the case when the target continuously makes evasive

maneuvers, a sufficient condition for target capture can be
obtained through a Lyapunov analysis with the concept of
ultimate boundedness (Khalil and Grizzle 2002). Since the
analyses on the pursuit phase is not the main focus of this
work, we state the result qualitatively in the following remark
and refer the interested reader to Appendix D for the proof
and more details.

Remark 1 Consider the case where the target has second-
order dynamics with the magnitude of its acceleration
bounded according to ‖aT ‖ ≤ uT . Then target capture is
guaranteed if (i) uT is sufficiently small; (ii) control gains
c and b in (5) are chosen properly; (iii) umax is sufficiently
large; and (iv) vT /P (t0) is sufficiently small. The proof and
the actual conditions are provided in Appendix D.

4 Algorithms and simulation results

This section considers the strategies for the guardians in the
swarming phase to achieve target capture even when Γ < 1.
We first describe the probabilistic nature of the problem, and
state the objectives of the swarming motion. After a brief
review of our previous work on circling and radial motion
(Shishika and Paley 2017), we propose a swarming algo-
rithm that generates random oscillatory motion around O .
We modify the swarming law by adding a mosquito-inspired
interaction term and study the performance of the algorithms
with numerical simulations.

4.1 Objectives of swarmingmotion

In the previous section, Proposition 2 showed that target cap-
ture can be achieved if the velocities of the guardian and the
target at the time of close encounter are aligned so that the
relative velocity is sufficiently small. This condition suggests

the importance of the guardiansmaintaining sufficiently high
velocity during the swarming phase. In addition, the condi-
tion prerequisite to velocitymatching is that a close encounter
occurs. Therefore, the two key objectives of the swarming
motion are to (i) maintain high density around O where the
intruder passes through; and (ii) maintain high speed that lies
in the circle Bv0(vT (t0)).

Note that now the problem of target capture is probabilis-
tic. Each guardianmay encounter an intruderwith probability
Pe, and the velocity at the time of close-encounter may lie in
Bv0(vT (t0)) with probability Pa. Since target capture occurs
if those two occur for any of the guardians, the probability
of target capture Pcap is dictated by Pe and Pa.

Our previous work (Shishika and Paley 2017) considered
various orbiting motions around O that are generated from
a central force. We used the roundness and energy of the
orbiting motion as the tuning parameters of the swarming
behavior studied how the optimal orbit (in terms of Pcap)
varies depending on the system parameters Γ and α.

The orbiting motion enabled the guardians to capture the
target even when Γ < 1, however, the approach had two
disadvantages. First, for orbits that are close to radial motion,
there is a high risk of collision near the center. Second, since
the orbiting motion was deterministic (except for the initial
conditions), the strategy and its weaknesses may be detected
by the intruders in more practical settings (e.g., the intruder
may try to approach O on the side opposing the direction
of rotation). To overcome these disadvantages, we present a
new swarming algorithm next.

4.2 Random-swarming algorithm

The control law for the guardian is described by the combina-
tion of artificial forces that generates the desired acceleration
of the agent. The overall forcing on agent i is

Fi = (1 − λP
i )F(swarm)

i + λP
i F

(pursuit)
i , (12)

where the switching parameter λP
i ∈ {0, 1} takes the value

λP
i = 0 (resp. 1) in the swarming (resp. pursuit) phase. The

pursuit term F(pursuit)
i is defined in (5). The swarming algo-

rithm F(swarm)
i consists of three forces: central, spacing, and

random force, i.e.,

F(swarm)
i = F(cent)

i + F(spac)
i + F(rand)

i . (13)

The central force F(cent)
i , resembling a damped spring

attached to O, maintains the cohesiveness of the swarm:

F(cent)
i = −kcri − bcvi , (14)

where positive constants kc and bc are the control gains.
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The spacing force F(spac)
i , which also resembles a damped

spring, generates attraction, repulsion, and alignment behav-
ior between the agents:

F(space)
i = −ks

∑
j∈S(ρs )

i

(
1 − x0

‖ri/ j‖
)
ri/ j − bsvi/ j . (15)

The positive parameter x0 denotes the rest length of the
spring, and the set S(ρs )

i = { j | ‖ri/ j‖ ≤ ρs} consists
of all the agents within range ρs from agent i . By choosing
x0 to satisfy (ρs − x0)/ρs � 1, the guardians may form
a crystalized formation shown in Fig. 7a [the formation is
called an α-lattice in Olfati-Saber andMurray (2003)]. How-
ever, the convergence to crystalized formations depends on
the amount of energy dissipation in the system. Therefore,
random swarming motion may be generated even with the
selection x0 ≈ ρs.

The spacing term can be used to control the density of the
swarm by modulating the inter-agent distance. In addition,
another important purpose of the spacing term is to avoid
collisions between guardians. Therefore, the selection of ρs
(and x0) may depend on the relative size of the vehicle with
respect to the perceptual range ρa , i.e., a small value of ρs
may be sufficient to guarantee collision avoidance if the vehi-
cle size is small. In this work, instead of introducing another
parameter to describe the vehicle size, we make a conserva-
tive choice: ρs = ρa.

The random force F(rand)
i has a constant magnitude,

‖F(rand)
i ‖ = Krumax, in a random direction θi , i.e.,

F(rand)
i = Krumax[cos θi , sin θi ]T , (16)

where Kr ∈ [0, 1). The random variable θi is generated by
the following process:

θ̇ = Wwi , (17)

where wi denotes unit-intensity white noise and W > 0 is
a parameter describing the intensity. The intensity W deter-
mines how much (on average) the force F(rand)

i changes its
direction in each time step.

The main purposes of the random forcing F(rand)
i are (i)

to make the trajectories of the guardians unpredictable to
the intruders [unlike the orbiting motion studied in Shishika
and Paley (2017)]; and (ii) to propel the guardians tomaintain
sufficiently high speed during the swarming phase (recall the
second objective of swarming stated in Sect. 4.1). For the lat-
ter purpose, we seekW that maximizes themean speed of the
guardians during the swarming phase. Figure 6 shows how
the mean speed (average taken over agents and time) varies
with W for different Kr. The mean velocities are obtained

Fig. 6 Mean velocity in the swarming phase as a function of the inten-
sity of thewhite noise,W , that drives the directionof the randomforcing.
Different lines are generated from different magnitudes, Kr, of the ran-
dom forcing. The red circles highlight the critical points (Color figure
online)

Table 3 List of parameters in the swarming algorithm and their nominal
values

Force Description Nominal value

F(cent) kc Spring constant 1

bc Damping constant 0.5

F(spac) ρs Interaction range ρa

ks Spring constant 4

x0 Rest length ρa

bs Damping constant 0

F(rand) Kr Magnitude 0.5

W Intensity of white noise 0.13

from numerical simulations performed with nominal param-
eters shown in Tables 1 and 3. Figure 6 shows that for every
choice of Kr , there exists an optimal W that maximizes the
mean speed. The figure also shows that the magnitude Kr

positively affects the mean velocity of the guardians.
Treating W as a function of Kr , the random force only

has a single parameter Kr . Figure 7 shows the snapshot of
the swarm with different values of Kr . The edges indicate
the link defined by the proximity-based interaction used in
F(spac)
i . A crystalized formation (α-lattice) forms for small

values of Kr , whereas the links are broken and the swarm
becomes more random for larger values of Kr . The trajecto-
ries extending from the particles indicate the velocities that
they have, i.e., guardians have higher velocities for larger
Kr . The figure also shows that there is a tradeoff between the
two objectives of the swarm—high density and high speed
(although it is possible to modulate the spring constant kc
to maintain a fixed swarm density while the speeds of the
agents are increased with Kr , we allow the swarm density to
decrease here in order to reduce the risk of collision).

Finally, note that the magnitude of F(swarm)
i can exceed

the limit umax, in which case the control is saturated while
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(a) (b) (c)

Fig. 7 Snapshots of the swarm showing how the strength of random
forcing, Kr , changes the swarm from a crystalized formation to random
oscillatory motion. The edges connect the agents within the range ρa

(a) (b)

Fig. 8 Probability of target capture as a function of Kr (the strength of
random forcing). The nondimensionalized guardian acceleration Γ is
varied in (a), whereas the number of pursuers NP is varied in (b)

preserving its direction, i.e.,

Fi = umaxF
(swarm)
i

‖F(swarm)
i ‖ . (18)

The next section studies how the random swarming motion
affects the probability of target capture.

4.3 Optimal randomness

We introduced various control parameters in Sect. 4.2 that are
listed in Table 3. However, we are most interested in how the
random oscillatory motion plays a role in the target capture
scenario. Therefore, we choose Kr to be the independent
parameter of the swarmingmotion and study how the random
forcing affects the probability of target capture.

Numerical simulations calculate the probability of target
capture Pcap by counting the number of successful pursuits.
In the simulation, the success of target capture (see Defini-
tion 1) is assessed using the energy function introduced in
the proof of Proposition 2, i.e., the target is captured if the
quantity Vi = 1

2‖rT /i‖2 + 1
2c‖vT /i‖2 becomes less than 1

2ρ
2
a

at any point in time for any guardian i .
Figure 8 shows how Pcap varies as a function of Kr for dif-

ferent sets of parameters. The critical points are highlighted
with circles. The left figure shows the effect of Γ and the
right figure shows the effect of NP . The trend on the optimal

Kr can be explained by the two objectives of the swarm-
ing: density and speed (see the discussion in Sect. 4.1). For a
larger Kr , the guardians have higher speed by sacrificing the
density of the swarm, and vice versa. Therefore, the optimal
Kr increases with increasing NP , because a larger swarm
inherently has a high probability of target encounter, Pe, and
is able to sacrifice density. On the other hand, the optimal Kr

reduces with increasing Γ because guardians with higher Γ

do not have to rely on their initial speed for successful pursuit
(i.e., they inherently have high Pa) and, therefore increasing
the density is more important than maintaining high veloc-
ity. The specific values of Kr that give optimal Pcap vary
if we tweak the other parameters in Table 3, however, the
aforementioned trends are preserved.

4.4 Gainmodulation

This section discusses someof the strategies for the guardians
to adapt to different situations by tuning their control gains
in the swarming phase.

Recall that the expressionof nondimensionalizedguardian
acceleration Γ in (2) involves target speed vT , which implies
that for intruders with different speeds, the value ofΓ will be
different for each of them even if the guardians’ capabilities
(umax, ρa and ρp) are fixed. The immediate application of
the simulation results in the previous section (Fig. 8a) is to
modify Kr according to the prior knowledge about the speeds
of incoming intruders. If the intruder is expected to be slow
(i.e., Γ > 1), the guardians should wait with a crystalized
formation using Kr = 0. On the other hand, if the intruder
is expected to be fast (i.e., Γ � 1), the guardians should
increase their speed by using Kr ≈ 1.

Consider another situation where the number of guardians
changes over time. For example, if the guardians leave the
swarm as they successfully track the intruders, the number
of guardians that remain in the swarm decreases over time.
If more guardian vehicles are deployed to join the swarm,
the number NP may increase over time. In either case, the
guardians should modulate the gain Kr according to the
result in Fig. 8b; i.e., increase (resp. decrease) Kr when NP

increases (resp. decreases). (Estimation of NP without a cen-
tralized control system is an interesting problem, but it is out
of the scope of this paper.)

Finally, consider another situation where the guardians
have some prior knowledge about the azimuthal direction
of the intrusion ψ int

j ; e.g., the probability density function

of ψ int
j . The guardians can increase Pcap by modifying the

central forceF(cent)
i as follows. Let R denote a rotationmatrix

R(ψ̂) =
[

cos ψ̂ sin ψ̂

− sin ψ̂ cos ψ̂

]
, (19)
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(a) (b) (c)

Fig. 9 Snapshots of the swarm showing how the elongation of the
swarm is controlled by the parameter σ . The expected direction of intru-
sion is ψ̂ = π/4, and the randomness is chosen to be Kr = 0.3

and Λ denote a diagonal matrix

Λ(σ) =
[
1/σ 0
0 σ

]
, (20)

where additional parameter ψ̂ describes the expected direc-
tion of intrusion and σ > 1 describes the confidence in that
direction. The swarm is elongated in the ψ̂ direction by the
following modification:

F(cent)
i = R(ψ̂)TΛ(σ)R(ψ̂) (−kcri − bcvi ) . (21)

Figure 9 shows the snapshots from simulation. The elongated
swarm increases both Pe and Pa if ψ̂ is sufficiently close to
the actual ψ int.

We introduced ways in which guardians can utilize prior
knowledge about the intruders to maximize the probability
of target capture. The next section introduces simple com-
munication between the guardians to enable cooperation and
show how it significantly improves the probability of target
capture.

4.5 Velocity-alignment interaction

The swarming algorithm introduced in Sect. 4.2 focused
on the individual motion of the guardians. In this section,
we seek to add cooperation among the guardians to fur-
ther improve the target-capture capability. In particular, we
consider collaboration that is generated from a velocity-
alignment behavior.

The employment of velocity-alignment behavior is inspired
by swarms of male mosquitoes. In Shishika et al. (2014), we
analyzed the flight data of wild mosquitoes and observed
their intermittent velocity-alignment behavior. Although the
reason for the velocity-alignment behavior is unknown, one
hypothesis is that the male mosquitoes may be transmitting
information about the presence of a female mosquito in the
swarm.

Since male mosquitoes are competing against each other
to mate with the female, the male that sees a female will
not broadcast that information to other males. Instead, it is
the other males that try to sense male behavior changes to

recognize the presence of a female. On the other hand, the
guardian vehicles are cooperating with each other, so it is
reasonable for them to actively communicate to share the
information about the presence of the intruder.

Consider a one-digit binary signal (i.e., communication
of “Yes” or “No,” instead of a serial communication like
“010010...”) that each vehicle can broadcast to other vehi-
cles within the range ρa . The signal from vehicle i tells other
vehicles whether it is in a regular swarming state or in an
alerted state,which is the unionof pursuit phase andvelocity-
alignment phase. In practice, the signal can be based onvision
or acoustic sensing received by cameras or microphones, for
example. Although there exist more sophisticated communi-
cation schemes thatmaycarry richer information—like target
position and/or velocity—we show how this one-digit binary
signal can be used to significantly improve performance.

The algorithm for the velocity-alignment behavior is as
follows. Let S(alert) be the set of guardians that are either in
pursuit phase or velocity-alignment phase. A guardian i in
the swarming phase switches to velocity-alignment phase if
it sees any guardian in the set S(alert), i.e., if the following set
is nonempty:

S(align)i = { j | ‖ri/ j‖ ≤ ρa, j ∈ S(alert)}. (22)

The velocity-alignment phase will terminate in one of the
following two ways: (i) guardian i switches back to the
swarming phase when S(align)i = ∅; or (ii) it switches to the
pursuit phasewhen it encounters the target, i.e., ‖rT /i‖ < ρp.

Additional forcing for guardian i in the velocity-alignment
phase is

F(align)
i = ba

∑
j∈S(align)i

v j/i , (23)

which is equivalent to changing the damping constant bs in
the spacing term F(spac) to ba, only for those guardians in the
set S(align)i . The constant ba (> bs) is sufficiently large that
it dominates the other control terms during the the velocity-
alignment phase.

If the guardian in pursuit phase aligns its velocity to the
target and if the velocity-alignment interaction propagates
through the swarm, guardians that are far from the target
can start moving in the direction that matches the velocity
of the target. This mechanism allows the guardians to effec-
tively increase their perceptual range ρp to the size of the
swarm in order to gain favorable initial conditions for pur-
suit.

Figure 10 shows Pcap with varying Kr . For fixed NP =
10, the target is always captured (i.e., Pcap = 1.0) for Γ

greater than 0.7. Similarly for fixed Γ = 0.7, target capture
is guaranteed for NP > 10. This improvement is significant
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(a) (b)

Fig. 10 Probability of target capture with velocity-alignment behav-
ior. The nondimensionalized guardian acceleration Γ is varied in (a),
whereas the number of pursuers NP is varied in (b). Note that Γ = 0.7
instead of 0.9 (see Fig. 8b) is used in (b)

compared to the results from the random-swarming case in
Fig. 8 (note that Γ = 0.9 was used for Fig. 8b). The figure
also shows that Pcap = 1.0 is achieved with a crystalized
formation (Kr = 0), because high connectivity is necessary
for the guardians to propagate the velocity-alignment inter-
action.

Note, guardians perceive only the velocities of nearby
agents, and this information is not transmitted through com-
munication. Therefore, for the velocity-alignment strategy
to work properly in the target-capture scenario, it is neces-
sary that the guardians in the spanning tree of the interaction
graph quickly adjust their velocities in the correct direction
(i.e., the direction of target’s motion). Otherwise, the error in
the direction may propagate through the interaction network,
and guardians far from the target may end up accelerating in
thewrong direction. (The issue of velocity-alignment in erro-
neous directions occurs in the experiments due to the slow
response of the guardians caused by latency in the closed-
loop system. In Sect. 5.5, we address this issue and augment
the velocity-alignment behavior by adding a directionality
constraint to their interaction.)

4.6 Relation to alternative problem formulation

This section discusses the relation between the proposed
swarming algorithm and other existing research that stud-
ies search, tracking, and capturing strategies for a group of
mobile agents. Although direct comparison of the perfor-
mance is impossible due to the difference in the underlying
assumptions, we discuss some overlapping aspects that are
amenable for qualitative comparisons.

Search problem: There is a group of work that addresses
the problem of detecting intruders or evaders in an unknown
space usingmobile robots (Kolling andCarpin 2010;Durham
et al. 2012). In the so-called clearing problem a group of

robots form frontier lines between “cleared” and “contam-
inated” regions and explores the space while guaranteeing
the detection of targets that pass through the frontier. This
scenario is related to the swarming phase in our work, dur-
ing which the guardians do not know where the intruder is.
Compared to the algorithms developed for clearing prob-
lem, the disadvantage of our algorithm is its sub-optimality
and lack of theoretical guarantees in detecting the intruder,
which is apparent from the probabilistic nature explained in
Sect. 4.1. However, since the guardians do not need explicit
motion coordination in our algorithm, our approach may be
more robust to agent failures and removal of communication
capabilities.

Tracking problem:A scenario that covers both the swarming
phase and the pursuit phase is the tracking problem, where a
team of robots coordinate their motion to maintain good esti-
mates of the position of a moving target (Jung and Sukhatme
2002;Hausmanet al. 2016).This estimation aspect is not con-
sidered in our work for simplicity. However, incorporation
of estimation may be necessary for a more realistic scenario,
and it may also improve the pursuit behavior enabling the
guardians to continue target pursuit even when the intruder
is out of its perceptual range, e.g., by using the estimated
position.

Another group of work including Ferrari (2006) and Fer-
rari et al. (2009) addresses the problem of detection and
interception of targets with multiple pursuers that have lim-
ited sensing range. To determine the control action, the robots
exhaustively consider all possible trajectories of the targets.
The relation between those trajectories and the pursuers’
location are taken into account in order to maximize the
probability of target detection. The sensor information from
one robot is used by all other robots so they can decide
on their action, e.g., who should pursue which target. The
main difference with our work is in the architecture. The
above mentioned algorithm enables efficient deployment of
the pursuers with the use of centralized information such
as the location of all the robots and the targets. On the other
hand, our algorithm is limited in efficiency, but is completely
distributed and requires no central observer or extensive com-
munication. In addition, the aspect of quick response is not
considered in any of the above works.

Capture problem: With the assumption that the target posi-
tion is known for all time, a number of works study how to
encircle a targetwithmultiple pursuers (Kim andSugie 2007;
Bopardikar et al. 2009). The notion of capture is stronger in
this scenario in the sense that the target needs to be sur-
rounded by the pursuers, instead of just one guardian staying
close to the intruder. Encirclement is possible only when
the pursuers are faster than the target, i.e., the region of the
parameter space where the pursuers have high capabilities,
which differs from the focus here.
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Fig. 11 The architecture of the experimental setup. The red numbers
indicate the approximate time delay from each component. The blue
box is duplicated according to the number of vehicles (Color figure
online)

5 Experimental results

This section experimentally demonstrates the analyses in
Sects. 3 and 4 using a quadrotor swarm. Additional chal-
lenges that arise in the experimental implementation are
discussed and the algorithms are augmented to overcome
those challenges.

5.1 Experimental testbed

We conducted experiments using a group of small quadro-
tors in an indoor motion-capture environment. We used six
BLADE Nano QX, a commercially available quadrotor. The
architecture of the experiments is summarized in Fig. 11.
The commands are computed on a desktop computer and
sent to an Arduino Nano via USB serial communication.
The Arduino Nano converts the received serial signal into
a Pulse Position Modulation (PPM) command and sends it
to the trainer port of a Spektrum DX6 transmitter that sends
Radio Frequency (RF) commands to the vehicle. The Opti-
Track motion-capture system tracks the position and attitude
of the vehicle and streams them to the computer. When it
is sent out from the computer, the control law proposed in
Sect. 4.2 is converted to a desired stick input (see Zuo 2010
for details).

An additional challenge in our experimental setup is the
time delay caused by the vehicle dynamics and the com-
munication between Matlab and the Nano QX. It takes
approximately 170 ms for the commands from the computer
to affect the vehicle acceleration. Another limitation is the
size of the test area. The horizontal footprint of the vehicle
is 18.2 × 18.2 cm, whereas the horizontal area of the vol-
ume tracked by the motion-capture system is approximately
3 × 3m.

5.2 Disturbance observer

A number of techniques to track desired position, velocity,
and acceleration exist in the literature (see for example Hehn
and D’Andrea 2011; Mueller and D’Andrea 2013). These
works assume an inner-loop controller that takes the desired
acceleration and body-rotation rates as inputs and produces

individual motor thrusts using feedback from Inertial Mea-
surement Unit (IMU) data. However, the architecture shown
in Fig. 11 does not allow direct control of the thrust vector
and thus achieving a specified acceleration becomes a non-
trivial problem for the following reasons. First, we do not
have access to the IMU data on the vehicle and also the posi-
tion data frommotion capture system is too noisy to estimate
the acceleration. Second, because of the reflective markers
mounted on the vehicle, there is an offset in the position of
the center of mass and trimming did not completely elim-
inate the effect of this offset. Third, even if each vehicle is
trimmed accurately, the battery usage significantly affects the
conversion from stick input to the achieved acceleration.

Therefore,we elect to use an adaptive disturbanceobserver
to estimate the discrepancy between the desired and achieved
acceleration [a more general version of this observer was
introduced in Friedland and Park (1992) for the applica-
tion to friction compensation in mechanical systems]. Let
d � aactual − udes be the disturbance, i.e., the difference
between the actual and desired acceleration of the vehicle.
The goal is to estimate d and augment the control input as

u′
des = udes − d̂, (24)

where d̂ denotes the estimated disturbance. The actual accel-
eration then becomes aactual = udes + d − d̂. For the case
where d is constant the following observer drives the estima-
tion error e = d − d̂ to zero:

d̂ = z + kOv, (25)

ż = −kO(udes + d̂), (26)

where kO > 0 denotes the observer gain and z denotes the
observer states (to derive this result use the Lyapunov func-
tion V = 1

2‖e‖2). Although the disturbance due to battery
usage is time varying, it is sufficiently slow compared to the
vehicle dynamics that we may treat this disturbance as con-
stant.

5.3 Effect of time delay

The nondimensionalized guardian acceleration Γ quantifies
the difficulty of the target capture problem. Since we have
time delay in the experimental testbed, the guardian can only
respond to the intruder τ = 170 ms after the close encounter.
Modifying the proof of Proposition 1, we define the aug-
mented version of the pursuer acceleration Γ ′ as follows.

The time it takes from the close encounter to the time that
the guardian reaches the speed vT is now t ′f = vT /umax + τ .

The intruder has to travel the distance ρa + ρp + 1
2umaxt2f in

order to escape. The condition for escape is now vT t ′f > ρa+
ρp + 1

2umaxt2f , and this condition gives rise to the following

123



Autonomous Robots (2019) 43:1781–1799 1793

time-delayed guardian acceleration:

Γ ′ � Γ − 2umaxτ

vT
. (27)

The effective advantage on the guardian’s side reduces in pro-
portion to the time delay τ . Extending the theoretical analysis
in Sect. 3.1, we expect that a static guardian with Γ ′ < 1 will
never capture the target in the experiment.

This extension agrees with our previous experiment in
Shishika and Paley (2017), where we concluded that Γ >

1.78 is necessary for a static guardian waiting at O to capture
the target, when the following parameters were used: ρa =
0.6, ρp = 0.4, vT = 2.6, and umax = 6. Using the definition
(27) with the time delay in our system τ ≈ 0.17 s, we obtain
Γ ′ ≈ 0.99, which is close to 1, as expected.

5.4 Optimal randomness in swarming algorithm

We conducted experiments of the swarming and pursuit sce-
nario with six guardians to validate the simulation results in
Sect. 4.3. Based on the analysis in the previous section, we
use Γ ′ as the index to describe the difficulty of the pursuit
problem. Specifically, we chose ρa = 1.0 m, ρp = 0.5 m,
umax = 2.0 m/s2, and vT = 2.23 m/s, which corresponds to
Γ ′ = 0.9.

The swarming algorithm in Sect. 4.2 is extensible to three
dimensions, except for the random forcing term. Since we
only consider the casewhere the target speed has zero vertical
component, pursuit behavior is considered in the horizon-
tal direction only. Although we give guardians reference
altitudes with 15 cm intervals, the spacing term F(spac) is
nonetheless important to ensure collision avoidance and to
avoid the downwash from the vehicles above.

The perceptual ranges ρa and ρp, as well as the intruder,
are represented virtually in Matlab. The pursuit is defined to
be successful if the following two conditions are satisfied:
(i) a guardian is in pursuit phase when the target reaches the
boundary of the motion-capture arena; and (ii) at that time,
the energy function satisfies V � 1

2‖rT /P‖2+ 1
2c‖vT /P‖2 <

1
2ρ

2
a , as considered previously in the simulation study.
We ran 30 experiments for each of 4 values of Kr and

obtained the probability of target capture. Due to the lim-
itation in the motion-capture area, the values of Γ greater
than 0.7 could not be tested (recall that the size of the swarm
increases with Kr ). Figure 12 shows the comparison of the
experimental data with the simulation results. The 6000 trials
from the simulation results are partitioned into 200 sets of
30 trials to compute the expected variance in Pcap (see the
box plot in Fig. 12). For the values of Kr that are tested, the
experimental results show the same trend as the simulation
results; i.e., the experimental results support the existence of
the optimal random forcing at around Kr = 0.3 for this set of

Fig. 12 Probability of target capture as a function of the strength of
random forcing. For each Kr , experimental results are calculated from
30 trials. The animation is available at (https://youtu.be/Cnz75WZ88rI).
Γ greater than 0.7 are not tested due to the constraint in the motion-
capture area. The box plot is obtained from computer simulation; i.e.,
200 sets of 30 trials are used to see the variance that we expect from 30
experimental runs

(a) (b)

Fig. 13 Comparison of the velocity-alignment forcing in simulation
and experiment. All guardians quickly respond in the desirable direc-
tion in the simulation, whereas the guardians have forcing in various
directions in the experiment. Note that the velocity vectors for guardians
are scaled six times larger than the intruder for clarity

Γ , α and NP . The agreement between simulation and exper-
imental results also supports the validity of the augmented
parameter Γ ′.

5.5 Velocity-alignment behavior

We tested the velocity-alignment behavior with a swarm of
six guardians. Following the simulation results in Sect. 4.5,
we study only the casewith Kr = 0, which yields the optimal
performance. The sensing and communication, as well as the
intruder motion are represented virtually in Matlab.

A major challenge in the experimental setting is high-
lighted in Fig. 13. In the simulation, all guardians instan-
taneously respond to the target through velocity-alignment
behavior, and their acceleration (see the forcing vector in
Fig. 13) point in the same direction that matches the target
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(a) (b) (c)

Fig. 14 Snapshot of pursuit scenario with the velocity alignment strat-
egy. The animation is available at (https://youtu.be/Cnz75WZ88rI). An
intruder approaches from the right bottom of the figure. a Guardian 3
and 4 are in pursuit phase and there is a network of velocity alignment
interaction also involving guardians 1, 2, and 5. As a result, guardian 2
is already accelerating towards the top left corner (see the forcing F2),

which matches with the direction of the target velocity. b At the time
guardian 2 encounters the target, its velocity v2 is well aligned with the
target velocity vT . Note that guardian 4 is still in pursuit phase since the
target is still within the range ρa (but not ρp). cGuardian 2 successfully
tracks the target, while other guardians are returning to O (i.e., their
accelerations are pointing towards O)

velocity. However, in the experiment, forcing vectors point
in various directions (see Fig. 13b).

The velocity-alignment forcing in erroneous directions are
caused by the delay in individual velocity-matching interac-
tion. In simulation, guardians 2, 4 and 6 are already aligned
with guardian 5. However, in the experiment, guardians 2,
3, and 4 are not yet aligned with guardian 6. As a result,
guardian 1 is accelerating towards the right bottom at this
moment, since it is matching its velocity to guardians 3, 4,
and 5 who have their velocities in the wrong directions. The
velocity-matching in the experiment is slower than the simu-
lation because (i) the latency in the closed-loop systemdelays
the response to alerted neighbors; and (ii) latency also gener-
ates velocity oscillation during crystalized formation, which
may give unfavorable initial conditions, e.g., see guardian 3
in Fig. 13b.

To reduce the velocity-alignment in erroneous directions,
we augment the algorithm by introducing directionality in
the communication. The directionality is added to both the
transmitter side and the receiver side. First, a guardian i in
the alerted state now sends signal to j only if

v̂ j · r̂i/ j < cosφ1, (28)

where ˆ denotes a unit vector, i.e., v̂ = v/‖v‖. Second, a
guardian j receives signal from an alerted guardian i only if

v̂i · v̂ j < cosφ2. (29)

These two constraints help the guardians to propagate the
signal in the desirable direction. Small values for φ1 and
φ2 increase the accuracy of the velocity information carried
through the interaction, but will also reduce the connectiv-
ity. Since securing sufficient connectivity is important for a
small swarm, we choose φ1 = 150◦ and φ2 = 90◦ for the
experimental results presented next.

Figure 14 shows the snapshots from a single experimental
trial. System parameters were chosen so that Γ ′ = 0.90 and
α = 0.5. Due to the velocity-alignment behavior, guardian
2 on the far side starts accelerating in the direction of the
target’s motion even though it does not perceive the target
itself (see the forcingF2 in Fig. 14a). This behavior generates
a favorable initial condition at the timeof close encounter (see
v2 and vT in Fig. 14b). This initial condition enables guardian
2 to successfully capture the target (Fig. 14c). As was done in
the simulation and in the random-swarming case, we define
target capture by looking at the energy function introduced
in the proof of Proposition 2. It has a value V = 0.26 for
guardian 2, which is less than the criterion 1

2ρ
2
a = 0.50, i.e.,

the Lyapunov analysis in Proposition 2 predicts that the target
will stay within the range ρa of guardian 2 indefinitely.

The target was captured 15 times out of 18 trials, which
gives the success rate of Pcap = 0.83. This probability is
lower compared to the simulation result (Pcap = 1.0),mainly
due to the velocity-alignment in the wrong directions caused
by the latency in the system (see earlier discussion).Nonethe-
less, the success rate is improved as compared to the case
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without velocity-alignment interaction, which illustrates the
advantage of utilizing communication between guardians.

6 Conclusion

This paper describes a swarming strategy for multiple
guardians to defend a protected zone from an intruder. A
static guardian requires high capability to guarantee target
capture, whereas swarming motion relaxes the requirement.
Guardians maximize the probability of target capture by bal-
ancing the swarm density and their speed.

Inspired by the swarming behavior of male mosquitoes, a
random swarming motion was studied and ways in which
control parameters may be optimized were discussed. In
addition, velocity-alignment strategy was considered for the
case where guardians communicate with each other. Even
with a communication of only one digit of binary infor-
mation, the probability of target capture was significantly
increased when used with the velocity-alignment strategy,
both in simulation and in experiment. For the experiment,
directionality constraint was added to alleviate the effect of
time delay.

In ongoing and future work, we are formulating the prob-
lem as a game between teams of intruders and guardians,
where we distinguish between capture before and after intru-
sion. For this multi-intruder scenario, we are studying how
the direction and frequency of intrusion affect the probability
of capture. We also look at this problem from the intruder’s
perspective and consider the optimal intrusion strategy.

Acknowledgements The authors would like to acknowledge Nicholas
Manoukis and Sachit Butail for the valuable discussions related to the
behavior of mosquitoes, Luis Guerrero for the discussion related to the
proofs, and also the support from Derrick Yeo and Katarina Sherman
related to the experimental testbed.

Appendix A: Calculation ofˇ∗

Figure 15 depicts the casewhere the damping term bvT /P has

to be saturated to giveF(pursuit)
P = umax . Let n = β∗‖bvT /P‖,

m = (1 − β∗)‖bvT /P‖, A = n + m, B = ‖crT /P‖, C =
‖crT /P + bvT /P‖, and D = F(pursuit)

P = umax . Stewart’s
theorem states that

B2m + C2n = A(D2 + mn). (30)

Using (30) and A = m + n, we can solve for n to obtain

n = E ± √
E2 + F

2A
, (31)

Fig. 15 Computing the saturation factor β to obtain the control law
F(pursuit)
P

where E = A2 + B2 −C2 and F = 4A2(D2 − B2). Noting
that F is always positive, the solution (31) with+ is the only
valid solution. The scaling factor is β∗ = n/A, i.e.,

β∗ = E + √
E2 + F

2A2 . (32)

Appendix B: Required NP for guaranteed tar-
get capture using circling strategy

Consider a circling motion with radius ρp. Let vP denote

the circling speed. Let θT /P = cos−1
(

vT ·vP‖vT ‖‖vP‖
)
denote the

difference between the direction of motion of the target and
the pursuer. First, we seek to find themaximum angle θ∗ such
that vP ∈ Bv0(vT (t0)) (see Fig. 16 for the definitions of the
relevant quantities). For a given guardian speed vP , the angle
θ∗ is the maximum allowable difference in the direction of
motion to guarantee target capture. From Fig. 16 and the law
of cosines, we have

θ∗ = cos−1

(
v2P + v2T − v20

2vPvT

)
. (33)

The angle θ∗ is maximized when the limiting vP is tangent
to the circle Bv0(vT ), i.e., the blue dashed line in Fig. 16.

Fig. 16 Definitions of angles and speeds in the velocity space (Color
figure online)
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Fig. 17 Example of circling motion where θ∗ = π/3. Guardians are
uniformly spaced and there is always one guardian in the fan-shaped
region. When the target reaches the center, the velocity of the pursuer
in the fan-shaped region satisfies θT /P < θ∗

This geometry is achieved when vP satisfies

vP = v
(1)
P =

√
v2T − v20 = vT

√
1 − Γ (1 − α)/2. (34)

However, because of the centripetal acceleration, the achiev-
able circling speed vP is bounded as

vP ≤ v
(2)
P = √

ρpumax = vT

√
Γ α

2(1 + α)
.

We choose the circling speed vP to be

vP = min
(
v

(1)
P , v

(2)
P

)
, (35)

i.e., use v
(1)
P when it is achievable, otherwise, use maximum

possible speed which is v
(2)
P . If the guardians are uniformly

distributed on the circle, and if the number of guardians N
satisfies

N >
π

θ∗ , (36)

there will be at least one guardian whose direction of motion
satisfies θT /P < θ∗. See Fig. 17 for the illustration of the case
with NP = 3.When the target reaches the center, the velocity
of the pursuer in the fan-shaped region satisfies θT /P < θ∗.
If the condition (36) is satisfied, then there is always at least
one guardian in the fan-shaped region.

Figure 18 shows the required number of guardians
obtained from conditions (33), (35) and (36). Close to the
boundary ∂2, the angle θ∗ → 0 and the sufficient number
N → ∞. Close to the boundary ∂3, the angle θ∗ → π and
the sufficient number N → 2.

Appendix C: Proof of proposition 3

For a given deflection angle φ, the magnitude of normal
acceleration exerted by the target increases as the time of
execution Δt reduces. It is easy to see that the worst-case

Fig. 18 Sufficient number of guardians to guarantee target capture with
circling motion

scenario for the guardian who is pursuing the target is when
Δt approaches 0, i.e., the target makes a sudden instanta-
neous change in its direction of motion. This corresponds to
the target applying a linear impulse with magnitude equal to
2vT sin(φ/2).

Consider the energy function used in the proof of Propo-
sition 2. Let ΔV denote the increase in the energy function
due to the target maneuver. Then we have

2cΔV = 2cV (t2) − 2cV (t1) (37a)

= ‖vT /P (t2)‖2 − ‖vT /P (t1)‖2 (37b)

= −vP · (vT (t2) − vT (t1)) (37c)

≤ ‖vP‖2vT sin(φ/2) (37d)

≤ (vT + v0)2vT sin(φ/2). (37e)

Target capture is guaranteed if the initial energy V (t0) is
sufficiently small that the distance, ‖rT /P‖, is bounded by
ρa even after the energy increase by ΔV , i.e.,

V (t0) + ΔV ≤ 1

2
ρ2
a (38a)

‖vT /P (t0)‖ ≤
√
c(ρ2

a − ρ2
s ) − 2cΔV , (38b)

which reduces to (10).
For feasibility of the condition, we also require that the

right-hand-side of (10) is positive, i.e.,

χ2 − 2aχ − 2a > 0, (39)

which reduces to (11).
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Fig. 19 Definition of the regions for the proof of ultimate boundedness

Appendix D: Proof of Remark 1

For notational simplicity, let r � rT /P (t) and v � vT /P (t).
Consider a Lyapunov function

V = 2bc‖r‖2 + b‖v‖2 + 2cr · v,

which is positive definite if

2b2 > c. (40)

Assuming that the control is never saturated, i.e., β = 1
(sufficient condition for this assumption is given later), the
time derivative is

0.5V̇ = −c2‖r‖2 − (b2 − c)‖v‖2 + bv · aT + cr · aT (41)

≤ −c2‖r‖2−(b2−c)‖v‖2+b

(
b

2
‖v‖2+ 1

2b
‖aT ‖2

)

+ b

(
b

2
‖v‖2 + 1

2b
‖aT ‖2

)
(42)

= −c2

2
‖r‖2 −

(
b2

2
− c

)
‖v‖2 + ‖aT ‖2 (43)

≤ −c2

2
‖r‖2 −

(
b2

2
− c

)
‖v‖2 + u2T (44)

Let σ1 = c2
2 , σ2 = b2

2 −c, and D = u2T . For σ2 to be positive,
we require

b2 > 2c, (45)

which is stronger than (40). Also let z = [‖r‖, ‖v‖]T =
[r , v]T . Then we have V̇ ≤ 0 for z /∈ Be = {[r , v] ∈
R
2 | σ 2

1 r
2 + σ 2

2 v2 ≤ D}, where Be is an ellipsoid centered
at z = 0, with axis length ρ1 = √

D/σ1 and ρ2 = √
D/σ2.

Figure 19 depicts Be with other relevant regions.
If a compact setΩ is such that V ≤ ω for z ∈ Ω , and also

Be ∈ Ω , then by ultimate boundedness (Khalil and Grizzle
2002), we know that there exists T > 0 such that z ∈ Ω for
all t > T (see Lemma 1 in Shishika et al. 2016).

Since it is not easy to visualizeΩ , we introduce two com-
pact sets Ωmin and Ωmax with the property Ωmin ∈ Ω ∈
Ωmax . Noting that V = zT Pz where

P =
[
2bc c
c b

]
, (46)

we obtain Ωmin and Ωmax to be discs with radii ρmin =√
ω/λmax {P} and ρmax = √

ω/λmin{P}, where λmin{P}
and λmax {P} are the smallest and largest eigenvalue of P .

Conditions Be ∈ Ωmin and z(t0) ∈ Ωmax guarantee that
z ∈ Ωmax for all time t > t0. If ρmax = ρa , then z ∈ Ωmax

guarantees target capture, i.e., ‖r‖ ≤ ρa . The latter condition
determines the value of ω, which defines Ω , as follows:

ω = ρ2
aλmin{P}.

For Be ∈ Ωmin , it is sufficient if max{ρ1, ρ2} ≤ ρmin , which
gives

uT ≤ ρa

√
λmin{P}
λmax {P}

/√
2max

{
1

c
,

1√
b2 − 2c

}
. (47)

Equation (47) corresponds to condition (i), sufficiently small
uT , inRemark 1.Note that (40) guarantees that the right-hand
side is positive.

Next, z(t0) ∈ Ωmax is true if the initial condition satisfies
V (t0) ≤ ω, which is equivalent to

2bcρ2
p + b‖v(t0)‖2 + 2cr(t0) · v(t0) ≤ ω

b‖v(t0)‖2 + 2cr(t0) · v(t0) ≤ ρ2
a (λmin{P} − 2αbc) (48)

Since r(t0) · v(t0) ≤ 0 for the close encounter to occur, a
conservative version of the above condition is

‖v(t0)‖2 ≤ ρ2
a

b
(λmin{P} − 2αbc) (49)

Equation (49) corresponds to condition (iv), sufficiently
small ‖vT /P (t0)‖, in Remark 1. By explicitly calculating
λmin{P}, one can prove that the right-hand side of (49) is
positive if

c ≤ 1

2α

(
1 − 1

4(1 − α)

)
. (50)

Conditions for the gain selection, which corresponds to (ii)
in Remark 1, are thus (45) and (50).

For this proof, we assume that the pursuer control is never
saturated, which is true if

umax ≥ ρmax max{b, c} = ρa max{b, c}, (51)
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which corresponds to (iii), sufficiently large umax , in
Remark 1. ��
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