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Abstract
Joint manipulation and object exchange are common in many everyday scenarios. Although they are trivial tasks for humans,
they are still very challenging for robots. Existing approaches for robot-to-human object handover assume that there is no
fault during the transfer. However, unintentional perturbation forces can be occasionally applied to the object, resulting in the
robot and the object being damaged, for example by being dropped. In this paper we present a novel approach to handover
objects in a reliable manner while ensuring the safety of the robot and the object. Relying on tactile sensing, the system uses
an effort controller to adapt the grasp forces in the presence of perturbations. Moreover, the proposed approach identifies a
perturbation being applied on the object. When a perturbation event is detected, the algorithm classifies the direction of the
pulling forces to decide whether to release it or not. The reliable handover system was implemented using a Shadow Robot
hand equipped with BioTAC tactile sensors. Our results show that the system correctly adapts to the forces applied on the
object to maintain the grasp and only releases the object if the human receiver pulls in the right direction.

Keywords Reliable object handovers · Robotic handovers · Tactile sensing · Dexterous robot

1 Introduction

Object handover is a fundamental skill to endow robots
with the ability to collaborate with humans in everyday
tasks. Human–robot object handover involvesmany complex
aspects such as human and object safety, social and handling
context, grasping stability, slip detection, and ergonomics.
Huge research efforts have been devoted to endow robots
with the skills required for sharing objects, working and col-
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laborating with humans. However, there is still a need for
safe, smooth, and reliable interaction in any combined task.

Humans showahighdegreeof adaptabilitywhenexchang-
ing objects with a robot (Edsinger andKemp 2007). Notwith-
standing, to ensure the safety of the robot hand and the object,
robot–human object handover typically aims to facilitate the
task for the human (Huber et al. 2008). To endow robots
with ability to safely interact in complex situations, such as a
workshop or an operating room, the system should ensure
smooth and reliable handovers even if the human cannot
securely grasp the object from the robot. Performing reli-
able object handover requires a system capable of adapting
against uncertain events and perturbations that are not meant
to end in a handover, such as a receivers unsecured grasp-
ing or collisions. In situations like these, the robot should
be able to keep itself and the object safe. Avoiding both
damage to the hand and the object falling is an extremely
complex problem which requires quick readjustment of the
fingers to maintain a stable grasp during a potentially large
perturbation. One promising approach to solve these prob-
lems and facilitate manipulation is through tactile sensing
(Liu et al. 2015; Kappassov et al. 2015; Yousef et al. 2011).
However, state-of-the-art approaches assume that there are
no perturbation forces applied on the object during the han-
dover. This paper contributes to reliable object handover by
presenting a tactile sensing based handover algorithm that
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Fig. 1 Robot handing over an object to a human

ensures neither the robot nor the object are damaged. We
achieve this by adapting to force perturbations on the object
and releasing only if the human is ready to hold the object.
The proposed approach was evaluated on a tendon-driven
Shadow robotic hand equipped with BioTAC tactile sensors
as shown in Fig. 1, and represents a step towards endowing
robots with reliable systems that allow them to collaborate
with humans in scenarios where fragile objects have to be
handed over, for instance by robotic assistants in offices,
homes, and hospitals, and caregiver robots for the elderly.

A fundamental problem in safe robot–human handover
is deciding when to release the grasp and, thus, allow the
object transfer. Since a robotic hand has to maintain a stable
grasp on the object until the human is ready to hold it, the
approach in Nagata et al. (1998) considered a tight relation-
ship between object handover and grasp stability to trigger
the object release. A three fingered robotic hand released an
object when the forces applied on the object change a num-
ber of grasp stability metrics. In particular, the authors used a
combination of joint angles, contact, kinematic, and dynamic
stability indices of the hand to decide whether to release
the object (robot–human handover), to hold it (human–robot
handover), or to re-grasp it using a new finger configuration.
The approach presented in Aleotti et al. (2014) used a Kinect
sensor to detect the receiver hand and the object, and released
the object when both where detected as a single cluster of 3D
points. Although the authors implemented a complete han-
dover procedure, the system was not reliable since the object
could be released even when the receiver was not grasping
it. The work presented in Bohren et al. (2011) proposed a
mechanism to handover a drink, where the robot opened the
gripper only if a human face was detected and simultane-
ously the compliant hand of a PR2 was displaced by one
centimetre in the vertical direction. Despite handing over the
object in a secure manner, their approach requires the human

receiver to pull the object strong enough to move the arm
above some threshold, which impacts on the system respon-
siveness. The first effort to imitate the actual way humans
handover objects is presented in Kim and Inooka (1992).
Their experiments showed that humans adapt the grasping
force according to the change in the estimated weight of the
object. The authors used a two finger hand and force sensors
to release the object according to its slippage, i.e. the tipping
point on the Coulomb force.

A thorough analysis of human handover was presented in
Chan et al. (2012) and their results were subsequently used in
Chan et al. (2013) to implement a release controller on a PR2
robot. Their human-inspired handover system controlled the
grip force of the robot according to the weight of the object
the robot perceived in thewrist.Moreover, the authors founda
user preference for the human-inspired controller when com-
pared with four other handover controllers for quick release
and constant grip forces. Another approach relying on the
sensed load force was presented in Medina-Hernández et al.
(2016), which implements a grip force controller based on
the feedback of a force/torque sensor installed on a KUKA
LWR robot with anAllegro hand attached. The authors found
that the object handling occurs faster when using their con-
troller compared to state-of-the art approaches. Furthermore,
their approach significantly reduces the forces applied on
the object by the robot and the human, resulting in fast and
smooth handovers.

Althoughmost of these works rely on some force estimate
acting upon the object, they all assume the handover is going
to take place without problem. In a recent work (Parastegari
et al. 2016) a system consisting of acceleration and force
sensors mounted on a gripper was used to ensure fail-safe
handovers. The authors compared the grip force with the
sum of forces applied to the object for a given static friction
coefficient, and implemented a controller for re-grasping if
the object’s downward acceleration exceeds a given thresh-
old. Another solution to the grasp release problem was
presented in Gómez-Eguíluz et al. (2017a) through a novel
reliable object handover algorithm implemented on aShadow
RobotHand equippedwithBioTAC tactile sensors. The robot
released the object only if the force applied to the object was
perceived to have a direction perpendicular to the palm, and
ensured the safety of the robot by adapting the grasping to
account for the external forces and torques. In Konstanti-
nova et al. (2017), a bidirectional handover approach (i.e
human-to-robot and robot-to-human) was implemented in
a mobile robot equipped with a 5 degrees of freedom arm
and a soft robotic hand. Their system relies on force/torque
information measured at the wrist and releases the object
in a timely manner, while the underactuated soft robotic
hand providesmechanical adaptation to physical interactions
with the environment. These works, Parastegari et al. (2016),
Gómez-Eguíluz et al. (2017a) andKonstantinova et al. (2017)
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recognise that in some situations the robot should not release
the object, especially if the force applied on it does not have
the right direction. However, they are rather limited in the
detection of set of directions in which the receiver will pull
from the object. The work in Gómez-Eguíluz et al. (2017b)
evaluated the approach for a reliable controller presented in
Gómez-Eguíluz et al. (2017a) with a group of naïve partici-
pants. Although all human users pulled from the object when
receiving it from the robot, the pulling direction changed
depending on the experimental conditions. To deal with this
issue, the authors presented a classification approach to detect
the pulling force direction. However, the classification accu-
racy shown in Gómez-Eguíluz et al. (2017b) was not high
enough to ensure the safety of the object.

In order to endow robots with reliable handover capabil-
ities, the system should ensure the safety of both the object
and the robot, which entails minimizing the number of false
positives in the detection of the force direction. This paper
presents a novel algorithm for robot–human reliable han-
dovers that extends our previous work (Gómez-Eguíluz et al.
2017a, b). The contribution of this paper is twofold. First, we
present a new event detection system that perceives pertur-
bations being applied on the object in any direction. Finally,
we extend the algorithm in Gómez-Eguíluz et al. (2017b) to
enhance its reliability, and evaluate the system to maximise
safety. The rest of the paper is organised as follows. Section 2
presents the effort controller and force estimation proce-
dures, followed by the perturbation force direction detection
approach and the reliable object handovers algorithm. Sec-
tion 3 shows results on perturbation trajectoryfiltering, object
perturbation release detection, force adaptation and object
handover. Section 4 ends the paper presenting conclusions
and some directions for future work.

2 Reliable object handover controller

The approach proposed uses a control system to keep the
object grasped, adapting the hand configuration as necessary.
It decides when to release based on two events: the change in
the perceived load force and the perturbation force direction.

2.1 Grasping effort controller

The proposed approach assumes that the object being handed
over is rigid, the initial configuration of the hand is ready for
the handover, and a stable precision grasp using three fingers
is set. Using a fixed position control, a force perturbation
would result in a contact loss or increased efforts in the joints,
which could result in broken tendons on the experimental
platform. To illustrate the effect of forces when controlling
the position of the fingerswe performed an experimentwhere
a perturbation force was applied to a single finger of our

Fig. 2 Changes in the fingertip force length for effort versus position
control

Shadow robotic hand equipped with BioTAC tactile sensors.
Figure 2 shows a comparison of the response in the norm
of the force of the middle finger over time for the proposed
effort controller and a position control (see Sect. 2.2 for how
to compute the force). Although the Shadow hand fingers
provide some compliance through their mechanical design
with tendons and springs, the force sensed for a small pertur-
bation using a position control is more than twice the force
sensed when the effort controller is running, which signifi-
cantly reduces the risk of damaging the hand.

We index the fingers used for grasp the object as j =
1, 2, 3, where j = 1 is the thumb, j = 2 is the first fin-
ger, and j = 3 is the middle finger. The effort controller
adapts the hand configuration to maintain an initial wrench,
i.e. force and torque, while adapting to perturbation forces
on the object. We can obtain the wrench B F̄ j we set on the
hand for the stable grasping in the robot base reference as:

B F̄ j = J j (q j )
†� j , (1)

whereq j are the configuration of thefinger joint,� j their cor-
responding torques or efforts, J j (q j )

† is the pseudo-inverse
of the Jacobian for finger j , and the superscript B states the
wrench is in the base reference frame. The necessary condi-
tions tomaintain a stable grasp can be obtained by converting
the forces and torques of the initial wrench to the object refer-
ence frame and taking into account the friction coefficients,
and the normals at the contact points.

In order to maintain the stability of the grasp in the
presence of a perturbation the robot could use a position
control for its fingers, but that implies commanding large
torques to the joints, which may damage the hand. An alter-
native to ensure the hand is not damaged would be to keep
the wrenches in the object reference frame O F̄ j constant,
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but that would work as long as the palm pose suffers only
small changes, i.e. for small perturbations. Maintaining the
wrenches in the object reference frame has two important
drawbacks; first, the perturbation force can be used to “con-
trol” or “drive” the hand; and, second, the stability of the
grasp could be lost (leading to the object being dropped).
Instead of controlling the hand position or maintaining the
wrenches in the object reference frame, we opt for keeping
and restoring the contact forces and torques as computed in
the base frame B F̄i for a stable grasp for each finger. Using
the proposed approach allows the robot to adapt smoothly to
perturbations while keeping the object grasped close to the
stable configuration, thus, preventing the hand to be damaged
and the object to fall. The effort joint control considers the
fingers individually and uses the given stable grasp wrench
B F̄i as a reference while the perturbed measured wrench
BF j is fed back to the controller. Therefore, given the dif-
ference between the j th finger contact wrench BF j and the
one for the stable grasp we apply to the finger’s joints the
efforts:

� j = K j J j (q j )
T

(
B F̄ j − BF j

)
, (2)

where J j (q j ) is the Jacobian of finger j at the joint posi-
tion q j , and K j is a square gain matrix of size equal to the
joints to control. Thus, for instance, the finger moves back-
wards to keep the force constant if a perturbation increases
the contact force while maintaining the direction and torque.
Generally, the product of a perturbed wrench and the Jaco-
bian results inmotion of the finger to compensate for external
forces and torques. When a perturbation force is applied
(since the grasped object is rigid), a change in the con-
tact force and torques is perceived by all three fingers. All
fingers move individually to maintain the stable grasping
wrench in the base frame. As the friction of the rubber
fingertips of the BioTAC is large, the motion can have
a different effect on the wrenches in the object reference
frame. However, we experimentally found that this con-
trol mechanism kept a stable grasp while the object moved
due to external perturbations. In this manner the proposed
control mechanism implements compliance in the tactile
force.

Figure 3 represents the different coordinate frames of
the hand used in the rest of the paper; the base frame
of the forearm B, the object frame O , and the end-
effector frames E j corresponding to each fingertip or
BioTAC sensor. The transformations between B and E
(BTE =B TE j omitting the index for the finger) can be
easily computed using the forward-kinematics of the manip-
ulator, while the wrenches/forces applied to the object are
computed in the reference frame of each individual Bio-
TAC.

Fig. 3 Scene coordinate frames diagram

2.2 Cartesian force estimation using the BioTAC

When the hand joints have torque sensors attached, the
wrench applied to the object can be easily computed from
the measured torques � using the pseudo-inverse Jacobian
matrix for the corresponding configuration J (q)† as BF =
J (θ)†�. However, the sensors included in the joints of the
Shadow hand measure the differential effort (i.e. differential
tensions) on the tendons (Elias), not the applied torque in the
joints. Therefore, we present an alternative approach—using
SynTouch BioTAC (Fishel et al. 2013) tactile sensors—to
estimate the contact forces in the fingertips Bf instead of the
applied wrench.

The BioTAC is a biomimetic tactile sensor that provides
a number of sensing modalities such as micro-vibration,
pressure, temperature, heat flux and fingertip compliance.
Although the BioTAC is not a force sensor we can estimate
the contact force from its measurements. Specifically, we can
compute the contact force by using the pressure, the contact
area, and the normal vector to the object surface. While the
pressure measurements are obtained from the BioTAC’s raw
data, the contact area and the normal vector to the object sur-
face are estimated from the skin deformation. Upon contact,
the increase in the pressure measured by the BioTAC (P) can
be converted into the norm of a contact force (|f|) by simply
using the relation |f| = Pa, where a is the contact area with
the object. Although the pressure is obtained from the sensor,
the contact area can only be estimated from impedance mea-
surements from 19 electrodes located across the finger core.
The measured impedance is directly related to the distance
between the core and the rubber skin at their corresponding
locations and the impedance value with respect to the rest-

123



Autonomous Robots (2019) 43:1623–1637 1627

ing level, i.e. no contact, decreases when the rubber skin is
deformed.

We use the BioTAC sensor and the approach presented
in Gómez-Eguíluz et al. (2016) to approximate the contact
area corresponding to each electrode i as a circle of radius
ri equal to half the distance between the electrode and its
nearest neighbour. The total contact area of the fingertip can
be obtained as a weighted average of these individual areas:

a =
∑
i

λiπr
2
i , (3)

where λi ∈ [0, 1] is an impedance dependent scale factor.
To estimate the scale factor λi we define a piece-wise linear
function of the change of the impedance value ei of each
electrode relative to the resting level ēi as:

λi =

⎧
⎪⎨
⎪⎩

1 if ei ≤ em
1 − ei−em

ēi−em
if em < ei < ēi

0 if ei ≥ ēi

(4)

where em is a lower impedance threshold to saturate the cal-
culation of the contact area around the electrode (in our case
experimentally fixed to em = − 400). Thus, λi is zero at the
resting level (or above) meaning no contact at the electrode
position, it linearly increases to 1 for decreasing impedances
up to the threshold em , and is 1—maximum contact area—
for values below the threshold.

Although the fingertip of the BioTAC also applies a torque
at the contact point, there is no way to estimate it, nor to
compute the component of the force tangential to the object.
Therefore, we assume that the full length of the force is
applied in the direction perpendicular to the contact surface.
We use the technique presented in Su et al. (2012) to esti-
mate the contact direction based on the unit vectors normal
to the BioTAC fingertip at each electrode position. Similar to
the approach used to compute the area, a weighted average
of the normal vectors using the change in the corresponding
impedances relative to the resting levels is used to compute
the contact direction. Given the normal vectors for the Bio-
TAC electrodes—constant in the fingertip reference frame
E − n̂i , i = 1, . . . , 19, the total estimate of the contact
force can be computed as:

E f = |f|
| ∑i λi n̂i |

∑
i

λi n̂i , (5)

where λi and the force norm | f | are defined above. It is
worth noting that Eq. 5 corresponds to the contact force in
the reference frame of the fingertip. For simplicity, and unless
stated otherwise, we denote by E the reference frame of the
end-effector of any finger j , i.e. E = E j , since all fingers
are processed identically. As we will see in Sect. 2.4, the

proposed object handover algorithm uses E f to detect the
perturbation force direction and to trigger the object release.
Additionally, we need to convert the estimated forces to the
base frame Bf as they are used in the proposed grasping effort
controller and they are the basis to detect the variations on
the load force.

2.3 Load force variations for event detection

The proposed handover algorithmwas designed to release the
object based on two events: the detection of a perturbation
event and the right pulling force direction.We use the change
in the perceived load force to identifywhen a perturbation has
been applied on the object and, thus, trigger a classification
process (see Sect. 2.5) to identify the direction of the object
pulling force. Therefore, at every time step, we update a fixed
size sliding window of duration �t seconds (�t = 0.05) to
include the latest forces Bfmeasured by the BioTAC sensors.
The window BW is divided in two equal sized sequences
BW1 and BW2, where BW1 denotes the oldest data and
BW2 the most recent. We compute the averages over the
windows and use them for detecting load force variations.

Most of the object handover approaches in the literature
rely on changes in the load force to control grasping forces.
Here, the estimate of the load force in the base frame BfL cor-
responds to the sum of all the contact forces BfL = ∑

j
(Bf j ).

In Gómez-Eguíluz et al. (2017a), we found that a change in
the norm of BfL , �BfL , can be detected when an external
action is being carried out over the object. In the context
of the reliable object handover algorithm, this norm change
event triggers a classification process to identify the type
of event as described below. When a perturbation force is
applied on the object, the range in which the contact force
varies is different for x , y and z coordinates with respect to
the BioTAC’s frame. Because of the ranges of BfL , �BfL
is more sensitive to perturbations in some directions than in
others. For instance, despite being very sensitive for lateral
perturbations with respect to the fingertips, the change in
the norm was not as responsive for frontal movements due
to contact force variations relying on a smaller range than
for the lateral ones. In order to solve this issue, we take into
account the scale of the contact force variations for each axis.
Therefore, the variation on the load forces is computed as the
Mahalanobis distance between

〈
BW1

〉
and

〈
BW2

〉
:

�BfL =
〈
BW∗〉T B�−1

〈
BW∗〉 , (6)

where
〈
BW∗〉 = 〈

BW1
〉−〈

BW2
〉
,
〈
BW i

〉
denotes the expected

value of the corresponding sub-window BW i , and B�−1 is
the covariance matrix of BW . We empirically found values
for B�−1 by computing the covariance of the load force BfL

123



1628 Autonomous Robots (2019) 43:1623–1637

using recorded data during a steady state of the hand, i.e.
without perturbation forces applied. If �BfL exceeds a fixed
threshold we can determine that an external force is acting
on the object. The threshold fth = 0.002 was experimentally
chosen while slightly perturbing the object with the grasping
effort controller running. It is worth noting that selecting
fth without using the grasping effort control system would
generate a threshold value that is too large as the hand is not
adapting to perturbations resulting in greater contact forces.

2.4 Features for force direction detection

Thus far, we can detect a perturbation force being applied
on the object BfL exceeding a given threshold. However, as
not all perturbations are expected to result in a handover, we
also need to identify the direction of perturbation force that
will trigger release if and only if it is safe to do so. To clas-
sify the direction of a perturbation force over the object, we
modelled the variations of the contact force E f j estimated
using the BioTAC for each individual finger j = 1, 2, 3 with
respect to their corresponding resting forces E f̄ j . Although
the perturbation direction could be estimated in the refer-
ence frame of the forearm, i.e. using Bf j , we experimentally
found that the consistency of the estimated direction was
higher when computing features for the direction detection
in the reference frame of the fingertips. The reason for this
experimental result is that the perturbation direction in the
base reference frame is affected by the uncertainty of the
measurements of the joint angles. Moreover, selecting the
fingertip frame to represent the perturbation direction allows
to define constant directions relative to the configuration of
the fingers, which are directly related to the grasped object.
Given the initial grasp of the object, we compute the resting
forces E f̄ j , as the average response within a window of �t
seconds. We use a sliding window, which is updated at the
sensor sampling interval, to retain all E f j estimates obtained
during the last�t seconds. As the human touches the object,
potentially starting a handover, the robot computes the per-
turbed forces of each finger as the average of the forces in
the sliding window E f j = E

[
E f j (tk)

]
. It is worth noting that

both the resting and the perturbed forces are in the fingertip
reference system.

We denote θ fj and φf
j the azimuth and elevation angles of

the normalised contact perturbed force vectors for each finger
j respectively, i.e. the spherical coordinates of the normalised
force vector in the reference systemof thefingertip. Similarly,
θ f̄j and φ f̄

j are, respectively, the azimuth and elevation angles
of the normalised forces at the resting position. To identify
the pulling force direction we define a feature vector contain-
ing the differences between the azimuth and elevation angles
of the contact forces and those corresponding to the resting
position forces of each finger in their corresponding fingertip

reference frame, i.e. θ j = θ fj − θ f̄j and φ j = φf
j − φ f̄

j . The
resultant feature vector ϑ = (θ1, φ1, θ2, φ2, θ3, φ3) is the
angular deviation of the contact forces, which is an invari-
ant descriptor against changes on the hand position, object
geometry and size.

Finally, a Kalman Filter was used to estimate the angular
deviation velocities of the contact forces ϑ̇ . We will use the
posterior state estimate X̂k|k as the feature vector for detect-
ing perturbation force directions (see Sect. 2.5). A constant
velocity model was used to compute the state estimate X̂k+1

at time k + 1 from the true state Xk at time k. The true
state Xk was obtained by concatenating the angular devia-
tion of the contact forces ϑ and their velocities ϑ̇ at time
k. We assume constant process and observation noise in the
model and empirically found appropriate initialization for
the covariance matrix of the process noise. Before detecting
any event or pulling direction we collect readings during 5 s
whichwere used to compute values ofϑ and their covariance.
We set the observation noise by using the covariance of ϑ in
the calibration data, which we assume was obtained without
exerting any perturbation on the contact forces. Therefore, at
each time step k we predict the state X̂k|k−1 and covariance
matrix Pk|k−1 using the latest posterior estimate X̂k−1|k−1.
Then, we update the posterior estimate for both the state
X̂k|k and covariance Pk|k , which will be used for estimating
a priori parameters in the next time step k + 1.

Filtering the feature vector ϑ using a Kalman Filter
before classifying the perturbation force directions allows
to overcome two issues. First, the feature vector ϑ is often
very noisy and leads to some misclassification cases [see
Gómez-Eguíluz et al. (2017b)]. More importantly, using ϑ

as descriptor for perturbation force directions results in occa-
sional false positives which trigger the hand to release the
grasp, allowing the object to fall. By filtering the angular
deviation of the contact forces abrupt changes in the trajec-
tory estimation of the angles deviation that put the safety of
the object at risk will not occur; for instance, when the object
perturbation force has ended, a bouncing effectmight happen
after sudden release. Secondly, by computing the posterior
state of the observation we estimate the angular deviation
velocity ϑ̇ of the contact forces, which provides additional
information to enhance classification accuracy with respect
to our baseline work.

2.5 Statistical learning of perturbation force
directions

Object release detection is based on two events: the change
in the perceived load force (see Sect. 2.3), and the issue of a
pulling force by the receiver with a predetermined direction.
The classification of the pulling force direction applied on
the object is characterised as follows. We denote H as the
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discrete random variable representing the different pertur-
bation force directions in the fingertip reference frame (E)
relative to the stable grasp measured in azimuth and eleva-
tion, i.e. the n events to be identified {h1, h2, . . . , hn}, and
X̂ the 12-dimensional random vector of features encoding
the posterior state estimate through the Kalman filter. In this
case the number of object perturbation forces is n = 5, cor-
responding to forward, backward, up and down perturbation
directions and a receiver steady grasp event where no pertur-
bation force is applied. We obtained training sets to estimate
the likelihood functions of the feature vectors for each event,
p(X̂|h j ), which we model as normal distributionsN (μ,�)

with mean μ and covariance �. Therefore, for each event j ,
we obtained a normal distribution with mean μ j and covari-
ance � j .

Having the models of the likelihood function p(X̂|h j ) for
all events and given a set of prior probabilities p(h j ), one
can estimate, through the Bayes rule, the posterior prob-
abilities p(h j |X̂), and classify input data according to the
maximum a posteriori (MAP) probability. For simplicity, we
will denote X̂k = X̂k|k the Kalman filter’s state estimate at
time k. Under the assumption of initial uninformative pri-
ors p(h j ) = 1

n for all pulling directions j we update the
current estimate when the change of the load force �BfL
exceeds a threshold fth (see Sect. 2.3). Therefore we will
use the feature vector X̂ to iteratively obtain new posteriors
for each event, and the posterior probability p(h j

k |X̂k) at step

k will be the prior to obtain the next estimate p(h j
k+1|X̂k+1).

When a significant change in the load force is first detected,
the initial prior probabilities are distributed evenly among
all events. We estimate the contact forces from the BioTAC
data stream and compute the feature vector X̂k , in windows
of time length �t , and update the posterior probabilities,
when a significant variation in the load force is detected,
using:

p
(
h j
k |X̂k

)
=

p
(
X̂k |h j

k

)
p

(
h j
k |X̂k−1

)

p
(
X̂k |X̂k−1

) (7)

where p(X̂k |h j
k ) is given by the likelihood function of per-

turbation force direction h j , and the normalisation constant
p(X̂k |X̂k−1) can be obtained as:

p(X̂k |X̂k−1) =
N∑
i

p
(
X̂k |hik

)
p

(
hik |X̂k−1

)
. (8)

2.6 The reliable object handover algorithm

The pseudocode of the proposed approach for reliable object
handover is shown in Algorithm 1. In each iteration the
algorithm estimates the load force variations (line 5) and,

Algorithm 1 Reliable object-handover algorithm
1: procedure object- handover(E f j ) � BioTAC forces

2: B f j ← T (E f j ) � Transform E f j to base

3: Update EW with E f j � Pull detect sliding window

4: Update BW1 and BW2 with
∑
j

B f j � Event detect sliding window

5: �B fL ← Mahalanobis
[〈
BW2

〉
,
〈
BW1

〉]
� Load force change

6: Set empty ϑ

7: for j = {1, 2, 3} do � For each finger

8: �E θ j ← arctan

[
E f̄

j
y

E f̄ jx

]
− arctan

[
E f jy
E f jx

]

9: �Eφ j ← arctan

⎡
⎢⎣

E f̄
j
z√

(E f̄ jy )2+(E f̄ jx )2

⎤
⎥⎦ − arctan

⎡
⎢⎣

E f jz√
(E f jy )2+(E f jx )2

⎤
⎥⎦

10: ϑ ← ϑ
⋃[�E θ j , �

Eφ j ] � Angular changes feature vector
11: end for
12: Compute X̂k|k−1 and Pk|k−1 � Kalman Filter Predict Step

13: Compute X̂k and Pk|k � Kalman Filter Update Step

14: if �B fL > fth then � Event detection

15: Update p(h j
k |X̂k ) ∀ j ∈ [1...n] using Bayes Rule

16: dirk = max
X̂

p(h j
k |X̂k )

17: if dirk 	= dirk−1 then
18: t∗ = t
19: else if t − t∗ > tth and dirk = h∗ then
20: ReleaseObject & End
21: end if
22: end if
23: � j ← K J (q j )

T
(
B f̄ j − B f j

)
� Send efforts to joints

24: end procedure

if required, updates the conditional probability p(h j
k |X̂k) for

all perturbation events, j = 1, . . . , n (line 15). It is worth
noting that there is an abuse of notation in the computa-
tion of the angular changes, since the perturbation angles are
obtained from the normalised force vectors in lines 8 and 9 of
the algorithm. The object perturbation force direction which
has the highest posterior probability can be considered the
one that the robot is perceiving at time step k. However, we
aim to endow robots with a reliable method that guarantees
reliable handovers. As mentioned before, a single false pos-
itive would result in the object falling. Hence, the proposed
algorithm only releases the object if a pre-set pulling direc-
tion h∗, i.e. direction in which the human is expected to pull
the object, is detected during more than tth seconds (lines
17–21). As the value of tth is small (0.25 s), the system is
still responsive enough to release the object in a timely man-
ner (see Sect. 3.2). Although a small value of tth also entails
the detection of load force variations caused by unexpected
collisions, they are detected as isolated events as collisions
are not likely to be consistent during h∗ seconds. Thus, the
reliable object handover algorithm ensures the safety of the
object by releasing only when the pulling force direction is
consistent with the pre-set perturbation force direction for a
period of time. As detailed in Sect. 2.1, the algorithm also
ensures the safety of the object by maintaining the initial
wrench (line 23) when perturbation forces are applied on the
object.
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3 Experimental results

This section presents a set of experiments performed to illus-
trate the workings of parts of our algorithm and to carry some
proof-of-concept tests. Specifically, Sect. 3.1 shows how the
pulling direction can be estimatedwith the features presented
in Sect. 2.4 using the Kalman filter. Section 3.2 extends the
tests to the detection of the discrete perturbation directions,
and illustrates the procedure to find good parameters of the
algorithm. Finally, Sect. 3.3 presents results from the over-
all algorithm including the release of the object once all the
conditions of the algorithm are met, i.e. right perturbation
direction and duration.

The algorithm presented was evaluated on a real Shadow
Robot Hand with Syntouch BioTAC tactile sensors installed
in the thumb, first and middle fingers. The ShadowHand was
attached to a Schunk arm modified to compensate for the
additional weight. Figure 4 shows the experimental set-up
used. Although the arm stays fixed in all of the experiments,
the set-up provides a natural handover configuration by plac-
ing the hand horizontally. The initial configuration of the
fingers was manually set in the centre of the hand workspace
and we used it for all the experiments as a starting point for
the initial grasping. This position allows large finger motions
without lost of contact when perturbation forces are applied
to the object. From this initial approximate position, the fin-
gers were manually adjusted to generate a stable precision
grasp on the object, and to apply a force within the range
the BioTAC sensors can estimate. Therefore, every exper-
iment had slightly different configurations of grasp forces
applied on the object. Before performing the experiments
the electrodes of the BioTAC were calibrated to avoid drifts
of the readings due to changes in the sensor gel after a series
of runs. In order to avoid damaging the robotic hand when
applying a perturbation force, the grasp effort controller (see
Sect. 2.1) was used during all the experiments. The effort
controller adapts the contact forces online to the initial con-

Fig. 4 Experimental set-up

figuration and, thus, ensures the safety of the hand and the
object. However, the effort controller interaction also makes
the problem of detecting the object perturbation force direc-
tion more complex as the controller tries to restore the forces
and reduce the perturbation.

Readings from four perturbation force directions were
manually collected from examples to obtain models of
their corresponding likelihood function (from the receiver’s
perspective forward, backward, up and down). This exper-
imental modeling methodology can be extended to other
perturbation directions. All training data were obtained from
the initial grasp configuration using a flex foam cube of size
4.5 × 3.9 × 3.25 cm with high stiffness, i.e. the maximum
hand force cannot deform the object. The training data were
stored when the variation of the load forces exceeds a thresh-
old ( fth = 0.5) as the algorithm only computes the posterior
probability of the perturbation force directionswhen this con-
dition is met (see Sect. 2.3). This means that the number of
training trials required varied for each perturbation class. The
number of trials used to model each object perturbation force
was typically between 5 and 10.

As mentioned in Sect. 2, the detection of pulling force
directions relies on the variations of the contact force esti-
mate of each finger.We experimentally found that a sequence
of perturbations is often applied to the object by the human
receiver of the handover instead of one pure pulling force
direction. For instance, an unintentional perturbation force
might be applied while approaching the grasp followed by
an intentional one, which may not be in the same direc-
tion. Furthermore, we compute the likelihood function for
a “joint grasp” state, i.e. robot and human, in which the
perturbation forces might not be intentional or sufficiently
significant to determine the perturbation force direction accu-
rately. Although the system does not release the object when
detecting this state, we found that it enhances the reliability
of the handovers (see Sect. 3.2).

Together with the four force directions, we modelled the
angle variations of all fingers when the object is grasped but
non-intentional forcewas applied, i.e. a “joint grasp” state. In
order to obtain a wider range of small force perturbations, we
did not use the event detection system for collecting readings
of the “joint grasp” state. Therefore, unlike training data from
intentional perturbation forces, the data used for obtaining
the models of the “joint grasp” state were sampled at fixed
rate. This method resulted in collecting more data for each
trial and, consequently, the number of trials used to model
the “joint grasp” state was reduced to three.

3.1 Trajectory filtering

In this experiment a number of object perturbations were per-
formed on a grasped object to understand the interaction of
theKalmanFilter on the force angle variationswith respect to
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Fig. 5 Index finger angle variations during downwards perturbation
force

the stable grasp reference. As explained in Sect. 2.4, the true
state X is filtered to reduce the noise and to obtain additional
hidden features, i.e. angle variation velocities. We evaluate
the experiment on three foam objects with different geome-
tries but similar stiffness: a cube, a cylinder and an octagon
prism; andwe used the initial grasping forces as the reference
for the controller. A perturbation force was then applied to
the object and the posterior X̂ and true X force states were
stored at every time step. Figure 5 shows the evolution of the
angle variations, with and without filtering, and their corre-
sponding velocities during a downward perturbation force.
Figure 5a plots the azimuth angle variations of the index fin-
ger θ2 and Fig. 5c represents the elevation angle variations
φ2 for the same finger. The solid lines represent the angu-
lar deviations of true force state X while the filtered angle
trajectories, θ̂2 and φ̂2, are represented by dashed lines. Fig-

ure 5b, d show the velocity hidden state of the azimuth ˙̂
θ2

and elevation ˙̂
φ2 angles respectively i.e. obtained from the

posterior force state X̂ .
In comparison with the approaches presented in Gómez-

Eguíluz et al. (2017a, b), it can be observed that filtering
the signal reduces the noise in X , smoothing the trajectory.
Furthermore, it was found that smooth trajectories together
with velocities simplifies statistical modelling and enables
each perturbation to be modelled as a Normal distribution
(see Sect. 2.5), while in previous works the perturbations
weremodelled asmixture ofGaussians. Hence, the presented
approach eliminates the need to provide the number of Gaus-
sians of each mixture model and allows one to effectively
deal with occasional sudden changes in the object perturba-
tion forces.

Fig. 6 Recursive estimation of perturbation force directions
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3.2 Object perturbation detection experiments

This section presents the experimental results of the approach
presented in Sect. 2 for detecting object perturbation force
directions. For this set of experiments a total of 48 trials
were collected from four different object perturbation force
directions and 12 additional trials of “joint grasps”, i.e. no
intentional perturbation forces applied, using three objects:
a cube, an octagon prism and a cylinder. For all data collec-
tion, the initial grasp configurations were manually adjusted
to generate an initial stable grasp approximately similar in
all trials. This led to slightly different grasp configurations
and applied forces over the objects. The variations in initial
grasp configurations are not the only differences between tri-
als, since the object pulling forces were not controlled and
the iteration of the grasp effort controller varies across trials.
Figure 6 shows the classification estimate for 1 s long pertur-
bation forces in forward, upwards and downwards directions.
Although the initial estimate might be incorrect, the sys-
tem always estimates the correct perturbation direction when
sufficient evidence is presented. This demonstrates that the
system can generalise to unseen object shapes as the cylinder
or the octagon prism were not used for training. Moreover, it
can be observed that the largest estimated probability remains
stable after the correct perturbation force direction has arisen.

As explained in Sect. 2.6, the reliable object handover
algorithm detects that the receiver is pulling the object in a
certain direction when its estimate is higher than any other
direction estimate during tth seconds. Therefore, the value of
tth establishes a trade-off between system responsiveness and
classification accuracy. The aim is to find a value of tth that
guarantees that the system will perform reliable handovers.
This is discussed in the next section.

3.2.1 Response versus accuracy

In this experiment the time required for successful identi-
fication of the correct perturbation for different values of
tth seconds using the 48 trials from four different perturba-
tion force directions detailed above is computed. The time
needed to detect the “joint grasp” state is not considered as
the proposed algorithm only computes a new estimate of per-
turbation force directions if a significant change on the load
force is detected. Thismakes it impossible to replicate similar
conditions with the whole algorithm running as the data used
for modelling a “joint grasp” were collected without using
the event detection system. Furthermore, considering that the
handover should never be completed during the detection
of a “joint grasp” state, the time needed to detect it would
not be representative of the system responsiveness for object
release.

Figure 7 shows the average time needed for successful
identification μ and standard deviation (σ ) for different val-
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Fig. 7 Identification speed for different values of tth

ues of tth since the perturbation force is first applied on each
trial used in this experiment. It is worth noting that there
is a lower boundary of identification time as perturbations
are detected when the estimate is consistent during a period
longer than tth seconds. Therefore, the minimum time that
detecting the correct perturbation can take is tth seconds and
it is represented as by a red dotted line (see Fig. 7). The
solid line represents the average time needed for success-
ful identification while the average value plus three times its
standard deviation μ + 3σ is represented by the dashed line,
showing the range in which successful object perturbation
force detection is performed 99.7% of the times. We found
that, despite the average detection time growing progres-
sivelywith increasing tth , the standard deviation significantly
increases for values greater than 0.25. It can be concluded
that, although the value of tth should remain as small as pos-
sible, good response is achieved for values smaller than 0.25,
for which the detection seldom takes longer than 0.4 s.

Additionally, the average classification accuracy of the
proposed approach for different values of tth is analysed
using the same 48 trials from four different object pertur-
bation force directions used in the rest of experiments of this
section. Differently than when evaluating the time required
for successful identification, this experiment considers the
12 additional trials of “joint grasps” as their misclassifi-
cation could result in unexpected object release. Figure 8
shows the average accuracy as a function of tth . We found
that an 81.57% identification accuracy is obtained when
only one estimate is considered, i.e. tth = 0, being signif-
icantly increased when using greater values of tth . In order
to choose an appropriate value for tth , one could choose the
value such that greater values do not significantly increase
the classification accuracy. According to that criterion, a
95.29% identification accuracy was obtained when select-
ing tth = 0.15.
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Fig. 8 Identification accuracy for different values of tth

Table 1 Confusion Matrix of perturbation force directions for tth =
0.15

Back (%) Front (%) Down (%) Up (%) Joint grasp (%)

Back 88.54 0.00 0.00 0.00 11.46

Front 1.75 92.98 0.00 0.00 5.26

Down 0.00 0.00 97.49 2.51 0.00

Up 0.00 0.00 0.00 97.41 2.59

Joint grasp 0.00 0.00 0.00 0.00 100.0

3.2.2 Tuning for reliable handovers

In practice a reliable handover system should never release
the object when it is not supposed to. Although the results
of the previous experiment show that tth = 0.15 provides
the best trade-off between system responsiveness and clas-
sification accuracy, the aim is also to keep the rate of false
positives as low as possible. Table 1 shows the confusion
matrix of perturbation force directions for tth = 0.15 which,
as mentioned above, provided the best trade-off between sys-
tem responsiveness and classification accuracy. Despite the
average classification accuracy being 95.29%, one can under-
stand that trials classified as “joint grasp” will not make the
system fail as the object will not be released on this state.
However, it is fair to say that it makes the system less respon-
sive, as detecting the “joint grasp” state while a perturbation
force in the direction set for object release is being applied
will delay the completion of the handover. Therefore, the sys-
tem will find a false positive 1% of the times for tth = 0.15,
which may result in unexpected object releases. Neverthe-
less, this limitation can be overcome by increasing tth at the
cost of reducing the system responsiveness. As mention in
Sect. 3.2.1, the system response is not significantly decreased
for values of tth < 0.25 s. The confusion matrices for dif-

Table 2 Confusion Matrix of perturbation force directions for tth =
0.25

Back (%) Front (%) Down (%) Up (%) Joint grasp (%)

Back 85.71 0.00 0.00 0.00 14.29

Front 0.00 100.0 0.00 0.00 0.00

Down 0.00 0.00 100.0 0.00 0.00

Up 0.00 0.00 0.00 98.16 1.84

Joint grasp 0.00 0.00 0.00 0.00 100.0

ferent values of tth were computed and it was found that the
number of false positives for all values greater than 0.20 s
is zero. Table 2 shows the confusion matrix for tth = 0.25
in which only the values belonging to the diagonal or the
“joint grasp” are different from zero. It is worth noting that
tth = 0.25maintains good system responsiveness as the aver-
age time needed for successful identification is 0.27 s (see
Fig. 7). Therefore, tth = 0.25 provides adequate balance
between average accuracy (96.77%), average responsiveness
(0.27 s) and system reliability (0% false positives).

3.3 Force adaptation and object handover

This section presents experimental results of the reliable han-
dover algorithmwhen a sequence of perturbation forces with
different directions are applied to the object. Specifically, we
performed force direction detection experiments along with
the effort adaptation controller for sequences of two com-
bined perturbations. Therefore, the response of the approach
was tested using a variety of consecutive events including at
the end a perturbation force that was pre-set to be the direc-
tion that completes the handover, i.e. the hand has to open the
fingers releasing the object. We evaluated the algorithm for
every combination of perturbing forces such as two opposite
object rotations, vertical forces, pushing and pulling (from
the user viewpoint), while the robot is expected to perform a
handover only when the backward perturbation is detected,
i.e. the human pulls from the object.

Figure 9 shows the sequence of one of the trials, where
the object is rotated in a counter-clockwise direction and then
pulled from the robot hand, i.e. triggering the object release.
Although the fingers adapt individually and the controller
has no information on the shape of the object, the system
kept contact with the object and maintained a stable grasp
when rotating the object (see Fig. 9b, c). Then, the object was
released when a perturbation force backwards was detected
as shown in Fig. 9d–f.

Figure 10 shows the evolution of the components of the
forces over time in their corresponding end-effector frame for
the above experiment. The first two solid vertical lines in the
time sequence represent the start and end of the object rota-
tion and were set using the event detection system. The third
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Fig. 9 Object rotation and pulling event sequence

vertical line sets the beginning of the pulling force perturba-
tion while the final vertical line signals the pulling force and
consequent object handover. During a perturbation force, the
contact forces deviate from the initial configuration and the
fingers change their position while trying to keep the differ-
ence with the reference forces as small as possible. When the
perturbation force ends the controller keeps trying to restore
the reference contact forces. However, the hand could not
generate the exact same forces since the configuration of the
fingers changed and the robot did not have enough degrees
of freedom to compensate for these variations. This happens
in many trials because each finger has only three joints and
therefore the grasping configurations were not manipulable.
Nonetheless, the controller maintained the forces close to the
initial reference and, despite the fact that the configuration
of the hand changed after the first perturbation, the proposed
approach successfully detected the pulling event and released
the object.

We tested the performance of the continuous detection
of perturbation force directions in the current experiment.
Figure 11 plots the results of the classification for the time
periods in which the object perturbations are applied which
corresponds to the time periods of Fig. 10 from 2–3.3 s and
5.5–8.2 s. The horizontal axis is the time while the verti-
cal axis is the probability of each direction. A solid vertical
line shows the exact moment when the correct force per-
turbation is detected i.e. consistent estimation during more
than 0.25 s. As the algorithm only computes the posterior
estimates of the perturbation events when a change in the
load force is detected, the classification is not performed at a
fixed rate. Therefore the temporal gaps in Fig. 11 are a result
of the overall force change being smaller than the thresh-
old at that point. It is worth noting that, although the object
rotations were not included in the training sets, the system
was able to correctly classify an object perturbation force

Fig. 10 Forces response against object rotation and pulling events for
each finger
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Fig. 11 Perturbation on object classification of a sequence of events

being applied upwards when rotating the object counter-
clockwise. We found that intermediate object perturbation
force directions were detected for a short period of time,
prior to the detection of the correct one. Moreover, Fig. 11a
shows a sequence of posterior estimates when the object was
released from the roll rotation. Interestingly, this sequence
of estimates is an inversion of the one observed prior to the
detection of a perturbation upwards. However, none of these
sequences of estimates kept a consistent estimate for longer
than tth = 0.25 s and, thus, they did not result in an object
release. Figure 11a, b show that only the probability of the
correct force direction is consistently estimated sufficiently
long enough to be detected and, if required, triggered the
object release (see Fig. 11b).

4 Conclusions and future work

This paper presents an algorithm to perform reliable robot
to human object handovers, which has been implemented
using a Shadow Robot Hand equipped with BioTAC tactile
sensors. State-of-the-art approaches assume the handover is
going to take place with no potential problem. However this
is not always the case as external forces could be applied
on the object during the handover process, resulting in the
object falling or the robot hand being damaged. To solve
these two issues, the proposed approach adapts the grasping
with respect to perturbation forces on the object and only
releases the object when the receiver pulls the object in a
pre-set direction. Relying on tactile sensing, the proposed
algorithm combines effort joint control, event detection, and
identification of object perturbation force directions in order
to perform reliable handovers.

Experiments show that the effort controller successfully
adapts to new configurations in the presence of perturbations.
However, the limited number of degrees of freedom of the
fingers relative to the palm restricts the object movement. In
the case of the ShadowRobot hand this implies small changes
on the point of contact between the fingers and the object,
which potentially affect the stability of the grasp. Although
levels of variability on the contact force configuration for
grasping the object were considered, objects with signifi-
cantly different shapes might require additional training to
deal with the resultant object grasps; e.g. when handing over
a triangle. In general the parameters of the algorithm (pulling
direction and force and time thresholds) could depend on the
human and the handover context, so that they have to be
optimised for individuals, groups or contexts. Tuning these
parameters is in general not trivial, although the approach
followed in this work, i.e. obtaining them from controlled
experiments, could be generalised to other configurations.
However, the pulling direction could be identified from the
specific interaction scenario and converted into the (config-
uration dependent) fingertip reference. Future research will
focus on further investigation into the human–robot interac-
tion scenario to predict the direction in which the receiver is
going to pull the object during the handover and with which
strength. Visual information could be included prior to the
handover to analyse the context in which it is going to be
performed such as receiver’s height, pose, approaching hand,
or intended object use. Although handovers typically occur
during stationary situations, we also aim at implementing
the proposed approach in mobile platforms and exploring
the effects of other type of perturbations such as inertial and
Coriolis forces.
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