
Autonomous Robots (2019) 43:1747–1779
https://doi.org/10.1007/s10514-018-9822-6

3Dmulti-robot patrolling with a two-level coordination strategy

Luigi Freda1 ·Mario Gianni1 · Fiora Pirri1 · Abel Gawel2 · Renaud Dubé2 · Roland Siegwart2 · Cesar Cadena2

Received: 1 March 2017 / Accepted: 20 December 2018 / Published online: 17 January 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Teams of UGVs patrolling harsh and complex 3D environments can experience interference and spatial conflicts with one
another. Neglecting the occurrence of these events crucially hinders both soundness and reliability of a patrolling process. This
work presents a distributed multi-robot patrolling technique, which uses a two-level coordination strategy to minimize and
explicitly manage the occurrence of conflicts and interference. The first level guides the agents to single out exclusive target
nodes on a topological map. This target selection relies on a shared idleness representation and a coordination mechanism
preventing topological conflicts. The second level hosts coordination strategies based on a metric representation of space
and is supported by a 3D SLAM system. Here, each robot path planner negotiates spatial conflicts by applying a multi-robot
traversability function. Continuous interactions between these two levels ensure coordination and conflicts resolution. Both
simulations and real-world experiments are presented to validate the performances of the proposed patrolling strategy in 3D
environments. Results show this is a promising solution for managing spatial conflicts and preventing deadlocks.

Keywords 3D patrolling · 3D multi-robot systems · Distributed multi-robot coordination · UGVs

1 Introduction

Multi-robot patrolling is a relevant area of investigation
in Artificial Intelligence (AI) and robotics since the early
nineties [see Portugal and Rocha (2011) for a survey and
Portugal and Rocha (2013b) for a study on strategies and
algorithms]. Still, the literature is limited to abstract agents

B Luigi Freda
freda@diag.uniroma1.it

Mario Gianni
gianni@diag.uniroma1.it

Fiora Pirri
pirri@diag.uniroma1.it

Abel Gawel
gawela@ethz.ch

Renaud Dubé
rdube@ethz.ch

Roland Siegwart
rsiegwart@ethz.ch

Cesar Cadena
cesarc@ethz.ch

1 ALCOR Lab, DIAG - Sapienza University of Rome, Rome,
Italy

2 Autonomous Systems Lab - ETH Zurich, Zurich, Switzerland

and robots that hardly can be operated in full 3D environ-
ments.

Multi-agents and multi-robot patrolling methods have
been largely treated in the literature for agents and robots
operating in laboratory settings and in allegedly 2D flat envi-
ronments. However, very little has been done so far when
patrolling (i) concerns real 3D world environments such as
emergency or inspection scenarios, and (ii) deals with com-
plex robot structures such as Unmanned Ground Vehicles
(UGV). In this regard, the differences are substantial: first,
the difficulties to be faced are substantially higher; second,
in real scenarios, where professional operators (purportedly
trained) act with extreme difficulties, the problems and tasks
that need to be addressed are driven by specific current needs
and not by abstract strategies.

This work addresses the multi-robot patrolling problem
for UGVs operating in full 3D environments. We propose
a strategy that minimizes and explicitly manages the occur-
rences of conflict and interference. These unwanted events
can generate deadlocks and severely impact a team of robots
when patrolling narrow surroundings due to collapsed infras-
tructures or other wreckages obstructing passages.

Indeed, despite the fact that fully autonomous robots can-
not be involved in human rescue so far, they can certainly
assist a human team engaged in several difficult tasks. For
example, robots are expected to lift the operators from the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-018-9822-6&domain=pdf
http://orcid.org/0000-0002-2268-6045

1748 Autonomous Robots (2019) 43:1747–1779

Fig. 1 Patrolling scenarios with their 3D maps and patrolling graphs. We refer the reader to the paper webpage https://sites.google.com/a/dis.
uniroma1.it/3d-cc-patrolling/ for videos and further details

burden of assessing the state of the environment such as
reachability of specific areas, footing of collapsed building,
dangerous pipes, infrastructures and objects, and safe areas
where the rescuers can possibly pass through in order to reach
relevant objectives. There is nowadays a wealth of literature
on the tasks and roles a robot team can perform in order
to reduce human risks under these circumstances [recent
reviews can be found in Kleiner et al. (2016) and Jung et al.
(2017)]. An analysis of robots’ potentials in reducing human
risks during disaster response and their associated costs are
treated in Tardioli et al. (2016).

Immediate intervention of robot teams to the aftermath of
tragic events [see for example Murphy 2004; Kruijff et al.
2012; Nagatani et al. 2013; Kruijff et al. 2014; Kruijff-
Korbayová et al. 2016 for a list of these episodes] requires
urgent solutions and assessments in terms of communication,
mapping and areas to be covered for information acquisition.
In this context, response time is often a key factor. As amatter
of fact, the deployment of several robots in the same disas-
ter area can yield critical success by potentially allowing a
faster coverage of larger areas. Furthermore, different orders
of robot autonomy are required and long-term human-robot
collaboration is desired to preside a disaster area over several
days (see e.g. Kruijff et al. 2012).

Therefore, a crucial support to the operators is the ability
of the UGVs team to collect information by patrolling the
hazardous area and reporting to the operators the gathered
knowledge.

To this end, solving spatial conflicts between several
robots is crucially required in order to attain optimal
patrolling in full 3D environments with large amounts of
obstacles and obstructed paths.

In this work, we delineate methods for handling strategies
to safely governUGVs behaviors in close proximity. To show
our methodology we focus on autonomous multi-robot path
planning and frequency-based patrolling, highlighting the
role of robot inference in resolving, sometimes compelling,

conflicts. We present a distributed multi-robot patrolling
technique, which uses a two-level coordination strategy that
minimizes and explicitly manages the occurrence of conflict
and interference, considering both topological and metric
strategies to solve spatial conflicts. The topological strat-
egy deals with the team coordination by allocating nodes to
individual UGVs on a patrolling graph. The metric strategy
attains coordination by ensuring safe traversal and collision
free multi-robot operation.

We show that the proposed framework is capable of oper-
ating in full 3D environments, allowing robots to successfully
patrol in uneven and unstructured terrain. The patrolling
algorithm is integrated with a 3D pose-graph Simultaneous
Localization and Mapping (SLAM) system, allowing robots
to continuously update and extend their traversable area as
well as register their data in a common reference frame using
an OctoMap representation. We also present a novel multi-
robot traversability analysis that is based on the local shape
of the map point-cloud, the spatial arrangement of the team
and the robots planned paths.

Results shown in Section 10.2 (some examples in real sce-
narios are depicted in Fig. 1) demonstrate that the proposed
system can face and solve an interesting set of spatial con-
flicts while minimizing interference. Due to the difficulties
in operating these UGV systems we augment the set of real
world experiments, reported in the experiment section, with
simulation experiments that reproduce real scenarios.

In summary, the novel contributions of the work are the
following:

(i) Patrolling on a 2Dmanifold embedded in the 3D space.
(ii) A two level coordination strategy for guiding a team of

patrolling robots in a distributed fashion.
(iii) Multi-robot traversability analysis considering team-

mates planning decisions.
(iv) A validation of our approach in realworld environments

and in realistic simulation scenarios.

123

https://sites.google.com/a/dis.uniroma1.it/3d-cc-patrolling/
https://sites.google.com/a/dis.uniroma1.it/3d-cc-patrolling/

Autonomous Robots (2019) 43:1747–1779 1749

(v) An open source implementation is available.1

The proposed strategy is presented within a comprehensive
system for 3D multi-robot patrolling.

The remainder of this paper is organized as follows. Sec-
tion 2 presents an overview of the main challenges that need
to be faced by a team of patrolling robots. In Sect. 3, we
survey works on multi-robot patrolling, though none of them
faces the real-world conditions we considered in this work.
Section 4 describes the problem setup. An overview of the
proposed multi-robot patrolling system is given in Sect. 5.2.
In Sect. 6, we describe the adopted distributed patrolling
strategy. Next, Sect. 7 describes the used multi-robot path
planning approach, followed by details on our 3D SLAM
system in Sect. 8. Finally in Sect. 10.2 we present the results
in both real world and simulation experiments and provide
implementation details.

2 Problem overview

A team of UGVs is called to patrol a 3D complex environ-
ment. A set of locations of interest is assigned and must be
continuously visited in order to monitor their surroundings.
The team objective is to maximize the visit frequency of each
assigned location. Such a mission poses many challenges.
3D uneven and complex terrain The UGVs are required to
navigate over a 3D uneven and complex terrain. In gen-
eral, the 3D terrain shape must be efficiently modelled and
properly interpreted in order to allowUGVs to robustly local-
ize and plan safe and feasible trajectories. To this aim, a
high-level understanding is typically required beyond a basic
geometric 3D representation of the scenario.
Spatial conflicts Narrow passages (for example due to col-
lapsed infrastructures or debris) typically generate spatial
conflicts amongst teammates. A suitable strategy is required
to (i) minimize interferences and (ii) recognize and resolve
possible incoming deadlocks, which can hinder UGVs activ-
ities or even provoke major failures.
Dynamic environmentThe environment may be dynamic and
large-scale (Cadena et al. 2016). In this case, UGVs must
continuously update their internal representations of the sur-
rounding scenario in order to best adapt their behaviours and
quickly react to changes. This is a crucial requirement for
continuous, efficient and safe operations.
Unreliable communication network In order to collaborate,
UGVs must continuously exchange coordination messages
and share their knowledge over a network infrastructure.
Indeed, real world networks might be unreliable and offer
only a limited communication bandwidth. Therefore, the
patrolling strategy must rely on an efficient coordination

1 https://gitlab.com/luigifreda/3dpatrolling.

protocol and show robustness with respect to possible com-
munication failures.
Long-term operations Patrolling is a long-term task which
requires the adoption of suitable persistent models. UGVs
are resource-constrained systems which must be able to effi-
ciently select and integrate only relevant information. At the
same time, irrelevant sensory datamust be filter out and disre-
garded. These capabilities are crucially required to maintain
a compact and usable knowledge representation in the long-
term.

We address the aforementioned challenges in the follow-
ing.

3 Related work

Multi-robot patrolling has found in recent years several
applications in real domains where distributed surveillance,
inspection, or control are crucial [e.g., computer network
administration (Andrade et al. 2001; Du et al. 2003), secu-
rity (Agmon et al. 2014, 2008a; Hernández et al. 2014),
Search and Rescue (SaR) (Acevedo et al. 2013; Aksaray
et al. 2015; Pippin and Christensen 2014), persistent moni-
toring (Song et al. 2014), hotspot policing (Chen et al. 2017),
military (Park et al. 2012)]. Typically, in this contexts, a team
of robots is required to repeatedly visit a set of areas of inter-
est to be monitored (Ahmadi and Stone 2006; Chevaleyre
2004; Elmaliach et al. 2007; Machado et al. 2002; Portugal
and Rocha 2013b; Sak et al. 2008).

Existing approaches can be classified either on the basis
of the kind of application (Agmon et al. 2014, 2008a) or
with respect to the applied theoretical principles (Chevaleyre
2004; Elmaliach et al. 2007; Franchi et al. 2009; Hernán-
dez et al. 2014; Machado et al. 2002; Panagou et al. 2016;
Portugal and Rocha 2016; Santana et al. 2004). Consid-
ering the type of application, existing approaches can be
divided in adversarial patrol (Yehoshua et al. 2013), perime-
ter patrol (Agmon et al. 2008b), and area patrol (Portugal and
Rocha 2013b). Regarding the theoretical baseline, they can
be distinguished in pioneer methods (Machado et al. 2002),
graph theorymethods (Chevaleyre 2004; Portugal andRocha
2010), and alternative coordination methods (Santana et al.
2004).

On the basis of recent research advancements in this
field, alternative subdivisions might be devised. For instance,
alternative coordination methods can be further decomposed
in game theory methods (Hernández et al. 2014), meth-
ods resorting to statistical approaches (Santana et al. 2004;
Portugal and Rocha 2016), methods using principles from
control theory (Panagou et al. 2016), and logic-based meth-
ods (Aksaray et al. 2015). An alternative up-to-date review of
some of the aforementioned works can be found in Portugal
and Rocha (2016) and in Yan and Zhang (2016). The pre-

123

https://gitlab.com/luigifreda/3dpatrolling

1750 Autonomous Robots (2019) 43:1747–1779

sented work is developed at the intersection of the pioneer
methods and the area patrol classes, addressing scalability
and computational complexity constraints.

Pioneer methods are commonly based on simple archi-
tectures where heterogeneous robots with limited perception
and communication capabilities are guided to locations that
have not been visited for a while, aiming to maintain a high
frequency of visits (Portugal and Rocha 2013b). Under this
setting, agents can behave either in a reactive (with local
information) or in a cognitive (with access to global infor-
mation)manner (Elmaliach et al. 2007;Machado et al. 2002).
Over the years, these methods led to what is today bet-
ter known as frequency-based patrolling (Chevaleyre 2004;
Elmaliach et al. 2009a). In this type of patrolling, the goal of
the team of robots is to optimize a given frequency criterion,
usually the idleness (Portugal and Rocha 2010), that is, the
time between consecutive visits to a particular point within
the patrol region (Pasqualetti et al. 2012; Portugal and Rocha
2013c). In Portugal and Rocha (2013d), the authors state that
in some cases, simple strategies like the pioneer ones, with
reactive agents, even without communication capabilities,
can achieve equivalent or improved performance when com-
pared to more complex ones. A study of the scalability and
performance of some of the patrolling strategies mentioned
above has been reported in Portugal and Rocha (2013b).

Despite the focus that multi-robot patrolling has received
recently, it can be noted that there is a lack of practical real-
world implementations of such systems (Portugal and Rocha
2013d). When dealing with a team of real robots operating in
harsh environments, particular attention has to be payed on
the communication, the coordination, and the collaboration
amongst teammates for safe joint navigation (Acevedo et al.
2016; Bereg et al. 2016; Shahriari and Biglarbegian 2016).
Most of the proposed approaches do not account for 3D envi-
ronments (Cabrita et al. 2010; Iocchi et al. 2011; Pasqualetti
et al. 2012).

In this work, we study the patrolling problem from a non-
adversarial point of view. Specifically, we cast the patrolling
problem as an online optimization of the point visit fre-
quency (frequency-based patrolling). Even if optimal or
near-optimal solutions canbe typically guaranteedbyoff-line
methods (Chevaleyre 2004), we select a online framework in
order to best face the compelling uncertainty in perceptions,
modelling, and action executions. We present a multi-robot
system which is able to patrol a 2D manifold of the 3D
space.

Many previous multi-robot patrolling systems have been
demonstrated under strong assumptions, such as perfect
localization, perfect communication or assuming no major
failures at path planning level. The drawbacks of these
assumptions have been already noticed in the community,
“the theoretical strategies need to be adapted to take into
account the uncertainties and dynamics of the actual execu-

Fig. 2 The patrolling robot model

tion” as stated in Farinelli et al. (2017). In this paper, we
present a system tested in real-world scenarios aiming at
stepping “towards better validation processes” (Robin and
Lacroix 2016). Our system approaches the online multi-
robot patrolling task by fully considering the 3D space with
a SLAM system running on each robot. Specifically, the
SLAM system allows the team to be aware of, and adapt
to, changes in the environment, for instance, by reassigning
goals when a node is no longer reachable for one of the robots
due to changes in the traversability map. Furthermore, the
presented implementation uses nimbro_network (Schwarz
2017) to handle the communication bandwidth which can
be scarce in any full integrated system.

4 The patrollingmodel

In this section we introduce the model and data structures
of our patrolling framework. We focus on a team of robots
called to patrol an asperous area for which a terrain condition
knowledge is required.

The robot team is composed by m ≥ 2 ground patrolling
robots. The main components of a patrolling robot are rep-
resented in Fig. 2. A patrolling robot interacts with its
environment through observations and actions, where an
observation consists of a set of sensor measurements and
an action corresponds to a robot actuator command. Team
messages are exchanged with teammates over a network for
sharing knowledge and decisions in order to attain team col-
laboration.

Decision making is achieved by the patrolling agent and
the path planner, basing on the available information stored
in the environment model and the team model. In particu-
lar, the environment model consists of a topological map G,
aka patrolling graph, and a 3D metric map M. The team
model represents the robot belief about the current plans of
teammates (goals and planned paths).

123

Autonomous Robots (2019) 43:1747–1779 1751

Table 1 Table of the main symbols

Symbol Description

W Environment

T Time interval

S Surface terrain in W
O Obstacle region

C Configuration space of each robot

A j (q) Region occupied by robot j at q ∈ C
G Patrolling graph

M 3D metric map of the environment

The main components of the patrolling robots are intro-
duced in the following subsections.A list of themain symbols
is reported in Table 1.

4.1 3D environment, terrain and robot configuration
space

The 3D environment W is a compact connected region of
R
3. Let T = [t0,∞) ⊂ R denote a time interval, where

t0 ∈ R is the starting time. The obstacle region is in general
time-varying and denoted by O = O(t) ⊂ R

3 for every
time t ∈ T . We assume O is a collection of low-dynamic
objects (Walcott-Bryant et al. 2012), whose slow motions do
not immediately affect results of robot computations.

The robots move on a 3D terrain, which is identified as a
compact and connected manifold S inW .

The configuration space C of each robot is the special
Euclidean group SE(3) (LaValle 2006). In particular, a robot
configuration q ∈ C consists of a 3D position of the robot
representative centre and a 3D orientation. We denote with
A j (q) ⊂ R

3 the compact region occupied by robot j at
q ∈ C.

A robot configuration q ∈ C is considered valid if the
robot at q is safely placed over the 3D terrainS. This requires
q to satisfy some validity constraints defined according to
Haït et al. (2002).

A robot path is a continuous function τ : [0, 1] → C. A
path τ is safe for robot j in a time interval [t1, t2] ⊂ T if for
each s ∈ [0, 1] and each t ∈ [t1, t2]: A j (τ (s)) ∩ O(t) = ∅
and τ (s) ∈ C is a valid configuration.

We assume each robot in the team is path controllable,
i.e., each robot can follow any assigned safe path in C with
arbitrary accuracy (Franchi et al. 2009).

4.2 Patrolling graph and patrolling agent

A patrolling graph G is a topological graph-like representa-
tion of the environment to be patrolled.

Namely, G = (N , E) is an undirected connected graph,
with N a set of nodes and E ⊆ N 2 a set of edges.

A node ni ∈ N is associated to a 3D region of interest
B(ni) ⊂ W , and to a priority weight w(ni) ∈ R

+. In partic-
ular, B(ni) is a ball of pre-fixed radius Rv ∈ R centred at the
corresponding position p(ni) ∈ S.

An edge ei j ∈ E between node ni and n j denotes the
existence of a safe path τ i j connecting the regions B(ni) and
B(n j). The length of such a path is used as edge travel cost
c(ei j) ∈ R

+.
A patrolling graph is built before the mission (see Sect. 9)

and assigned to the team at t0.
A node n j ∈ N is visited at time t ∈ T if a robot centre

lies inside the associated region B(n j) at t .
The instantaneous idleness I j (t) ∈ R

+ of a node n j ∈ N
at time t ∈ T is I j (t) = w(n j)(t − tl), where tl is the most
recent time in [t0, t] the node was visited by a robot. When
computing I j (t), the priority w(n j) ∈ R

+ locally “dilates”
or “contracts” time at node n j . We assume I j (t0) = 0 for
each node n j in G.

Considering the idleness I j (t) of a node n j in a time
subinterval [t1, t2] ⊂ T , we compute its average idle-
ness I aj [t1, t2] = 1

t2−t1

∫ t2
t1

I j (t)dt , its standard deviation

I σ
j [t1, t2] = 1

t2−t1

∫ t2
t1

(
I j (t) − I aj [t1, t2]

)2
dt and its maxi-

mum value I Mj [t1, t2] = max
t∈[t1,t2]

I j (t).

The average graph idleness of G is

IG[t0, t] = 1

N

N∑

j=1

I aj [t0, t] (1)

where N = |N | is the total number of nodes in G. N is
assumed to be constant.

The patrolling plan π of a robot is defined as an infinite
sequence {(nk, tk)}∞k=0, where nk ∈ N denotes the k-th node
visited at time tk ∈ T by the robot. A team patrolling strategy
� = {π1, . . . , πm} collects the patrolling plans of all the
robots in the team.
Patrolling objective In our framework, the goal of the robot
team is to cooperatively plan a teampatrolling strategy� that
minimizes the average graph idleness IG[t0, t] at all times
t ∈ T .

An instance of the patrolling agent runs on each robot h
and is responsible of cooperatively generating the patrolling
plan πh according to the above patrolling objective. A
pseudo-code description of the patrolling agent is presented
in Sect. 6.

123

1752 Autonomous Robots (2019) 43:1747–1779

Table 2 Table of broadcast messages

Broadcast message Description Affected data in receiving robot h

〈 j, t, reached, n〉 Robot j has reached its goal node n Node n idleness is zeroed in I(h)(t); the j-th tuple in
team model T (h) is reset

〈 j, t, visi ted, n〉 Robot j is visiting a non-goal node n along the way to
its goal

Node n idleness is zeroed in I(h)(t)

〈 j, t, planned, n〉 Robot j has planned node n as perspective goal The j-th tuple in team model T (h) is filled with
(n, c = ∞, t)

〈 j, t, selected, n, c〉 Robot j has actually selected node n as goal and is
heading towards it, c is the current path length to the
goal

The j-th tuple in team model T (h) is filled with (n, c, t)

〈 j, t, path, τ , c〉 Robot j has planned a path τ from its current position to
its goal, c is the corresponding path length

The j-th tuple in team model T (h) is filled with (τ , c, t)
and the multi-robot traversability map of robot h is
updated (see Sect. 7.2)

〈 j, t, aborted, n〉 Robot j aborted its goal node n The j-th tuple in team model T (h) is reset

〈 j, t, idleness, I(j)(t)〉 Robot j shares its current idleness estimations
I(j)(t) = 〈I (j)

1 (t), . . . , I (j)
N (t)〉

The current idleness estimations I(h)(t) are
synchronized with I(j)(t) according to Algorithm 1

4.3 Metric map and path-planning

Each robot of the team is equippedwith a rangefinder produc-
ing 3D scans2 and is able to localize in a global map frame,
which is shared with its teammates (cfr. Sect. 8).

In our framework, each robot uses a 3D point cloud as a
metric representation M of the environment. A map M is
built beforehand and assigned to the team at t0. Amulti-robot
traversability cost function trav : R3 → R is defined onM
(cfr. Sect. 7.2). This function is used to associate a navigation
cost J (τ) to each safe path τ (cfr. Sect. 7.4).

Given the current robot position pr ∈ R
3 and a goal posi-

tion pg ∈ S, the path planner computes a safe path τ ∗ which
minimizes the navigation cost J (τ) and connects pr with pg
(cfr. Sect. 7.3). The path planner reports a failure if a safe
path connecting pr with pg is not found.

4.4 Networkmodel and broadcast messages

Let the network connectivity graph� be an undirected graph
where a node represents a robot, while an edge represents a
communication link between the two connected robot nodes.
Specifically, two robots are able to exchange messages if and
only if they are connected by an edge in �.

We assume� is dynamic and stochastic. An edge between
any two robots can appear or disappear at any time instant.
An independent Bernoulli distribution is associated to each
message transmission: any message sent between robots i
and j is successfully received with a probability Pc

i j = Pc
ji .

We assume the state of � is not observable by the robots.
Each robot can broadcast messages in order to share

knowledge, decisions and achievements with teammates. In

2 This can be a rotating laser range-finder or a full 3D scanner.

IdlenessSynchronization(〈 j, idleness, I(j)(t)〉)
// robot h updates I(h)(t) by using input idleness

message

1 for k = 1 to N do
2 I (h)

k (t) ← min(I (h)
k (t), I (j)

k (t))
3 end

Algorithm 1: IdlenessSynchronization

particular, a broadcast message emitted by robot j at time
t ∈ T is received only by the robots which are connected
with robot j on � at t .

Different types of broadcast messages are used by the
robots to convey various information (see Sect. 6). In this
process, the identification number (ID) of the emitting
robot is included in the heading of any broadcast mes-
sage. In particular, a broadcast message is emitted by a
robot in order to inform teammates when it reaches a goal
node (reached), visits a node (visited), planned a perspec-
tive goal node (planned), selected a node as actual goal
and it is heading towards it (selected), and aborts a goal
node (aborted). Additionally, a message idlenesses is broad-
cast in order to enforce the synchronization of idleness
estimates amongst teammates (see Sect. 4.5). The path
message will be described in Sect. 7.5. Table 2 summa-
rizes the used broadcast messages along with the con-
veyed information/data. The vector of estimated idlenesses
I(h)(t) and the team model T (h) are introduced in the next
two subsections. The general broadcast message format is
〈robot_id, t imestap,message_t ype, data〉.

4.5 Shared knowledge representation

Each robot of the team stores and updates its individual rep-
resentation of the world state.

123

Autonomous Robots (2019) 43:1747–1779 1753

At t0 ∈ T , a robot loads as input the 3D map M and the
patrolling graph G. Then, it internally maintains an instance
of these representations. In particular,wedenote byM(h) and
G(h) the local instances ofM and G in robot h, respectively.

Since the environment is dynamic, robot h updates its
individual 3D mapM(h) by using the last acquired 3D scan
measurements (see Sect. 8). This allows the path planner to
safely account for new environment changes.

At the same time, robot h updates its patrolling graph G(h)

by using the received broadcast messages and the path plan-
ner output. Specifically, the travel cost c(h)(ei j) of an edge
ei j in G(h) is locally updated when a new path is computed
between the two corresponding nodes ni and n j .

Additionally, robot h locally maintains an idleness esti-
mate I (h)

j (t) for each node n j inG(h).We denote byI(h)(t) =
〈I (h)

1 (t), . . . , I (h)
N (t)〉 the vector of estimated idlenesses in

robot h. Every time a robot visits(reaches) a node n j , a vis-
ited(reached) message is broadcast and each receiving robot
h correspondingly updates its local idleness estimate I (h)

j (t).
Clearly, since broadcast messages may be lost, the idleness
estimates I (h)

j (t) may not correspond to the actual idleness
values. In order to mitigate this problem, each robot contin-
uously broadcasts an idleness message at a fixed frequency
1/Tidln . Such messages are used to synchronize the idleness
estimates amongst robots according to Algorithm 1.

The above information sharing mechanism implements a
shared idleness representation which allows team coopera-
tion, e.g. minimizing inefficient actions such as re-visiting
nodes just inspected by teammates.

4.6 Teammodel

In order to cooperate with its team and manage conflicts,
robot h maintains an internal belief representation of the cur-
rent teammate plans (aka team model) by using a dedicated
table

T (h) = 〈(n1g, τ 1, c1, t1), . . . , (nmg , τm, cm, tm)〉 (2)

which stores for each robot j : its selected goal node n j
g ∈ N ,

the last computed safe path τ j to n j
g , the corresponding travel

cost c j ∈ R
+ (i.e. the length of τ j) and the timestamp t j ∈ T

of the last message used to update (n j
g, τ

j , c j).
The table T (h) is updated by using reached, planned,

selected and aborted messages. In particular, reached and
aborted messages received from robot j are used to reset the
tuple (n j

g, c j , τ j , t j) to zero (i.e. no information available).

A planned message sets the sub-tuple (n j
g, t j), with c j = ∞.

A selected message sets (n j
g, c j , t j), while a path message

completes the tuple with τ j information.
An expiration time Texp is used to clean T (h) of old

invalid information. In fact, part of the information stored

in T (h) may refer to robots which underwent critical failures
or whose connections have been down for a while. In partic-
ular, let t ∈ T be the current time. A tuple (n j

g, τ
j , c j , t j) is

reset to zero if (t − t j) > Texp.

4.7 System architecture

The patrolling plan π of a robot can be pre-computed offline,
i.e. before starting the patrolling execution (Chevaleyre 2004;
Elmaliach et al. 2009b; Portugal and Rocha 2010), or online,
i.e. by planning and visiting a newnode at each patrolling step
k (Sempé and Drogoul 2003; Portugal and Rocha 2013a, b,
2016).

In a centralized system, the team patrolling strategy
{π1, . . . , πm} is computed by a central control robot (i.e.
the leader) and communicated to all its teammates. Con-
versely, in a decentralized system, a central leader does not
exist. Different levels of decentralization are possible and
spans fromhierarchical to distributed architectures (Yan et al.
2013; Farinelli et al. 2004; Baran 1964). In a distributed sys-
tem, each robot independently computes its patrolling plan
by possibly taking advantage of exchanged information and
coordination messages.

Our system is online and distributed. In particular, an
instance of the patrolling agent algorithm (see Sect. 6) runs
on each robot and is responsible of online generating its
own patrolling plan π . Namely, at each patrolling step k,
the patrolling agent plans a new goal node nk in G. In this
process, a patrolling robot exchangesmessageswith its team-
mates (see Sect. 4.4) in order to attain coordination (avoid
conflicts) and cooperation (avoid inefficient actions). More
details are provided in Sect. 5.2.

5 Two level coordination strategy

This section first introduces the notions of topological and
metric conflicts, and then presents our two-level coordination
strategy (see Sect. 5.2).

5.1 Topological andmetric conflicts

A topological conflict between two robots is defined on the
patrolling graph G. This occurs when two patrolling agents
select the same node ni ∈ G as goal (node conflict) or plan
to simultaneously traverse the same edge ei j ∈ G (edge con-
flict).

On the other hand, metric conflicts are defined in the
3D Euclidean space where two robots are referred to be
in interference if their centres are closer than a pre-fixed
safety distance Ds . It must hold Ds ≥ 2Rb, where Rb is
the bounding radius of each robot, i.e. the radius of its mini-
mal bounding sphere. A metric conflict occurs between two

123

1754 Autonomous Robots (2019) 43:1747–1779

Fig. 3 The two-level strategy implemented on each robot

robots if they are in interference or if their planned paths may
bring them in interference.3

It is worth noting that topological conflicts may not corre-
spond to metric conflicts. In our framework, an edge may
represent a large passage which could be simultaneously
traversed by two or more robots without interferences. Sim-
ilarly, a node may represent a large region which could
actually be visited by two or more robots at the same time.

5.2 Two level coordination strategy

Our patrolling strategy is distributed and supported on both
topological and metric levels.

The patrolling agent acts on the topological strategy level
by selecting the next goal node ng on G. In this process,
cooperation is attained by using the shared idleness repre-
sentation. This avoids inefficient actions such as selecting
nodes just inspected by teammates (see Sect. 4.5).

The path planner acts on the metric strategy level (see
Fig. 3) by computing the best safe path from the current
robot position to p(ng) by using its internal 3D map M(h)

(see Sect. 7.3).
The patrolling agent guarantees topological coordination

by continuously monitoring and negotiating possibly incom-
ing node conflicts (see Sect. 6). In case multiple robots select
the samegoal (node conflict), the robotwith the smaller travel
cost actually goes, while the other robots stop and re-plan
towards new nodes.

The path planner guarantees metric coordination by
applying a multi-robot traversability function. This induces
a prioritized path planning (LaValle 2006), in which robots
negotiate metric conflicts by preventing their planned paths
from locally intersecting (see Sect. 7.2).

The continuous interaction between the patrolling agent
and the path planner plays a crucial role. When moving
towards p(ng), the path planner continuously re-plans the
best traversable path till the robot reaches the goal. During
this process, if a safe path is not found, the path planner

3 That is, the distance between the closest pair of points of the two
planned paths is smaller than Ds .

stops the robot, informs the patrolling agent of a path plan-
ning failure and the patrolling agent re-plans a new node. On
the other hand, every time the path planner computes a new
safe path, its length is used as travel cost by the patrolling
agent to resolve possible node conflicts.

In our view, the two-way strategy approach allows (i)
to simplify the topologically based decision making and
(ii) to reduce interferences and manage possible deadlocks.
In fact, while the patrolling agent focuses on the most
important graph aspects (shared idleness minimization and
node conflicts resolution), the path planner takes care of
possible incoming metric conflicts due to unmanaged topo-
logical edge conflicts. Moreover, where the path planner
strategy may fail alone in arbitrating challenging conflicts,
the patrolling agent intervenes and reassigns tasks in order
to better redistribute robots over the graph. As a result,
these combined strategies minimize interferences by explic-
itly controlling node conflicts and by planning onmulti-robot
traversability maps.

6 Distributed patrolling

In this section, we present in detail the patrolling agent algo-
rithm. A pseudocode description is reported in Algorithm 2.

A patrolling agent instance runs on each robot. It takes
as input the robot ID, the patrolling graph and the metric
map. A main while loop supports the patrolling algorithm
(lines 3–22). First, all the relevant data structures and the
main boolean variables4 are updated (line 4, see Sect. 6.1).
This update takes into account all the information received
from teammates and recasts the distributed knowledge. If the
current goal node has been reached (line 5), a broadcast mes-
sage informs the team (line 6). Then, a new node is planned,
a corresponding broadcast message is emitted and the goal
position is sent to the path planner (lines 7–9, see Sect. 6.3).

On the other hand, if the robot is still reaching the current
goal node, lines 11–20 are executed. If a path planner failure,
a node conflict (see Sect. 6.2), or a node visit (see Sect. 6.1)
occurs on the selected goal (line 11), the patrolling agent
first sends a goal abort to the path planner, next broadcasts
its decision and then triggers a new node selection (lines 12–
16). Otherwise (lines 18–19), a selectedmessage is broadcast
and a sleep for a pre-fixed time interval Tsleep allows the robot
to continue its travel towards the selected goal (line 18).

It is worth noting that the condition at line 11 of Algo-
rithm 2 allows each robot to modify its plan at need while
reaching the goal. Moreover, a selected message broadcast is

4 We use an “is_” prefix to denote boolean variables.

123

Autonomous Robots (2019) 43:1747–1779 1755

PatrollingAgent(robot_id, patrolling_graph, metric_map)
1 is_goal_reached ← true
2 goal ← ∅
3 while true do
4 Update() // update data structures and boolean variables

5 if is_goal_reached then
6 broadcast goal is reached
7 goal ← PlanNextGoal() // plan next goal node

8 broadcast goal is planned
9 send goal to path planner

10 else
11 if is_path_planning_failure or is_node_conflict or is_goal_visited then
12 send abort to path planner
13 broadcast goal is aborted
14 goal ← PlanNextGoal() // replan next goal node

15 broadcast goal is planned
16 send goal to path planner
17 else
18 broadcast goal selected // broadcast a selected message while reaching the goal

19 sleep for Tsleep
20 end
21 end
22 end

Algorithm 2: PatrollingAgent

Update()
1 update idlenesses I(h)(t) and travel costs in G // asynchronous update through received messages and path planner feedback

2 update metric map M(h) and traversability map // asynchronous update through sensor callbacks

3 update team model T (h) // asynchronous update through received messages and path planner feedback

4 is_node_con f lict ← check if another robot in T (h) has the same goal node
5 is_goal_reached ← check if current goal has been reached by this robot
6 is_goal_visi ted ← check if current goal is visited by another robot // check by using received visited messages

7 is_path_planning_ f ailure ← check if path planner failed to compute a path to goal // check continuous replanning

8 is_cri tical_path_planning_ f ailure ← check if path planning failure is lasting more than Tpcr
9 is_cri tical_node_con f lict ← check if robot is experiencing node conflicts for more than a time interval Tncr

10 is_node_visi ted ← check if a non-goal node is visited by this robot while reaching the current goal
11 if is_node_visited then
12 node ← get node visited along the way
13 broadcast node is visited // inform teammates about the non-goal node visit

14 end
15 broadcast idleness message with pre-fixed frequency 1/Tidln

Algorithm 3: Update (in robot h)

PlanNextGoal()
1 goal ← ∅
2 if is_critical_path_planning_failure or is_critical_node_conflict then
3 goal ← ComputeRandomNode() // randomized selection of next node

4 else
5 D ← BuildSearchSet() // build a search set with candidate goal nodes

6 goal ← ComputeNextBestNode(D) // compute next best node in D
7 end
8 return goal;

Algorithm 4: PlanNextGoal

repeated at each step5 in order to add robustness with respect
to network failures.

5 Or at a pre-fixed frequency, after a first selected is broadcast along
the way to the current goal.

6.1 Data update

The Update() function is summarized in Algorithm 3. This is
in charge of refreshing the robot data structures presented in
Sect. 4. Indeed, these structures are asynchronously updated

123

1756 Autonomous Robots (2019) 43:1747–1779

by callbacks which are independently triggered by received
broadcast messages or path planner feedback messages.

Lines 1–3 of Algorithm 3 represent the asynchronous
updates of the local instances of the patrolling graph G, the
point cloud map M and the team model T . The remaining
lines describe how the reported boolean variables are updated
depending on the information stored in the team model and
received through path planner feedback.

6.2 Node conflict management

The concept of topological conflict was defined in Sect. 5.1.
During the patrolling process, a topological node conflict
occurs when two or more patrolling agents select the same
goal node, which we refer to as contended node. Our strategy
resolves a topological conflict by assigning the contended
node to the robot which can reach it with the smallest travel
cost.

A robot checks for node conflicts by using the information
stored in its individual team model (cfr. Sect. 4.6). In this
process, it compares its plan with those of teammates. In
particular, robot j detects a node conflict with robot i at node
ng ∈ N if the following conditions are verified:

1. robots j finds in its team model T (j) that robot i has the
same goal, i.e., n j

g = nig in T (j).

2. the travel cost c j is higher than ci in T (j), or j > i in the
unlikely case the travel costs c j and ci are equal (robot
priority by ID as a fall-back).

When the two above conditions are verified, robot j sets
the boolean variable is_node_conflict to true (line 4 of Algo-
rithm 3), aborts its current goal n j

g and re-plans a new node
(lines 12–16 of Algorithm 2).

If a robot experiences node conflicts for more than a pre-
fixed time interval Tncr , it enters in a critical node conflict
state. In this case, a booleanvariable is_critical_node_conflict
is set true (line 9 of Algorithm 3).

As an example, we report in Fig. 4a sequence of node
negotiations amongst three robots.

6.3 Next node planning and selection

The strategy adopted for planning the next node is described
inAlgorithm4. First, the algorithmverifies if a critical condi-
tion is occurring (line 2), i.e., if either a critical path planning
failure (see Sect. 7.5) or a critical node conflict is occurring
(see Sect. 6.2). If a critical condition is not occurring (line
3), a search set D (i.e., a set of candidate goal nodes) is
built (line 5), then the next best node is computed in D (line
6). Here, the functions BuildSearchSet(·) and ComputeNext-
BestNode(·) can encode any user-defined strategy with the

proviso thatD must not contain the possible contended node
in case is_node_conflict is true.

On the other hand, if a critical condition occurs (line 2), a
randomized node selection is performed on the graph (line 3).
Such a randomized selection is used to crucially discharge
the planner from any search space restriction (line 5) and
selection strategy (line 6). In fact, these may trap the algo-
rithm in a “local minimum”, where the planner continuously
selects a temporary unreachable node as goal.

For instance, a search space restriction (line 5) at graph
depth d = 1 (aka reactive strategy) makes the robot stuck
idle when reachable nodes are available only at depth d > 1.

On the other hand, “local minima traps” can be envi-
sioned on the top of any deterministic selection strategy (line
6) by introducing a virtual objective function which com-
bines together the explicit user-defined “utility” function6

and the navigation cost-to-go. Indeed, a local minima trap
occurs when an obstruction blocks the robot way towards the
node n∗ with the highest “utility”. For instance, the obstruc-
tion “disconnecting” n∗ can be a door suddenly closed or a
group of teammates persisting in front of the robot. In such
cases, a randomized selection technique results in an effec-
tivemethod to escape localminima in terms of computational
efficiency, generality and reliability (Barraquand et al. 1992).

Algorithm 4 can be used as a base to support any online
strategy. In this work, as an example, we use a reactive
strategy for the implementations of the functions Build-
SearchSet(·) and ComputeNextBestNode(·). Such a strategy
effectively provides readiness in resolving incoming spa-
tial conflicts and in making decisions on rapidly changing
patrolling graphs. Specifically, we build D as the current
node neighbourhood (line 4, Algorithm 4) and select as best
node the one in D with the highest idleness estimate (line 5,
Algorithm 4). This implementation can be considered as
an improved version of the Conscientious Reactive algo-
rithm (Portugal and Rocha 2013b). In fact, here we explicitly
manage interferences and spatial conflicts in order to prevent
deadlocks.

For efficiency reasons, in the function ComputeRandom-
Node(·) (line 3, Algorithm 4), the randomized strategy first
selects a node at a graph depth one, then it linearly increases
the depth of the search with time if the current critical condi-
tion is not readily escaped. In order to preserve probabilistic
completeness, the randomized selection is performed on the
full patrolling graph after a number of consecutive failures.

Two important observations are in order. First, local min-
ima (critical conditions) are detected thanks to the continuous
interaction between the patrolling agent and the path plan-
ner. Second, the presented Algorithm 2 puts into effect a
cooperative strategy if the adopted ComputeNextBestNo-
de(·) function selects the next node on the basis of the shared
6 In our case, this depends on the idlenesses of the nodes.

123

Autonomous Robots (2019) 43:1747–1779 1757

Fig. 4 Asequence of node negotiations amongst: top robot t , left robot l
and bottom robot b. The patrolling graph is shown: nodes are depicted as
disks; eachnodehas a radius proportional to its idleness. The traversabil-
ity map of robot b is shown: red points are obstacles; green points are
traversable (for robot b). Planned paths are emanated from each robot.
Both global and local paths are shown (respectively, blue and magenta).
(a) Robot b plans the central node nc and then selects nc. (b) Robot t
also plans nc. (c) Robot b detects a node conflict (with robot t) on node

nc, aborts nc, plans the right node nr ; robot l plans nc. (d) Robot l selects
nc; robot t detects a node conflicts (with robot l) on nc, aborts nc and
then plans nr ; robot b selects nr . (e) Robot t detects a node conflict
(with robot b) on nr , aborts nr and plan nc. (f) Both robot l and b are
moving towards their goals while robot t is searching for a reachable
and non-conflicting node. At this time, robot t observes that each node is
either selected by a closer robot, currently visited or unreachable (Color
figure online)

idleness representation (cfr. Sect. 4.5). The latter allows
to avoid inefficient actions, such as selecting a goal node
recently visited by a teammate.

7 Multi-robot traversability and path
planning

Basing on the metric strategy, the path planner attains local
coordination by applying a multi-robot traversability func-

tion. This allows to compute a traversable path towards the
designated goal node and to locally negotiate metric con-
flicts. Figure 5 presents themetric level and itsmainmodules,
which are described in the following subsections.

7.1 Point cloud segmentation

At each new scan, the robot updates its individual 3D map
(see Sect. 8). Map points are then segmented in order to esti-

123

1758 Autonomous Robots (2019) 43:1747–1779

Fig. 5 The metric level and its main modules

mate a traversability of the terrain. First, geometric features
such as surface normals and principal curvatures are com-
puted and organized in histogram distributions. Clustering
is applied on 3D coordinates of points, mean surface curva-
tures and normal directions (Menna et al. 2014; Ferri et al.
2014). As a result, a classification (labeling) of the 3D map
in regions such aswalls, terrain, surmountable obstacles and
stairs/ramps is obtained. All regions which are not labeled
as walls are referred to as non-walls.

7.2 Multi-robot traversability

The path planner computes a traversable path τ directly on
the segmented non-walls regions of the individual robot 3D
map.

DenotewithS ametric space onR3. Let p ∈ S and ε ∈ R
+

be the center and the radius of a ballB(p, ε) ⊂ S, inwhichwe
consider a suitably connected neighbourhood of p. Each non-
wall point p is evaluated along with its local neighbourhood
B(p, ε) and “back-projected” onto a robot pose q by using
the local surface normal at p (Krüsi et al. 2017).

For efficiency reasons,7 each robot body is represented
by its bounding sphere when computing its clearance from
obstacles and teammates. This allows faster computations
for both the traversability analysis and the path planner (see
Sect. 7.5). In this context, the path planner can restrict the
path search in a “projection” of C on a 3D Euclidean space.8

Traversability for each robot is computed as a cost function
on its 3D map. To this end, each neighbourhood B(p, ε) of a
map point p ∈ R

3 is evaluated along with its local geometric
features and segmented aspects (see Sect. 7.1).

In particular, the traversability cost function trav : R3 →
R is computed as

7 The metric level modules must run on the robot main board
and share computational resources with other demanding processing
nodes (Kruijff-Korbayová et al. 2015).
8 At this stage, we found this approach to perform very well in prac-
tice without significantly limiting the robot manoeuvres in the tested
scenarios.

Fig. 6 A 2D sketch of a robot future trail. The blue(dark) rectangle
represents the footprint of robot j at its current pose q j . The current
robot position p j is the centre of the blue rectangle.A j (q j) corresponds
to the area of the blue rectangle. The 2Dprojection of the current planned
path τ j joins p j with the goal position pg . τ

c
j is the portion of τ j that

keeps the robot centre within B(p j , Rc). The 2D projection of τ c
j is

represented in red. Some future robot footprints along τ c
j are sketched

in light grey. The future trail P j is the union of all the footprints whose
centres lie in B(p j , Rc) (Color figure online)

trav(p) = wL (p)(1 + wCl(p))(1 + wDn(p))(1 + wRg(p))

(3)

Here the weightwL : S → R
+ depends on the point classifi-

cation, wCl : S → R
+ is the multi-robot clearance (defined

below),wDn : S → R
+ depends on the local point cloudden-

sity andwRg : S → R
+ measures the local terrain roughness

(average distance of outlier neighbour points from a local fit-
ting plane).

In order to attain a look-ahead path planning with
local coordination and obstacle avoidance behaviours, the
traversability analysis of a robot is “informed” with the cur-
rent positions and planned paths of its teammates.

In particular, let q j ∈ C and p j ∈ R
3 respectively denote

the current pose and position of robot j . A j (q) ⊂ R
3 is

the compact region occupied by robot j at q ∈ C. Denote
with τ j : [0, 1] → C the current planned path, which leads
robot j to its assigned goal configuration. Moreover, let τ c

j :
[0, 1] → C be the portion of τ j which keeps the robot centre
within B(p j , Rc), a closed ball of radius Rc centred at p j
(see Fig. 6). Here Rc is a pre-fixed cropping radius.

The future trail of robot j is defined as the compact region:

P j �
⋃

s∈[0,1]
A j (τ

c
j (s)). (4)

In other words, the future trail of robot j is the 3D region
the robot would cover along τ j up to a maximum distance
Rc from p j (see Fig. 6). If no goal is assigned, one has
P j ≡ A j (q j).

123

Autonomous Robots (2019) 43:1747–1779 1759

Fig. 7 The multi-robot traversability map of the left robot l. Green
points can be traversed by robot l. Segmented obstacle points are shown
in red. The planned path of the right robot r is reported in red on the
ground. The future trail of robot r generates a local “repelling region”
on the green carpet around robot r itself (Color figure online)

Robot i computes the multi-robot clearance wCl(x) as its
clearance at x ∈ R

3 with respect to (a) obstacles sensed at its
current position pi

9 (b) each teammate future trail P j , with
j �= i , such that P j ∩ B(pi , Rt) �= ∅. Here, Rt is a prefixed
radius greater than Rc. Specifically,when computingwCl (x),
any teammate future trailP j that is distantmore than Rt from
the current robot position pi is discarded.

Themulti-robot traversable mapMt is obtained from the
current map by suitably thresholding the functionwCl(·) and
collecting the resulting points along with their traversability
cost (see Fig. 7).

It is worth noting that the multi-robot traversability allows
the implementation of a prioritized path planning which
takes into account prospective robot interactions (LaValle
2006). Planning priorities are implicitly assigned to team-
mates according to the time order in which their planned
paths are received and integrated in the robot traversability
mapMt . In this process, the balls B(p j , Rc) and B(pi , Rt)

are used in order to locally bound the coordination on the
traversable map.

It should be emphasized that, in case of strong commu-
nication delays, the sole knowledge of teammates’ positions
cannot be used to attain a safe robot navigation. In such a case,
the multi-robot traversability (with its integrated knowledge
of the teammates prospective paths) allows to attain metric
coordination by (i) minimizing interferences and (ii) safely
steering each robot ahead of time towards its goal. Moreover,
given the fact that robots “reserve” their motion space (by
concurrently laying down prospective paths over the multi-
robot traversability), node conflicts are often prevented.

9 Here we include the segmented obstacles in the map and the
most recent nearby obstacle points which have been detected by the
rangefinder and are not segmented yet in the map.

7.3 Path planning and windowed search strategy

For implementation and efficiency reasons we make use of a
global and a local path planners. Given a set of 3Dwaypoints
as input, the global path planner is in charge of (a) checking
the existence of a traversable path joining them and (b) min-
imizing a mixed cost function along the computed path (see
Sect. 7.4). This mixed cost function combines together the
multi-robot traversability cost (see Sect. 7.2) along with an
optional task dependent cost function.

Once a global path solution τ g is found, the local path
planner continuously replans a traversable path τ l that safely
drives the robot from its current configuration q to the first
configuration of τ g that intersects a sphere of radius Rl cen-
tred at q. This allows the path planner to more readily react
to possible dynamic changes in the environment.

Both the global and the local path planners capture
the connectivity of the configuration space C by using a
sampling-based approach. The path search is restricted to
a “projection” of C on a 3D Euclidean space (Sect. 7.2). In
fact, the path planner computes trajectories directly on the
traversability map.

A tree K is expanded on the traversability map Mt by
using a randomized A* approach (Ferri et al. 2014; Diankov
and Kuffner 2007). The start node ns ∈ Mt and the goal
node ng ∈ Mt are computed as the projections of the start
and goal robot positions onMt . ns is used as root in order to
initialize K. The tree expansion at the current node n ∈ Mt

proceeds as follows

1. The clearance wCl is computed at the position corre-
sponding to n (see Sect. 7.2)

2. A safety radius δn at n is computed as the minimum
between wCl and a pre-fixed maximum robot step;

3. A set V of neighbours is created by collecting all the
points of the traversable map that fall in a ball of radius
δn centred at the position of n;

4. A subset of neighbours inV are randomly selected as new
childrenofn byusing aprobability inversely proportional
to the corresponding traversability cost (this biases the
expansion towards more traversable regions);

5. The A* cost-to-go of each new child is computed by
taking into account the mixed cost function presented in
Sect. 7.4, Eq. (6);

6. The computed A* cost-to-go is used for inserting with
priority the new child in a search queue;

7. The element of the search queue with the minimum cost-
to-go is selected as next node to expand.

In this process, a kd-tree is used for fast nearest neighbour
search. The algorithm ends when a child node is found close
enough to the desired goal position.

123

1760 Autonomous Robots (2019) 43:1747–1779

In order to further improve the efficiency and the response
time of both the local and global path planners, a windowed
search strategy has been implemented around the basic path
planner. Let ps pg be the Euclidean line segment joining the
assigned start position ps and the goal position pg . Each time
the global/local path planner is called to compute a new path:

1. First, the path search is restricted in the subset of points
of the traversable map Mt ∩ R1, where R1 ⊂ R

3 is a
box with medial axis containing ps pg . Roughly speak-
ing, this region is shaped as a narrow corridor with a
longitudinal axis aligned to ps pg .

2. If a path cannot be found within R1, then it is searched
within a new regionR2 which is built by suitably growing
R1 along its axes of symmetry.

3. If the path search fails then this process is repeated by
incrementally growing the search region until a pre-fixed
number of attempts is reached.

In order to preserve the probabilistic completeness of the
basic path planning algorithm, the last attempt uses the full
traversable map as search region. For sake of safety, the most
updated traversabilitymap is considered as input at eachplan-
ning attempt.

In this process, the different attempts allow the robot to
process different world “snapshots” over time, with the bene-
fit of possibly finding a solution after an initial failed attempt
(due to new occurring favourable conditions).

7.4 Mixed cost function

The randomized A* algorithm computes a sub-optimal10

path τ = {nt }Nt=0 in the configuration space11 C by mini-
mizing the total cost:

J (τ) =
N∑

t=1

c(nt−1, nt) (5)

where n0 and nN are the start and the goal respectively, and
nt ∈ C. The cost-to-go function c : C × C → R combines
together the traversability cost and anoptional task dependent
function.12 In particular

10 The sub-optimality of the solution is due to the used incremental
sampling-based approach (Karaman and Frazzoli 2010; Diankov and
Kuffner 2007).
11 As explained in Sect. 7.2, each point of Mt can be associated to a
robot pose.
12 This can be used for instance to steer the robot toward regions where
an estimatedWIFI radio signal strengthmap returns higher values (Cac-
camo et al. 2017).

PathPlanning(goal, traversability_map, team_model)
// find initial solution

1 path ← ∅, is_goal_aborted ← f alse
2 for l = 1 to lmax do
3 Update() // asynchronous

4 path ← ComputePath(goal, traversability_map)
5 if path �= ∅ then
6 break
7 else
8 sleep for Twait
9 end

10 end
// move along the path and broadcast status

11 while(not is_goal_reached) and (not is_goal_aborted) do
12 if path �= ∅ then
13 broadcast path and success
14 TrajectoryTracking(path) // asynchronous

15 else
16 broadcast failure
17 return;
18 end
19 Update() // asynchronous

20 path ← ComputePath(goal, traversability_map)
21 end

Algorithm 5: PathPlanning

c(nt , nt+1) =
(
d(nt , nt+1) + h(nt+1, nN)

+λz | nzt+1 − nzt |
)
ω1(nt+1)ω2(nt+1) (6)

ω1(n) = λt
trav(n) − travmin

travmax − travmin + ε
+ 1 (7)

where d : C×C → R
+ is a distance metric, h : C×C → R

+
is a goal heuristic, nzt ∈ R is the z-coordinate of the node
nt ∈ C, λz ∈ R

+ and λt ∈ R
+ are positive scalar weights,

ω1 : C → R
+ is the normalized traversability function,

ε ∈ R
+ is a small quantity which prevents division by zero

and ω2 : C → R
+ is a normalized task-dependent cost func-

tion. The first factor in Eq. (6) sums together the distance
metric, the A* heuristic function (usually the distance to the
goal) and a weighted difference of the z-coordinates of the
nodes. The other two factors ω1, and ω2 represent a normal-
ized traversability cost and a normalized task-dependent cost
respectively, whose strengths can be trade-off by using the
weight λt . Note that ωi ≥ 1 for i = 1, 2. The normalized
task dependent function ω2 is typically built with a structure
very similar to ω1 (Caccamo et al. 2017).

7.5 Coordinated path planning andmessage
protocol

The path planner continuously replans a path on the multi-
robot traversability map in order to react to possible dynamic
changes in the environment. In this process, it uses the most
updated map, the knowledge of prospective teammates paths

123

Autonomous Robots (2019) 43:1747–1779 1761

and the current sensory information. A pseudocode descrip-
tion is reported in Algorithm 5. The function PathPlanning is
invoked by the path planner every time a new goal is received
from the patrolling agent.

Specifically, when a new goal position is designated, the
path planner first tries to compute an initial solution (lines
2–9), up to a maximum number of attempts lmax (set to 5
in our experiments). At each failed attempt, it waits for a
pre-fixed time interval Twait (line 8), then it retries by using
the most updated information (line 3, see Sect. 6.1). If after
lmax attempts an initial solution is not found, the path planner
communicates its failure to the patrolling agent (line 16) and
then waits for a new goal; otherwise, a solution is found and
a success message is sent to the patrolling agent (line 13).

Once an initial solution is found, the robot starts moving
toward its goal (line 14) along the computed path. In this
process, the path planner continuously replans a new path
by using the most updated information (lines 11–20). Since
the environment is assumed to be dynamic and populated
by moving robots, a path planning failure can be verified by
the local path planner during its continuous replanning, even
after an initial solution is found by the global path planner.
In case of failure, the path planner communicates it to the
patrolling agent and then a new goal is received (line 12–16,
Algorithm 2).

The path planner is managed at the topological level by
the patrolling agent, whose decisions (i) support cooperation
and coordination with teammates, and (ii) allow to detect and
manage deadlocks. In fact, the patrolling agent continuously
checks the path planner status and, in case of critical condi-
tions (see Sect. 6.3), pre-empts its current task and reassigns
it a new goal (lines 12–16, Algorithm 2). In particular, if
the path planning keeps on failing for more than a pre-fixed
time interval Tpcr , we say that a critical path planning fail-
ure is occurring. This can be provoked by a local minima
trap, as discussed in Sect. 6.3. In this case or when a goal
is aborted by the patrolling agent (line 12, Algorithm 2), the
variable is_goal_aborted is set to true and the continuous
re-planning loop (lines 11–21, Algorithm 5) is stopped.

It is worth noting that, in the initial solution search, the
basic wait-retry process allows the robot to process different
world “snapshots” over time. In some situations, this works
as a virtual traffic-light and it allows teammates to move,
reach their goals and free the way. In general, this basic wait-
retry process alone is not sufficient to avoid deadlocks. For
instance, it is not able to resolve the conflict experienced by
two robots moving in opposite directions (e.g. along a nar-
row corridor) and reciprocally blocking their ways. Indeed,
such a case defines a local minima trap for both robots (con-
tinuous path planning failures would be generated on both
sides). In our approach, many ingredients are used to pre-
vent such deadlocks: the structure of our patrolling agent,
the topological and metric coordination (Sect. 5.2), the con-

Fig. 8 The 3D SLAM pipeline

tinuous interaction between the patrolling agent and the path
planner. In particular, the ability to detect critical conditions
(Sect. 6.3), node conflict resolutions (topological coordina-
tion) and the randomized selection strategy allow to escape
from local minima traps (e.g. the situation described above).

The path planner continuously publishes the following
messages after each plan or re-plan step, as a feedback.

– The path planner status: this message is sent to the
patrolling agent in order to inform it if a solution path
was found (success) or not (failure), or if the assigned
goal has been reached (reached). A successmessage also
includes the navigation cost of the computed path.

– The path message: this is broadcast to teammates and
contains the current estimated robot position and the cur-
rent planned path (see Table 2). These data are essential
for computing the multi-robot traversability.

On the other hand, the path planner can receive command
messages from the patrolling agent. In particular, a command
message contains the current goal node position along with
the desired action: go or abort.

8 3Dmapping and localization

In order to apply the distributed patrolling technique intro-
duced in Sect. 6, the robots need to localize in a common
global reference when moving in the environment. This
multi-robot localization is performed against a 3Dmapwhich
is built prior to the patrolling mission. This map is also
used for generating the initial patrolling graph presented in
Sect. 4. In the present system, the prior map and the individ-
ual maps of each robot, are built using the pose-graph SLAM
pipeline depicted in Fig. 8. For the experiments presented in
Sect. 10.2, the maps are generated using the observations
from a rotating 2D LiDAR sensor. However, our system is
flexible and accepts LiDAR sensors which directly provide
3D information.

Once the prior map has been generated, it is uploaded
to each robot participating in the patrolling mission. The
multiple robots globally localize themselves using a place
recognition strategy based on 3D segment extraction match-
ing (Dubé et al. 2017a). During the mission, each robot is
responsible of (1) communicating to the other robots its
location with respect to the prior map and (2) updating its

123

1762 Autonomous Robots (2019) 43:1747–1779

Fig. 9 A 3D map generated prior to the patrolling experiment which
took place at the Deltalinqs training site, Rotterdam. The point cloud is
colored by height and the ground plane has been removed for facilitating
localization (Color figure online)

local 3D volumetric representation of the environment to
reflect dynamic changes. The multi-robot localization solu-
tion detailed in the present section is inspired from earlier
work (Dubé et al. 2017a, b) and has been adapted and inte-
grated for fulfilling the needs of our patrolling framework.

In the remaining of this section we describe in more detail
the SLAM approach used, the chosen map representation,
and the multi-robot localization on the prior map.

8.1 3D pose-graph SLAM

In order to generate the prior map and to perform persistent
SLAM on each robot, the SLAM system relies on a pose-
graph optimization back-end (Grisetti et al. 2010). The states
of our framework are robot poses c(ti)∈SE(3) collected at
times {ti }Ni=0. These are estimated by optimizing a negative
log-posterior E , an error function that sums over a series of
constraints�(ci, j)=eTi, j�i, j ei, j . Here, ei, j defines the error
between the predicted state zi, j and the observed state z̃i, j of
the system, i.e., ei, j = zi, j − z̃i, j , and �i, j the information
matrix. The SLAM framework implements three different
types of constraint that are summed up in E :

– prior constraints �P (ci),
– odometry constraints �O(ci, j), and
– scan-matching constraints �S(ci, j).

Prior constraints can be created by using global local-
ization information as described in Sect. 8.3. Secondly,
odometry constraints define pose displacements of consec-
utive robot locations by fusing IMU and wheel odometry
measurements using an Extended Kalman Filter as described
in Kubelka et al. (2015). Scan-matching constraints are
finally obtained using Iterative Closest Point (ICP) to match
the current scan against all previous scans within a sliding
time window [t − w, t]⊂R where t is the current time and
w is the chosen fixed time window. The output of the ICP

algorithm is a set of rigid transformations which can directly
be translated into pose-graph constraints.

Let c(t1:t2) be the sequence of robot poses acquired in the
time interval [t1, t2]⊂R. Denote by CO and CS respectively
the set of pairs of timestamps for which odometry and scan-
matching constraints exist over the same time interval [t1, t2].
The error function is then defined as

E(c (t − w:t)) = �P (c0) +
∑

〈ti ,t j 〉∈CO

�O(ci, j)

+
∑

〈ti ,t j 〉∈CS

�S(ci, j) (8)

on the sliding time window. This error function is finally
minimized using the Gauss Newton algorithm and the robot
trajectory is updated with the optimization result.

The pose-graph model therefore serves as an implicit
estimation of the robot trajectory and map. The latter can
explicitly be generated, in the form of an OctoMap, by pro-
jecting individual scans from the optimized robot poses into
the global frame of reference. An example of this 3D repre-
sentation is illustrated in Fig. 9.

8.2 OctoMap representation

We select the OctoMap (Hornung et al. 2013) represen-
tation for modelling occupied and free space explicitly.
The OctoMap representation exhibits several advantageous
properties for multi-robot applications. This representation
first allows to register mapping data from different sources
in a common frame of reference, enabling the distributed
patrolling strategy introduced in Sect. 6.Moreover, this prob-
abilistic framework accounts for dynamic objects which can
be filtered overmultiple observations due to the explicit mod-
elling of free space using ray-casting. The OctoMap can
be obtained by either loading an existing map and apply-
ing potential online extension, or building it online using our
LiDAR-based SLAM approach.

In order to use this representation for navigation and
patrolling, a ‘clamping policy’ is adopted by setting a lower
and upper bound on the log-likelihood of the occupancy esti-
mate in the OctoMap. The final decision about occupancy is
made by thresholding this bounded estimate which ensures
that the 3D map representation can quickly adapt to changes
in the environment.13

For the Unmanned Ground Vehicle (UGV)s used in our
experiments, the LiDARs are mounted at low heights which
requires an adaptation over the classic OctoMap approach.
As displayed in Fig. 10, themotivation behind this adaptation
is that a low angle of incidence relative to the ground may

13 The dynamic update of the OctoMap and its reactive behaviour is
demonstrated in a video https://youtu.be/caECYcYdrgo.

123

https://youtu.be/caECYcYdrgo

Autonomous Robots (2019) 43:1747–1779 1763

(a)

(b)

Fig. 10 Challenges of small incidence angles using lidar: a small vari-
ations in the angle (δα) inflict large positional uncertainty (δs). b Low
incident angles inflict voxels falsely set as free (grey) in the Octomap

cause voxels to be falsely marked as free space which is
in turn critical for the traversability analysis introduced in
Sects. 7.1 and 7.2. We therefore limit the angle of incidence
at which ray-casting can lower the occupancy probability of
voxels to a lower bound αmin .

The center-points of occupiedOctoMap cells are thus used
for traversability analysis as shown in Sect. 7.2.

8.3 Multi-robot localization

At the beginning of a patrolling mission, the global loca-
tion of each robot is estimated using the SegMatch algo-
rithm (Dubé et al. 2017a). Specifically, 3D point cloud
segments are extracted from the prior map and all local maps
by applying ground-plane removal, followed by Euclidean
clustering with a growing distance d (Douillard et al. 2011).
Eigen-value based features are then extracted in order to
uniquely describe each segment (Weinmann et al. 2014).
Candidate segmentmatches are identified between each local
map and the target map by considering the k nearest neigh-
bours in feature space. An SE(3) transformation is finally
obtained for each robot by selecting the largest group of
consistent candidates using RANSAC with a resolution r .
Figure 11 illustrates a localization example with the consis-
tent group of matches depicted with green vertical lines. The
parameters used in this algorithm throughout the experiments
are presented in Table 4.

Each robot uses this localization information for initial-
izing its own SLAM algorithm, as presented in Sect. 8.1.
Given that an unique prior map is shared amongst all robots,
scan-matching factors �S are generated by performing ICP
against this shared map. Thus, ensuring that the multiple
robots are globally localized in real-time and in a common
reference frame, enabling the multi-robot patrolling tech-
nique presented in this work. This localization paradigm is
able to account for changes in the environment, if a sufficient

Fig. 11 A localization example in the map illustrated in Fig. 9. Seg-
ments extracted from the target map are shown in white below whereas
colors are used to depict segments extracted from the local representa-
tion of the robot located at the right. Matching segments resulting in a
localization are illustratedwith vertical green lines (Color figure online)

amount of structure is similar, enabling ICP to converge to
correct solutions.

9 Patrolling graph building

This section briefly presents two procedures for building a
patrolling graph: the first (interactive) takes as input a set
of Points Of Interest (POIs) selected by the user on the 3D
interface; the second (automatic) automatically computes the
patrolling graph from an history of robot trajectories.

9.1 Patrolling graph from a user-assigned set of
waypoints

In the interactive procedure, a set of POIs (or waypoints)
are selected by the user on the map. These are potentially
considered as patrolling graph nodes. Then, an algorithm
automatically adds an edge between each pair of nodes
(ni , n j) that satisfy the following conditions:

1. the Euclidean distance between the corresponding points
pi , p j ∈ R

3 is smaller than a maximum distance dmax ∈
R (set to 5m in our experiments);

2. the line segment connecting pi and p j does not intersect
the map;

3. the line segment between the positions pi and p j has an
elevation angle smaller than a maximum angle αmax ∈ R

(we set this to 30◦);
4. a traversable path between the node positions pi , p j ∈

R
3 exists.

The first condition is added for containing the branch
factor of each node and avoid too long travels between
nodes. The second condition checks if the line segment pi p j

123

1764 Autonomous Robots (2019) 43:1747–1779

Fig. 12 Main steps of the automatic procedure for building a graph:
this is used for processing an history of robot trajectories

intersects the ground or an obstacle. The second and third
conditions together avoid connecting nodes which belong to
different floor levels or which can be joined by a too steep
passage.

If some of the points are not connected, they are not con-
sidered as nodes, the user can move or delete them, and then
repeat the procedure. In this process, kd-trees are efficiently
used in order to perform collision checking.

9.2 Patrolling graph from a saved history of robot
trajectories

The automatic graph building procedure is based on the
approach presented in Menna et al. (2014). First, each input
robot trajectory is initially discretized via uniform sam-
pling, in order to obtain a sparse sequence of poses. Then,
each resulting sequence is accumulated in a suitable space-
partitioning data structure, where the robot orientation is
disregarded. Next, a voxel grid filter is applied to this data
structure to reduce the number of points stored therein.

For each resulting point in the filtered data structure a
node is generated. Connections among nodes are established
as follows. A preliminary procedure is applied to the filtered
data structure to find a set of distinct connected components
(see Fig. 12b). This procedure searches for all the nearest
neighbours of a query point in a given radius (see Fig. 12a).
Finally connected components are linked together through
an iterative radius search procedure, where at each iteration,
the value of the radius is incremented in order to ensure con-
nectivity (see Figs. 12c).

Fig. 13 TRADR UGV equipped with multiple encoders, an IMU and
a rotating laser-scanner

10 Results

This section presents the results we obtained with an imple-
mentation in 3D. We validated the proposed strategy on the
TRADR UGV robots (Kruijff-Korbayová et al. 2015) (cfr.
Fig. 13), both in simulations and real-wold experiments.
These vehicles are skid-steered and satisfy the path control-
lability assumption (see Sect. 4.1). Amongst other sensors,
the robots are equipped with a 360◦ spherical camera and a
rotating laser scanner.

We considered 3D scenarios which are typical for our
TRADR UGVs (see Sect. 1). Here, interferences are very
likely and theUGVs need to navigate by (i) avoiding conflicts
in narrow passages, (ii) performing reliable traversability
analysis and coordinated path-planning, (iii) reliably localiz-
ing in 3D while simultaneously updating and extending the
input 3D metric map. In these scenarios, there is typically an
high ratio between team size and patrolling graph size.

For convenience, we report in Tables 3 and 4 the list of
the main parameter values we used both in simulations and
experiments.

All the algorithms are implemented in C++ (cfr.
Sect. 14.1). ROS is used as middleware. The code has been
designed to seamlessly interfacewith both simulated and real
robots. This allows to use the same code both in simulations
and experiments. An open source implementation is avail-
able.14

A functional diagram of the presented multi-robot system
is reported in Fig. 14. This is detailed in Sect. 14.2.

10.1 Simulation experiments

This section presents simulation results obtained with the
V-REP simulation framework (Rohmer et al. 2013). V-REP
allows to simulate laser range finder and odometry noise.

14 https://gitlab.com/luigifreda/3dpatrolling.

123

https://gitlab.com/luigifreda/3dpatrolling

Autonomous Robots (2019) 43:1747–1779 1765

Table 3 Path planning and patrolling agent main parameters used in
the evaluation

Component Description Symbol Value

Path planning Robot max linear velocity speed vmax 0.2m/s

Robot bounding radius Rb 0.47m

Robot safety distance Ds 1.2m

Future trail crop radius Rc 1.5m

Radius for considering future trails Rt 1.5m

Path planning waiting time Twait 0.5 s

Patrolling Critical path planning failure time Tpcr 5 s

Critical node conflict time Tncr 5 s

Patrolling sleep time Tsleep 0.1 s

Patrolling main loop rate f patrol 30Hz

Idleness message broadcast period Tidln 5 s

Team model expiration time Texp 10 s

Grousers have been added to the simulated robot tracks in
order to obtain realistic robot interactions with the terrain.

For convenience, we have adopted a single-core ROS
architecture during our simulation runs. A different and
more efficient network architecture is used for the real-world
experiments (see Sect. 10.2). In simulation, we introduced a
fixed delay of 0.2s in the publishing of each broadcast mes-
sage.

In this work, since the focus is on patrolling aspects, we do
not consider the articulated tracks during motion planning.15

We perform simulations with teams up to four TRADR
robots. While this is a typical team size in the considered
SaR applications, it is mainly a limitation from the V-REP
simulations which is computationally very demanding. To
face this limitation, our setup distributes the V-REP simula-
tions, and the ROS nodes performing SLAM, segmentation,
traversability analysis, path planning and patrolling on dis-
tinct computers. However, in our setup, V-REP is not able to
stably simulate more than four robots under realistic condi-
tions. On the other hand, the presented multi-robot patrolling
strategy is fully distributed and the implementation of its
coordination protocol does not require special hardware.

The simulated scenarios are depicted in Figs. 15, 16
and 17. In particular, Fig. 16 collects the used multi-floor
scenarios, while 15 and 17 show the single-floor scenarios. In
our view, the scenarios of Fig. 17 can be considered as repre-
sentative topological types of environment junctions, which
may be found in common single-floor scenarios. In particu-
lar, we simulated the challenging scenario “small crossroad”

15 This aspect can bemanaged for instance as proposed inZimmermann
et al. (2014) and Colas et al. (2013).

with teams of three robots and four robots. Some videos of
the simulations and further details are publicly available.16

In a first stage, we separately evaluated the multi-robot
traversability in order to show how it improves the behaviour
of the path-planner. To this aim, we used the challenging
scenario reported in Fig. 15a and assigned to the each robot
one of the distinct cyclic paths shown in Fig. 15b. Here,
each robot was required to move back and forth between
its two assigned waypoints by using only the path planner
(no patrolling graph and no patrolling agent). We compared
the behaviour of the path planner with and without the multi-
robot traversability. In the scenario of Fig. 15b, we run 10
simulations, each one lasting 10 minutes. We observed that
a team of three robots, which used the basic path planners,
always got stuck in a deadlock (around the intersection of
the three cyclic paths). On the other hand, path planners and
multi-robot traversability succeed in nicely coordinating the
robots without congestions or deadlocks.17

In similar environments, characterized by narrow cross-
roads, we obtained comparable results. In general, when
considering only the path planner,we observed that themulti-
robot traversability improves the navigation ability of a robot
team. This becomes particularly evident in scenarios where
significant congestions and deadlocks may occur. Clearly,
there are complex cases which cannot be managed by the
multi-robot traversability, given the high complexity of the
general multi-robot path planning problem (LaValle 2006).
Nonetheless, we empirically show that our two level coor-
dination strategy (multi-robot traversability plus patrolling
agent) can resolve conflicts and prevent deadlocks in com-
plex patrolling scenarios.

In a second stage, we evaluated the (full) two level coordi-
nation strategy. To this aim, we used as performance metrics
the idleness statistics introduced in Section 4.2 and the total
number of occurred interference events. In particular,we con-
tinuously measured in a moving-window [t − �, t] ⊂ R the
average graph idleness I aG[t − �, t], its standard deviation
I σ
G [t − �, t] and its maximum value I MG [t − �, t], where t
denotes the current time and we selected � = 600s. In par-
ticular, we considered a moving-window in order to better
observe transient dynamics. We found that a time width of
600s was a good compromise to significantly capture both
transients and regime behaviours.

Moreover, we counted the total number of interference
events that are broadcast by the robots when their centres
get closer than the safety distance Ds (see Sect. 5.1). These
checks are executed at 2Hz and recorded at a pre-fixed
frequency of 0.2Hz. Indeed, such an interference measure

16 https://sites.google.com/a/dis.uniroma1.it/3d-cc-patrolling/.
17 Two simulation videos are available on our website and show these
behaviour.

123

https://sites.google.com/a/dis.uniroma1.it/3d-cc-patrolling/

1766 Autonomous Robots (2019) 43:1747–1779

Table 4 Laser mapping parameters used in the evaluation

Component Description Symbol Value

3D SLAM Maximum laser range rmax 20m

Scan maximum density ρmax 50,000 1
m3

Scans in Sliding window estimation nscans,SW E 3

knn surface normal computation nknn 20

ICP error metric Point-to-plane

Prior noise model �P 06× 6

Odometry noise model �O (500, 500, 500, 500, 0.015, 500)T I6× 6

Scan matching noise model �S (0.05, 0.05, 0.05, 0.015, 0.015, 0.015)T I6× 6

OctoMap OctoMap resolution φ 0.075m

OctoMap occupancy thresholds omin, omax 0.12, 0.97

OctoMap hit/miss probabilities Phit , Pmiss 0.75, 0.2

OctoMap min angle ground removal αmin 4◦

SegMatch Region growing distance d 0.2m

Number of nearest neighbours k 5

RANSAC resolution r 0.3m

overall represents how long the robot team experienced inter-
ference and conflicts.18

We compared the patrolling strategy presented in this
paper (see Algorithms 2–4) with two simplified versions of
it. The first simplified strategy is obtained by only disabling
the multi-robot traversability (metric coordination). The sec-
ond one is obtained by disabling node conflict management
(topological coordination) and shared idleness estimation
(cooperation), but it preserves metric coordination. In the
remainder of this paper, we refer to the full patrolling strategy
as CC strategy (Cooperation plus Coordination), to the first
simplified strategy as CwMC strategy (Cooperation without
Metric Coordination) and to the second simplified strategy as
No-CC strategy. As explained in Sect. 6.3, in this work, we
selected a reactive strategy for the implementations of the
functions BuildSearchSet(·) and ComputeNextBestNode(·)
of Algorithm 4.

For each simulated scenario,we report the results obtained
with a simulation run lasting 1h. In all the runs, we used the
same software deployment, i.e. we distributed ROS nodes
and V-REP in the same way. It is worth noting that, in
each scenario, we observed consistent results across simu-
lation experiments started with different initial robot poses,
as already reported in other works (Farinelli et al. 2017).

18 Since V-REP simulations are computationally demanding in our
setup, the simulated robots were not able to move in real time and
their motions were very slow (this can be observed in our simulation
videos on our website). As a result, when robots got in interference, they
persisted in such conditions for longer times with respect to a normal
real time simulation.

The obtained performance metrics are shown in Figs. 18,
19, 20 and 21. In each sub-figure, we report (left) a plot
of the moving average idleness of the graph along with its
standard deviation, (center) the maximum idleness observed
in the moving time-window and (right) the total number of
observed interferences up to the current time.

In particular, we compared the CwMC and CC strate-
gies in the challenging scenarios three-ways (now using the
patrolling graph in Fig. 15c) and crossroad. These simu-
lations allow to highlight the performance improvements
that can be provided by the multi-robot traversability when
patrolling robots need to negotiate challenging space con-
flicts.

As can be observed, the performance metrics of the CC
strategy overall present better trends in all the scenarios.
In Fig. 18, results confirm the superiority of combining the
multi-robot traversability with the path planner. In other sce-
narios, the comparisons between CC and CwMC returned
small improvements or comparable idleness performances.19

Notably, in the multi-floor scenarios, the number of interfer-
ences ofCC is constantly zero in the two-floor ring (Fig. 19b),
while its value grows20 to 90 during the second part of the
simulation in the multi-floor ramp (Fig. 19a). In general, the
big spikes which characterize the max idleness curves in
Fig. 19 correspond to an inefficient team deployment over
the graph or to the occurrence of challenging conflicts. In the
latter case, the conflicts are constantly controlled and solved

19 Which we do not report here in order to reduce space.
20 This is not visible in the plot but it was observed by inspecting the
recorded data.

123

Autonomous Robots (2019) 43:1747–1779 1767

Fig. 14 A functional diagram of the implemented multi-robot system.
Robots share the same internal software architecture. In particular, each
robot hosts an instance of the patrolling agent and of the path-planner.

The legend on the top left represents the different kind of exchanged
messages. The architecture is detailed in Sect. 14.2

by the CC, while they produce a big performance degrada-
tion in the case of theNo-CC strategy. Indeed, it is possible to
observe a significant correlation between the maximum idle-
ness and the average idleness which are shown in Fig. 19.

Another important result can be observed on both the idle-
ness statistics curves shown in Fig. 19: The moving average
idleness of theCC is overall smaller and much less dispersed
than the correspondent curve of No-CC. Similar results are
obtained in the case of single-floor scenarios (see Figs. 20,
21). We observed that the multi-floor ramp, the single-floor
corridor and the crossroad are very challenging scenarios for

the No-CC strategy since the robots continuously obstruct
each other while trying to reach the ends of the graph. On
the other hand, the CC strategy succeeds to avoid interfer-
ence and direct negotiation of metric conflicts by mainly
using node conflict management and shared idleness in order
to properly redirect and redistribute robots over the graph.
Clearly, in these challenging cases, all the encountered met-
ric conflicts usually subject the engaged robot path planners
to an high and useless computational load with a strong per-
formance degradation.

123

1768 Autonomous Robots (2019) 43:1747–1779

Fig. 15 Left the three-ways scenario in V-REP. Center the three cyclic
paths assigned to the robots (in different colours). Each robot is required
to move back and forth between its two assigned waypoints (mainly
along the horizontal, diagonal or vertical direction). Right the envi-

ronment maps, i.e. patrolling graph (red circular vertex and yellow
edges), traversable regions (green point cloud), obstacle regions (red
point cloud) (Color figure online)

Fig. 16 Multi-floor scenarios in V-REP (left) and their maps (right) patrolling graph (red circular vertex and yellow edges), traversable regions
(green point cloud), obstacle regions (red point cloud) (Color figure online)

123

Autonomous Robots (2019) 43:1747–1779 1769

Fig. 17 Single-floor scenarios in V-REP (left) and their maps (right) patrolling graph (red circular vertex and yellow edges), traversable regions
(green point cloud), obstacle regions (red point cloud) (Color figure online)

It should be emphasized that no deadlocks occurred during
all our simulation runs. The two-level strategy succeeded in
safely governing the robot behaviour, arbitrating conflicts
and suitably distributing the robots over the graph.

10.2 Real-world experiments

The real-world multi-robot system is implemented in ROS
by using a multi-master architecture. In particular, nim-
bro_network (Schwarz 2017) is used for efficiently transport-
ing ROS topics and services over a WIFI network. Indeed,
nimbro_network allows to fully leverage UDP and TCP pro-

123

1770 Autonomous Robots (2019) 43:1747–1779

time [s]
0 1000 2000 3000 4000

id
le

ne
ss

 [s
]

0

10

20

30

40

50

60
idleness statistics

CC
CwMC

time [s]
0 1000 2000 3000 4000

id
le

ne
ss

 [s
]

50

100

150

200

250

300

350
idleness max

CC
CwMC

time [s]
0 1000 2000 3000 4000

#i
nt

ef
er

en
ce

s

0

2000

4000

6000

8000

10000
interferences

CC
CwMC

(a) Three-ways

time [s]
0 1000 2000 3000 4000

id
le

ne
ss

 [s
]

0

20

40

60

80

100

120

140
idleness statistics

CC
CwMC

time [s]
0 1000 2000 3000 4000

id
le

ne
ss

 [s
]

0

100

200

300

400

500

600
idleness max

CC
CwMC

time [s]
0 1000 2000 3000 4000

#i
nt

ef
er

en
ce

s

0

1000

2000

3000

4000

5000

6000
interferences

CC
CwMC

(b) Crossroad

Fig. 18 Performance metrics obtained by comparing CC with CwMC
in the three-ways and crossroad scenarios. Left a plot of the average
idleness of the graph along with its standard deviation. Statistics are
computed in a moving time-window of width 600 s. Center the max-

imum idleness observed in the moving time-window. Right the total
number of observed interferences up to the current time. CC strat-
egy performances are reported in blue while CwMC performances are
depicted in red (Color figure online)

tocols in order to control bandwidth consumption and avoid
network congestions. This capability along with a compara-
tive testing of different ROSmulti-master architectures made
the TRADR consortium adopt nimbro_network (Kruijff-
Korbayová et al. 2015; Worst et al. 2017, 2018).

We used the same C++ code in order to run both simula-
tions and experiments (cfr. Sect. 14.1). Only ROS launch
scripts were adapted in order to specifically interface the
modules with the actual multi-master nimbro_network trans-
port layer.

We performed patrolling experiments with real UGVs
aiming at showing the applicability and portability of the
developed software in the real 3D world. We tested our
strategy with teams of two and three robots in different envi-
ronments. Figure 22 shows two of the considered scenarios
along with their maps and patrolling graphs. In particular,
the CC strategy described in Sect. 6.3 was tested on the
TRADR UGVs and a satisfactory behaviour was achieved.
Somevideos of the performedexperiments and further details
are publicly available.21

Experiments confirmed that map visualization is the most
demanding networking functionality of the system. This is

21 https://sites.google.com/a/dis.uniroma1.it/3d-cc-patrolling/.

only required on the 3DGUI of the central core if a user want
to monitor patrolling activities (see Fig. 14). In this context,
nimbro_network transport layer was crucial for achieving
almost smoothmapdata transfers.Only thebroadcast of com-
pact coordinationmessages is required in order to implement
the presented CC strategy.

During the experiments,we observed that someof the path
and selected messages were delayed or lost. Such situations
temporally provoked a patrolling performance drop, due to
a locally degraded coordination. Nonetheless, nor the oper-
ation activity of the system was crucially affected, neither
major congestions or deadlocks occurred. These aspects are
further discussed in Sect. 11.

It is worth noting that the windowed search strategy pre-
sented in Sect. 7.3 proved to work very well in practice.
Most times, the path planner finds a path at the first attempt
with the advantages of (i) conveniently reducing the search
space22 and (ii) reducing on the average the computational
load generated by the path planner.

22 In these cases, the path planner only considers the most interesting
and useful part of the traversability map.

123

https://sites.google.com/a/dis.uniroma1.it/3d-cc-patrolling/

Autonomous Robots (2019) 43:1747–1779 1771

time [s]
0 1000 2000 3000 4000

id
le

ne
ss

 [s
]

0

50

100

150

200

250

300

350

400
idleness statistics

CC
No CC

time [s]
0 1000 2000 3000 4000

id
le

ne
ss

 [s
]

0

200

400

600

800

1000

1200
idleness max

CC
No CC

time [s]
0 1000 2000 3000 4000

#i
nt

ef
er

en
ce

s

0

500

1000

1500

2000

2500

3000

3500
interferences

CC
No CC

(a) Multi-floor ramp

time [s]
0 1000 2000 3000 4000

id
le

ne
ss

 [s
]

0

50

100

150

200

250

300
idleness statistics

CC
No CC

time [s]
0 1000 2000 3000 4000

id
le

ne
ss

 [s
]

0

200

400

600

800

1000

1200

1400
idleness max

CC
No CC

time [s]
0 1000 2000 3000 4000

#i
nt

ef
er

en
ce

s

0

1000

2000

3000

4000

5000
interferences

CC
No CC

(b) Two-floor ring

Fig. 19 Performancemetrics obtainedby comparingCCwithNo-CC in
the multi-floor scenarios. Left a plot of the average idleness of the graph
along with its standard deviation. Statistics are computed in a moving
time-window of width 600 s. Center the maximum idleness observed

in the moving time-window. Right the total number of observed inter-
ferences up to the current time. CC strategy performances are reported
in blue while No-CC performances are depicted in red (Color figure
online)

11 Discussion

In this section, we shortly discuss the presented patrolling
approach in terms of network resilience and scalability. Then,
we present some lessons learnt in deploying our system in
real-world scenarios.

11.1 Network resilience

The proposed multi-robot system is distributed and avoids
any centralized arbitration scheme, which would represent a
critical point of failure.

In the proposed strategy, the communication protocol
was designed with redundant messages and an idleness syn-
chronization scheme which support the shared knowledge
representation (see Sect. 4.5).

In particular, at topological level, a selected message is
periodically broadcast (see Sect. 4.5). This redundancy adds
robustness with respect to sporadic selected message losses.
In fact, if a single selected message is lost, two robots may
move towards the same node until new selected messages
arrive and allow them to resolve the node conflict. Clearly,
if a significant amount of messages is lost, each robot plans

its actions relying on an incomplete representation of the
world state. In such case, idleness estimates are not coop-
eratively updated, moreover, coordination and cooperation
smoothly degrade given the missed shared information and
teammates decisions.When the network is completely down,
each robot greedily performs an independent patrolling mis-
sion by avoiding teammates (see below) and solving critical
path-planning failures with goal pre-emption and continuous
re-planning.

At metric level, the path-planners continuously re-plan
paths and correspondingly broadcast path messages (see
Table 2). In this way, each multi-robot traversability map is
continuously updated. If many pathmessages are lost, robots
will not stop but will independently proceed towards their
goals, avoiding each other thanks to the combination of the
continuous re-planningwith a low-level proximity checker.23

It is worth noting that the metric coordination enforced by
the multi-robot traversability is locally bound by the radius
Rt ≥ Rc (see Sect. 7.2). This implies that a correct multi-
robot traversability could be computed even if robots were

23 This laser proximity checker inhibits forward velocity commands
when a close front obstacle is detected by the laser.

123

1772 Autonomous Robots (2019) 43:1747–1779

time [s]
0 1000 2000 3000 4000

id
le

ne
ss

 [s
]

0

5

10

15

20

25

30

35

40
idleness statistics

CC
No CC

time [s]
0 1000 2000 3000 4000

id
le

ne
ss

 [s
]

0

50

100

150

200

250
idleness max

CC
No CC

time [s]
0 1000 2000 3000 4000

#i
nt

ef
er

en
ce

s

0

1000

2000

3000

4000

5000
interferences

CC
No CC

(a) Small crossroad with 3 robots

time [s]
0 1000 2000 3000 4000

id
le

ne
ss

 [s
]

0

10

20

30

40

50
idleness statistics

CC
No CC

time [s]
0 1000 2000 3000 4000

id
le

ne
ss

 [s
]

0

50

100

150

200

250

300
idleness max

CC
No CC

time [s]
0 1000 2000 3000 4000

#i
nt

ef
er

en
ce

s

0

1000

2000

3000

4000

5000

6000
interferences

CC
No CC

(b) Small crossroad with 4 robots

Fig. 20 Performance metrics obtained by comparing CC with No-CC
in the small crossroad scenarios with 3 and 4 robots. Left a plot of the
average idleness of the graph along with its standard deviation. Statis-
tics are computed in a moving time-window of width 600 s. Center the

maximum idleness observed in themoving time-window.Right the total
number of observed interferences up to the current time. CC strategy
performances are reported in blue while No-CC performances in red
(Color figure online)

only able to exchange path messages within a limited com-
munication range Rt .

Additionally, even if not presented in this work, it is worth
mentioning that the system can make use of the commu-
nication-aware path planner presented in Caccamo et al.
(2017). This drives each robot towards better WIFI connec-
tivity regions while planning a path towards the designated
goal.

11.2 Scalability

In our experiments, the number of robots was limited by V-
REP24 and the real TRADR UGVs available. Nonetheless,
we observed that increasing the number of robots tends to
improve the patrolling performance even in challenging sit-
uations, as shown for instance by the average graph idleness
curves in Fig. 20.

Additionally, we observed that, under some conditions,
the robot team tends to create dynamic regions where agents
patrol more often. This is a nice behaviour already observed
in other works (Portugal and Rocha 2016), without recur-

24 In our setup, V-REP is not able to stably simulate more than four
robots under realistic conditions (cfr. Sect. 10.1).

ring to an explicit space decomposition and allocation. In
our case, this behaviour is induced by an explicit manage-
ment of interference and conflicts (topological and metric
coordination).

In termsof networkbandwidth consumption, our approach
is not demanding and could be scaled up to many robots. In
fact, the data size of the messages reached, visited, planned,
selected, and aborted is very contained. On the other hand,
even if path and idleness messages convey vector data,25

their broadcast frequencies are lower. In particular, pathmes-
sages are broadcast on path planning updates,which typically
occur at time-varying frequencies higher than 1Hz. More-
over, idlenessmessages are broadcast according to apre-fixed
frequency 1/Tidln . If required, selected messages could also
be broadcast at a pre-fixed frequency. In this regard, the user
can control such broadcast frequencies and trade-off between
bandwidth consumption and system robustness.

As the number of robots grows, local high densities of
robots may form. In this case, the number of coordination
“interactions” may increase in a large group of close robots
facing a challenging space conflict (e.g. a narrow cross-

25 The path and idlenessmessage sizes actually depends on the number
of patrolling graph nodes.

123

Autonomous Robots (2019) 43:1747–1779 1773

time [s]
0 1000 2000 3000 4000

id
le

ne
ss

 [s
]

0

10

20

30

40

50

60
idleness statistics

CC
No CC

time [s]
0 1000 2000 3000 4000

id
le

ne
ss

 [s
]

50

100

150

200

250

300

350
idleness max

CC
No CC

time [s]
0 1000 2000 3000 4000

#i
nt

ef
er

en
ce

s

0

500

1000

1500

2000

2500
interferences

CC
No CC

(a) Ring

time [s]
0 1000 2000 3000 4000

id
le

ne
ss

 [s
]

0

20

40

60

80

100
idleness statistics

CC
No CC

time [s]
0 1000 2000 3000 4000

id
le

ne
ss

 [s
]

0

100

200

300

400

500
idleness max

CC
No CC

time [s]
0 1000 2000 3000 4000

#i
nt

ef
er

en
ce

s

0

1000

2000

3000

4000

5000
interferences

CC
No CC

(b) Fork

time [s]
0 1000 2000 3000 4000

id
le

ne
ss

 [s
]

0

10

20

30

40

50

60

70

80
idleness statistics

CC
No CC

time [s]
0 1000 2000 3000 4000

id
le

ne
ss

 [s
]

0

100

200

300

400

500
idleness max

CC
No CC

time [s]
0 1000 2000 3000 4000

#i
nt

ef
er

en
ce

s

0

2000

4000

6000

8000

10000

12000

14000
interferences

CC
No CC

(c) Corridor

time [s]
0 1000 2000 3000 4000

id
le

ne
ss

 [s
]

0

50

100

150

200
idleness statistics

CC
No CC

time [s]
0 1000 2000 3000 4000

id
le

ne
ss

 [s
]

0

200

400

600

800

1000

1200
idleness max

CC
No CC

time [s]
0 1000 2000 3000 4000

#i
nt

ef
er

en
ce

s

0

1000

2000

3000

4000

5000

6000

7000

8000
interferences

CC
No CC

(d) Crossroad

Fig. 21 Performance metrics obtained by comparing CC with No-CC
in the single-floor scenarios ring, fork, corridor and crossroad.Left a plot
of the average idleness of the graph along with its standard deviation.
Statistics are computed in a moving time-window of width 600 s. Cen-

ter the maximum idleness observed in the moving time-window. Right
the total number of observed interferences up to the current time. CC
strategy performances are reported in blue while No-CC performances
in red (Color figure online)

123

1774 Autonomous Robots (2019) 43:1747–1779

Fig. 22 Two of the experimented scenarios with real UGVs

road). Specifically, such robots may need to exchange more
coordination messages in order to resolve node conflicts
and converge in the negotiation of new goals. We already
observed such challenging situations in the experimented
3D scenarios. Nonetheless, the robots always succeeded in
nicely redistributing over the patrolling graph in a reasonable
amount of time. In this regard, we would like to note that
both metric coordination and topological coordination tend
to prevent the formation of local high densities of robots.

11.3 Lesson learnt in real world deployment

During this research and the TRADR experience (Kruijff-
Korbayová et al. 2015), we learnt the following main lessons
through numerous real world deployments.

First, a robust 3D SLAM was required in order to enable
multi-UGV operations in 3D dynamic environments over
long-term missions. In fact, an accurate multi-robot local-
ization is crucial to enable consistent spatially-registered
cooperation and coordination. In some situations, we expe-
rienced that our rotating laser system was not stiff enough

and driving over rough terrain resulted in noisy point clouds.
Therefore, a dense RGBD mapping could open the way to
a more accurate point cloud segmentation and traversabil-
ity analysis. In this regard, the use of a multi-modal SLAM
approach which processes both RGBD and laser information
could be beneficial.

Second, a distributed knowledge representation and a
robust coordination protocol is crucial in order to attainmulti-
robot collaboration over unreliable network infrastructures.
Our framework achieves this through redundant messages
and information synchronization mechanism. In this regard,
we found some of the nimbro_network features (e.g. forward
error correction, adaptive image compression rate and cur-
rent network quality visualization) to be highly beneficial
(Worst et al. 2017, 2018).

Third, we discovered that interferences and conflicts are
very likely in disaster scenarios. In order to effectively
cope with these problems, high-level decision making and
low-level path planning must be tightly coupled. This is
implemented in our two-level coordination strategy. In this
context, metric coordination and topological coordination

123

Autonomous Robots (2019) 43:1747–1779 1775

favour each other in a virtuous circle. In fact, when robots
“reserve” their motion space by laying down prospective
paths over the multi-robot traversability (metric coordina-
tion), teammates part away and, therefore, node conflicts are
often prevented. On the other hand, when node conflicts are
resolved (topological coordination), robots are redistributed
over the patrolling graph and, therefore, generally pushed
away from each other (preventing interferences).

12 Main characteristics of the strategy

Before presenting our conclusions, we summarize the main
characteristics of the presented strategy.
Coordination (avoid conflicts):

• The proposed patrolling strategy is distributed.
• Interferences and conflicts are explicitly managed.
• Metric conflicts are managed by the path planner by con-
tinuously replanning over the multi-robot traversability.
This mechanism implements a prioritized path plan-
ning (LaValle 2006)which takes into account prospective
robot interactions.

• Topological node conflicts are detected and resolved by
the patrolling agent.

• Metric coordination and topological coordination favour
each other in a virtuous circle (see Sect. 11.3).

Cooperation (avoid inefficient actions): a shared idleness
representation supports any optimization strategy in the
selection of the next node (see Sect. 4.5). This allows to avoid
that a patrolling agent selects a goal node recently visited by
a teammate.
Decision making:

• Decision making relies on a tight coupling between the
patrolling agent and the path planner. In particular, the
patrolling agent continuously monitors the path planner
and accomplishes goal pre-emption and replanning when
critical conditions are detected (see Sect. 6.3). Addition-
ally, path lengths computed by the path planner are used
to negotiate conflicts.

• A randomized goal selection strategy (line 2, Algo-
rithm 4) is used in order to escape from “local minima”
traps generated by critical conditions (see Sect. 6.3). For
instance, thesemay be provoked by environment changes
or teammates obstructions.

• Our strategy can be used as a base to develop any online
patrolling solution. A wide range of user-defined strate-
gies could be easily encoded in the best node selection
(lines 5–6, Algorithm 4).

Network:

• Redundant messages and information synchronization
mechanisms add robustness with respect to network fail-
ures (see Sect. 11.1).

13 Conclusions

This works presented a distributed approach for multi-robot
patrolling. We focused on aspects that are typically over-
looked in the literature, such as avoiding conflicts and
deadlocks in spaces shared by multiple UGVs, consider-
ing full 3D environments, traversability analysis, coordinated
path planning, and real validation in 3D scenarios. Some of
these aspects are summarized in Sect. 12.

In particular, we developed a comprehensive framework
for multi-robot patrolling dealing with all the inherent design
aspects, from high-level cooperation and decision making,
to low-level coordination and path planning. We improved
upon the state-of-the-art methods by developing a two-level
coordination strategy, which crucially takes into account the
necessary tight coupling between topological and metric
decision making. In this regard, both topological and metric
coordination allow to explicitly minimize interference and
conflicts, which crucially affect UGVs activity. We experi-
enced that this approach allows to effectively cope with the
typical challenges involvedwhena teamofUGVs is deployed
in a disaster scenario.

The presented two-way coordination strategy is general
and can be used as a base to develop new strategies for
optimizing the patrolling graph idleness and ensuring space
conflicts negotiation.

Our multi-robot patrolling algorithm is fully integrated
with a 3D SLAM algorithm, traversability analysis and coor-
dinated path planning. This enables our system of ground
robots to operate in 3D.

We demonstrate competitive performance in both sim-
ulation and real world experiments, enabling robots to
simultaneously operate in realistic simulation and in real
world experiments. The obtained results show that the Coor-
dination plus Cooperation strategy was superior than our
baseline throughout all performance measures, i.e., mean
idleness, max idleness, spread of idleness and inference
events. Notably, when using the CC strategy, no deadlocks
were observed during our experiments and the number of
interferences was always significantly reduced (or zeroed
in some cases). Moreover, we observed that the multi-robot
traversability is able to improve the patrolling teambehaviour
in the most challenging scenarios, where space conflicts cru-
cially affect robot activities. As discussed in Sect. 11.2, our
approach offers good scalability properties both in terms of
network bandwidth consumption and performance (the latter
to be further validated with larger robot fleets).

123

1776 Autonomous Robots (2019) 43:1747–1779

We publish the source code of the presented approach
with the aim of providing a useful tool for researchers in the
Robotics Community.

In the future, we plan to increase the number of robots
simultaneously operating in real world experiments.26 Fur-
thermore, we wish to investigate on patrolling prioritization
with heterogeneous robot fleets. In this context, exploration
of “unknown” environments given a topological prior (i.e.,
a topological map used as a patrolling graph) seems a
promising research direction. Furthermore, it would be ben-
eficial to integrate explicit dynamic updates of the patrolling
graph. Finally, integration of a multi-robot SLAM algorithm,
enabling map-sharing and map-persistence over the whole
operation is a promising avenue for scaling the real-world
operation to larger areas.

Acknowledgements Thisworkwas supported by theEuropeanUnion’s
Seventh Framework Programme for research, technological develop-
ment and demonstration under the TRADR Project No. FP7-ICT-
609763.

14 Appendix

14.1 Code implementation

For the implementation of the patrolling agent algorithm,
we used the C++ ROS package patrolling_sim as a start-
ing point (Portugal 2017; Portugal and Rocha 2016). This is
specifically designed for 2D patrolling tasks. It was used as a
starting skeleton architecture providing core functionalities
(such as graph management utilities). We significantly mod-
ified the core of this package in order to manage 3D data,
implement our new patrolling agent algorithm, interface the
agent module more tightly with the path planner and the 3D
GUI in our network architecture.

An open source implementation of our framework is avail-
able.27

14.2 Software design

A functional diagram of the presented multi-robot system is
reported in Fig. 14. The main blocks are listed below.
The robots, each one with its own ID ∈ {1, . . . ,m}, have the
same internal architecture and host the on-board functional-
ities which concern decision and processing aspects both at
topological level and at metric level. According to Sect. 4.5,
each robotmaintains and updates an instance of the patrolling
graph and of the metric map in its internal memory.

26 Recurring to simpler and more affordable robotic platforms is
required.
27 https://gitlab.com/luigifreda/3dpatrolling.

The core services, hosted in the main central computer, man-
age the multi-robot system persistence database and allow
specificmodules to load/savemap, trajectories and patrolling
graphs from/into the central database (for re-using relevant
data along different missions).
The core modules, also hosted in central computer, include
the patrolling graph builder and the patrolling monitor. The
first builds a patrolling graph from a user assigned set of
waypoints or from a saved history of robot trajectories. The
built patrolling graph is then distributed to all the robots and
saved in the central persistence database. The patrollingmon-
itor continuously checks the current status of the patrolling
activities and records relevant data formonitoring and bench-
marking.
Themulti-robot 3DGUI, hosted on oneOCU (Operator Con-
trol Unit), is based on RVIZ and allows the user (i) to select
multiple waypoints which can be fed to the path planners or
to the patrolling graph builder (ii) to visualize relevant point
cloud data, maps, and robot models (iii) to stop/restart robots
when needed (iv) to trigger the loading/saving of maps and
robot trajectories (v) to realign the current map of a selected
robot to a loaded map.

The architecture is fully distributed without centralized
coordination mechanisms. In particular, each robot hosts an
instance of the patrolling agent and of the path-planner.

As shown in Fig. 14, the various modules in the architec-
ture exchange different kind of messages. These are grouped
in the following types.

– Coordination messages These are exchanged amongst
robots for sharing knowledge and decisions, in order to
attain cooperation and coordination. For convenience, the
patrol monitor records an history of these messages.

– GUImessagesThese are exchangedwith the 3DGUI and
include both control messages and visualization data.

– Load/save messages: these are exchanged with the core
services and contain both loaded and saved data.

References

Acevedo, J. J., Arrue, B. C., Daz-Bez, J. M., Ventura, I., Maza, I., &
Ollero, A. (2013). Decentralized strategy to ensure information
propagation in area monitoring missions with a team of UAVs
under limited communications. In 2013 International Conference
on Unmanned Aircraft Systems (ICUAS) (pp. 565–574).

Acevedo, J. J., Arrue, B. C., Maza, I., &Ollero, A. (2016). A distributed
algorithm for area partitioning in grid-shape and vector-shape con-
figurations with multiple aerial robots. Journal of Intelligent &
Robotic Systems, 84(1), 543–557.

Agmon, N., Kaminka, G. A., & Kraus, S. (2014). Multi-robot
adversarial patrolling: Facing a full-knowledge opponent. CoRR
abs/1401.3903.

Agmon,N.,Kraus, S.,&Kaminka,G.A. (2008a).Multi-robot perimeter
patrol in adversarial settings. In ICRA (pp. 2339–2345).

123

https://gitlab.com/luigifreda/3dpatrolling

Autonomous Robots (2019) 43:1747–1779 1777

Agmon,N., Sadov,V.,Kaminka,G.A.,&Kraus, S. (2008b). The impact
of adversarial knowledge on adversarial planning in perimeter
patrol. In Proceedings of the 7th international joint confer-
ence on autonomous agents and multiagent systems—Volume 1,
AAMAS’08 (pp. 55–62). International Foundation forAutonomous
Agents and Multiagent Systems.

Ahmadi, M., & Stone, P. (2006). A multi-robot system for continuous
area sweeping tasks. In ICRA (pp. 1724–1729).

Aksaray, D., Leahy, K., & Belta, C. (2015). Distributed multi-agent
persistent surveillance under temporal logic constraints. IFAC-
PapersOnLine, 48(22), 174–179.

Andrade, R. D. C., Macedo, H. T., Ramalho, G. L., & Ferraz, C. A.
(2001). Distributed mobile autonomous agents in network man-
agement. In Proceedings of international conference on parallel
and distributed processing techniques and applications.

Baran, P. (1964). On distributed communications networks. IEEE
Transactions on Communications Systems, 12(1), 1–9.

Barraquand, J., Langlois, B.,&Latombe, J. C. (1992).Numerical poten-
tial field techniques for robot path planning. IEEE Transactions on
Systems, Man, and Cybernetics, 22(2), 224–241.

Bereg, S., Caraballo, L. E., Díaz-Báñez, J. M., & Lopez, M. A. (2016).
Resilience of a synchronized multi-agent system. ArXiv e-prints.

Cabrita, G., Sousa, P., Marques, L., & De Almeida, A. (2010). Infras-
tructure monitoring with multi-robot teams. In IROS (pp. 18–22).

Caccamo, S., Parasuraman, R., Freda, L., Gianni, M., & Ögren, P.
(2017). Rcamp: A resilient communication-aware motion planner
for mobile robots with autonomous repair of wireless connectivity.
In 2017 IEEE/RSJ international conference on intelligent robots
and systems (IROS). IEEE.

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira,
J., et al. (2016). Past, present, and future of simultaneous local-
ization and mapping: Towards the robust-perception age. IEEE
Transactions on Robotics, 32(6), 1309–1332.

Chen, H., Cheng, T., & Wise, S. (2017). Developing an online cooper-
ative police patrol routing strategy. Computers, Environment and
Urban Systems, 62, 19–29.

Chevaleyre, Y. (2004). Theoretical analysis of themulti-agent patrolling
problem. InProceedings of the IEEE/WIC/ACM international con-
ference on intelligent agent technology (pp. 302–308).

Colas, F.,Mahesh, S., Pomerleau, F., Liu,M.,&Siegwart, R. (2013). 3D
path planning and execution for search and rescue ground robots.
In 2013 IEEE/RSJ international conference on intelligent robots
and systems (IROS) (pp. 722–727). IEEE.

Diankov, R., Kuffner, J. (2007). Randomized statistical path planning.
In IEEE/RSJ international conference on intelligent robots and
systems. IROS 2007 (pp. 1–6). IEEE.

Douillard, B., Underwood, J., Kuntz, N., Vlaskine, V., Quadros, A.,
Morton, P., et al. (2011). On the segmentation of 3D lidar point
clouds. In ICRA.

Du, T. C., Li, E. Y., & Chang, A. P. (2003). Mobile agents in distributed
network management. Communications of the ACM, 46(7), 127–
132.

Dubé, R., Dugas, D., Stumm, E., Nieto, J., Siegwart, R., & Cadena, C.
(2017a). Segmatch: Segment based place recognition in 3D point
clouds. In ICRA (pp. 5266–5272). IEEE.

Dubé, R., Gawel, A., Sommer, H., Nieto, J., Siegwart, R., & Cadena,
C. (2017b). An online multi-robot slam system for 3D lidars. In
IROS.

Elmaliach, Y., Agmon, N., & Kaminka, G. A. (2007). Multi-robot area
patrol under frequency constraints. In ICRA (pp. 385–390).

Elmaliach, Y., Agmon, N., & Kaminka, G. A. (2009a). Multi-robot
area patrol under frequency constraints. Annals of Mathematics
and Artificial Intelligence, 57(3), 293–320.

Elmaliach, Y., Agmon, N., & Kaminka, G. A. (2009b). Multi-robot
area patrol under frequency constraints. Annals of Mathematics
and Artificial Intelligence, 57(3–4), 293–320.

Farinelli, A., Iocchi, L., &Nardi, D. (2004).Multirobot systems: A clas-
sification focused on coordination. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 34(5), 2015–2028.

Farinelli,A., Iocchi, L.,&Nardi,D. (2017).Distributed on-line dynamic
task assignment for multi-robot patrolling. Autonomous Robots,
41(6), 1321–1345.

Ferri, F., Gianni,M.,Menna,M., &Pirri, F. (2014). Point cloud segmen-
tation and 3D path planning for tracked vehicles in cluttered and
dynamic environments. In Proceedings of the 3rd IROS Workshop
on Robots in Clutter: Perception and Interaction in Clutter.

Franchi, A., Freda, L., Oriolo, G., & Vendittelli, M. (2009). The sensor-
based random graph method for cooperative robot exploration.
IEEE/ASME Transaction on Mechatronics, 14(2), 163–175.

Grisetti, G., Kümmerle, R., Stachniss, C., & Burgard, W. (2010). A
tutorial on graph-based slam. Intelligent Transportation Systems
Magazine, IEEE, 2(4), 31–43.

Haït, A., Simeon, T., & Taïx, M. (2002). Algorithms for rough terrain
trajectory planning. Advanced Robotics, 16(8), 673–699.

Hernández, E., Barrientos, A., & Cerro, J. D. (2014). Selective smooth
fictitious play: An approach based on game theory for patrolling
infrastructures with a multi-robot system. Expert Systems With
Applications, 41(6), 2897–2913.

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., & Burgard,
W. (2013).OctoMap:Anefficient probabilistic 3Dmapping frame-
work based on octrees. Autonomous Robots, 34(3), 189–206.

Iocchi, L., Marchetti, L., & Nardi, D. (2011). Multi-robot patrolling
with coordinated behaviours in realistic environments. In IROS
(pp. 2796–2801).

Jung, M. F., Beane, M., Forlizzi, J., Murphy, R., & Vertesi, J. (2017).
Robots in group context: Rethinking design, development and
deployment. In Proceedings of the 2017 CHI conference extended
abstracts on human factors in computing systems (pp. 1283–1288).
ACM.

Karaman, S., & Frazzoli, E. (2010). Incremental sampling-based algo-
rithms for optimal motion planning. Robotics Science and Systems
VI, 104, 2.

Kleiner, A., Heintz, F., & Tadokoro, S. (2016). Special issue on safety,
security, and rescue robotics (SSRR), part 2. Journal of Field
Robotics, 33(4), 409–410.

Kruijff, G. J. M., Kruijff-Korbayová, I., Keshavdas, S., Larochelle,
B., Janíček, M., Colas, F., et al. (2014). Designing, developing,
and deploying systems to support human-robot teams in disaster
response. Advanced Robotics, 28(23), 1547–1570.

Kruijff, G. J. M., Pirri, F., Gianni, M., Papadakis, P., Pizzoli, M., Sinha,
A., et al. (2012). Rescue robots at earthquake-hit Mirandola, Italy:
A field report. In 2012 IEEE international symposium on safety,
security, and rescue robotics (SSRR) (pp. 1–8). IEEE.

Kruijff-Korbayová, I., Colas, F., Gianni, M., Pirri, F., Greeff, J., Hin-
driks, K., et al. (2015). Tradr project: Long-term human-robot
teaming for robot assisted disaster response. KI-Künstliche Intel-
ligenz, 29(2), 193–201.

Kruijff-Korbayová, I., Freda, L., Gianni, M., Ntouskos, V., Hlaváč, V.,
Kubelka, V., et al. (2016). Deployment of ground and aerial robots
in earthquake-struck amatrice in Italy (brief report). In 2016 IEEE
international symposium on safety, security, and rescue robotics
(SSRR) (pp. 278–279). IEEE.

Krüsi, P., Furgale, P., Bosse, M., & Siegwart, R. (2017). Driving on
point clouds:Motion planning, trajectory optimization, and terrain
assessment in generic nonplanar environments. Journal of Field
Robotics, 34(5), 940–984.

Kubelka, V., Oswald, L., Pomerleau, F., Colas, F., Svoboda, T., &
Reinstein, M. (2015). Robust data fusion of multimodal sensory
information for mobile robots. Journal of Field Robotics, 32(4),
447–473.

123

1778 Autonomous Robots (2019) 43:1747–1779

LaValle, S. M. (2006). Planning algorithms. Cambridge: Cam-
bridge University Press, http://planning.cs.uiuc.edu/. Accessed
Dec 2018.

Machado, A., Ramalho, G., Zucker, J. D., & Drogoul, A. (2002). Multi-
agent patrolling: An empirical analysis of alternative architectures.
In Internationalworkshop onmulti-agent systems and agent-based
simulation (pp. 155–170). Springer.

Menna, M., Gianni, M., Ferri, F., & Pirri, F. (2014). Real-time
autonomous 3D navigation for tracked vehicles in rescue envi-
ronments. In IROS (pp. 696–702).

Murphy, R. R. (2004). Trial by fire [rescue robots]. IEEE Robotics &
Automation Magazine, 11(3), 50–61.

Nagatani, K., Kiribayashi, S., Okada, Y., Otake, K., Yoshida, K.,
Tadokoro, S., et al. (2013). Emergency response to the nuclear acci-
dent at the fukushima daiichi nuclear power plants using mobile
rescue robots. Journal of Field Robotics, 30(1), 44–63.

Panagou, D., Stipanovi, D. M., & Voulgaris, P. G. (2016). Distributed
coordination control for multi-robot networks using lyapunov-like
barrier functions. IEEE Transactions on Automatic Control, 61(3),
617–632.

Park, C. H., Kim, Y. D., & Jeong, B. (2012). Heuristics for determin-
ing a patrol path of an unmanned combat vehicle. Computers &
Industrial Engineering, 63(1), 150–160.

Pasqualetti, F., Durham, J. W., & Bullo, F. (2012). Cooperative
patrolling viaweighted tours: Performance analysis anddistributed
algorithms. IEEE Transactions on Robotics, 28(5), 1181–1188.

Pippin, C., & Christensen, H. (2014). Trust modeling in multi-robot
patrolling. In ICRA (pp. 59–66).

Portugal, D. (2017). patrolling_sim -Multi-Robot Patrolling Stage/ROS
Simulation Package, http://wiki.ros.org/patrolling_sim. Accessed
February 20, 2017.

Portugal,D.,&Rocha,R. (2010).Msp algorithm:Multi-robot patrolling
based on territory allocation using balanced graph partitioning. In
Proceedings of the 2010 ACM symposium on applied computing
(pp. 1271–1276). New York, NY, USA: ACM.

Portugal, D., & Rocha, R. (2011). A survey on multi-robot patrolling
algorithms. In Technological Innovation for Sustainability (pp.
139–146).

Portugal, D., & Rocha, R. P. (2013a). Distributed multi-robot patrol: A
scalable and fault-tolerant framework. Robotics and Autonomous
Systems, 61(12), 1572–1587.

Portugal, D., &Rocha, R. P. (2013b).Multi-robot patrolling algorithms:
Examining performance and scalability. Advanced Robotics,
27(5), 325–336.

Portugal,D.,&Rocha,R. P. (2013c).Retrieving topological information
for mobile robots provided with grid maps (pp. 204–217). Berlin:
Springer.

Portugal, D., & Rocha, R. P. (2013d). Scalable, fault-tolerant and dis-
tributed multi-robot patrol in real world environments. In IROS
(pp. 4759–4764).

Portugal, D.,&Rocha, R. P. (2016). Cooperativemulti-robot patrol with
bayesian learning. Autonomous Robots, 40(5), 929–953.

Robin, C., & Lacroix, S. (2016). Multi-robot target detection and track-
ing: Taxonomy and survey. Autonomous Robots, 40(4), 729–760.

Rohmer, E., Singh, S. P. N., & Freese, M. (2013). V-rep: A versatile and
scalable robot simulation framework. In Proceedings of The Inter-
national Conference on Intelligent Robots and Systems (IROS).

Sak, T., Wainer, J., & Goldenstein, S. K. (2008). Probabilistic multia-
gent patrolling (pp. 124–133). Berlin: Springer.

Santana, H., Ramalho, G., Corruble, V., & Ratitch, B. (2004). Multi-
agent patrolling with reinforcement learning. In Proceedings of
the 3rd international joint conference on autonomous agents and
multiagent systems—Volume3,AAMAS’04 (pp. 1122–1129). IEEE
Computer Society.

Schwarz, M. (2017). nimbro_network - ROS transport for high-
latency, low-quality networks, https://github.com/AIS-Bonn/
nimbro_network. Accessed February 20, 2017.

Sempé, F., & Drogoul, A. (2003). Adaptive patrol for a group of robots.
In 2003 IEEE/RSJ international conference on intelligent robots
and systems. (IROS 2003). Proceedings (Vol. 3, pp. 2865–2869).
IEEE.

Shahriari, M., & Biglarbegian, M. (2016). A new conflict resolution
method for multiple mobile robots in cluttered environments with
motion-liveness. IEEE Transactions on Cybernetics, PP(99), 1–
12.

Song, C., Liu, L., Feng, G., & Xu, S. (2014). Optimal control for multi-
agent persistent monitoring. Automatica, 50(6), 1663–1668.

Tardioli, D., Sicignano, D., Riazuelo, L., Romeo, A., Villarroel, J. L., &
Montano, L. (2016). Robot teams for intervention in confined and
structured environments. Journal of Field Robotics, 33(6), 765–
801.

Walcott-Bryant, A., Kaess, M., Johannsson, H., & Leonard, J. J. (2012).
Dynamic pose graph slam: Long-term mapping in low dynamic
environments. In 2012 IEEE/RSJ international conference on
intelligent robots and systems (IROS) (pp. 1871–1878). IEEE.

Weinmann, M., Jutzi, B., & Mallet, C. (2014). Semantic 3d scene
interpretation:A framework combining optimal neighborhood size
selection with relevant features. ISPRS Annals of the Photogram-
metry, Remote Sensing and Spatial Information Sciences, 2(3),
181.

Worst, R., Dubé, R., Svoboda, T., Freda, L., et al. (2017). Dr 6.3: Multi-
robot task adaptation, http://www.tradr-project.eu/wp-content/
uploads/dr.6.3.main_public.pdf. TRADR deliverable. Accessed
April 15, 2018.

Worst, R., Zimmermann, E., Reuter, D., et al. (2018). Dr 6.4: Persis-
tence in long-term human-robot teaming for robot assisted disaster
response, http://www.tradr-project.eu/wp-content/uploads/dr.6.4.
main_public.pdf. TRADR deliverable. Accessed October 13,
2018.

Yan, C., &Zhang, T. (2016).Multi-robot patrol: A distributed algorithm
based on expected idleness. International Journal of Advanced
Robotic Systems, 13(6), 1729881416663,666.

Yan, Z., Jouandeau, N., & Cherif, A. A. (2013). A survey and analysis
of multi-robot coordination. International Journal of Advanced
Robotic Systems, 10(12), 399.

Yehoshua, R., Agmon, N., & Kaminka, G. A. (2013). Robotic adver-
sarial coverage: Introduction and preliminary results. In IROS (pp.
6000–6005).

Zimmermann, K., Zuzanek, P., Reinstein, M., & Hlavac, V. (2014).
Adaptive traversability of unknown complex terrain with obsta-
cles for mobile robots. In 2014 IEEE international conference on
robotics and automation (ICRA) (pp. 5177–5182). IEEE.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://planning.cs.uiuc.edu/
http://wiki.ros.org/patrolling_sim
https://github.com/AIS-Bonn/nimbro_network
https://github.com/AIS-Bonn/nimbro_network
http://www.tradr-project.eu/wp-content/uploads/dr.6.3.main_public.pdf
http://www.tradr-project.eu/wp-content/uploads/dr.6.3.main_public.pdf
http://www.tradr-project.eu/wp-content/uploads/dr.6.4.main_public.pdf
http://www.tradr-project.eu/wp-content/uploads/dr.6.4.main_public.pdf

Autonomous Robots (2019) 43:1747–1779 1779

Luigi Freda received the M.Sc.
degree in Computer Engineering
in 2003 and the Ph.D. in Sys-
tems Engineering in 2007, both
from the University of Rome “La
Sapienza”, Italy. In 2006, he was
a visiting scholar for six months
at the Motion Strategy Labora-
tory (UIUC) under the supervi-
sion of Steve LaValle. He worked
in Industry from 2009 to 2016
on UAVs computer vision appli-
cations. He cofounded a startup in
2015. He is currently a Research
Associate at the University “La

Sapienza”. His research interests lie in the areas of perception, sensor-
based motion planning and computer vision.

Mario Gianni M.Sc with hon-
ours in Artificial Intelligence and
Robotics from DIAG - Depart-
ment of Computer, Control and
Management Engineering
A. Ruberti at Sapienza Univer-
sity of Rome. Currently, he is
research assistant at ALCOR Lab-
oratory, directed by Prof. Fiora
Pirri. Research interests include
statistics and logic, applied to
robotics, autonomous navigation
and adaptation for self-
reconfigurable robots in cluttered
environments, low and high-level

control in multi-robot collaboration.

Fiora Pirri is Full Professor at the
Department of “Ingegneria Infor-
matica Automatica e Gestionale”,
she curently leads the ALCOR
laboratory of Cognitive Robotics,
Vision and Learning. Her main
interests are in 3D visual percep-
tion and in learning representa-
tions for linking robot actions and
behaviors to visual perception.

Abel Gawel joined ETH Zurich’s
Autonomous Systems Lab as a
Ph.D. student in 2014. He received
his diploma in mechanical engi-
neering from the Karlsruhe Insti-
tute of Technology in 2013. His
research interests include SLAM,
place recognition and computer
vision.

RenaudDubé completed his Bach-
elor and Master at the Univer-
sity of Sherbrooke in Canada. He
is currently Ph.D. student at the
Autonomous Systems Lab. from
ETH Zurich and focuses on 3D
perception for autonomous robots
using LiDARs.

Roland Siegwart (born in 1959)
is a professor for autonomous
mobile robots at ETH Zurich. He
studied mechanical engineering at
ETH, brought up a spin-off com-
pany, spent ten years as profes-
sor at EPFL, was vice president
of ETH Zurich and held visiting
positions at Stanford University
and NASA Ames. He is and was
the coordinator of multiple Euro-
pean projects and co-founder of
half a dozen spin-off companies.
He is recipient of the IEEE RAS
Inaba Technical Award, IEEE Fel-

low and officer of the International Federation of Robotics Research
(IFRR). He is in the editorial board of multiple journals in robotics and
was a general chair of several conferences in robotics including IROS
2002, AIM 2007, FSR 2007, 2017 and ISRR 2009. His interests are in
the design and navigation of wheeled, walking and flying robots oper-
ating in complex and highly dynamical environments.

Cesar Cadena is Senior Researcher
in the Autonomous Systems Lab
at ETH Zürich. Cesar holds a
Ph.D. in Computer Science from
the University of Zaragoza, Spain
(2011). His research interests
cover in the area of perception for
robotic scene understanding, both
geometry and semantics, includ-
ing semantic mapping, data asso-
ciation, place recognition, and per-
sistent mapping in dynamic envi-
ronments.

123

	3D multi-robot patrolling with a two-level coordination strategy
	Abstract
	1 Introduction
	2 Problem overview
	3 Related work
	4 The patrolling model
	4.1 3D environment, terrain and robot configuration space
	4.2 Patrolling graph and patrolling agent
	4.3 Metric map and path-planning
	4.4 Network model and broadcast messages
	4.5 Shared knowledge representation
	4.6 Team model
	4.7 System architecture

	5 Two level coordination strategy
	5.1 Topological and metric conflicts
	5.2 Two level coordination strategy

	6 Distributed patrolling
	6.1 Data update
	6.2 Node conflict management
	6.3 Next node planning and selection

	7 Multi-robot traversability and path planning
	7.1 Point cloud segmentation
	7.2 Multi-robot traversability
	7.3 Path planning and windowed search strategy
	7.4 Mixed cost function
	7.5 Coordinated path planning and message protocol

	8 3D mapping and localization
	8.1 3D pose-graph SLAM
	8.2 OctoMap representation
	8.3 Multi-robot localization

	9 Patrolling graph building
	9.1 Patrolling graph from a user-assigned set of waypoints
	9.2 Patrolling graph from a saved history of robot trajectories

	10 Results
	10.1 Simulation experiments
	10.2 Real-world experiments

	11 Discussion
	11.1 Network resilience
	11.2 Scalability
	11.3 Lesson learnt in real world deployment

	12 Main characteristics of the strategy
	13 Conclusions
	Acknowledgements
	14 Appendix
	14.1 Code implementation
	14.2 Software design

	References

