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Abstract
Teams of robots can be organized to collectively complete complex real-world tasks, for example collective foraging in
which robots search for, pick up, and drop off targets in a collection zone. In the previously proposed central-place foraging
algorithm (CPFA), foraging performance decreases as swarm size and search areas scale up: more robots produce more inter-
robot collisions and larger search areas produce longer travel distances. We propose the multiple-place foraging algorithm
with dynamic depots (MPFAdynamic) to address these problems. Depots are special robots which are initially distributed in
the search area and can carry multiple targets. Depots move to the centroids of the positions of local targets recently detected
by robots. The spatially distributed design reduces robot transport time and reduces collisions among robots. We simulate
robot swarms that mimic foraging ants using the MPFAdynamic strategy, employing a genetic algorithm to optimize their
behavior in the robot simulator ARGoS. Robots using the MPFAdynamic find and collect targets faster than both the CPFA
and the static MPFA. MPFAdynamic outperforms the static MPFA even when the static depots are optimally placed using
global information, and it outperforms the CPFA even when the dynamic depots deliver targets to a central location. Further,
the MPFAdynamic scales up more efficiently, so that the improvement over the CPFA and the static MPFA is even greater in
large (50 × 50 m) areas. Including simulated error reduces foraging performance across all algorithms, but the MPFA still
outperforms the other approaches. Our work demonstrates that dispersed agents that dynamically adapt to local information in
their environment provide more flexible and scalable swarms. In addition, we illustrate a path to implement the MPFAdynamic

in the physical robot swarm of the NASA Swarmathon competition.
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1 Introduction

One major goal of swarm robotics research is to design
robust, scalable, and flexible collective behaviors for mul-
tiple autonomous robots (Şahin 2005; Moses and Banerjee
2011; Brambilla et al. 2013). Simple rules and local inter-
actions among individual robots result in desired collective
swarmbehavior by self-organized coordinationmechanisms.
Biological studies have revealed self-organized coordination
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mechanisms in social insects which can be effectively imple-
mented in swarm robotics systems (Camazine et al. 2001;
Şahin 2005).

In this research,we focus on the foraging behavior of robot
swarms. The challenge is to develop an effective, decen-
tralized search-and-collection foraging algorithm for ant-like
robot swarms (Gordon and Kulig 1996; Winfield 2009; Liu
and Winfield 2010). Robots must retrieve objects from an
environment and bring them back to a depot (or nest). Effec-
tive collective foraging requires coordination, navigation,
and communication and is therefore a useful abstraction of
many complex, real-world applications such as humanitarian
de-mining, search and rescue, intrusion tracking, collec-
tion of hazardous materials, and space exploration (Winfield
2009; Brambilla et al. 2013). In particular, foraging is com-
monly used as a testbed for collective exploration, collective
transport, and collective decision-making (Gazi and Passino
2004; Brambilla et al. 2013).
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We propose the multiple-place foraging algorithm with
dynamic depots (MPFAdynamic). Depots are special robots
which are able to carry multiple targets. Targets are objects
such as mineral resources, hazardous waste, or any item that
needs to be retrieved from the environment and gathered at
a location. Foraging robots depart from a depot to forage for
targets and then return to the closest depot to deliver these
targets (the closest depot may be different from the one the
robot departed from). Depots move to new locations based
on the mean positions of the remaining targets sensed by the
robots. The positions of the sensed targets are stored at each
depot when each foraging robot returns to that depot. The
stored positions are relative to the depot’s current location so
that no central controller is needed to facilitate information
sharing across the swarm.

Thefinal delivery of targets that are collected by the depots
depends on the application. Targets may be processed at the
dispersed locations where they are collected; they may be
collected by another larger robotic agent that empties depots
and delivers their contents to a central location; or, as the
depots become full, they may drive the targets to the desired
location. We explore the latter scenario in a subset of our
experiments.

We compare the performance of the MPFAdynamic with
our previous MPFAstatic proposed by Lu et al. (2016a) with
uniformly-distributed static depots, and to the central-place
foraging algorithm developed by Hecker and Moses (2015).

In order to assess the effectiveness of our approach, we
also compare our results to algorithms with access to global
information. We compare the MPFAdynamic which uses only
local information, to versions of the MPFA with global
information describing the initial locations of all targets.
These algorithms use the k-means++ clustering algorithm
to determine the initial positions of the depots to mini-
mize transport distance. We evaluate the MPFA with depots
that have global information about target locations using
both static depots (MPFAglobal_static) and dynamic depots
(MPFAglobal_dynamic).

We test how quickly targets are collected using the five
algorithms (CPFA, MPFAstatic, MPFAglobal_static,
MPFAdynamic, MPFAglobal_dynamic) across different distri-
butions of targets. We observe how much the mobile depots
improve swarm foraging performance, specifically: (i) the
time required to collect a fixed fraction of the targets (forag-
ing time), (ii) the time required to detect and avoid collisions
with other robots (collision time), (iii) the time that a robot
spends searching for targets (search time), and (iv) the
time that a robot spends traveling to and from a depot
when collecting targets (travel time). We show that our pro-
posed algorithm, MPFAdynamic, outperforms both the CPFA
and the MPFAstatic on all performance criteria. We also
show that MPFAdynamic performs approximately as well as
MPFAglobal_static and MPFAglobal_dynamic without depend-

ing on global communication. This is a significant advantage
of MPFAdynamic because global information is costly to
obtain, and reliance on centralized communication is a single
point of failure and efficiency bottleneck.

We also compare the scalability of the five algorithms by
increasing the number of robots in the swarm and the size of
the experimental arena. Our results show that MPFAdynamic

has better scalability than the other four algorithms: increas-
ing the arena size has a smaller negative effect on the foraging
time of swarms using MPFAdynamic, and increasing swarm
size in a large arena has a larger positive effect on the forag-
ing time of those swarms. In addition, we implement the
MPFAdynamic with depots that transport their contents to
a central depot, thus completing the central-place foraging
task. We compare this implementation to the CPFA.

Finally, we demonstrate how we can use our existing
ROS/Gazebo simulation and Swarmie hardware for the
NASA Swarmathon competition (Secor 2016; Ackerman
et al. 2018) to implement the dynamic MPFA in a physical
robot swarm.

2 Related work

2.1 Central-place foraging

Central-place foraging is a canonical collective task com-
monly studied in swarm robotics (Şahin 2005; Brambilla
et al. 2013). Robots depart from a centrally-placed depot
to search for targets and return to this central place to deliver
targets. The central-place foraging task can be instantiated
into a number of real-world target collection applications,
including crop harvesting (Sebbane 2012; Bac et al. 2014)
and extra-planetary resource collection (Brooks and Flynn
1989; Landis 2004; Fink et al. 2005).

In prior work, Hecker and Moses (2015) introduced
the central-place foraging algorithm (CPFA), which was
designed to emulate seed-harvester ant behaviors govern-
ing memory, communication, and movement. The error-
tolerance, flexibility, and scalability of the CPFA were
evaluated on both simulated and real robot swarms. Hecker
and Moses use a genetic algorithm (GA) to evolve foraging
strategies that were tolerant of real-world sensing and navi-
gation error, flexible for a variety of target distributions, and
scalable to large swarm sizes.

The behaviors of the CPFA emulate harvester ant foraging
that maximizes the number of targets collected in short for-
aging time periods (Gordon and Kulig 1996; Flanagan et al.
2012), but is not designed for complete target collection.
The foraging efficiency of the CPFA was recently compared
to the distributed deterministic spiral algorithm (DDSA), a
deterministic benchmark for central-place foraging (Fricke
et al. 2016) that is designed to collect the nearest targets first.
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Results showed that robot swarms using the DDSA were
faster at complete collection tasks than swarms using the
CPFA.

However, the CPFA outperformed the DDSA by collect-
ingmore targets in fixed timewindows for large swarms with
more than 20 robots. The DDSA suffered from more robot
collisions in more crowded environments. Since our goal for
the MPFA is to increase foraging rates in large swarms, we
build upon and compare to the CPFA in this work. We also
focus on collecting targets quickly rather than complete tar-
get collection.

Although the CPFA is more scalable than the DDSA,
CPFA swarms also exhibited diminishing returns as swarm
size increased (i.e. sublinear scaling of foraging rate per robot
given larger numbers of robots in the swarm). Diminishing
returns are expected for central-place foragingbecause robots
in larger swarms on average travel farther to collect more
targets, and there are more collisions given more robots. As
shown in Lu et al. (2016a), theMPFAmitigates those effects.
We show in this work that adding dynamic depots to the
MPFA further mitigates scaling limitations.

2.2 Multiple-place foraging

Previous work has demonstrated that a single, central depot
cannot serve a large number of robots efficiently due to long
travel times (Hecker and Moses 2015) and heavy crowd-
ing (Fricke et al. 2016). To mitigate this issue, we proposed
the multiple-place foraging algorithm (MPFA) with multiple
static depots, where robots are programmed to always return
to the depot closest to the position of the target that the robot
has found (Lu et al. 2016a, b).

The MPFA was primarily inspired by behaviors observed
in groups of insects and primates, as well as the immune sys-
tem. For example, polydomous colonies of Argentine ants
are comprised of multiple nests spanning hundreds of square
meters (Schmolke 2009; Flanagan et al. 2013); additionally, a
study (Tindo et al. 2008) showed that wasps living inmultiple
nests have greater survival rates and increased productiv-
ity. Chapman et al. (1989) showed that communities of spider
monkeys can be also considered asmultiple central-place for-
agers (MCPF), where monkeys select a sleeping site close
to current feeding areas, and the MCPF strategy entails the
lowest travel costs. In another biological system, Banerjee
and Moses (2010b) showed that the decentralized, sub-
modular nature of the immune system increases the foraging
efficiency of immune cells that aggregate in lymph nodes
distributed throughout the body. These dispersed aggrega-
tion points (analogous to multiple nests) speed up immune
response rates, particularly in large animals that may have
trillions of immune cells. Recently dynamic lymphnodes that
appear near sites of infection have been discovered (Moyron-

Quiroz et al. 2004), motivating the use of depots as dynamic
aggregation points for robotic foraging.

The use of dynamic docks is introduced in the related
work (Couture-Beil and Vaughan 2009). That work demon-
strates that mobile docksmitigate the spatial interference and
improve overall task performance when mobile robots exe-
cute a transportation task and periodically recharge from a
docking station.

Multiple-place foraging also resembles the task alloca-
tion of global courier and delivery services, which use many
distributed stores to collect and deliver packages efficiently.
Several studies on task allocation in robot swarms have used
biologically-inspired approaches in the deployment of homo-
geneous swarms of robots to multiple sites (Halász et al.
2007; Berman et al. 2008; Hsieh et al. 2008). These robots
autonomously redistribute themselves among the candidate
sites to ensure task completion by optimized stochastic con-
trol policies. In general, each swarm is modeled as a hybrid
systemwhere agents switch betweenmaximum transfer rates
and constant transition rates.

2.3 Foundations of theMPFA

In our original implementation of the MPFA (Lu et al.
2016a, b), robots were initially assigned in equal numbers to
static collection points called nests. Nests were evenly placed
in the environment, i.e. given 4 nests, each was placed at the
center of one quadrant of a foraging arena with 1/4 of the
robots assigned to each nest. The robots could autonomously
switch to other nests as they foraged. If the location of a found
target was closer to another nest, the robot (which had trav-
eled a long distance from its initial depot and discovered this
target) delivered this target to the closer depot. The transition
from one depot to another one is shown in Fig. 3.

The use of multiple collection depots is the fundamental
difference between the CPFA and the MPFA; all other com-
ponents of the two foraging algorithms are kept deliberately
identical in order to test for the effect of multiple depots on
swarm foraging efficiency.

2.3.1 The CPFA

There are several essential features of the CPFA that make it
possible to implement the MPFAdynamic. The CPFA imple-
ments site fidelity in which a robot remembers and returns
to the location where it last found targets. The CPFA imple-
ments pheromone waypoints as a list of target-rich locations
that have been found by robots. Depots report the list of way-
points to robots when they drop off targets.

When a robot finds a target, it senses the local density of
targets and then uses that information to determine whether
to use site fidelity to return to the location and whether to
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communicate that information to other robots by reporting a
pheromone waypoint to its depot.

How site fidelity, pheromone waypoints, and other details
of the CPFA are implemented is described below in Sect. 3
and Algorithm 1 (where in line 7, the closest depot is always
the single central depot in the case of the CPFA).

A final important feature of the CPFA in its implementa-
tion in real robots is the ability to reliably return to a depot.
The CPFA and MPFA rely on the use of beacons that are
detectable by any nearby robots. Our experiments with phys-
ical iAnt robots running the CPFA demonstrate that a light
is an effective beacon that allows robots to reliably return
to their nest (Hecker and Moses 2015). There are alterna-
tive beacons that can ensure that robots can reliably locate
depots and other important locations. For example, colored
LEDs on robots (Nouyan et al. 2009), speaker-induced sound
gradients (Nurzaman et al. 2009), and images such as fidu-
cials or roundels (Bezzo et al. 2015) can be used to mark
important locations in space to which physical robots can
reliably return.

2.3.2 The MPFAstatic

The behavior of an individual robot in an MPFA foraging
round is shown in Fig. 1. Each robot transitions through a
series of states as it forages for targets. The states and transi-
tions emulate foraging behaviors of ants. The MPFA differs
from the CPFA in that the robots return to the closest depot
in steps 4 and 5.

Robots initially disperse fromdepots and follow randomly
selected travel paths (step 1). Upon reaching the end of the
travel path, robots switch to searching for targets using an
uninformed correlated random walk (in which the robot has
no knowledge of target locations) observed in ants (step
2) (Fewell 1990). Robots navigate home to the depot closest
to them after they collect a target (step 4) or give up searching
(step 5) (as described in ants in Crist and MacMahon 1991).
The search cycle for an individual robot foraging using unin-
formed search is shown in Fig. 2.

Robots that discover a target will sense the local target
density before returning to their local depot (step 3 and step

Fig. 1 The behavior of an individual robot implementing the MPFA

Fig. 2 A single cycle of uninformed search. Four states of a robot in the
cycle are shown. A robot departs from a depot (large red circle), travels
to a random location, and switches to searching using an uninformed
random walk (dark blue circle). If the robot finds a target pile (largest
black square), then it collects one target and delivers it to the closest
depot. The robot also has a probability of giving up searching (bright
green circle) and returning to the closest depot without finding a target
(Color figure online)

4) (Hölldobler 1976). The density is the number of targets
sensed in the local region by robots. The size of the region a
robot can detect is described in Sect. 4.1. An individual robot
may remember the location of a previously found target and
repeatedly return to the same location, a process called site
fidelity in ants (Beverly et al. 2009). Robots can also com-
municate using pheromones (Sumpter and Beekman 2003;
Jackson et al. 2007) which are simulated as artificial way
points (Campo et al. 2010) to recruit robots to known clus-
ters of targets. This is also discussed in Sect. 3.1. Robots
that return to a previously found target site using site fidelity
or pheromone recruitment (step 6) will search the target site
thoroughly using an informed correlated random walk (step
7). The search behaviors for an individual robot foraging
using informed search is shown in Fig. 3.

Fig. 3 A single cycle of informed search. Five states of a robot are
shown. A robot departs from a depot (large gray circle) and travels
to the previous location (dark blue circle), and switches to searching
using an informed correlated walk. If it finds a target pile (largest black
square), then it collects one target and delivers it to the closest depot (red
circle in the lower right). The robot also has a probability of giving up
searching (light green circle) and returning to the closest depot without
finding a target (red circle) (Color figure online)
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The search strategy is evolved by a genetic algorithm
(GA); all robots use the same strategy, but make decisions
probabilistically based on the interaction with the environ-
ment. Although robots are able to depart from and return to
the nearest depot, robots still search globally, meaning that
they are able to travel across the entire arena.

As in the CPFA, pheromone trails are simulated using
pheromonewaypoints. Different from the CPFA, pheromone
waypoints are only reported to the closest depot to the robot
when it arrives at the depot. Robots can only send and receive
pheromone waypoints when they are returning to a depot.

We use an exponential decay function with a decay rate
selected by theGA to simulate the pheromone decay process.
After a certain amount of time, the pheromone waypoint will
have decayed below a threshold andwill be removed from the
depot’s list. When a robot arrives at the depot, it will proba-
bilistically select a waypoint from that depot’s list and travel
to the location of the waypoint. The robot may also prob-
abilistically choose to locally share information by sending
pheromone waypoints to its current depot. Unlike the CPFA,
the pheromone waypoints associated with a given depot are
only locally available to robots returning to that depot.

Since robots always return to the closest depot with a
found target, the sensed information relevant to a given target
neighborhood is always associated with the depot closest to
the position of the identified neighborhood. Thus, the robots
only travel from the closest depot to any given pheromone
waypoint.

In our recent work (Lu et al. 2016a), we conducted simu-
lated experimentswith theMPFAusingmultiple static depots
(2, 4, 8, and 16).We ran the experiments with 256 targets and
24 robots in a 10×10 m (i.e. 10 mwide by 10 m long) arena.
The results showed that the MPFA produces higher foraging
rates and lower average travel time compared to the CPFA.
Increasing the number of depots increases the foraging rate
of the swarm and decreases the required travel time per tar-
get collected, while the search time per target collected is
independent of the number of depots. In most experiments,
4 depots led to significantly faster foraging than the CPFA
or 2 depots, but they were indistinguishable from 8 depots,
and so we focus on experiments with 4 depots in this paper.
We note that determining the optimal number of depots for
a given number of robots, targets, and arena sizes is itself an
interesting question that we leave to future work.

Because pheromonewaypoints are distributed acrossmul-
tiple depots, MPFA swarms require less communication
among robots, and individual robots spend less time travel-
ing back to the closest depot to make use of the information.
In contrast, CPFA swarms use pheromone waypoints that are
globally available to the entire swarm; these robots, therefore,
have access to more information, but individual robots take
longer to travel back to the central depot and use the infor-
mation. The GA balances these trade-offs automatically by

tuning the search strategies and optimizing the performance
of each swarm, resulting in systematic changes in parameters
governing pheromone laying and distance traveled from the
depot as more depots are added.

In other recent work (Lu et al. 2016b), we compared
the ability of the MPFA and the CPFA to maintain forag-
ing efficiency as swarm size and target number increase. We
increased the size of the swarm (4, 8, 16, 32, and 64 robots
given 1024 targets) to test scalability and the number of tar-
gets (128, 256, 512, 1024, and 2048 targets given 32 robots)
to test adaptability to different target densities.

The MPFA had higher foraging efficiency than the CPFA
under increased swarm size and target number. Furthermore,
robots using the MPFA spent less time avoiding collisions
and required less travel time to collect each target.

3 Methods

Previous MPFA experiments (Lu et al. 2016a, b) were con-
ducted using uniformly-spaced static depots, which outper-
formed central-place foraging swarms, but were not capable
of dynamically adapting to different target distributions. In
this work, we aim to further improve swarm foraging per-
formance with depots that move to the centroid of known
nearby targets in order to minimize the time and distance for
foraging robots to transport those targets.

If all of the positions of the targets are known, then we
can use this positional information to calculate the optimal
location of depots to minimize travel distance to all targets.
This problem is analogous to clustering targets based on their
distances to the closest depot, where the sum of distances
between targets to the center of the cluster is minimum.

Given the locations of all targets in the arena, the
k-means++ clustering algorithm (Arthur and Vassilvitskii
2007) will calculate the locations of depots to minimize
the travel distance required to collect all targets. Figure 4
shows an example of a dynamically allocated depot, in which
six piles of targets are classified into four clusters and four
depots are placed at the centroids of these clusters. This
implementation would require global knowledge of all target
locations, which violates one of the key features of swarm
robotics systems: all sensing and communication must be
local (Brambilla et al. 2013).

We use globally informed MPFA algorithms to provide
points of comparison for our proposed multiple-place for-
aging algorithm with dynamic depots (MPFAdynamic), an
extension to our recent work in which depots move to new
locations based on the locations of the targets sensed by
robots.Depots alwaysmove to the centroid of recently sensed
targets, which are maintained in a list and updated whenever
site fidelity or pheromone waypoints are used. If site fidelity
is not used, or if pheromone waypoints decay, then those
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Fig. 4 An example of a dynamically allocated depot using the k-
means++ clustering algorithm. The targets (black squares) are classified
into four clusters (red ellipses). Depots (dark red solid circles) are placed
at the centroids of these clusters (Color figure onlline)

sensed targets are removed from the list and no longer con-
tribute to the dynamic calculation of the depot’s centroid.

The use of mobile depots is the fundamental difference
between MPFAstatic and MPFAdynamic; all other compo-
nents of the two foraging algorithms are kept deliberately
identical in order to test for the effect of mobile depots on
foraging efficiency.

As in MPFAstatic, depots are initially distributed uni-
formly in MPFAdynamic, and robots are evenly distributed
to each depot. Depots move to new locations based on the
positional information of observed targets sensed by forag-
ing robots. Figure 5 shows how a depot moves based on the
sensed positional information of targets reported by foraging
robots.

We assume robots can sense targets within camera range,
but cannot precisely measure the positions of these tar-
gets. Therefore, a robot only reports its current position and
the number of targets detected; the robot’s current position
approximates the centroid of the targets that it has detected.
Each depot is allocated to the centroid ct of the sensed targets
at time t , where ct is defined by Eq. 1:

ct = 1

N

N∑

i=1

wi pi (1)

where wi is the number of sensed targets at location pi , and
N is the total number of different locationswhere robots have
sensed targets.

1

1

1

4

4

Fig. 5 Depot movement in MPFAdynamic. A depot (gray circle) is at
the centroid c1 of the sensed targets (dark blue squares) at positions p1,
p2, and p3, where w1, w2, and w3 are the number of targets sensed
by robots at each position, respectively. After some time, if targets at
position p1 are completely collected by robots, then the pheromone
waypoints at p1 will decay. If, at the same time, w4 targets are sensed
at a new location p4, then the depot will move to the centroid c2 of
the sensed targets (red circle) at positions p2, p3, and p4 (Color figure
online)

Table 1 Parameters for robot controllers

Parameter Description Initialization

σ Uniformed search variation U(0, π)

ps Prob. of switching to search U(0, 1)

pr Prob. of giving up search U(0, 1)

λid Rate of informed search decay Exp(0.2)

λs f Rate of following site fidelity U(0, 20)

λlp Rate of laying pheromone U(0, 20)

λpd Rate of pheromone decay Exp(0.1)

3.1 Implementation of robot controllers

Our robots mimic seed-harvester ant behaviors that have
evolved over millions of years. We encode these behaviors
into a robot controller (see Algorithm 1) using the same set
of seven real-valued parameters that define the CPFA (see
Table 1) specifyingmovement, sensing, and communication:

Uninformed search variation Uninformed robots forage
using a correlated random walk with fixed step length and
direction θt = N (θt−1, σ ), where θt−1 is the turning angle
from the previous step, and σ is the uninformed search vari-
ation (or standard deviation), which determines the turning
angle of the next step.
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Algorithm 1 Multiple-Place Foraging Algorithm
1: Disperse from depot to random location
2: while experiment running do
3: Conduct uninformed correlated random walk
4: if target found then
5: Collect it
6: Sense targets c near current location l f
7: Return to the closest depot to deliver target
8: if Pois(c, λlp) > U (0, 1) then
9: Lay pheromone to l f
10: end if
11: if Pois(c, λs f ) > U (0, 1) then
12: Return to l f
13: Conduct informed correlated random walk
14: else if pheromone found then
15: Travel to pheromone location l p
16: Conduct informed correlated random walk
17: else
18: Choose new random location
19: end if
20: end if
21: end while

Probability of switching to search Robots start at a depot
and select a direction θ from a uniform random distribution
U(0, 1), then travel in this direction away from the depot
(see Fig. 2). Robots have a probability ps of switching to an
uninformed correlated random walk, where higher values of
ps indicate shorter travel distances from the depot.

Probability of giving up search At each step of the corre-
lated random walk, robots that have not discovered a target
may give up searching and return to the closest depot with
probability pr .

Rate of informed search decay If robots return to a previous
location via site fidelity or pheromone waypoint, they search
using an informed correlated random walk (see Fig. 3), with
standard deviation σ̂ defined by Eq. 2:

σ̂ = σ + (2π − σ)e−λid t (2)

As time t increases, σ̂ decays to σ , producing an initially
undirected and localized search that becomesmore correlated
over time. This time decay allows robots to search locally
where they expect to find a target, but to straighten their path
and move to another location if no target is found.

Rate of following site fidelity The probability of a robot
returning to a previous target location via site fidelity is gov-
erned by the Poisson cumulative distribution function (CDF)
defined by Eq. 3:

POIS(k, λs f ) = e−λs f

�k�∑

i=0

λis f

i ! (3)

where k is the number of additional targets detected in
a previous location and the parameter λs f is the average
number of detected targets. The Poisson CDF models the
probability of following site fidelity given the number of
detected targets k appropriately. The probability is highest
when k = λs f . Robots return to previous locations via site
fidelity if the parameterized Poisson CDF exceeds a uniform
random value, POIS(k, λs f ) > U(0, 1), simulating a ran-
dom sampling process that is weighted by the probability
of following site fidelity for a given k. Otherwise, robots
follow pheromone waypoints to previous target locations if
pheromones are available. If no pheromone exists, robots
return to traveling and searching using the uninformed cor-
related random walk.

Rate of laying pheromone The probability of creating a
pheromone waypoint is also governed by the Poisson CDF
(Eq. 3). Robots create waypoints for previous target loca-
tions if POIS(k, λlp) > U(0, 1), where k is also the number
of targets detected in a previous location.

Rate of pheromone decay Pheromone waypoint strength γ

decays exponentially over time t as defined by Eq. 4:

γ = e−λpd t (4)

3.2 Evolving swarm behavior

Robot controllers are evolved using a genetic algorithm (GA)
to optimize the collective behavior of the entire robot swarm,
where every robot in the swarm uses the same controller. The
controller is evolved in one set of simulations and evaluated
in another set of simulations which are replicated 100 times.
We run each foraging algorithmuntil the robot swarmcollects
the expected percentage of targets. Fitness is simply defined
as the number of targets collected in a specified foraging
time. In Hecker and Moses (2015) the foraging time was set
to 1 h.

There are an uncountable number of foraging strategies
that can be defined by the real-valued parameters of the
CPFA and MPFA. Given 100 real values of each parame-
ter, there would be 1007 possible strategies. Additionally, the
online decisionmaking of each robot depends on interactions
with environmental conditions. For example, following site
fidelity is determined by the condition of POIS(k, λlp) >

U(0, 1) as described in Sect. 3.1. The sampled value from
U(0, 1) is random at each time, and the decision to use site
fidelity depends on the value of k and the sampled random
value. The GA provides a way to sample both parameter
space and the effectiveness of the foraging algorithm evalu-
ated in different environmental conditions.

The parameters in Table 1 are independently evolved 16
times in order to generate 16 independent foraging strate-
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gies for each of the five foraging algorithms in each target
distribution. Thus we have a total of 240 separate evolution-
ary runs (3 distributions × 5 algorithms × 16 replicates).
Each of these evolutionary experiments follows the process
described in Experiment 1 in Sect. 4.

In Hecker and Moses (2015) we demonstrated that the
evolved CPFA controllers could be effectively transferred
into physical robots, a process also described in related
work (Nelson et al. 2004; Singh and Parhi 2011). Such
controllers could be effectively tuned by the GA to miti-
gate the real-world error inherent in physical robots (Hecker
et al. 2013). We describe steps toward similarly implement-
ing MPFAdynamic in real robots in Sect. 6.3.

We implement our GA using GAlib (Wall 1996). For each
generation of the GA, we evaluate each candidate set of 7
parameters on 10 different random placements of targets (see
Fig. 6) to determine fitness. We use a 50% uniform crossover
rate and a 5% Gaussian mutation rate with a standard devia-
tion of 0.02, and elitism to keep the fittest parameter set.

We set termination criteria of the GA in order to has-
ten parameter convergence, running for a maximum of 100
generations. The GA terminates based on three criteria: the
convergence of fitness values, the diversity of parameter sets,
and the number of generations. The GA will stop if the fit-
ness has converged and the diversity is low; otherwise, it will
terminate after 100 generations.

In our GA, 89% of the evolutionary runs terminate based
on the convergence of fitness and low diversity. Across 16
independent evolutionary runs, all evolved parameter sets
were nearly equally fit: the standard deviation in fitnesswas at
most 5% of the mean fitness value of these 16 independently
evolved parameter sets. We chose the fittest parameter set to
evaluate foraging performance.

4 Experimental configuration

Weconducted four sets of experiments using the swarm robot
simulatorAutonomousRobotsGoSwarming (ARGoS) (Pin-
ciroli et al. 2012) to evolve parameters and then test foraging
performance. In the first set of experiments, we compared the
foraging times ofMPFAdynamic to theCPFAandMPFAstatic,
as well as to the two idealized versions of theMPFA that rely
upon global knowledge of target locations to determine depot
locations,MPFAglobal_static andMPFAglobal_dynamic. These
experiments were conducted with 24 robots in a 10 × 10 m
arena.

In the second set of experiments, we tested the scalability
of these algorithms to larger arena sizes. We examined the
rate of increase in foraging times with increasing arena size
(24 robots in arenas that increase from 10× 10 m to 16× 16
m). In the third set of experiments, we tested the performance

Table 2 Experimental configuration

Experiments Arena width (m) Number of robots

1 10 24

2 10, 12, 14, 16 24

3 50 96

4 10 28

of each algorithm in a very large arena (50 × 50 m) with 96
robots.

In the fourth set of experiments, we account for trans-
portation by the mobile depots to a single central collection
point. In these experiments, each of the four mobile depots
is a modified robot that carries targets to a central collection
point; thus, we also add 4 robots to the CPFA experiments,
so foraging performance is evaluated with each having 28
robots that ultimately deliver targets to a central place.

For the first set of experiments, the parameters for the
CPFA andMPFAswere each evolved separately as described
in Sect. 3. We select the set of evolved parameters which has
the shortest foraging time from the 16 sets of evolved param-
eters for the experiment. These sets of evolved parameters are
subsequently used for the corresponding CPFA and MPFAs
in the second, third and fourth experiments.

The configuration of the four sets of experiments is sum-
marized in Table 2. Each experiment has one central depot
in the CPFA, and four depots for each of the four MPFAs. In
the fourth experiment, we include a central depot and four
dynamic depots in the MPFAdynamic simulations.

Foraging time ismeasured as the time for the entire swarm
to collect 88% of the 384 placed targets. This percentage
was chosen because it is the inflection point in CPFA forag-
ing performance (Hecker et al. 2015) after which there is an
exponential increase in collection time and very high vari-
ance in performance due to the sparsity of remaining targets.

In the first set of experiments, we additionally measure
the times for different components of the foraging time:
travel time, search time, and collision time, each of which
is described in Sect. 5.

Each of the five algorithms is tested on three different
classes of target distribution: targets placed in a uniform
random distribution, targets placed in a partially clustered
distribution, and targets placed in a highly clustered distri-
bution. Examples of targets placed in each distribution are
shown in Fig. 6.

The partially clustered distribution uses a power law dis-
tribution of cluster sizes: 128 clusters that contain a single
target, 32 clusters with 4 targets each, and 8 clusters with 16
targets each, for a total of 384 targets. This power law distri-
bution of cluster sizes emulates that of many natural resource
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(a) (b) (c)

Fig. 6 The placement of depots and targets in ARGoS. 384 targets
(small points) and 24 robots (middle-sized points) are placed in a 10×10
m arena, and 4 depots (large points) are distributed. The targets are
unclustered and spread in a uniform random distribution in a, partially

clustered in b, and clustered into 6 equally-sized piles in c. The colored
rays indicate pheromone waypoints with different strength that even-
tually evaporate and disappear. A small area is magnified in c to show
targets, robots, and a depot in the center

distributions in real-world environments (Ritchie 2009). The
fully clustered distribution has 6 clusters of 64 targets each.

Each experiment is replicated 100 times. For each repli-
cate, the individual targets, or centers of target clusters, are
chosen at random so that each replicate has a different target
placement consistent with the distribution for that experi-
ment. Thus, there are 1500 experimental runs (3 distributions
× 5 algorithms × 100 replicates) for the first set of experi-
ments, 6000 experimental runs (one for each of 4 arena sizes)
for the second set of experiments, 1500 runs for the third set of
experiments, and 600 runs for the fourth set of experiments,
for a total of 9600 separate experimental runs.

4.1 ARGoS implementation

Our implementation includes a C++-based robot controller
library, and an XML configuration file. The C++ controller
specifies the robot’s functionality and interaction with the
ARGoS environment, while the XML file contains all of the
information to set up the size of arena, the type of robots,
the physics engines, the parameters of robot controllers, the
simulation accuracy, and the distributions of targets, depots,
and robots. Source code is available on GitHub,1 and demon-
stration videos are available on our YouTube playlist.2

We use the ARGoS 8.5 cm radius foot-bots to represent
our robots with a movement speed of 16 cm/s, while the
movement speed of a depot is set to be the same. The step size
of the simulation is 32 ticks per second, which was chosen
to balance simulation accuracy and speed. Depots have a

1 https://github.com/BCLab-UNM/MPFA.
2 https://www.youtube.com/playlist?list=PLkjRv85y76xl7mWU18YN
JcbuBLz0t-1cC.

15 cm radius and targets are cylinders with a 5 cm radius.
The distance robots can sense targets is 2

√
2 times the target

radius.
Each pheromone trail is represented by a startingwaypoint

and an ending waypoint at a depot. Waypoints provide posi-
tional information maintained in lists in which pheromone
strength of each waypoint decreases exponentially over time,
as described by Eq. 4 above. Waypoints are removed once
their values drop below a threshold of 0.001.

In the simulation, robots are able to identify and remember
the exact locations of depots and the locations of sites visited
in the last foraging round, but this is not realistic for physical
robot hardware. To test potential pitfalls of transferring the
behavior of simulated robots to physical robots, we simulate
sensor errors that reflect those of iAnt robots.

Following themethod used byFricke et al. (2016),we sim-
ulate sensor error by applying Gaussian noise when robots
attempt to return to a previous location via pheromones or
site fidelity, mimicking that of the iAnt robots as described
in Hecker et al. (2013). The standard deviation around the
intended location increases with the distance the robot trav-
els to its intended destination position, p. This reflects the
greater accumulation of odometry errors over longer dis-
tances. The distance p is multiplied by a noise coefficient,
e, in order to change noise severity. Noise is generated by:
noise ∼ N (0, σ 2), where σ = e × p. For example, given
the maximum travel distance of CPFA swarms to the corner
of an arena, p = 7.0 m, and a noise coefficient of e = 0.4,
returning robots will arrive within approximately 3m of their
goal destination 68% of the time.MPFA swarms, which have
shorter average travel distances (as shown below), and there-
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fore lower modeled error, will return to previous locations
with higher accuracy.

5 Results

We compare MPFAdynamic to the CPFA, MPFAstatic,
MPFAglobal_static, and MPFAglobal_dynamic. We replicate
each experiment in 100 trials and report the median time
for the swarm to collect targets in each experiment. We
also examine several components of foraging time: travel
time, search time, and collision time. We test the scala-
bility of the algorithms by increasing the arena size and
swarm size and examining the trends in foraging time. We
demonstrate that MPFAdynamic is faster than the CPFA and
MPFAstatic, and similar in performance toMPFAglobal_static

and MPFAglobal_dynamic. We present our results in notched
box plots to show which results are statistically different.
We used the Mann-Whitney U test to compare the results of
the MPFAdynamic to each of the four other algorithms. The
statistical significance is explicitly indicated by asterisks in
figures (p < 0.001). Additionally, the notch on each plot
indicates the 95% confidence interval of the medians. If the
notches of two boxes do not overlap, this indicates a statisti-
cally significant difference between the medians.

5.1 Foraging performance

5.1.1 Foraging time

In our simulation, the foraging time of each swarm is the time
required to collect 88% (as described above in Sect. 4) of the
targets. The configuration of each experiment is shown in
Table 2. Figure 7 shows the time for each algorithm to collect

88% of the targets for three different classes of distributions
of targets.

Our experiments show thatMPFAdynamic outperforms the
CPFA and the MPFAstatic in all three distributions. The
MPFAdynamic is 47% faster than the CPFA in the partially
clustered distribution and 18% faster than the MPFAstatic

in the clustered distribution. Surprisingly, the MPFAdynamic

is either faster than both globally informed algorithms in
the clustered distribution or statistically indistinguishable
from them in the partially clustered distribution. It is slightly
slower than MPFAglobal_dynamic in the random distribution.

5.1.2 Robustness to error

We examine the effect of localization error on foraging per-
formance. Figure 8 shows foraging time for swarms given
simulated error with a noise coefficient e = 0.4. This error
results in robots returning to pheromone or site fidelity way-
points at the far corner of a 10× 10 m arena being normally
distributed around the intended destination, with 68% of the
robots within 3 m of the intended destination, a substan-
tial amount of error when searching for targets that are 5
cm in radius. Our experiments show that the foraging times
of all algorithms increase moderately (on average by 16%)
with this level of error. However, MPFAdynamic still outper-
forms the CPFA and MPFAstatic in all three distributions
with statistical significance levels similar to the error-free
evaluations.

5.2 Search and travel time

Foraging time is composed of two distinct activities. When
a robot departs from a depot, it travels to a location where
it starts a localized search for targets. Once a target is dis-

Fig. 7 Foraging times for CPFA
and MPFA swarms of 24 robots
in a 10× 10 m arena. Results are
for 100 trials with each swarm.
Asterisks indicate a statistically
significant difference of the
medians (p < 0.001) from
MPFAdynamic which is
emphasized by red ellipses. The
performance of each algorithm
is represented by a notched box
plot in a different shade, ordered
left to right, lightest to darkest in
the same order indicated in the
legend. The notches indicate the
95% confidence interval of the
median so that overlapping
ranges of the notches indicate
statistically indistinguishable
results at the p = 0.05 level
(Color figure online)
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Fig. 8 Foraging times for CPFA and MPFA swarms of 24 robots with
noise e = 0.4 in a 10 × 10 m arena (Color figure online)

covered, the robot takes approximately the same travel time
back to the depot as it took to travel to the search location.

We measure the total travel time and search time spent
by all robots in the swarm. The summed travel and search
time of all robots in each swarm are shown in Fig. 9. In the
MPFAdynamic, travel time is reduced in all cases. Compared
to the CPFA, the MPFAdynamic is up to 62% faster (in the
clustered distribution); compared to the MPFAstatic it is up
to 30% faster (in the clustered distribution). Robots using
the MPFAdynamic also search faster in all cases. Compared
to the CPFA it is up to 51% faster (in the partially clustered
distribution), and compared to the MPFAstatic (up to 13.6%
faster in the partially clustered distribution). It is also faster
than the globally informed MPFAs in the partially clustered
distribution. It is slightly slower than MPFAglobal_dynamic in
the clustered distribution.

Fig. 9 The search and travel time (per swarm) for the CPFA and MPFAs (Color figure online)
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Fig. 10 Total time spent (per swarm) avoiding collisions for the CPFA
and MPFAs. The boxplot of MPFAdynamic is emphasized by blue
ellipses (Color figure online)

5.3 Collision time

In our simulation, if the distance between two robots is less
than 25 cm, each robot will implement collision avoidance.
Each robot senses the location of the other and turns left or
right in order to avoid a collision, moving approximately 8
cm before resuming traveling. The collision avoidance takes
time and will increase foraging times, particularly when the
swarm size is large.

Collision time is the time spent to avoid a collision. The
total collision time of each swarm is the sum of the total
collision avoidance times for all robots in the swarm (shown
in Fig. 10). The collision time for MPFAdynamic is less than
the collision time for the CPFA in all cases, but it is more
than the collision time for the globally informed algorithm
with dynamic depots in the partially clustered distribution
and for both globally informed algorithms in the clustered
distribution. Not surprisingly, collision time is lowest in the
random distribution where targets and robots are most dis-
persed, and highest in the clustered distribution where robots
crowd around clustered target locations.

5.4 Scalability

We tested the foraging performance of MPFAdynamic with
increased arena sizes and swarm sizes. Figure 11 shows the
foraging performance in different arena sizes. Not surpris-
ingly, foraging time increases as the arena size increases.
MPFAdynamic outperforms the CPFA and MPFAstatic in all
arena sizes and all three distributions. Its performance is sim-
ilar to MPFAglobal_static and MPFAglobal_dynamic.

The increase in foraging time appears to be linear
with the length of the foraging arena. However, in the
clustered target environment, MPFAdynamic (slope=2.55),

MPFAglobal_static (slope=2.56), and MPFAglobal_dynamic

(slope=2.21) have improved scalability compared to the
CPFA (slope=5.04) and MPFAstatic (slope=4.61) as evi-
denced by the more shallow increase in per-robot forag-
ing time with arena size. The slope of the regression for
MPFAdynamic is not significantly different from that of
MPFAglobal_static and MPFAglobal_dynamic.

To further test scalability, we create an arena 25 times
larger (50 × 50 m) than the basic (10 × 10 m) arena and we
measure foraging times for swarms of 96 robots.

Figure 12 shows foraging performance in this larger arena.
MPFAdynamic still outperforms the CPFA (up to 30% in
the clustered distribution) and MPFAstatic (up to 13% in
the clustered distribution) in most cases. The MPFAdynamic

is either better than or statistically indistinguishable from
the MPFAglobal_static and MPFAglobal_dynamic in all cases.
These results suggest that the MPFAdynamic is particularly
effective for very large swarms and foraging areas.

5.5 Transport to a central depot

Two caveats should be considered in interpreting the above
comparisons of the MPFA algorithms to the CPFA. First,
because we consider the mobile depots to be robotic agents,
thismeans that theMPFA swarms have fourmore robots than
the CPFA swarms. Second, in cases where theMPFA is used,
but targets must ultimately be collected at a central location,
the mobile depots would need to transport targets to a single
central depot (as is done in the CPFA).

To make a more fair experimental comparison, we
added four robots to the CPFA swarm, and we modified
MPFAdynamic so that when mobile depots are full (in this
case containing 24 targets), they deliver those targets to a
single central depot. Foraging robots carrying targets to that
depot pause their motion while the depot is traveling to and
from the central depot. A demonstration video is available
on YouTube.3

Figure 13 compares the MPFAdynamic with central deliv-
ery to the CPFA. Central delivery increases the foraging time
of the MPFAdynamic by 5.5% and adding 4 additional robots
to the CPFA decreased foraging time by 11%.

However, the MPFAdynamic with central delivery is still
significantly faster than the CPFA: 22% faster in the random
distribution, 36% faster in the partially clustered, and 32%
faster in the clustered distribution. Thus, even with central
delivery, the MPFA is on average 30% faster than the CPFA.

3 https://www.youtube.com/watch?v=nihPNSKm4xw&index=7&
t=5s&list=PLkjRv85y76xl7mWU18YNJcbuBLz0t-1cC.
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Fig. 11 The foraging time for each swarm for increasing arena sizes. Results are for 100 trials and data for each swarm is shown by the box plot.
The lines show the best-fit linear regression (Color fiigure online)

Fig. 12 The foraging time for each swarm of 96 robots in a 50 × 50
m arena. Results are for 100 replicates for each algorithm. Asterisks
indicate a statistically significant difference (p < 0.001). The boxplot
of MPFAdynamic is emphasized by red ellipses (Color figure online)

6 Discussion

This paper examines the foraging performance of swarms
using the multiple-place foraging algorithm with dynamic
depots (MPFAdynamic). We test 4 variants of the multiple-
place foraging algorithm and a central-place foraging algo-
rithm (the CPFA). Because these ant-inspired algorithms are
designed for collecting targets quickly rather than for the
complete collection of all targets, we report the time required
to collect 88% of the available targets in each experiment.

In the first set of experiments with 24 robots in a 10× 10
m arena (Fig. 7), the average foraging time of MPFAdynamic

across the three target distributions is 41% faster than
the centralized CPFA, and 13% faster than MPFAstatic.
Its foraging times are similar to MPFAglobal_static and
MPFAglobal_dynamic, illustrating that dynamic depots that
respond only to local information are as effective as global
methods that require more information to be collected and
communicated.
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Fig. 13 Foraging times forCPFAswarmof 28 robots andMPFAdynamic
swarmsof 24 robots in a 10×10marena.Depots deliver collected targets
to the central placed depot when they have 24 targets. Results are for
100 trials with each swarm. Asterisks indicate a statistically significant
difference of themedians (p < 0.001) fromMPFAdynamic (Color figure
online)

Foraging times are reduced in all versions of the MPFA
compared to the CPFA, primarily because travel times are
dramatically reduced by an average of 49% over all three
distributions. Travel times are reduced the most in partially
clustered and clustered distributions, and in those distribu-
tions MPFAdynamic also has reduced travel times relative to
MPFAstatic (see Fig. 9). The same comparisons are true for
search time, but the differences are smaller: MPFAdynamic

is 33% faster than the CPFA and 9% faster than MPFAstatic

on average. Collision avoidance times are on average 47%
lower for all versions of the MPFA compared to the CPFA
(see Fig. 10). Since larger swarms produce more inter-robot
collisions and reduce foraging performance, a more efficient
collision avoidance strategy for reducing collision time will
be included in future work, informed by the adaptive bucket-
brigade foraging method introduced in Lein and Vaughan
(2009).

In addition to having faster foraging times for all arena
sizes and all target distributions, MPFAdynamic is also
more scalable than the CPFA and MPFAstatic. Figure 11
shows that the increase in foraging times with arena size
is smaller on the clustered distribution for MPFAdynamic

(slope=2.55) compared to the CPFA (slope=5.04) and
MPFAstatic (slope=4.61). MPFAdynamic foraging times are
particularly faster for large arenas and clustered targets (e.g.,
21% faster than MPFAstatic in a 16 × 16 m arena, and 30%
faster in the 50 × 50 m arena in Fig. 12).

We also demonstrated how the MPFAdynamic can be used
to complete the central-place foraging task faster than the
CPFA. For these experiments, the mobile depots deliver their
contents to a central depot when they are full, and the CPFA

is given 4 additional robots for a more fair comparison. The
transport time of a small number of trips to the central depot
is minimal and has little effect on the total foraging time.
Figure 13 shows that the MPFAdynamic is still 30% faster
than the CPFA.

Thus, by using mobile depots that adapt to local con-
ditions, MPFAdynamic is an efficient and scalable solution
that minimizes the central-place bottleneck of the CPFA and
improves foraging times compared to MPFAstatic without
requiring any global information.

6.1 Online decision-making in response to local
information

Real-time adaptive response is a key component of
MPFAdynamic. Foraging robots adaptively respond to the tar-
gets they detect in the environment by making a real-time
decision to communicate pheromones or to return to a previ-
ous search location using site fidelity. Depots make real-time
adjustments each time a foraging robot drops off a target
in order to move toward the centroid of the known target
locations. The CPFA andMPFAstatic are both effective algo-
rithms (Hecker and Moses 2015; Lu et al. 2016a); however,
the additional real-time decision-making of mobile depots
decreases foraging times in all of our experiments, and the
decrease is greatest in the largest arenas and for clustered
target distributions (Fig. 12).

MPFAdynamic is particularly effective compared to
MPFAstatic for highly clustered targets. Foraging robots
adaptively respond to clusters by using pheromones and
site fidelity; in turn, depots respond to the observations of
the foraging robots by moving closer to clusters of targets.
Thus, both foragers and depots respond to the environ-
ment to reduce the time to collect targets. The adaptive
communication of foragers reduces search time, and the
adaptive movement of depots reduces travel time. Real-
time adaptation to communicated information about target
locations is particularly valuable when targets are highly
clustered because each target found in a cluster confers more
information about the location of other targets in that clus-
ter (Flanagan et al. 2011).

The benefits of dynamic depot movement are likely to
be even greater when targets are ephemeral, i.e. appearing
and disappearing over time, and when the targets themselves
are mobile because depots can move to new locations where
targets appear so that they can be collected quickly (Levin
2016).

In addition to real-time decision-making, robots also
respond adaptively to their environments over evolutionary
time. Our previous work showed that robots adjust dis-
persal parameters and the rate of communication to avoid
overcrowding between depots and nearby piles when they
are tested in environments with clustered targets (Lu et al.
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2016a). This results in scalable algorithms, and scalability is
improved further with MPFAdynamic.

6.2 Broader implications for scalable design

A fundamental problem in computer science is the design
of scalable solutions that perform well as the problem size
increases. As computational systems interact more with the
environment in which they are situated, particularly if they
navigate physical space using stochastic movement, they
become increasingly analogous to biological systems (Klein-
berg 2007). In biology, scaling theory investigates how effi-
ciently targets can be moved through spatial networks (West
et al. 1997; Savage et al. 2008; Banavar et al. 2010). Scal-
ing theory makes predictions beyond individual organisms,
to explain the efficiency of ant colonies (Hou et al. 2010),
societies (Moses and Brown 2003; Brown et al. 2011), and
even computer chip design (Moses et al. 2016).

MPFAdynamic offers a new perspective on the scaling
problem. The use of multiple depots in the MPFA improves
scaling compared to the CPFA, and having adaptive and
dynamic mobile depots increases scalability even further.
This advantage is particularly apparent when the targets to
be transported are grouped into clusters, rather than ran-
domly scattered, and when transport distances are very large
(i.e., MPFAdynamic is nearly twice as fast as the CPFA and
MPFAstatic for clustered targets in the largest 50 × 50 m
arena as shown in Fig. 12). This suggests that adaptivemobile
agents in robotic swarms can mitigate the inherent scaling
inefficiencies of central-place transport. The experiments in
Fig. 13 show that this holds even when the dispersed depots
transport targets to a central nest.

The success of MPFAdynamic also provides insight into
biological mechanisms that improve scalability. While most
biological scaling theory focuses on fixed, centralized trans-
port networks, there are biological systems that have features
similar to the depots of the MPFA. For example, the immune
system, with multiple lymph nodes distributed throughout
the search space of an organism, results in a highly scal-
able immune response with trillions of cells (Banerjee and
Moses 2010a). Our prior works suggest that the partially dis-
tributed architecture of the immune system (one in which
lymph nodes act as depots) is critical for overcoming the
inherent scaling limitations of transporting targets (Moses
and Banerjee 2011).

There is also evidence of mobile depots in the largest
colonies of ants: invasive Argentine ant colonies are com-
posed of a network of mobile nests connected by trails, and
thedynamicpatterns of recruitment and allocationof foragers
to nests increases foraging efficiency (Flanagan et al. 2013;
Lanan 2014). These examples suggest that in biological sys-
tems, as well as in robotic swarms, adaptive, decentralized,
and mobile aggregation points increase search efficiency.

Fig. 14 The physical robot on which components of the CPFA have
been implemented

Thus, biological systems have evolved architectures with the
same advantages of MPFAdynamic: faster search and forag-
ing, fewer collisions, and reduced travel time.

6.3 The path to implementation

Our simulations suggest that the MPFAdynamic is robust to
the errors that we previously identified as important in our
iAnt physical robots, namely error in returning to locations
indicated by site fidelity or pheromone waypoints. When
we included substantial error in our simulations (leading to
robots being up to 3 m away from intended destinations),
it reduced foraging performance by an average of 16% (see
Fig. 8) across all of the MPFA and CPFA experiments, but
the MPFA continued to be faster than the CPFA.

However, we do not expect that foraging performance
in real robots will be as fast as it is in the simulation. In
order to implement multiple-place foraging with dynamic
depots in a physical robot swarm, we will use our existing
robot platform, designed by our lab for the NASA Swar-
mathon competition (Secor 2016; Ackerman et al. 2018).
The code for the competition is available on GitHub.4 Swar-
mathon robots are outfitted with a grasping apparatus that
facilitates the pick up and drop off of target cubes (see
Fig. 14). Structural modifications will be required to con-
vert four Swarmathon robots into mobile depots capable of
holding collected targets inside of a container.

Swarmathon robots are considerably larger and more
powerful than the foot-bots modeled in ARGoS. Swar-
mathon robots run the Robot Operating System (ROS),
a distributed message-passing framework with an exten-
sive, user-supported package that helps streamline algorithm
implementation (Quigley et al. 2009). Other swarm algo-
rithms, including the DDSA and components of the CPFA,
have been implemented in ROS and subsequently tested
in the multi-robot simulator Gazebo (Koenig and Howard

4 https://github.com/BCLab-UNM/SwarmBaseCode-ROS.
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Fig. 15 A mobile depot with blue cover and four foraging robots sim-
ulated in Gazebo

Fig. 16 A swarm of 6 robots (3 shown) implementing central place
foraging in a 23 × 23 m arena

2004). Based on our experience with these existing for-
aging algorithms, we implemented a dynamic depot with
Swarmathon robots in Gazebo (Fig. 15). A demonstration
video showing central-place foraging in Gazebo and physi-
cal Swarmathon robots, as well as a mobile depot simulated
inGazebo is available.5 The next step ismaking a straightfor-
ward extension to the simulation to include multiple depots
implementing pheromone waypoints associated with each
depot and centroid estimation by each depot in order to fully
implement MPFAdynamic.

The biggest benefit of implementing the MPFA on the
ROS and Gazebo system developed for the NASA Swar-
mathon is that code is very easily transferred from Gazebo
onto the onboard Linux computer on the Swarmathon robots.
The ease of this transfer is evidenced by the 19 college teams
that successfully transferred their Gazebo code to up to 6
Swarmathon robots that operated in outdoor arenas up to
23 × 23 m for the Swarmathon competition (see Fig. 16).
These teams showed that Swarmathon robots can reliably
return to collection points, and implement site fidelity and
recruitment to waypoints. Full implementation of the MPFA

5 https://www.youtube.com/playlist?list=PLkjRv85y76xlLHEr0ekXV
nVTy_z9TMZD4.

in 24 physical robots in an outdoor environment is the next
step to demonstrate truly scalable foraging swarms of robots.
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